{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import isoweek\n", "import os.path\n", "import requests" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Les données de l'incidence du syndrome grippal sont disponibles du site Web du [Réseau Sentinelles](http://www.sentiweb.fr/). Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période demandée. Nous téléchargeons toujours le jeu de données complet, qui commence en 1984 et se termine avec une semaine récente." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "data_url = \"https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv\"\n", "local_file_name = './local_data_covid.csv'\n", "if not os.path.isfile(local_file_name):\n", " print('file does not exist, downloading...')\n", " resource = requests.get(data_url, allow_redirects=True)\n", " print(resource)\n", " output = open(local_file_name,\"wb\")\n", " output.write(resource.content)\n", " output.close()\n", " print('local file saved with name : ', local_file_name)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Province/StateCountry/RegionLatLong1/22/201/23/201/24/201/25/201/26/201/27/20...8/1/218/2/218/3/218/4/218/5/218/6/218/7/218/8/218/9/218/10/21
0NaNAfghanistan33.93911067.709953000000...146523147985148572148933149361149810149810149810150778151013
1NaNAlbania41.15330020.168300000000...133121133146133211133310133442133591133730133912133981134201
2NaNAlgeria28.0339001.659600000000...172564173922175229176724178013179216180356181376182368183347
3NaNAndorra42.5063001.521800000000...14678147471476614797148091483614836148361483614873
4NaNAngola-11.20270017.873900000000...42815429704307043158432694348743592436624374743890
5NaNAntigua and Barbuda17.060800-61.796400000000...1303130313031311132013281328133813481348
6NaNArgentina-38.416100-63.616700000000...4935847494703049618804975616498940250029515012754501889550290755041487
7NaNArmenia40.06910045.038200000000...230339230476230713230993231322231625231923232157232297232610
8Australian Capital TerritoryAustralia-35.473500149.012400000000...124124124124124124124124124124
9New South WalesAustralia-33.868800151.209300000034...93609562979510063103541066210917112011155811902
10Northern TerritoryAustralia-12.463400130.845600000000...200200198198198199199199199199
11QueenslandAustralia-27.469800153.025100000000...1824184018591886189619091918192319261929
12South AustraliaAustralia-34.928500138.600700000000...862863866866866866866868868868
13TasmaniaAustralia-42.882100147.327200000000...234234234235235235235235235235
14VictoriaAustralia-37.813600144.963100000011...20950209552095520961209672099721010210212104121061
15Western AustraliaAustralia-31.950500115.860500000000...1058105810581058105810591059105910591059
16NaNAustria47.51620014.550100000000...659508659872660262660854661359661922662529663082663532664133
17NaNAzerbaijan40.14310047.576900000000...344520344951345882346878348074349316350605351825352926354662
18NaNBahamas25.025885-78.035889000000...14840148401501115124151911541915419155371579415915
19NaNBahrain26.02750050.550000000000...269303269401269495269617269737269848269949270060270161270290
20NaNBangladesh23.68500090.356300000000...1264328128031712960931309910132265413352601343396135369513651581376322
21NaNBarbados13.193900-59.543200000000...4407441744224433444344554455447144804485
22NaNBelarus53.70980027.953400000000...446998447754448335449302450445451740452953453932454674455281
23NaNBelgium50.8333004.469936000000...1124715112901811307581132934113490711367261136726113672611413791143127
24NaNBelize17.189900-88.497600000000...14163141631428414331143821443814438144381449914578
25NaNBenin9.3077002.315800000000...8394839483948608860886088608860886089065
26NaNBhutan27.51420090.433600000000...2518252425322540254325442544254425462550
27NaNBolivia-16.290200-63.588700000000...473899474538475265476097476795476795477262477696478671478671
28NaNBosnia and Herzegovina43.91590017.679100000000...205655205785205825205949206031206106206106206106206317206476
29NaNBotswana-22.32850024.684900000000...106690115220115220115220122574122574122574122574130771130771
..................................................................
249NaNTimor-Leste-8.874217125.727539000000...10966109821110011145112251138611475115291157911717
250NaNTogo8.6195000.824800000000...15870159241605316232162321655916728168741694617104
251NaNTrinidad and Tobago10.691800-61.222500000000...38930390393916239345395773957740104402334036140574
252NaNTunisia33.8869179.537499000000...595532596775596775602757602757605205608114610660613628613628
253NaNTurkey38.96370035.243300000000...5747935577083357956655822487584678458707415895841589584159422415968838
254NaNUS40.000000-100.000000112255...35003417351313933523795035330664354404883569546935739551357637853594813136055002
255NaNUganda1.37333332.290275000000...94195944259453794739949049522695474957239587595955
256NaNUkraine48.37940031.165600000000...2334433233523723366032338123233973123413992343046234426023451662346560
257NaNUnited Arab Emirates23.42407653.847818000000...682377683914685462686981688489690009691554692964694285695619
258AnguillaUnited Kingdom18.220600-63.068600000000...113113113113113113113113113113
259BermudaUnited Kingdom32.307800-64.750500000000...2568256825892589258926142614261426142645
260British Virgin IslandsUnited Kingdom18.420700-64.640000000000...2500250025002500250025002500253225322532
261Cayman IslandsUnited Kingdom19.313300-81.254600000000...643644644644644646646646646648
262Channel IslandsUnited Kingdom49.372300-2.364400000000...9216921694439507955595959599960696879729
263Falkland Islands (Malvinas)United Kingdom-51.796300-59.523600000000...63636366666666666666
264GibraltarUnited Kingdom36.140800-5.353600000000...4980500050315056508951015116512751365154
265Isle of ManUnited Kingdom54.236100-4.548100000000...4333491250225145523553375427550255875658
266MontserratUnited Kingdom16.742498-62.187366000000...21212121212122222222
267Saint Helena, Ascension and Tristan da CunhaUnited Kingdom-7.946700-14.355900000000...4444444444
268Turks and Caicos IslandsUnited Kingdom21.694000-71.797900000000...2486248624862486249925092514252325232531
269NaNUnited Kingdom55.378100-3.436000000000...5880667590235459238205952756598258160140236042252606936260942436117540
270NaNUruguay-32.522800-55.765800000000...381569381715381853381994382155382295382360382506382607382721
271NaNUzbekistan41.37749164.585262000000...130216131079131978132901133852134826135738136635137491138382
272NaNVanuatu-15.376700166.959200000000...4444444444
273NaNVenezuela6.423800-66.589700000000...306673307570308452309218309981310960312115312115312931314480
274NaNVietnam14.058324108.277199022222...157507157507174461181756189066193381205656215560224894232937
275NaNWest Bank and Gaza31.95220035.233200000000...316861317083317264317404317534317703317703317999317999318181
276NaNYemen15.55272748.516388000000...7070708170867096710471317131716571877198
277NaNZambia-13.13389727.849332000000...196293196490197123197791198455199135199662200049200201200830
278NaNZimbabwe-19.01543829.154857000000...109546110855112435113526114489115445115890116327116853117258
\n", "

279 rows × 571 columns

\n", "
" ], "text/plain": [ " Province/State Country/Region \\\n", "0 NaN Afghanistan \n", "1 NaN Albania \n", "2 NaN Algeria \n", "3 NaN Andorra \n", "4 NaN Angola \n", "5 NaN Antigua and Barbuda \n", "6 NaN Argentina \n", "7 NaN Armenia \n", "8 Australian Capital Territory Australia \n", "9 New South Wales Australia \n", "10 Northern Territory Australia \n", "11 Queensland Australia \n", "12 South Australia Australia \n", "13 Tasmania Australia \n", "14 Victoria Australia \n", "15 Western Australia Australia \n", "16 NaN Austria \n", "17 NaN Azerbaijan \n", "18 NaN Bahamas \n", "19 NaN Bahrain \n", "20 NaN Bangladesh \n", "21 NaN Barbados \n", "22 NaN Belarus \n", "23 NaN Belgium \n", "24 NaN Belize \n", "25 NaN Benin \n", "26 NaN Bhutan \n", "27 NaN Bolivia \n", "28 NaN Bosnia and Herzegovina \n", "29 NaN Botswana \n", ".. ... ... \n", "249 NaN Timor-Leste \n", "250 NaN Togo \n", "251 NaN Trinidad and Tobago \n", "252 NaN Tunisia \n", "253 NaN Turkey \n", "254 NaN US \n", "255 NaN Uganda \n", "256 NaN Ukraine \n", "257 NaN United Arab Emirates \n", "258 Anguilla United Kingdom \n", "259 Bermuda United Kingdom \n", "260 British Virgin Islands United Kingdom \n", "261 Cayman Islands United Kingdom \n", "262 Channel Islands United Kingdom \n", "263 Falkland Islands (Malvinas) United Kingdom \n", "264 Gibraltar United Kingdom \n", "265 Isle of Man United Kingdom \n", "266 Montserrat United Kingdom \n", "267 Saint Helena, Ascension and Tristan da Cunha United Kingdom \n", "268 Turks and Caicos Islands United Kingdom \n", "269 NaN United Kingdom \n", "270 NaN Uruguay \n", "271 NaN Uzbekistan \n", "272 NaN Vanuatu \n", "273 NaN Venezuela \n", "274 NaN Vietnam \n", "275 NaN West Bank and Gaza \n", "276 NaN Yemen \n", "277 NaN Zambia \n", "278 NaN Zimbabwe \n", "\n", " Lat Long 1/22/20 1/23/20 1/24/20 1/25/20 1/26/20 \\\n", "0 33.939110 67.709953 0 0 0 0 0 \n", "1 41.153300 20.168300 0 0 0 0 0 \n", "2 28.033900 1.659600 0 0 0 0 0 \n", "3 42.506300 1.521800 0 0 0 0 0 \n", "4 -11.202700 17.873900 0 0 0 0 0 \n", "5 17.060800 -61.796400 0 0 0 0 0 \n", "6 -38.416100 -63.616700 0 0 0 0 0 \n", "7 40.069100 45.038200 0 0 0 0 0 \n", "8 -35.473500 149.012400 0 0 0 0 0 \n", "9 -33.868800 151.209300 0 0 0 0 3 \n", "10 -12.463400 130.845600 0 0 0 0 0 \n", "11 -27.469800 153.025100 0 0 0 0 0 \n", "12 -34.928500 138.600700 0 0 0 0 0 \n", "13 -42.882100 147.327200 0 0 0 0 0 \n", "14 -37.813600 144.963100 0 0 0 0 1 \n", "15 -31.950500 115.860500 0 0 0 0 0 \n", "16 47.516200 14.550100 0 0 0 0 0 \n", "17 40.143100 47.576900 0 0 0 0 0 \n", "18 25.025885 -78.035889 0 0 0 0 0 \n", "19 26.027500 50.550000 0 0 0 0 0 \n", "20 23.685000 90.356300 0 0 0 0 0 \n", "21 13.193900 -59.543200 0 0 0 0 0 \n", "22 53.709800 27.953400 0 0 0 0 0 \n", "23 50.833300 4.469936 0 0 0 0 0 \n", "24 17.189900 -88.497600 0 0 0 0 0 \n", "25 9.307700 2.315800 0 0 0 0 0 \n", "26 27.514200 90.433600 0 0 0 0 0 \n", "27 -16.290200 -63.588700 0 0 0 0 0 \n", "28 43.915900 17.679100 0 0 0 0 0 \n", "29 -22.328500 24.684900 0 0 0 0 0 \n", ".. ... ... ... ... ... ... ... \n", "249 -8.874217 125.727539 0 0 0 0 0 \n", "250 8.619500 0.824800 0 0 0 0 0 \n", "251 10.691800 -61.222500 0 0 0 0 0 \n", "252 33.886917 9.537499 0 0 0 0 0 \n", "253 38.963700 35.243300 0 0 0 0 0 \n", "254 40.000000 -100.000000 1 1 2 2 5 \n", "255 1.373333 32.290275 0 0 0 0 0 \n", "256 48.379400 31.165600 0 0 0 0 0 \n", "257 23.424076 53.847818 0 0 0 0 0 \n", "258 18.220600 -63.068600 0 0 0 0 0 \n", "259 32.307800 -64.750500 0 0 0 0 0 \n", "260 18.420700 -64.640000 0 0 0 0 0 \n", "261 19.313300 -81.254600 0 0 0 0 0 \n", "262 49.372300 -2.364400 0 0 0 0 0 \n", "263 -51.796300 -59.523600 0 0 0 0 0 \n", "264 36.140800 -5.353600 0 0 0 0 0 \n", "265 54.236100 -4.548100 0 0 0 0 0 \n", "266 16.742498 -62.187366 0 0 0 0 0 \n", "267 -7.946700 -14.355900 0 0 0 0 0 \n", "268 21.694000 -71.797900 0 0 0 0 0 \n", "269 55.378100 -3.436000 0 0 0 0 0 \n", "270 -32.522800 -55.765800 0 0 0 0 0 \n", "271 41.377491 64.585262 0 0 0 0 0 \n", "272 -15.376700 166.959200 0 0 0 0 0 \n", "273 6.423800 -66.589700 0 0 0 0 0 \n", "274 14.058324 108.277199 0 2 2 2 2 \n", "275 31.952200 35.233200 0 0 0 0 0 \n", "276 15.552727 48.516388 0 0 0 0 0 \n", "277 -13.133897 27.849332 0 0 0 0 0 \n", "278 -19.015438 29.154857 0 0 0 0 0 \n", "\n", " 1/27/20 ... 8/1/21 8/2/21 8/3/21 8/4/21 8/5/21 \\\n", "0 0 ... 146523 147985 148572 148933 149361 \n", "1 0 ... 133121 133146 133211 133310 133442 \n", "2 0 ... 172564 173922 175229 176724 178013 \n", "3 0 ... 14678 14747 14766 14797 14809 \n", "4 0 ... 42815 42970 43070 43158 43269 \n", "5 0 ... 1303 1303 1303 1311 1320 \n", "6 0 ... 4935847 4947030 4961880 4975616 4989402 \n", "7 0 ... 230339 230476 230713 230993 231322 \n", "8 0 ... 124 124 124 124 124 \n", "9 4 ... 9360 9562 9795 10063 10354 \n", "10 0 ... 200 200 198 198 198 \n", "11 0 ... 1824 1840 1859 1886 1896 \n", "12 0 ... 862 863 866 866 866 \n", "13 0 ... 234 234 234 235 235 \n", "14 1 ... 20950 20955 20955 20961 20967 \n", "15 0 ... 1058 1058 1058 1058 1058 \n", "16 0 ... 659508 659872 660262 660854 661359 \n", "17 0 ... 344520 344951 345882 346878 348074 \n", "18 0 ... 14840 14840 15011 15124 15191 \n", "19 0 ... 269303 269401 269495 269617 269737 \n", "20 0 ... 1264328 1280317 1296093 1309910 1322654 \n", "21 0 ... 4407 4417 4422 4433 4443 \n", "22 0 ... 446998 447754 448335 449302 450445 \n", "23 0 ... 1124715 1129018 1130758 1132934 1134907 \n", "24 0 ... 14163 14163 14284 14331 14382 \n", "25 0 ... 8394 8394 8394 8608 8608 \n", "26 0 ... 2518 2524 2532 2540 2543 \n", "27 0 ... 473899 474538 475265 476097 476795 \n", "28 0 ... 205655 205785 205825 205949 206031 \n", "29 0 ... 106690 115220 115220 115220 122574 \n", ".. ... ... ... ... ... ... ... \n", "249 0 ... 10966 10982 11100 11145 11225 \n", "250 0 ... 15870 15924 16053 16232 16232 \n", "251 0 ... 38930 39039 39162 39345 39577 \n", "252 0 ... 595532 596775 596775 602757 602757 \n", "253 0 ... 5747935 5770833 5795665 5822487 5846784 \n", "254 5 ... 35003417 35131393 35237950 35330664 35440488 \n", "255 0 ... 94195 94425 94537 94739 94904 \n", "256 0 ... 2334433 2335237 2336603 2338123 2339731 \n", "257 0 ... 682377 683914 685462 686981 688489 \n", "258 0 ... 113 113 113 113 113 \n", "259 0 ... 2568 2568 2589 2589 2589 \n", "260 0 ... 2500 2500 2500 2500 2500 \n", "261 0 ... 643 644 644 644 644 \n", "262 0 ... 9216 9216 9443 9507 9555 \n", "263 0 ... 63 63 63 66 66 \n", "264 0 ... 4980 5000 5031 5056 5089 \n", "265 0 ... 4333 4912 5022 5145 5235 \n", "266 0 ... 21 21 21 21 21 \n", "267 0 ... 4 4 4 4 4 \n", "268 0 ... 2486 2486 2486 2486 2499 \n", "269 0 ... 5880667 5902354 5923820 5952756 5982581 \n", "270 0 ... 381569 381715 381853 381994 382155 \n", "271 0 ... 130216 131079 131978 132901 133852 \n", "272 0 ... 4 4 4 4 4 \n", "273 0 ... 306673 307570 308452 309218 309981 \n", "274 2 ... 157507 157507 174461 181756 189066 \n", "275 0 ... 316861 317083 317264 317404 317534 \n", "276 0 ... 7070 7081 7086 7096 7104 \n", "277 0 ... 196293 196490 197123 197791 198455 \n", "278 0 ... 109546 110855 112435 113526 114489 \n", "\n", " 8/6/21 8/7/21 8/8/21 8/9/21 8/10/21 \n", "0 149810 149810 149810 150778 151013 \n", "1 133591 133730 133912 133981 134201 \n", "2 179216 180356 181376 182368 183347 \n", "3 14836 14836 14836 14836 14873 \n", "4 43487 43592 43662 43747 43890 \n", "5 1328 1328 1338 1348 1348 \n", "6 5002951 5012754 5018895 5029075 5041487 \n", "7 231625 231923 232157 232297 232610 \n", "8 124 124 124 124 124 \n", "9 10662 10917 11201 11558 11902 \n", "10 199 199 199 199 199 \n", "11 1909 1918 1923 1926 1929 \n", "12 866 866 868 868 868 \n", "13 235 235 235 235 235 \n", "14 20997 21010 21021 21041 21061 \n", "15 1059 1059 1059 1059 1059 \n", "16 661922 662529 663082 663532 664133 \n", "17 349316 350605 351825 352926 354662 \n", "18 15419 15419 15537 15794 15915 \n", "19 269848 269949 270060 270161 270290 \n", "20 1335260 1343396 1353695 1365158 1376322 \n", "21 4455 4455 4471 4480 4485 \n", "22 451740 452953 453932 454674 455281 \n", "23 1136726 1136726 1136726 1141379 1143127 \n", "24 14438 14438 14438 14499 14578 \n", "25 8608 8608 8608 8608 9065 \n", "26 2544 2544 2544 2546 2550 \n", "27 476795 477262 477696 478671 478671 \n", "28 206106 206106 206106 206317 206476 \n", "29 122574 122574 122574 130771 130771 \n", ".. ... ... ... ... ... \n", "249 11386 11475 11529 11579 11717 \n", "250 16559 16728 16874 16946 17104 \n", "251 39577 40104 40233 40361 40574 \n", "252 605205 608114 610660 613628 613628 \n", "253 5870741 5895841 5895841 5942241 5968838 \n", "254 35695469 35739551 35763785 35948131 36055002 \n", "255 95226 95474 95723 95875 95955 \n", "256 2341399 2343046 2344260 2345166 2346560 \n", "257 690009 691554 692964 694285 695619 \n", "258 113 113 113 113 113 \n", "259 2614 2614 2614 2614 2645 \n", "260 2500 2500 2532 2532 2532 \n", "261 646 646 646 646 648 \n", "262 9595 9599 9606 9687 9729 \n", "263 66 66 66 66 66 \n", "264 5101 5116 5127 5136 5154 \n", "265 5337 5427 5502 5587 5658 \n", "266 21 22 22 22 22 \n", "267 4 4 4 4 4 \n", "268 2509 2514 2523 2523 2531 \n", "269 6014023 6042252 6069362 6094243 6117540 \n", "270 382295 382360 382506 382607 382721 \n", "271 134826 135738 136635 137491 138382 \n", "272 4 4 4 4 4 \n", "273 310960 312115 312115 312931 314480 \n", "274 193381 205656 215560 224894 232937 \n", "275 317703 317703 317999 317999 318181 \n", "276 7131 7131 7165 7187 7198 \n", "277 199135 199662 200049 200201 200830 \n", "278 115445 115890 116327 116853 117258 \n", "\n", "[279 rows x 571 columns]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data = pd.read_csv(local_file_name, skiprows=0)\n", "raw_data" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Province/StateCountry/RegionLatLong1/22/201/23/201/24/201/25/201/26/201/27/20...8/1/218/2/218/3/218/4/218/5/218/6/218/7/218/8/218/9/218/10/21
0NaNAfghanistan33.93911067.709953000000...146523147985148572148933149361149810149810149810150778151013
1NaNAlbania41.15330020.168300000000...133121133146133211133310133442133591133730133912133981134201
2NaNAlgeria28.0339001.659600000000...172564173922175229176724178013179216180356181376182368183347
3NaNAndorra42.5063001.521800000000...14678147471476614797148091483614836148361483614873
4NaNAngola-11.20270017.873900000000...42815429704307043158432694348743592436624374743890
5NaNAntigua and Barbuda17.060800-61.796400000000...1303130313031311132013281328133813481348
6NaNArgentina-38.416100-63.616700000000...4935847494703049618804975616498940250029515012754501889550290755041487
7NaNArmenia40.06910045.038200000000...230339230476230713230993231322231625231923232157232297232610
16NaNAustria47.51620014.550100000000...659508659872660262660854661359661922662529663082663532664133
17NaNAzerbaijan40.14310047.576900000000...344520344951345882346878348074349316350605351825352926354662
18NaNBahamas25.025885-78.035889000000...14840148401501115124151911541915419155371579415915
19NaNBahrain26.02750050.550000000000...269303269401269495269617269737269848269949270060270161270290
20NaNBangladesh23.68500090.356300000000...1264328128031712960931309910132265413352601343396135369513651581376322
21NaNBarbados13.193900-59.543200000000...4407441744224433444344554455447144804485
22NaNBelarus53.70980027.953400000000...446998447754448335449302450445451740452953453932454674455281
23NaNBelgium50.8333004.469936000000...1124715112901811307581132934113490711367261136726113672611413791143127
24NaNBelize17.189900-88.497600000000...14163141631428414331143821443814438144381449914578
25NaNBenin9.3077002.315800000000...8394839483948608860886088608860886089065
26NaNBhutan27.51420090.433600000000...2518252425322540254325442544254425462550
27NaNBolivia-16.290200-63.588700000000...473899474538475265476097476795476795477262477696478671478671
28NaNBosnia and Herzegovina43.91590017.679100000000...205655205785205825205949206031206106206106206106206317206476
29NaNBotswana-22.32850024.684900000000...106690115220115220115220122574122574122574122574130771130771
30NaNBrazil-14.235000-51.925300000000...19938358199535011998581720026533200665872010874620151779201656722017775720212642
31NaNBrunei4.535300114.727700000000...337338338338339339339347406440
32NaNBulgaria42.73390025.485800000000...425148425541426003426432426932427481427873428049428823429628
33NaNBurkina Faso12.238300-1.561600000000...13588135911359113599135991360713610136211362513626
34NaNBurma21.91620095.956000000000...302665306354311067315118319250322838326489329516333127337561
35NaNBurundi-3.37310029.918900000000...7080750575187518771480888088808888008800
36NaNCabo Verde16.538800-23.041800000000...33822338303385833906339413397634010340523407834112
37NaNCambodia11.550000104.916700000001...77914784747905179634802258081381335818918239982898
..................................................................
238NaNSri Lanka7.87305480.771797000001...311349313769316219318775321429324223326043329994332947335851
239NaNSudan12.86280030.217600000000...37138371383713837138371383713837138371383713837528
240NaNSummer Olympics 202035.649100139.773700000000...264281281299327387409409436511
241NaNSuriname3.919300-56.027800000000...25402254392554925614257162585325917260022604626103
242NaNSweden60.12816118.643501000000...1100040110004011019001102829110369311045381104538110453811045381106821
243NaNSwitzerland46.8182008.227500000000...717665719684720743721776722801723968723968723968727113729024
244NaNSyria34.80207538.996815000000...25983260052602626044260592607126081260972611626136
245NaNTaiwan*23.700000121.000000113345...15688157021572115742157531576515775157821579015798
246NaNTajikistan38.86100071.276100000000...15082152191529315364154401551315583156511572015792
247NaNTanzania-6.36902834.888822000000...1017101710171017101710171017101710171367
248NaNThailand15.870032100.992541445688...615314633284652185672385693305714684736522756505776108795951
249NaNTimor-Leste-8.874217125.727539000000...10966109821110011145112251138611475115291157911717
250NaNTogo8.6195000.824800000000...15870159241605316232162321655916728168741694617104
251NaNTrinidad and Tobago10.691800-61.222500000000...38930390393916239345395773957740104402334036140574
252NaNTunisia33.8869179.537499000000...595532596775596775602757602757605205608114610660613628613628
253NaNTurkey38.96370035.243300000000...5747935577083357956655822487584678458707415895841589584159422415968838
254NaNUS40.000000-100.000000112255...35003417351313933523795035330664354404883569546935739551357637853594813136055002
255NaNUganda1.37333332.290275000000...94195944259453794739949049522695474957239587595955
256NaNUkraine48.37940031.165600000000...2334433233523723366032338123233973123413992343046234426023451662346560
257NaNUnited Arab Emirates23.42407653.847818000000...682377683914685462686981688489690009691554692964694285695619
269NaNUnited Kingdom55.378100-3.436000000000...5880667590235459238205952756598258160140236042252606936260942436117540
270NaNUruguay-32.522800-55.765800000000...381569381715381853381994382155382295382360382506382607382721
271NaNUzbekistan41.37749164.585262000000...130216131079131978132901133852134826135738136635137491138382
272NaNVanuatu-15.376700166.959200000000...4444444444
273NaNVenezuela6.423800-66.589700000000...306673307570308452309218309981310960312115312115312931314480
274NaNVietnam14.058324108.277199022222...157507157507174461181756189066193381205656215560224894232937
275NaNWest Bank and Gaza31.95220035.233200000000...316861317083317264317404317534317703317703317999317999318181
276NaNYemen15.55272748.516388000000...7070708170867096710471317131716571877198
277NaNZambia-13.13389727.849332000000...196293196490197123197791198455199135199662200049200201200830
278NaNZimbabwe-19.01543829.154857000000...109546110855112435113526114489115445115890116327116853117258
\n", "

194 rows × 571 columns

\n", "
" ], "text/plain": [ " Province/State Country/Region Lat Long 1/22/20 \\\n", "0 NaN Afghanistan 33.939110 67.709953 0 \n", "1 NaN Albania 41.153300 20.168300 0 \n", "2 NaN Algeria 28.033900 1.659600 0 \n", "3 NaN Andorra 42.506300 1.521800 0 \n", "4 NaN Angola -11.202700 17.873900 0 \n", "5 NaN Antigua and Barbuda 17.060800 -61.796400 0 \n", "6 NaN Argentina -38.416100 -63.616700 0 \n", "7 NaN Armenia 40.069100 45.038200 0 \n", "16 NaN Austria 47.516200 14.550100 0 \n", "17 NaN Azerbaijan 40.143100 47.576900 0 \n", "18 NaN Bahamas 25.025885 -78.035889 0 \n", "19 NaN Bahrain 26.027500 50.550000 0 \n", "20 NaN Bangladesh 23.685000 90.356300 0 \n", "21 NaN Barbados 13.193900 -59.543200 0 \n", "22 NaN Belarus 53.709800 27.953400 0 \n", "23 NaN Belgium 50.833300 4.469936 0 \n", "24 NaN Belize 17.189900 -88.497600 0 \n", "25 NaN Benin 9.307700 2.315800 0 \n", "26 NaN Bhutan 27.514200 90.433600 0 \n", "27 NaN Bolivia -16.290200 -63.588700 0 \n", "28 NaN Bosnia and Herzegovina 43.915900 17.679100 0 \n", "29 NaN Botswana -22.328500 24.684900 0 \n", "30 NaN Brazil -14.235000 -51.925300 0 \n", "31 NaN Brunei 4.535300 114.727700 0 \n", "32 NaN Bulgaria 42.733900 25.485800 0 \n", "33 NaN Burkina Faso 12.238300 -1.561600 0 \n", "34 NaN Burma 21.916200 95.956000 0 \n", "35 NaN Burundi -3.373100 29.918900 0 \n", "36 NaN Cabo Verde 16.538800 -23.041800 0 \n", "37 NaN Cambodia 11.550000 104.916700 0 \n", ".. ... ... ... ... ... \n", "238 NaN Sri Lanka 7.873054 80.771797 0 \n", "239 NaN Sudan 12.862800 30.217600 0 \n", "240 NaN Summer Olympics 2020 35.649100 139.773700 0 \n", "241 NaN Suriname 3.919300 -56.027800 0 \n", "242 NaN Sweden 60.128161 18.643501 0 \n", "243 NaN Switzerland 46.818200 8.227500 0 \n", "244 NaN Syria 34.802075 38.996815 0 \n", "245 NaN Taiwan* 23.700000 121.000000 1 \n", "246 NaN Tajikistan 38.861000 71.276100 0 \n", "247 NaN Tanzania -6.369028 34.888822 0 \n", "248 NaN Thailand 15.870032 100.992541 4 \n", "249 NaN Timor-Leste -8.874217 125.727539 0 \n", "250 NaN Togo 8.619500 0.824800 0 \n", "251 NaN Trinidad and Tobago 10.691800 -61.222500 0 \n", "252 NaN Tunisia 33.886917 9.537499 0 \n", "253 NaN Turkey 38.963700 35.243300 0 \n", "254 NaN US 40.000000 -100.000000 1 \n", "255 NaN Uganda 1.373333 32.290275 0 \n", "256 NaN Ukraine 48.379400 31.165600 0 \n", "257 NaN United Arab Emirates 23.424076 53.847818 0 \n", "269 NaN United Kingdom 55.378100 -3.436000 0 \n", "270 NaN Uruguay -32.522800 -55.765800 0 \n", "271 NaN Uzbekistan 41.377491 64.585262 0 \n", "272 NaN Vanuatu -15.376700 166.959200 0 \n", "273 NaN Venezuela 6.423800 -66.589700 0 \n", "274 NaN Vietnam 14.058324 108.277199 0 \n", "275 NaN West Bank and Gaza 31.952200 35.233200 0 \n", "276 NaN Yemen 15.552727 48.516388 0 \n", "277 NaN Zambia -13.133897 27.849332 0 \n", "278 NaN Zimbabwe -19.015438 29.154857 0 \n", "\n", " 1/23/20 1/24/20 1/25/20 1/26/20 1/27/20 ... 8/1/21 \\\n", "0 0 0 0 0 0 ... 146523 \n", "1 0 0 0 0 0 ... 133121 \n", "2 0 0 0 0 0 ... 172564 \n", "3 0 0 0 0 0 ... 14678 \n", "4 0 0 0 0 0 ... 42815 \n", "5 0 0 0 0 0 ... 1303 \n", "6 0 0 0 0 0 ... 4935847 \n", "7 0 0 0 0 0 ... 230339 \n", "16 0 0 0 0 0 ... 659508 \n", "17 0 0 0 0 0 ... 344520 \n", "18 0 0 0 0 0 ... 14840 \n", "19 0 0 0 0 0 ... 269303 \n", "20 0 0 0 0 0 ... 1264328 \n", "21 0 0 0 0 0 ... 4407 \n", "22 0 0 0 0 0 ... 446998 \n", "23 0 0 0 0 0 ... 1124715 \n", "24 0 0 0 0 0 ... 14163 \n", "25 0 0 0 0 0 ... 8394 \n", "26 0 0 0 0 0 ... 2518 \n", "27 0 0 0 0 0 ... 473899 \n", "28 0 0 0 0 0 ... 205655 \n", "29 0 0 0 0 0 ... 106690 \n", "30 0 0 0 0 0 ... 19938358 \n", "31 0 0 0 0 0 ... 337 \n", "32 0 0 0 0 0 ... 425148 \n", "33 0 0 0 0 0 ... 13588 \n", "34 0 0 0 0 0 ... 302665 \n", "35 0 0 0 0 0 ... 7080 \n", "36 0 0 0 0 0 ... 33822 \n", "37 0 0 0 0 1 ... 77914 \n", ".. ... ... ... ... ... ... ... \n", "238 0 0 0 0 1 ... 311349 \n", "239 0 0 0 0 0 ... 37138 \n", "240 0 0 0 0 0 ... 264 \n", "241 0 0 0 0 0 ... 25402 \n", "242 0 0 0 0 0 ... 1100040 \n", "243 0 0 0 0 0 ... 717665 \n", "244 0 0 0 0 0 ... 25983 \n", "245 1 3 3 4 5 ... 15688 \n", "246 0 0 0 0 0 ... 15082 \n", "247 0 0 0 0 0 ... 1017 \n", "248 4 5 6 8 8 ... 615314 \n", "249 0 0 0 0 0 ... 10966 \n", "250 0 0 0 0 0 ... 15870 \n", "251 0 0 0 0 0 ... 38930 \n", "252 0 0 0 0 0 ... 595532 \n", "253 0 0 0 0 0 ... 5747935 \n", "254 1 2 2 5 5 ... 35003417 \n", "255 0 0 0 0 0 ... 94195 \n", "256 0 0 0 0 0 ... 2334433 \n", "257 0 0 0 0 0 ... 682377 \n", "269 0 0 0 0 0 ... 5880667 \n", "270 0 0 0 0 0 ... 381569 \n", "271 0 0 0 0 0 ... 130216 \n", "272 0 0 0 0 0 ... 4 \n", "273 0 0 0 0 0 ... 306673 \n", "274 2 2 2 2 2 ... 157507 \n", "275 0 0 0 0 0 ... 316861 \n", "276 0 0 0 0 0 ... 7070 \n", "277 0 0 0 0 0 ... 196293 \n", "278 0 0 0 0 0 ... 109546 \n", "\n", " 8/2/21 8/3/21 8/4/21 8/5/21 8/6/21 8/7/21 8/8/21 \\\n", "0 147985 148572 148933 149361 149810 149810 149810 \n", "1 133146 133211 133310 133442 133591 133730 133912 \n", "2 173922 175229 176724 178013 179216 180356 181376 \n", "3 14747 14766 14797 14809 14836 14836 14836 \n", "4 42970 43070 43158 43269 43487 43592 43662 \n", "5 1303 1303 1311 1320 1328 1328 1338 \n", "6 4947030 4961880 4975616 4989402 5002951 5012754 5018895 \n", "7 230476 230713 230993 231322 231625 231923 232157 \n", "16 659872 660262 660854 661359 661922 662529 663082 \n", "17 344951 345882 346878 348074 349316 350605 351825 \n", "18 14840 15011 15124 15191 15419 15419 15537 \n", "19 269401 269495 269617 269737 269848 269949 270060 \n", "20 1280317 1296093 1309910 1322654 1335260 1343396 1353695 \n", "21 4417 4422 4433 4443 4455 4455 4471 \n", "22 447754 448335 449302 450445 451740 452953 453932 \n", "23 1129018 1130758 1132934 1134907 1136726 1136726 1136726 \n", "24 14163 14284 14331 14382 14438 14438 14438 \n", "25 8394 8394 8608 8608 8608 8608 8608 \n", "26 2524 2532 2540 2543 2544 2544 2544 \n", "27 474538 475265 476097 476795 476795 477262 477696 \n", "28 205785 205825 205949 206031 206106 206106 206106 \n", "29 115220 115220 115220 122574 122574 122574 122574 \n", "30 19953501 19985817 20026533 20066587 20108746 20151779 20165672 \n", "31 338 338 338 339 339 339 347 \n", "32 425541 426003 426432 426932 427481 427873 428049 \n", "33 13591 13591 13599 13599 13607 13610 13621 \n", "34 306354 311067 315118 319250 322838 326489 329516 \n", "35 7505 7518 7518 7714 8088 8088 8088 \n", "36 33830 33858 33906 33941 33976 34010 34052 \n", "37 78474 79051 79634 80225 80813 81335 81891 \n", ".. ... ... ... ... ... ... ... \n", "238 313769 316219 318775 321429 324223 326043 329994 \n", "239 37138 37138 37138 37138 37138 37138 37138 \n", "240 281 281 299 327 387 409 409 \n", "241 25439 25549 25614 25716 25853 25917 26002 \n", "242 1100040 1101900 1102829 1103693 1104538 1104538 1104538 \n", "243 719684 720743 721776 722801 723968 723968 723968 \n", "244 26005 26026 26044 26059 26071 26081 26097 \n", "245 15702 15721 15742 15753 15765 15775 15782 \n", "246 15219 15293 15364 15440 15513 15583 15651 \n", "247 1017 1017 1017 1017 1017 1017 1017 \n", "248 633284 652185 672385 693305 714684 736522 756505 \n", "249 10982 11100 11145 11225 11386 11475 11529 \n", "250 15924 16053 16232 16232 16559 16728 16874 \n", "251 39039 39162 39345 39577 39577 40104 40233 \n", "252 596775 596775 602757 602757 605205 608114 610660 \n", "253 5770833 5795665 5822487 5846784 5870741 5895841 5895841 \n", "254 35131393 35237950 35330664 35440488 35695469 35739551 35763785 \n", "255 94425 94537 94739 94904 95226 95474 95723 \n", "256 2335237 2336603 2338123 2339731 2341399 2343046 2344260 \n", "257 683914 685462 686981 688489 690009 691554 692964 \n", "269 5902354 5923820 5952756 5982581 6014023 6042252 6069362 \n", "270 381715 381853 381994 382155 382295 382360 382506 \n", "271 131079 131978 132901 133852 134826 135738 136635 \n", "272 4 4 4 4 4 4 4 \n", "273 307570 308452 309218 309981 310960 312115 312115 \n", "274 157507 174461 181756 189066 193381 205656 215560 \n", "275 317083 317264 317404 317534 317703 317703 317999 \n", "276 7081 7086 7096 7104 7131 7131 7165 \n", "277 196490 197123 197791 198455 199135 199662 200049 \n", "278 110855 112435 113526 114489 115445 115890 116327 \n", "\n", " 8/9/21 8/10/21 \n", "0 150778 151013 \n", "1 133981 134201 \n", "2 182368 183347 \n", "3 14836 14873 \n", "4 43747 43890 \n", "5 1348 1348 \n", "6 5029075 5041487 \n", "7 232297 232610 \n", "16 663532 664133 \n", "17 352926 354662 \n", "18 15794 15915 \n", "19 270161 270290 \n", "20 1365158 1376322 \n", "21 4480 4485 \n", "22 454674 455281 \n", "23 1141379 1143127 \n", "24 14499 14578 \n", "25 8608 9065 \n", "26 2546 2550 \n", "27 478671 478671 \n", "28 206317 206476 \n", "29 130771 130771 \n", "30 20177757 20212642 \n", "31 406 440 \n", "32 428823 429628 \n", "33 13625 13626 \n", "34 333127 337561 \n", "35 8800 8800 \n", "36 34078 34112 \n", "37 82399 82898 \n", ".. ... ... \n", "238 332947 335851 \n", "239 37138 37528 \n", "240 436 511 \n", "241 26046 26103 \n", "242 1104538 1106821 \n", "243 727113 729024 \n", "244 26116 26136 \n", "245 15790 15798 \n", "246 15720 15792 \n", "247 1017 1367 \n", "248 776108 795951 \n", "249 11579 11717 \n", "250 16946 17104 \n", "251 40361 40574 \n", "252 613628 613628 \n", "253 5942241 5968838 \n", "254 35948131 36055002 \n", "255 95875 95955 \n", "256 2345166 2346560 \n", "257 694285 695619 \n", "269 6094243 6117540 \n", "270 382607 382721 \n", "271 137491 138382 \n", "272 4 4 \n", "273 312931 314480 \n", "274 224894 232937 \n", "275 317999 318181 \n", "276 7187 7198 \n", "277 200201 200830 \n", "278 116853 117258 \n", "\n", "[194 rows x 571 columns]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data[raw_data.isnull().any(axis=1)]" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Province/StateCountry/RegionLatLong1/22/201/23/201/24/201/25/201/26/201/27/20...8/1/218/2/218/3/218/4/218/5/218/6/218/7/218/8/218/9/218/10/21
70Hong KongChina22.3114.2022588...11987119901199411996120021200412011120131201512019
\n", "

1 rows × 571 columns

\n", "
" ], "text/plain": [ " Province/State Country/Region Lat Long 1/22/20 1/23/20 1/24/20 \\\n", "70 Hong Kong China 22.3 114.2 0 2 2 \n", "\n", " 1/25/20 1/26/20 1/27/20 ... 8/1/21 8/2/21 8/3/21 8/4/21 \\\n", "70 5 8 8 ... 11987 11990 11994 11996 \n", "\n", " 8/5/21 8/6/21 8/7/21 8/8/21 8/9/21 8/10/21 \n", "70 12002 12004 12011 12013 12015 12019 \n", "\n", "[1 rows x 571 columns]" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data[raw_data[\"Province/State\"]==\"Hong Kong\"]" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "raw_data = raw_data.drop(\"Lat\", axis=1)\n", "raw_data = raw_data.drop(\"Long\", axis=1)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "data = raw_data.copy()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "data.at[\"Country/Region\",\"70\"] = \"Hong Kong\"" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "data.loc[data[\"Province/State\"] == \"Hong Kong\", \"Country/Region\"] = \"Hong Kong\"" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Province/StateCountry/Region1/22/201/23/201/24/201/25/201/26/201/27/201/28/201/29/20...8/2/218/3/218/4/218/5/218/6/218/7/218/8/218/9/218/10/2170
70Hong KongHong Kong0.02.02.05.08.08.08.010.0...11990.011994.011996.012002.012004.012011.012013.012015.012019.0NaN
\n", "

1 rows × 570 columns

\n", "
" ], "text/plain": [ " Province/State Country/Region 1/22/20 1/23/20 1/24/20 1/25/20 1/26/20 \\\n", "70 Hong Kong Hong Kong 0.0 2.0 2.0 5.0 8.0 \n", "\n", " 1/27/20 1/28/20 1/29/20 ... 8/2/21 8/3/21 8/4/21 8/5/21 \\\n", "70 8.0 8.0 10.0 ... 11990.0 11994.0 11996.0 12002.0 \n", "\n", " 8/6/21 8/7/21 8/8/21 8/9/21 8/10/21 70 \n", "70 12004.0 12011.0 12013.0 12015.0 12019.0 NaN \n", "\n", "[1 rows x 570 columns]" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data[data[\"Province/State\"] == \"Hong Kong\"]" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "country_list = [\"Belgium\", \"China\", \"Hong Kong\", \"France\", \"Germany\",\n", " \"Iran\", \"Italy\", \"Japan\", \"Korea, South\", \"Netherlands\",\n", " \"Portugal\", \"Spain\", \"United Kingdom\", \"US\"]\n", "data = data[data[\"Country/Region\"].isin(country_list)]\n", "dataToPlot = data.drop(\"Province/State\", axis=1)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "dataToPlot = dataToPlot.groupby(['Country/Region']).sum()" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "def converttodate(date):\n", " pdate = pd.to_datetime(date, format='%m/%d/%y')\n", " return pdate\n", "dataToPlot.columns = [converttodate(date) for date in dataToPlot.columns]" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAJVCAYAAAAcMbuxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4FOX+/vH3JIRQQu/SEhBIJ4QUSoBQBOQEBAFpUqWLKCpioxyPIgpH/GJDOioICIKKyqGX0AMGBZIQ1KV3JBAgIWV+fyD7k1ASIMmE5H5dVy53Z5+ZvTeL+uEzM89jmKaJiIiIiDw4B6sDiIiIiOQWKqxEREREMokKKxEREZFMosJKREREJJOosBIRERHJJCqsRERERDKJpYWVYRizDMM4bRjG3gyMnWwYRuTfPwcMw7iQHRlFREREMsqwch4rwzAaA/HAF6Zpet/Dfs8BdUzT7Jdl4URERETukaUdK9M0NwLn/7nNMIzqhmGsMAxjl2EYmwzDcL/Nrt2Ar7MlpIiIiEgG5bM6wG1MAwabphlrGEYw8CnQ7MaLhmFUBdyAtRblExEREbmtHFVYGYbhAjQAvjEM48Zm5zTDugKLTdNMyc5sIiIiIunJUYUV109NXjBN0+8uY7oCz2ZTHhEREZEMy1HTLZimeRH40zCMzgDGdbVvvG4YRi2gBLDVoogiIiIid2T1dAtfc71IqmUYxlHDMJ4BegDPGIaxB9gHPPGPXboBC0wrb2UUERERuQNLp1sQERERyU1y1KlAERERkYeZCisRERGRTGLZXYGlS5c2XV1drXp7ERERkQzbtWvXWdM0y6Q3zrLCytXVlYiICKveXkRERCTDDMM4lJFxOhUoIiIikklUWImIiIhkEhVWIiIiIpkkRy1pk5SUxNGjR0lISLA6ijygAgUKUKlSJZycnKyOIiIikm1yVGF19OhRihQpgqurK/9YhFkeMqZpcu7cOY4ePYqbm5vVcURERLJNjjoVmJCQQKlSpVRUPeQMw6BUqVLqPIqISJ6ToworQEVVLqHvUURE8qIcV1hltpMnT9K1a1eqV6+Op6cnbdq04cCBA5l2/PXr17Nly5b72vfEiRO0bNkSm81GwYIF8fPzw9PTk169epGUlHTfmfr378/+/fvve38RERG5P7m6sDJNkw4dOhAaGsrvv//O/v37GT9+PKdOncq097hbYZWcnHzXfVesWEGrVq0AqF69OpGRkfz2228cPXqURYsW3XemGTNm4Onped/7i4iIyP3J1YXVunXrcHJyYvDgwfZtfn5+hISEMHLkSLy9vfHx8WHhwoXA9SIpLCzMPnbYsGHMmTMHuD5T/NixY/H398fHx4fo6GhsNhtTp05l8uTJ+Pn5sWnTJvr06cOLL75I06ZNGTlyJDVq1ODMmTMApKam8uijj3L27FngemH1+OOP35TZ0dGRoKAgjh07BkBKSgojR44kMDAQX19fPv/8c/uxhg4dipeXF2FhYbRp04bFixcDEBoaap/V/uuvv8bHxwdvb29GjRplfx8XFxfeeOMNateuTb169TK12BQREcmrcnVhtXfvXurWrXvL9m+//ZbIyEj27NnD6tWrGTlyJCdOnEj3eKVLl2b37t0MGTKESZMm4erqyuDBgxkxYgSRkZE0atQIgAMHDrB69WomT57M008/zbx58wBYvXo1tWvXpnTp0qSkpBATE3NLZykhIYHt27fTunVrAGbOnEmxYsXYuXMnO3fuZPr06fz55598++232Gw2fvvtN2bMmMHWrVtvyXv8+HFGjRrF2rVriYyMZOfOnSxbtgyAy5cvU69ePfbs2UPjxo2ZPn36vf1yRURE5Ba5urC6k/DwcLp164ajoyPlypWjSZMm7Ny5M939nnzySQDq1q2LzWa747jOnTvj6OgIQL9+/fjiiy8AmDVrFn379gVg+/btBAcH2/f5/fff8fPzo1SpUlSpUgVfX18AVq5cyRdffIGfnx/BwcGcO3eO2NhYwsPD6dy5Mw4ODpQvX56mTZvekmPnzp2EhoZSpkwZ8uXLR48ePdi4cSMA+fPnt3fn0vs8IiIikjG5urDy8vJi165dt2w3TfO24/Ply0dqaqr9edrpApydnYHrp+vudv1U4cKF7Y8rV65MuXLlWLt2Ldu3b7ef+vv555/tXSn4/9dYHTx4kG3btvH999/bs3700UdERkYSGRnJn3/+ScuWLe/4GTLyOQGcnJzsd+6l93lEREQkY3J1YdWsWTMSExNvOs21c+dOSpQowcKFC0lJSeHMmTNs3LiRoKAgqlatyv79+0lMTCQuLo41a9ak+x5FihTh0qVLdx3Tv39/nn76aZ566il7J2vNmjU0b978lrEVKlRgwoQJvPvuuwC0atWKzz77zH6X4IEDB7h8+TIhISEsWbKE1NRUTp06xfr16285VnBwMBs2bODs2bOkpKTw9ddf06RJk3Q/k4iIiNyfXF1YGYbB0qVLWbVqFdWrV8fLy4tx48bRvXt3fH19qV27Ns2aNeP999+nfPnyVK5cmaeeegpfX1969OhBnTp10n2Ptm3bsnTpUvvF67fTrl074uPj7acBz5w5Q4ECBShatOhtx7dv354rV66wadMm+vfvj6enJ/7+/nh7ezNo0CCSk5Pp2LEjlSpVsm8LDg6mWLFiNx2nQoUKvPvuuzRt2pTatWvj7+/PE088cY+/RREREckoIyOnlLJCQECAeePOtRuioqLw8PCwJE9WioiIYMSIEfbC66uvvuLo0aO8+uqrD3Tc+Ph4XFxcOHfuHEFBQWzevJny5ctnRuRMkVu/TxERyXsMw9hlmmZAeuNy1FqBudGECRP47LPP7HcGAjz99NOZcuywsDAuXLjAtWvXGD16dI4qqkRERPIiFVZZ7NVXX33gztSd3O66KhEREbFOrr7GSkRERCQ7qbASERERySQqrEREREQyiQorEREReWgtillEzPkYq2PYqbBKw9HRET8/P/u8T1u2bEl3HxcXl3TH9O/fn/3792dGRBEREQFizscwfvt4FsQssDqKne4KTKNgwYJERkYC8L///Y/XXnuNDRs2PPBxZ8yY8cDHEBERkf9vYsREiuYvygv+L1gdxU4dq7u4ePEiJUqUsD+fOHEigYGB+Pr6Mnbs2FvGp6amMnToULy8vAgLC6NNmzYsXrwYgNDQUG5MiPrPDtfixYvp06cPAH369GHIkCE0bdqUatWqsWHDBvr164eHh4d9jIiIiMDx+ONsP7Gdpz2fpphzsfR3yCY5tmP17x/2sf/4xUw9pucjRRnb1uuuY65evYqfnx8JCQmcOHGCtWvXArBy5UpiY2PZsWMHpmnSrl07Nm7cSOPGje37fvvtt9hsNn777TdOnz6Nh4cH/fr1u6eMf/31F2vXruX777+nbdu2bN68mRkzZhAYGEhkZCR+fn73/sFFRERykeTUZOZHzQegjVsbi9PcLMcWVlb556nArVu30qtXL/bu3cvKlStZuXKlff3A+Ph4YmNjbyqswsPD6dy5Mw4ODpQvX56mTZve8/u3bdsWwzDw8fGhXLly+Pj4AODl5YXNZlNhJSIiedrRS0d5ft3zHPjrAI0qNqJSkUpWR7pJji2s0ussZYf69etz9uxZzpw5g2mavPbaawwaNOiO4zO67qJhGPbHCQkJN73m7OwMgIODg/3xjefJycn3El9ERCTXmbV3FkcuHWFi44k0r9rc6ji30DVWdxEdHU1KSgqlSpWiVatWzJo1i/j4eACOHTvG6dOnbxofEhLCkiVLSE1N5dSpU3dccqZcuXJERUWRmprK0qVLs/pjiIiI5Bo7Tu4gqHwQrd1a4+TgZHWcW+TYjpVVblxjBdc7UHPnzsXR0ZGWLVsSFRVF/fr1gesXoH/11VeULVvWvm/Hjh1Zs2YN3t7e1KxZk+DgYIoVu/WCugkTJhAWFkblypXx9va2F2siIiJyZycvn+TQxUN0rtnZ6ih3ZGT09FVmCwgIMG/cJXdDVFQUHh4eluTJLPHx8bi4uHDu3DmCgoLYvHkz5cuXtzqWJXLD9ykiIjnHvKh5TNgxgUVhi/Aolb3/fzEMY5dpmgHpjVPHKpOFhYVx4cIFrl27xujRo/NsUSUiIpKZzl49yyeRn1C3XF3cS7pbHeeOVFhlsjtdVyUiIiL3b8KOCSQmJzK2/tibbgLLadK9eN0wjAKGYewwDGOPYRj7DMP4923GhBqGEWcYRuTfP2OyJq6IiIjkNRuObOB/tv8x0HcgbsXcrI5zVxnpWCUCzUzTjDcMwwkINwzjZ9M0t6UZt8k0zbDMjygiIiJ51dXkq7y9/W2qF6tOP+97m3TbCukWVub1q9tv3Lbm9PePNVe8i4iISJ6yKGYRJy+fZFarWTg55rzpFdLK0DxWhmE4GoYRCZwGVpmmuf02w+r/fbrwZ8MwrJ/dU0RERB5aZ6+e5YNdH/BJ5CfUr1CfwPKBVkfKkAwVVqZpppim6QdUAoIMw/BOM2Q3UNU0zdrAR8Cy2x3HMIyBhmFEGIYRcebMmQfJnaVOnjxJ165dqV69Op6enrRp04Zp06YRFnb7M539+/dn//792ZxSREQk93puzXPM3TeXxpUaM67BOKvjZNg9zbxumuYFYD3QOs32i6Zpxv/9+CfAyTCM0rfZf5ppmgGmaQaUKVPm/lNnIdM06dChA6Ghofz+++/s37+f8ePHc+rUqTvuM2PGDDw9PbMxpYiISO5li7Ox99xeXqz7IpOaTOIRl0esjpRhGbkrsIxhGMX/flwQaAFEpxlT3vj73kfDMIL+Pu65zI+b9datW4eTkxODBw+2b/Pz86NRo0bEx8fTqVMn3N3d6dGjh31twNDQUG5Mduri4sIbb7xB7dq1qVevnr0g++GHHwgODqZOnTq0aNHiroWaiIhIXvaz7WcAWrm2sjjJvcvIXYEVgLmGYThyvWBaZJrmcsMwBgOYpjkV6AQMMQwjGbgKdDUfdEr3n1+Fk7890CFuUd4HHp9w1yF79+6lbt26t33tl19+Yd++fTzyyCM0bNiQzZs3ExISctOYy5cvU69ePd555x1eeeUVpk+fzptvvklISAjbtm3DMAxmzJjB+++/z3//+99M+2giIiK5wc6TO5n+63RCKoZQvvDDN8l2Ru4K/BWoc5vtU//x+GPg48yNlvMEBQVRqVIl4HoXy2az3VJY5c+f334tVt26dVm1ahUAR48epUuXLpw4cYJr167h5paz5+EQERHJbjHnYxi+djiVi1RmQqO7N0Jyqpw783o6naWs4uXlxeLFi2/7mrOzs/2xo6MjycnJt4xxcnKyzwj7zzHPPfccL774Iu3atWP9+vWMGzcu88OLiIg8pE5ePsmQ1UMo5FSIzx/7nGLOxayOdF/u6eL1vKBZs2YkJiYyffp0+7adO3eyYcOGBzpuXFwcFStWBGDu3LkPdCwREZHc5I+4Pxi5YSRXkq8wtcXUh/IU4A0qrNIwDIOlS5eyatUqqlevjpeXF+PGjeORRx7sjoRx48bRuXNnGjVqROnSt9wwKSIikuckpiTSf2V/nlj2BHvO7GFs/bHUKFHD6lgPxHjQa8zvV0BAgHnjTroboqKi8PDwsCSPZD59nyIicjdz9s7hv7v+y/A6w2nl2ooqRatYHemODMPYZZpmQHrjcu41ViIiIpJr/fTHT3wS+QkhFUMY4DvA6jiZRoWViIiIZJuklCQmRUxifvR8/Mv685+G/7E6UqZSYSUiIiJZ7uK1i8Scj2HK7ilEnomkp2dPRtQdgZNDzl9Y+V6osBIREZEstfyP5YwOH02ymUzBfAWZ2GQirV1bp7/jQ0iFlYiIiGSJU5dP8VXUV8yLmodvGV8G+A7Ap7TPQztHVUaosBIREZFMYZomp66c4lj8Mb47+B0//PEDqWYqrVxb8XrQ6xQvUNzqiFlOhVUajo6O+Pj42J8vW7YMV1dX6wKJiIjkcKZpEn0+mvd3vk/EqetTKTk7OtOpRid6e/WmUpFKFifMPiqs0ihYsCCRkZF3fD05OZl8+fRrExGRvCv2r1h+v/A7cYlxnLh8gjWH12C7aKNgvoKMqDuCGsVr4FXai5IFSlodNdupQsiAOXPm8OOPP5KQkMDly5f5/vvveeKJJ/jrr79ISkri7bff5oknnsBms/H4448TEhLCli1bqFixIt999x0FCxbk4MGDDB48mDNnzuDo6Mg333xD9erVmThxIosWLSIxMZEOHTrw73//2+qPKyIiAlzvRP2V+Benr5xm/7n97D27l71n9xJ1Pso+xsFwIKBcAL28evFYlcfyxOm+u8mxhdV7O94j+nx0ph7TvaQ7o4JG3XXM1atX8fPzA8DNzY2lS5cCsHXrVn799VdKlixJcnIyS5cupWjRopw9e5Z69erRrl07AGJjY/n666+ZPn06Tz31FEuWLOHpp5+mR48evPrqq3To0IGEhARSU1NZuXIlsbGx7NixA9M0adeuHRs3bqRx48aZ+rlFRETSk5KawqGLh4g6H0XM+Riiz0cT81cM5xPO28cUcSqCZ2lPXqr7EiEVQyheoDhF8xclv2N+C5PnLDm2sLLKnU4FPvbYY5Qseb2laZomr7/+Ohs3bsTBwYFjx45x6tQp4HoxdqMwq1u3LjabjUuXLnHs2DE6dOgAQIECBQBYuXIlK1eupE6dOgDEx8cTGxurwkpERLKMaZpcSLzAoYuHrhdQf0UTcz6G2L9iSUhJAMDJwYlHiz9Kk0pNqFGiBmUKlcG9hDtVilbBwdAyw3eTYwur9DpL2a1w4cL2x/PmzePMmTPs2rULJycnXF1dSUi4/ofR2dnZPs7R0ZGrV69yp/UYTdPktddeY9CgQVkbXkRE8qyryVf57cxvrDuyjt2nd3Pk4hEuJV2yv140f1HcS7rTuVZn3Eu6U6tELaoVq4aTY+6auDO75NjCKieLi4ujbNmyODk5sW7dOg4dOnTX8UWLFqVSpUosW7aM9u3bk5iYSEpKCq1atWL06NH06NEDFxcXjh07hpOTE2XLls2mTyIiIrlJqplKzPkYdp/ezdFLR/n1zK/sP7efZDMZJwcn6pary7+q/YsqRatQpUgVapaoSfnC5TEMw+rouYYKq/vQo0cP2rZtS0BAAH5+fri7u6e7z5dffsmgQYMYM2YMTk5OfPPNN7Rs2ZKoqCjq168PgIuLC1999ZUKKxERyZDLSZc5eukoB/46wLoj69h+YjsXr10Erk934FnKk95evfEv50+dsnUokr+IxYlzP+NOp6myWkBAgBkREXHTtqioKDw8PCzJI5lP36eISOYyTZP95/bz3e/fsebQGk5fPW1/rUzBMjSs2JCg8kEElg+kXKFy6kRlIsMwdpmmGZDeOHWsREREcjDTNDl86TBrD6/l+9+/5+CFg+R3yE+Tyk3wLOVJpSKVqFKkCu4l3XVheQ6gwkpERCQHunjtIt8d/I6FMQs5dPH6tby1y9RmTP0xtHJtRdH8RS1OKLejwkpERCQHiT4fzYLoBfz4x48kpCRQu0xtetXrRXCFYKoWrWp1PEmHCisRERGLXUm6woKYBayyrWLvub0UcCxAm2pt6FqrKx6ldK3qw0SFlYiIiEWSU5P57uB3fBL5CWeunsGntA8vB7xM+0fbU8y5mNXx5D6osBIREclmpmmy6dgmJu+azMELB6ldpjb/Df0vdcrWsTqaPCAVVrdx6tQpRowYwbZt2yhRogT58+fnlVdesS9JIyIicj9SzVRWHVrFwpiF7Dy5kypFqvBB6Ae0qNJCUyPkEiqs0jBNk/bt29O7d2/mz58PwKFDh/j+++8ztH9KSgqOjo5ZGVFERB5Chy8eZsyWMew6tYuyBcvyWtBrdK7VGScHLR2Tm2jCizTWrl1L/vz5GTx4sH1b1apVee6550hJSWHkyJEEBgbi6+vL559/DsD69etp2rQp3bt3x8fHB5vNhru7O/3798fb25sePXqwevVqGjZsSI0aNdixYwcAO3bsoEGDBtSpU4cGDRoQExMDwJw5c3jyySdp3bo1NWrU4JVXXgFg5syZjBgxwp5r+vTpvPjii9n1qxERkfuQaqYyL2oeHb/vyIHzB3irwVus6ryK7h7dVVTlQjm2Y3Vy/HgSo6Iz9ZjOHu6Uf/31u47Zt28f/v7+t31t5syZFCtWjJ07d5KYmEjDhg1p2bIlcL1I2rt3L25ubthsNg4ePMg333zDtGnTCAwMZP78+YSHh/P9998zfvx4li1bhru7Oxs3biRfvnysXr2a119/nSVLlgAQGRnJL7/8grOzM7Vq1eK5556ja9eu+Pr68v777+Pk5MTs2bPtxZ2IiOQ8x+KP8Ub4G+w6tYtGFRsxtv5YyhUuZ3UsyUI5trDKKZ599lnCw8PJnz8/VatW5ddff2Xx4sXA9cWYY2NjyZ8/P0FBQbi5udn3c3Nzw8fHBwAvLy+aN2+OYRj2jtaN/Xv37k1sbCyGYZCUlGTfv3nz5hQrdv2OEE9PTw4dOkTlypVp1qwZy5cvx8PDg6SkJPt7iIhIznE1+SoLoxcy9depAPyn4X94ovoTuo4qD8ixhVV6naWs4uXlZe8aAXzyySecPXuWgIAAqlSpwkcffUSrVq1u2mf9+vUULlz4pm3Ozs72xw4ODvbnDg4OJCcnAzB69GiaNm3K0qVLsdlshIaG3nZ/R0dH+z79+/dn/PjxuLu707dv38z50CIikmlOXj7Jc2ufI/p8NPUr1Gdsg7FUdKlodSzJJrrGKo1mzZqRkJDAZ599Zt925coVAFq1asVnn31m7ywdOHCAy5cv3/d7xcXFUbHi9X/Z5syZk6F9goODOXLkCPPnz6dbt273/d4iIpL59pzZQ9flXTl66SifNP+EaS2nqajKY1RYpWEYBsuWLWPDhg24ubkRFBRE7969ee+99+jfvz+enp74+/vj7e3NoEGD7J2k+/HKK6/w2muv0bBhQ1JSUjK831NPPUXDhg0pUaLEfb+3iIhkrh9+/4F+K/pRyKkQX7X5isaVGlsdSSxgmKZpyRsHBASYERERN22LiorCw0NT96cnLCyMESNG0Lx5c6uj3JW+TxHJCxJTEnl/x/ssOrCIoPJB/LfJfyleoLjVsSSTGYaxyzTNgPTGqWP1ELlw4QI1a9akYMGCOb6oEhHJCzYd3USn7zux6MAi+nr1ZepjU1VU5XE59uJ1uVXx4sU5cOCA1TFERAT47uB3jNkyBteirnza/FMaVWpkdSTJAVRYiYiI3KN5UfOYsGMC9SvU58OmH1LIqZDVkSSHUGElIiKSQaZpMu3XaXwc+THNqzTn/cbvk98xv9WxJAdRYSUiIpIBpmny0S8fMf236bSt1pa3Gr5FPgf9b1Rupj8RIiIi6UhJTeHD3R8yZ98cOtXsxOh6o3EwdP+X3Ep/KtJwcXG56fmcOXMYNmxYlr5nnz597MvknD9/njp16jB79uwsfU8REcmYU5dP0WdFH+bsm0OXWl1UVMldqWOVg8TFxdGqVSsGDhyo5WpERHKA01dO8/TPT3Mx8SLjQ8YTVi1M6/3JXankvgeHDh2iefPm+Pr60rx5cw4fPgxc7zgNHz6cBg0aUK1aNXv3KTU1laFDh+Ll5UVYWBht2rSxv5ZWfHw8jz/+ON27d2fIkCHA9fP5I0eOxNvbGx8fHxYuXAhcX5swNDSUTp064e7uTo8ePbgx0etPP/2Eu7s7ISEhDB8+nLCwsKz+tYiI5EpXkq4wbM0w4hLjmN16Nm2rt1VRJenKsR2rTYsOcPZIfKYes3RlFxo9VfOuY65evYqfn5/9+fnz52nXrh0Aw4YNo1evXvTu3ZtZs2YxfPhwli1bBsCJEycIDw8nOjqadu3a0alTJ7799ltsNhu//fYbp0+fxsPDg379+t32fV988UX69+/PiBEj7Nu+/fZbIiMj2bNnD2fPniUwMJDGja8vkfDLL7+wb98+HnnkERo2bMjmzZsJCAhg0KBBbNy4ETc3N60lKCJyn1JSU3h106vE/BXDlKZT8CzlaXUkeUioY5VGwYIFiYyMtP+89dZb9te2bt1K9+7dAejZsyfh4eH219q3b4+DgwOenp6cOnUKgPDwcDp37oyDgwPly5enadOmd3zfZs2a8d1333H69Gn7tvDwcLp164ajoyPlypWjSZMm7Ny5E4CgoCAqVaqEg4MDfn5+2Gw2oqOjqVatGm5ubgAqrERE7tMHuz5g3ZF1vBL4Ck0qN7E6jjxEcmzHKr3OUk7wz5aws7Oz/fGN03L3sg5j165dCQkJoU2bNqxbt44iRYrcdf9/vp+joyPJycn39H4iInJ7X+7/ki/2f0F39+708OhhdRx5yKhjdQ8aNGjAggULAJg3bx4hISF3HR8SEsKSJUtITU3l1KlTrF+//q7jX3jhBZo3b06HDh24du0ajRs3ZuHChaSkpHDmzBk2btxIUFDQHfd3d3fnjz/+wGazAdivyRIRkfSlmqnM3jubiTsn0rxKc14JfMXqSPIQyrEdq5xoypQp9OvXj4kTJ1KmTJl0p0To2LEja9aswdvbm5o1axIcHEyxYsXuus97771H37596dmzJ/Pnz2fr1q3Url0bwzB4//33KV++PNHR0bfdt2DBgnz66ae0bt2a0qVL37UIExGR/880TcZvH8/CmIW0qNKCdxu9i6ODo9Wx5CFkWHX6KCAgwIyIiLhpW1RUFB4eHpbkySrx8fG4uLhw7tw5goKC2Lx5M+XLl8/y9zNNk2effZYaNWrcdEF8dsqN36eI5E5z981lUsQk+nr1ZUTdEbr7T25hGMYu0zQD0hunjlUWCwsL48KFC1y7do3Ro0dnaVEFMH36dObOncu1a9eoU6cOgwYNytL3ExF52IUfC+eDXR/wWNXHVFTJA1PHSrKMvk8Ryeli/4ql5889qeRSiS8e/4JCToWsjiQ5VEY7Vrp4XURE8qQ/4v5gyOohFMxXkI+bf6yiSjKFTgWKiEiec+ryKQb8bwApZgqfP/Y55Qtn7WUakneoYyUiInnK6kOrefL7J4lPiufzxz6nVslaVkeSXESFlYiI5BnrDq9j5IaRVC1alS/bfKmiSjKdTgWm4eLiQnx85q5RKCIi1ttybAsvbXgJj1IeTHtsGi7pmj7rAAAgAElEQVT5XayOJLmQOlYZkJKSYnUEERF5ABEnI3h+3fO4FXPjsxafqaiSLKPC6g7Wr19P06ZN6d69Oz4+PsD1hZbr1q2Ll5cX06ZNs491cXHhjTfeoHbt2tSrV8++CLOIiFjvtzO/8eyaZ6ngUoFpj02jmPPdV8AQeRA59lTgujnTOH3oj0w9Ztmq1WjaZ2CGx+/YsYO9e/fi5uYGwKxZsyhZsiRXr14lMDCQjh07UqpUKS5fvky9evV45513eOWVV5g+fTpvvvlmpmYXEZF7F3M+hkGrB1GyQEmmPzadUgVLWR1Jcjl1rO4iKCjIXlTB9bUCb3Sljhw5QmxsLAD58+cnLCwMgLp169oXQRYREev89MdP9F3Rl0L5CjGj1QzKFS5ndSTJA9LtWBmGUQDYCDj/PX6xaZpj04wxgP8D2gBXgD6mae5+kGD30lnKKoULF7Y/Xr9+PatXr2br1q0UKlSI0NBQEhISAHBycrIvgeDo6EhycrIleUVE5Lrlfyzn9U2v41fWj/Eh46noUtHqSJJHZORUYCLQzDTNeMMwnIBwwzB+Nk1z2z/GPA7U+PsnGPjs73/mGnFxcZQoUYJChQoRHR3Ntm3b0t9JRESy3drDa3kz/E0CywfySfNPKJCvgNWRJA9J91Sged2N+Qec/v5Ju8DgE8AXf4/dBhQ3DKNC5ka1VuvWrUlOTsbX15fRo0dTr149qyOJiEgaO0/u5OUNL+NVyospzaaoqJJsl6FFmA3DcAR2AY8Cn5imOSrN68uBCaZphv/9fA0wyjTNiDTjBgIDAapUqVL30KFDN72PFu3NXfR9ikh2Onn5JF2Wd6GYczG+fPxL3f0nmSpTF2E2TTPFNE0/oBIQZBiGd9r3u91utznONNM0A0zTDChTpkxG3lpERCRdv5z+ha7Lu5KYksjk0MkqqsQy93RXoGmaF4D1QOs0Lx0FKv/jeSXg+AMlExERSUdCcgLjt4+n34p+FHYqzFePf0X14tWtjiV5WLqFlWEYZQzDKP7344JACyA6zbDvgV7GdfWAONM0T2R6WhERkb9dSLjAwFUDWRC9gCdrPMn8f83n0RKPWh1L8riM3BVYAZj793VWDsAi0zSXG4YxGMA0zanAT1yfauEg16db6JtFeUVERDgWf4zBqwZzPP44E5tMpJVrK6sjiQAZKKxM0/wVqHOb7VP/8dgEns3caCIiIreKOhfF0DVDSUxJZFrLadQtV9fqSCJ2mnldREQeGpuPbabPij44OTjx5eNfqqiSHEeFVRouLtdXPLfZbMyfPz/d8TabDW/vtDdJiohIZkpKSWL6r9MZtmYYlYtU5qs2ukhdciYVVneQ0cJKRESyVvy1eIauGcqUX6bQtEpT5rSeQ9lCZa2OJXJbKqzu4NVXX2XTpk34+fkxefJkbDYbjRo1wt/fH39/f7Zs2XLLPo0aNSIyMtL+vGHDhvz666/ZGVtEJFc5e/Usff/Xl50nd/Kfhv/hg9APcMnvYnUskTvKyF2Blrjww+9cO345U4+Z/5HCFG+bsdbxhAkTmDRpEsuXLwfgypUrrFq1igIFChAbG0u3bt2IiLhpYnn69+/PnDlz+PDDDzlw4ACJiYn4+vpm6mcQEckrbHE2Bq8ezPmE83zc/GNCKoZYHUkkXepYZVBSUhIDBgzAx8eHzp07s3///lvGdO7cmeXLl5OUlMSsWbPo06dP9gcVEckF9pzZQ8+fe3I1+SqzWs1SUSUPjRzbscpoZym7TJ48mXLlyrFnzx5SU1MpUODWhT0LFSrEY489xnfffceiRYtu6WiJiMjdJaUkMe23acz4dQblC5fn88c+p0rRKlbHEsmwHFtYWa1IkSJcunTJ/jwuLo5KlSrh4ODA3LlzSUlJue1+/fv3p23btjRq1IiSJUtmV1wRkYfe5aTLPLvmWXad2kVYtTBGBY6ieIHiVscSuScqrO7A19eXfPnyUbt2bfr06cPQoUPp2LEj33zzDU2bNqVw4cK33a9u3boULVqUvn01+byISEbduPPv1zO/8m6jdwmrFmZ1JJH7osIqjfj4eACcnJxYs2bNTa/98w6/d999FwBXV1f27t1r3378+HFSU1Np2bJlNqQVEXn4Xbp2icGrB7P/7H7eb/w+LV313095eOni9Uz0xRdfEBwczDvvvIODg361IiLpOZ9wnmf+9wz7z+1nUugkFVXy0FPHKhP16tWLXr16WR1DROShcCz+GENXD+VY/DE+avaR7vyTXEGFlYiIZLvI05E8v+55klKT+KzFZwSWD7Q6kkim0PkqERHJVluPb6X/yv64OLkwr808FVWSq6hjJSIi2SbmfAzPr3ueKkWrMKPlDEoW0LQ0kruoYyUiItni5OWTDF0zlCL5izC1xVQVVZIrqbC6DRcXLfApIpKZ4q/F8+yaZ7mcdJlPm39K2UJlrY4kkiV0KlBERLJUUmoSL214id8v/M6nzT+lVslaVkcSyTLqWN1BfHw8zZs3x9/fHx8fH7777jsAbDYb7u7u9O7dG19fXzp16sSVK1cAeOuttwgMDMTb25uBAwdimiYAoaGhjBo1iqCgIGrWrMmmTZss+1wiItnpStIVnlv7HFuOb2Fs/bE0qNjA6kgiWSrHdqx+/vlnTp48manHLF++PI8//niGxhYoUIClS5dStGhRzp49S7169WjXrh0AMTExzJw5k4YNG9KvXz8+/fRTXn75ZYYNG8aYMWMA6NmzJ8uXL6dt27YAJCcns2PHDn766Sf+/e9/s3r16kz9bCIiOU1iSiLD1w1n58mdjK0/lg41OlgdSSTLqWN1B6Zp8vrrr+Pr60uLFi04duwYp06dAqBy5co0bNgQgKeffprw8HAA1q1bR3BwMD4+Pqxdu5Z9+/bZj/fkk08C19cStNls2fthRESyWXJqMiM3jGT7ie38p+F/6FSzk9WRRLJFju1YZbSzlFXmzZvHmTNn2LVrF05OTri6upKQkACAYRg3jTUMg4SEBIYOHUpERASVK1dm3Lhx9vEAzs7OADg6OpKcnJx9H0REJJulmqmM2TyGdUfW8Xrw67Sr3s7qSCLZRh2rO4iLi6Ns2bI4OTmxbt06Dh06ZH/t8OHDbN26FYCvv/6akJAQexFVunRp4uPjWbx4sSW5RUSsZJom47eP54c/fmB4neF0c+9mdSSRbKXCKo3k5GScnZ3p0aMHERERBAQEMG/ePNzd3e1jPDw8mDt3Lr6+vpw/f54hQ4ZQvHhxBgwYgI+PD+3btycwUDMJi0jeYpom7+18j4UxC+nr3Zf+Pv2tjiSS7XLsqUCr7Nu3j+rVq1O6dGl7V+qfbDYbDg4OTJ069ZbX3n77bd5+++1btq9fv97+uHTp0rrGSkRynVQzlfd2vMf86Pn09OzJCP8Rt1w2IZIXqLD6h6lTpzJlyhQ+/PBDq6OIiDw0klKTGL15ND/+8SM9PXsyMmCkiirJs1RY/cPgwYMZPHjwXce4urqyd+/ebEokIpLzjd8+nh//+JHn/Z/nGe9nVFRJnqbCSkRE7tvqQ6tZfGAx/bz76ZoqEXTxuoiI3Ke4xDje2f4OHiU9GFZnmNVxRHIEdaxEROS+TN41mfMJ5/m4+cc4OThZHUckR1DHSkRE7tnW41tZEruEnh498SrlZXUckRxDhVUaLi4u9sc//fQTNWrU4PDhw5ZkmTVrFj4+Pvj6+uLt7W1fCPpeRUZG8tNPP9mfjxs3jkmTJmVWTBHJY+IS43gz/E3cirnxbJ1nrY4jkqPoVOAdrFmzhueee46VK1dSpUqVDO2TnJxMvnyZ8ys9evQo77zzDrt376ZYsWLEx8dz5syZ+zpWZGQkERERtGnTJlOyiUjeZZomb297m/MJ55nSfAoF8xW0OpJIjqKO1W1s2rSJAQMG8OOPP1K9enUADh06RPPmzfH19aV58+b2LlafPn148cUXadq0KaNGjeLy5cv069ePwMBA6tSpY+8y2Ww2GjVqhL+/P/7+/mzZsuWuGU6fPk2RIkXsHTQXFxfc3NyA64VSvXr18PX1pUOHDvz1118AhIaGEhERAcDZs2dxdXXl2rVrjBkzhoULF+Ln58fChQsB2L9/P6GhoVSrVo0pU6Zk8m9QRHKrH//8kRW2FQzxG6JTgCK3kWM7VgcO/IdL8VGZeswiLh7UrDn6rmMSExN54oknWL9+/U3L2AwbNoxevXrRu3dvZs2axfDhw1m2bNnfWQ+wevVqHB0def3112nWrBmzZs3iwoULBAUF0aJFC8qWLcuqVasoUKAAsbGxdOvWzV4E3U7t2rUpV64cbm5uNG/enCeffJK2bdsC0KtXLz766COaNGnCmDFj+Pe//33HSU3z58/PW2+9RUREBB9//DFw/VRgdHQ069at49KlS9SqVYshQ4bg5KSLT0Xkzk5ePsn4bePxK+NHP+9+VscRyZHUsUrDycmJBg0aMHPmzJu2b926le7duwPQs2dPwsPD7a917twZR0dHAFauXMmECRPw8/MjNDSUhIQEDh8+TFJSkn0twc6dO7N///675nB0dGTFihUsXryYmjVrMmLECMaNG0dcXBwXLlygSZMmAPTu3ZuNGzfe8+f817/+hbOzM6VLl6Zs2bKcOnXqno8hInmHaZqM2zKOZDOZd0LeIZ9Djv17uYilcuy/Gel1lrKKg4MDixYtokWLFowfP57XX3/9tuP+ObNw4cKF7Y9N02TJkiXUqlXrpvHjxo2jXLly7Nmzh9TUVAoUKJBuFsMwCAoKIigoiMcee4y+ffsyYsSIO47Ply8fqampACQkJNz12M7OzvbHjo6OJCcnp5tHRPKuZQeXsfn4Zl4Leo0qRTN23alIXqSO1W0UKlSI5cuXM2/ePHvnqkGDBixYsACAefPmERISctt9W7VqxUcffYRpmgD88ssvAMTFxVGhQgUcHBz48ssvSUlJse/zz1OONxw/fpzdu3fbn0dGRlK1alWKFStGiRIl2LRpEwBffvmlvXvl6urKrl27AFi8eLF93yJFinDp0qX7+2WISJ53LeUaH0d+TO0ytenq3tXqOCI5Wo7tWFmtZMmSrFixgsaNG1O6dGmmTJlCv379mDhxImXKlGH27Nm33W/06NG88MIL+Pr6Ypomrq6uLF++nKFDh9KxY0e++eYbmjZtau9ynT171l6E/VNSUhIvv/wyx48fp0CBApQpU4apU6cCMHfuXAYPHsyVK1eoVq2aPcvLL7/MU089xZdffkmzZs3sx2ratKn99ORrr72W2b8qEcnllh1cxukrp/lPw//gYOjv4yJ3Y9zuf+rZISAgwEx78XZUVBQeHh6W5LHK8uXL+eOPPxg+fLjVUTJdXvw+RXKbK0lX+NfSf1HJpRJfPP6FFliWPMswjF2maQakN04dK4uFhYVZHUFE5I6+3P8lZ6+e5YPQD1RUiWSAeroiInJb5xPOM3vfbJpWbkqdsnWsjiPyUFBhJSIit/X5ns+5mnyVF/xfsDqKyENDhZWIiNzi6KWjLDqwiA6PdqBa8WpWxxF5aKiwEhGRW8zcOxMDgyG1h1gdReShosJKRERucvTSUb47+B0dHu1AucLlrI4j8lBRYZWGYRi89NJL9ueTJk1i3Lhxd91n/fr1Ny2q3KdPn5sm6Lwfrq6unD179oGOccONhZxFRDJiUsQk8jnkY4DvAKujiDx0VFil4ezszLfffntPRU3awupBmKZpX5ZGRCS7RZ+PZs3hNfT17kv5wuWtjiPy0FFhlUa+fPkYOHAgkydPvuW1M2fO0LFjRwIDAwkMDGTz5s3YbDamTp3K5MmT8fPzsy81s3HjRho0aEC1atVu6l5NnDiRwMBAfH19GTt2LAA2mw0PDw+GDh2Kv78/R44cuel927dvT926dfHy8mLatGn27S4uLrzxxhvUrl2bevXq2RdS/vPPP6lfvz6BgYGMHv3/11w8ceIEjRs3xs/PD29vb3tWEZEbZu+dTaF8hejh0cPqKCIPpRw7Qejo2KPsjb+aqcf0dinIf2pUSnfcs88+i6+vL6+88spN259//nlGjBhBSEgIhw8fplWrVkRFRTF48GBcXFx4+eWXAZg5cyYnTpwgPDyc6Oho2rVrR6dOnVi5ciWxsbHs2LED0zRp164dGzdupEqVKsTExDB79mw+/fTTW/LMmjWLkiVLcvXqVQIDA+nYsSOlSpXi8uXL1KtXj3feeYdXXnmF6dOn8+abb/L8888zZMgQevXqxSeffGI/zvz582nVqhVvvPEGKSkpXLly5QF/oyKSm5y9epaVtpV0de9K0fxFrY4j8lDKsYWVlYoWLUqvXr2YMmUKBQsWtG9fvXo1+/fvtz+/ePHiHRc3bt++PQ4ODnh6eto7SStXrmTlypXUqXN9or34+HhiY2OpUqUKVatWpV69erc91pQpU1i6dCkAR44cITY2llKlSpE/f377zO1169Zl1apVAGzevJklS5YA0LNnT0aNGgVAYGAg/fr1Iykpifbt2+Pn53ffvyMRyX1++P0Hks1kOtfsbHUUkYdWji2sMtJZykovvPAC/v7+9O3b174tNTWVrVu33lRs3Ymzs7P98Y31GE3T5LXXXmPQoEE3jbXZbPZFmdNav349q1evZuvWrRQqVIjQ0FASEhIAcHJysi8x4ejoSHJysn2/2y090bhxYzZu3MiPP/5Iz549GTlyJL169Ur3s4hI7pdqprL4wGLqlK2jeatEHoCusbqDkiVL8tRTTzFz5kz7tpYtW/Lxxx/bn0dGRgJQpEiRO3au/qlVq1bMmjWL+Ph4AI4dO8bp06fvuk9cXBwlSpSgUKFCREdHs23btnTfp2HDhixYsACAefPm2bcfOnSIsmXLMmDAAJ555hl2796d7rFEJG/YcnwLhy8dpkutLlZHEXmoqbC6i5deeummuwOnTJlCREQEvr6+eHp6MnXqVADatm3L0qVLb7p4/XZatmxJ9+7dqV+/Pj4+PnTq1Cndgqx169YkJyfj6+vL6NGj73i68J/+7//+j08++YTAwEDi4uLs29evX4+fnx916tRhyZIlPP/88+keS0TyhgXRCyhVoBQtq7a0OorIQ824cZoquwUEBJgRERE3bYuKisLDw8OSPJL59H2KPByOXjpKm2/bMNB3IMPqDLM6jkiOZBjGLtM0A9Ibp46ViEgetyhmEQ6Ggy5aF8kEKqxERPKwq8lXWRK7hGZVmmn5GpFMoMJKRCQPW/HnCi5eu0g3925WRxHJFVRYiYjkUaZp8nX01zxa/FECyqV76YiIZEC6hZVhGJUNw1hnGEaUYRj7DMO45VYywzBCDcOIMwwj8u+fMVkTV0REMsueM3uIOh9FN/dut537TkTuXUYmCE0GXjJNc7dhGEWAXYZhrDJNc3+acZtM0wzL/IgiIpIVpv82nWLOxQirpv90i2SWdDtWpmmeME1z99+PLwFRQMWsDmYVR0dH+yLFnTt3vuf19MaPH58luWw2G97e3llybBHJe6LORbHx6Eb6ePWhkFMhq+OI5Br3dI2VYRiuQB1g+21erm8Yxh7DMH42DMMrE7JZomDBgkRGRrJ3717y589vnwQ0PaZpkpqammWFlYhIZloSuwRnR2eeqvWU1VFEcpUMF1aGYbgAS4AXTNO8mObl3UBV0zRrAx8By+5wjIGGYUQYhhFx5syZ+82cbRo1asTBgwcB+OCDD/D29sbb25sPP/wQuN5F8vDwYOjQofj7+/PMM89w9epV/Pz86NGjxy1dpkmTJjFu3DgAdu7cia+vL/Xr12fkyJH2cTabjUaNGuHv74+/vz9btmzJ3g8tIrleQnICP/3xE49VfYyi+YtaHUckV8nQIsyGYThxvaiaZ5rmt2lf/2ehZZrmT4ZhfGoYRmnTNM+mGTcNmAbXZ16/23v++4d97D+etn57MJ6PFGVs24w105KTk/n5559p3bo1u3btYvbs2Wzfvh3TNAkODqZJkyaUKFGCmJgYZs+ezaeffgrAN998Y19D0Gaz3fH4ffv2Zdq0aTRo0IBXX33Vvr1s2bKsWrWKAgUKEBsbS7du3Ug7Q72IyIPYeHQjl5Iu0a56O6ujiOQ6Gbkr0ABmAlGmaX5whzHl/x6HYRhBfx/3XGYGzS43Ok4BAQFUqVKFZ555hvDwcDp06EDhwoVxcXHhySeftK8JWLVq1Qyt3/dPFy5c4NKlSzRo0ACA7t27219LSkpiwIAB+Pj40LlzZ/bvT3uPgIjIg1lhW0HJAiUJLB9odRSRXCcjHauGQE/gN8MwIv/e9jpQBcA0zalAJ2CIYRjJwFWgq/mAixBmtLOU2W5cY/VPd/sohQsXvuNr+fLlIzU11f48ISEh3eNNnjyZcuXKsWfPHlJTUylQoEBGo4uIpOtK0hU2Hd3EE48+QT6HDJ20EJF7kJG7AsNN0zRM0/Q1TdPv75+fTNOc+ndRhWmaH5um6WWaZm3TNOuZppmrLgxq3Lgxy5Yt48qVK1y+fJmlS5fSqFGj2451cnIiKSkJgHLlynH69GnOnTtHYmIiy5cvB6BEiRIUKVKEbdu2AbBgwQL7/nFxcVSoUAEHBwe+/PJLUlJSsvjTiUhesv7IehJSEmjt2trqKCK5kmZezwB/f3/69OlDUFAQwcHB9O/fnzp16tx27MCBA/H19aVHjx44OTkxZswYgoODCQsLw93d3T5u5syZDBw4kPr162OaJsWKFQNg6NChzJ07l3r16nHgwIG7dsRERO7VCtsKyhYsi385f6ujiORKxgOesbtvAQEBZtqLsqOiovDw8LAkT3aLj4/HxcUFgAkTJnDixAn+7//+z+JUmSsvfZ8iD4O4xDiaLmpKl1pdGBU0yuo4Ig8VwzB2maaZ7tpPOsFukR9//JF3332X5ORkqlatypw5c6yOJCK53MpDK0lKTSKsumZaF8kqKqws0qVLF7p06WJ1DBHJQ5b/vpxqxarhWdLT6igiuZausRIRyQOOXDrC7tO7aVu9rRZcFslCKqxERPKA5X9cvyv5X27/sjiJSO6mwkpEJJdLSk1iaexSgsoHUcGlgtVxRHI1FVYiIrncKtsqTlw+QU/PnlZHEcn1VFjdxjvvvIOXlxe+vr74+fmxffv2ez7G999/z4QJE7IgnYjIvVkYsxDXoq40rtTY6igiuZ7uCkxj69atLF++nN27d+Ps7MzZs2e5du3aPR+nXbt2tGunBU5FxFpHLl6/aP15/+dxMPR3aZGspn/L0jhx4gSlS5fG2dkZgNKlS/PII4/g6urKqFGjCAoKIigoiIMHDwLwww8/EBwcTJ06dWjRogWnTp0CYM6cOQwbNgyAPn36MHz4cBo0aEC1atVYvHixNR9ORPKc5X8ux8AgrJrmrhLJDjm3Y/Xzq3Dyt8w9ZnkfePzup+datmzJW2+9Rc2aNWnRogVdunShSZMmABQtWpQdO3bwxRdf8MILL7B8+XJCQkLYtm0bhmEwY8YM3n//ff773//ectwTJ04QHh5OdHQ07dq1o1OnTpn72UREbmPjkY34lPGhfOHyVkcRyRNybmFlERcXF3bt2sWmTZtYt24dXbp0sV8r1a1bN/s/R4wYAcDRo0fp0qULJ06c4Nq1a7i5ud32uO3bt8fBwQFPT097V0tEJCudu3qOfef2MdRvqNVRRPKMnFtYpdNZykqOjo6EhoYSGhqKj48Pc+fOBbhpUr0bj5977jlefPFF2rVrx/r16xk3btxtj3nj1CKAVeszikjesuX4FkxMGlVsZHUUkTxD11ilERMTQ2xsrP15ZGQkVatWBWDhwoX2f9avXx+AuLg4KlasCGAvwEREcoJNxzZRskBJPEppMXSR7JJzO1YWiY+P57nnnuPChQvky5ePRx99lGnTprF8+XISExMJDg4mNTWVr7/+GoBx48bRuXNnKlasSL169fjzzz8t/gQiIpCSmsKW41toUqmJ7gYUyUaGVaelAgICzIiIiJu2RUVF4eGRM/9m5erqSkREBKVLl7Y6ykMjJ3+fIrld5OlIev7ck4mNJ9LarbXVcUQeeoZh7DJNMyC9cfprjIhILrTp2CYcDAfqP1Lf6igieYpOBWaQzWazOoKISIaFHwundpnaFHMuZnUUkTxFHSsRkVzm7NWz7D+3X3cDilhAhZWISC6z+dhmABpVUmElkt1UWImI5DKbjm2iTMEy1CpRy+ooInmOCisRkVwkOTWZLce3EFIx5KZJjUUke6iwSsNms+Ht7X3TtnHjxjFp0iS2bdtGcHAwfn5+eHh43HGWdRERq+w5s4dL1y4RUjHE6igieZLuCrwHvXv3ZtGiRdSuXZuUlBRiYmKsjiQicpMNRzaQzyEfDR5pYHUUkTxJHat7cPr0aSpUqABcX0/Q09PT4kQiIjdbf3Q9geUCccnvYnUUkTwpx3as3tvxHtHnozP1mO4l3RkVNOq+9x8xYgS1atUiNDSU1q1b07t3bwoUKJCJCUVE7t/hi4f5M+5PutTqYnUUkTxLHas07nSxp2EYjBkzhoiICFq2bMn8+fNp3VrLRIhIzrHh6AYAmlRqYnESkbwrx3asHqSz9CBKlSrFX3/9ddO28+fP4+bmBkD16tUZMmQIAwYMoEyZMpw7d45SpUpZEVVE5CYbjmzg0eKPUqlIJaujiORZ6lil4eLiQoUKFVizZg1wvahasWIFISEh/Pjjj9xYtDo2NhZHR0eKFy9uZVwREQAuXbvErlO7aFypsdVRRPK0HNuxstIXX3zBs88+y0svvQTA2LFjqV69Om+88QYjRoygUKFC5MuXj3nz5uHo6GhxWhER2Hx8M8lmMqGVQ62OIpKnqbC6DU9PT9atW3fL9gULFliQRkQkfRuObKC4c3F8S/taHUUkT9OpQBGRh5xpmmw7sY0GjzTA0UFddPl/7N15fFT1of7xz5kl+04SshH2TQRBdgRZBRdE3K7W3u51qVVr1artrVurrT9vW6tX63K7aK1La0XLVVFU1jYTe3EAACAASURBVICo7LJDIJCN7Ptk9vP7Y0IKChIgyZkkz/v1mtfMnDkz88wAycM53/M9YiUVKxGRLq6woZDK5krG9h5rdRSRHk/FSkSki9tYvhGAc9PPtTiJiKhYiYh0cZvKN5EQkcCApAFWRxHp8VSsRES6uI1lGxmTPgaboR/pIlbTv0IRkS6s2l1NQX0B5/bWbkCRcKBidZSCggLOPvvsY5Y9+OCD/OY3v/nK561fv57bbrsNgBUrVrB27dpTfu9+/fpRWVn5lcs3bNhA//792bRpE4sXL+bRRx895fc5nhUrVjB//vx2eS0R6VybyjYBGl8lEi40j1U7GDduHOPGjQNCJSUuLo4pU6a063ts3bqVq666ir///e+MGTOGMWPGsGDBgnZ9DxHpejaWbyTCFsFZvc6yOoqIoC1Wp2TGjBncc889TJgwgSFDhrB69Wrg31t8CgoKePbZZ3n88ccZPXo0q1evpqKigiuvvJLx48czfvx41qxZA0BVVRVz585lzJgx3Hjjja2nyjmenTt3snDhQl566SUmTJgAwAsvvMAtt9wCwLe//W1uu+02pkyZwoABA/jnP/8JQDAY5Oabb2bEiBHMnz+fiy++uPWx9957j2HDhjF16lQWLVrU+l7V1dUsXLiQUaNGMWnSJLZu3QqEttx961vfYu7cufTr149FixZx9913M3LkSC688EJ8Pl87f9si0hYbyjYwMm0kEfYIq6OICGG8xerwr36FZ+eudn3NyOHDyPjZz87oNfx+P59++invvvsuDz30EB9++GHrY/369eOmm24iLi6Ou+66C4DrrruOH//4x0ydOpVDhw4xb948du7cyUMPPcTUqVO5//77eeedd3j++edP+J6XXXYZf/vb35g6deoJ1yktLSUvL49du3axYMECrrrqKhYtWkRBQQGff/455eXlDB8+nO9+97u43W6uv/56li1bxqBBg7jmmmtaX+eBBx5gzJgxvPXWWyxbtoxvfvObbN68GYD8/HyWL1/Ojh07mDx5Mm+88QaPPfYYl19+Oe+88w4LFy48o+9WRE5No7eRndU7uX7k9VZHEZEWYVusrGAYxkmXX3HFFQCMHTuWgoKCk77mhx9+yI4dO1rv19fX09DQwKpVq1q3FF1yySUkJyef8DXmzJnDH//4R+bNm3fCcxMuXLgQm83GWWedRVlZGQB5eXlcffXV2Gw2MjIymDlzJgC7du2if//+DB48GID//M//bC12eXl5vPHGGwDMmjWLqqoq6urqALjoootwOp2MHDmSQCDAhRdeCMDIkSPb9F2ISPvaVL6JoBnUxKAiYSRsi9WZblk6Hb169aKmpuaYZdXV1fTv37/1fmRkJAB2ux2/33/S1wwGg3z88cdER0d/6bETFbkveuqpp7jpppu4+eabee655467zpFcQOtuxa/avXii9z7ec46se+Q9bDYbTqezdbnNZmvTdyEi7WtD2QYchoNz0s6xOoqItNAYq6PExcWRmZnJRx99BIRK1XvvvfeVu+C+KD4+noaGhtb7c+fO5amnnmq9f2S32vnnn8/LL78MwJIlS75U6I5ms9l49dVX2b17N/fff3+bs0ydOpU33niDYDBIWVkZK1asAGDYsGEcOHCA/Px8AF599dXW5xyda8WKFaSmppKQkNDm9xSRzrO+bD0jUkcQ44yxOoqItFCx+oK//vWvPPzww4wePZpZs2bxwAMPMHDgwDY//9JLL+XNN99sHbz+5JNPsn79ekaNGsVZZ53Fs88+C4TGMq1atYpzzz2XpUuXkpub+5WvGxkZyb/+9S8WL17M008/3aYsV155JTk5OZx99tnceOONTJw4kcTERKKionj++ee55JJLmDp1Kn379m19zoMPPtia99577+XFF19s82cXkc7j8rnYXrlduwFFwozxVbuLOtK4cePM9evXH7Ns586dDB8+3JI83VVjYyNxcXFUVVUxYcIE1qxZQ0ZGRqe8t/48RTrOutJ1XL/0ev4w+w9My5lmdRyRbs8wjA2maY472XphO8ZK2sf8+fOpra3F6/Vy3333dVqpEpGOtaZ4DQ6bQzOui4QZFatu7si4KhHpPkzT5KNDHzExcyKxzlir44jIUTTGSkSki8mvzaewoZBZfWZZHUVEviDsipVVY76kfenPUaTjLCtcBsDMPjMtTiIiXxRWxSoqKoqqqir9Uu7iTNOkqqqKqKgoq6OIdEvLDi1jVOoo0mLSrI4iIl8QVmOscnJyKCoqoqKiwuoocoaioqLIycmxOoZIt3O46TDbq7bzo3N/ZHUUETmOsCpWTqfzmFnORUTkWMsLlwMwK1fjq0TCUVjtChQRka+27NAy+iX0Y0DiAKujiMhxqFiJiHQRjd5G1h9ez8xcDVoXCVcqViIiXcTWyq34TT+TMidZHUVETkDFSkSki/i84nMMDEamjrQ6ioicgIqViEgXsbVyKwMSBxAfEW91FBE5ARUrEZEuIBAMsLViKyPTtLVKJJydtFgZhtHHMIzlhmHsNAxju2EYX5o8xQh50jCMfYZhbDUMQ2cFFRFpRyuKVlDrqWV6znSro4jIV2jLPFZ+4E7TNDcahhEPbDAM4wPTNHcctc5FwOCWy0TgmZZrERFpB6/uepWM2Axm9JlhdRQR+Qon3WJlmmapaZobW243ADuB7C+sdhnwVzNkHZBkGEZmu6cVEemB6jx1fHb4My4dcCkOW1jN6ywiX3BKY6wMw+gHjAE++cJD2UDhUfeL+HL5wjCMGwzDWG8YxnqdtkZEpG3Wla4jaAaZljPN6igichJtLlaGYcQBbwC3m6ZZ/8WHj/OUL51J2TTN503THGea5ri0NJ08VESkLdaWrCXeGa9pFkS6gDYVK8MwnIRK1cumaS46zipFQJ+j7ucAJWceT0SkZzNNk7ziPCZlTdJuQJEuoC1HBRrAn4Cdpmn+7gSrLQa+2XJ04CSgzjTN0nbMKSLSI+XX5lPuKmdK1hSro4hIG7Tlvz/nAd8APjcMY3PLsp8BuQCmaT4LvAtcDOwDXMB32j+qiEjPs6ZkDQDnZZ1ncRIRaYuTFivTNPM4/hiqo9cxgR+2VygREQlZVbSKgYkDyYzTgdYiXYFmXhcRCVPV7mrWl61nVu4sq6OISBupWImIhKnlh5YTNIPM7TfX6igi0kYqViIiYWpx/mL6JvRlaPJQq6OISBupWImIhKH9tfvZWL6RKwZfQejgbBHpClSsRETC0Bt738BhOFgwcIHVUUTkFKhYiYiEGW/Ay+L8xczMnUlqdKrVcUTkFKhYiYiEmRWFK6j11HLV4KusjiIip0jFSkQkzKwsWkliZCITMydaHUVETpGKlYhIGAmaQfKK85iSNQW7zW51HBE5RSpWIiJh5LPDn1HtrmZa9jSro4jIaVCxEhEJE96Al4fXPUxWbBazc2dbHUdETkNbTsIsIiKdYFXRKgrqC3hy5pPEOGOsjiMip0FbrEREwsT7Be+THJnMtBztBhTpqlSsRETCgNvvZmXRSub0nYPDpp0JIl2VipWISBhYX7aeZn8zs3JnWR1FRM6AipWISBjIK84j0h7JuN7jrI4iImdAxUpExGKmaZJXnMf4jPFEOaKsjiMiZ0DFSkTEYntr93Kw/iAzcmZYHUVEzpCKlYiIxd4veB+bYWNO3zlWRxGRM6RiJSJiIdM0WVqwlPEZ4+kV3cvqOCJyhlSsREQstKdmDwX1BczrN8/qKCLSDlSsREQs9F7Be9gNO3NytRtQpDtQsRIRsYhpmrxf8D4TMyeSHJVsdRwRaQcqViIiFtlZvZPChkLtBhTpRlSsREQs8n7B+zgMB7P6aLZ1ke5CxUpExAKtuwGzJpIUlWR1HBFpJypWIiIW2F61neLGYub11W5Ake5ExUpExAIfHPwgtBtQJ10W6VZUrERELPBxyceck34OiZGJVkcRkXakYiUi0slq3DXsqt7FpMxJVkcRkXamYiUi0sk+PfwpJqaKlUg3pGIlItLJ1pWuI9YZy9mpZ1sdRUTamYqViEgnW1eyjvEZ43HYHFZHEZF2pmIlItKJihqKKGos0m5AkW5KxUpEpBN9UvoJAJMzJ1ucREQ6goqViEgnWle6jvTodPon9rc6ioh0ABUrEZFOEjSDfFL6CZOyJmEYhtVxRKQDqFiJiHSSXdW7qPHUaHyVSDemYiUi0kk+PPghdsPO1OypVkcRkQ6iYiUi0kk+PPQh43qPIzkq2eooItJBVKxERDpBfm0+B+oOMKfvHKujiEgHUrESEekEHxz8AAOD2bmzrY4iIh1IxUpEpBN8ePBDRqePJi0mzeooItKBVKxERDpYcWMxu2t2a2uVSA+gYiUi0sFWFa0CYEafGdYGEZEOp2IlItLBVhatpF9CP/om9LU6ioh0MBUrEZEO5PK5+Kz0M87POd/qKCLSCVSsREQ60Celn+ANelWsRHoIFSsRkQ60smglcc44zk0/1+ooItIJVKxERDqIaZqsKlrFlKwpOO1Oq+OISCdQsRIR6SA7q3dS0VzB9D7TrY4iIp1ExUpEpIOsLFqJgaGTLov0ICpWIiIdZFXhKkaljSIlKsXqKCLSSVSsREQ6QGVzJduqtuloQJEeRsVKRKQDrC5aDcD0HI2vEulJVKxERDrAqqJV9I7pzZDkIVZHEZFOpGIlItLOvAEva0vWMj1nOoZhWB1HRDqRipWISDtbX7Yel9+laRZEeiAVKxGRdraqaBWR9kjGZ4y3OoqIdLKTFivDMP5sGEa5YRjbTvD4DMMw6gzD2Nxyub/9Y4qIdA2mabKycCUTMycS7Yi2Oo6IdLK2bLF6AbjwJOusNk1zdMvlF2ceS0SkazpQf4CixiIdDSjSQ520WJmmuQqo7oQsIiJd3rJDywA0f5VID9VeY6wmG4axxTCMJYZhjGin1xQR6XLePfAuo9NGkxGbYXUUEbFAexSrjUBf0zTPAf4HeOtEKxqGcYNhGOsNw1hfUVHRDm8tIhI+9tXsY2/NXi7qf5HVUUTEImdcrEzTrDdNs7Hl9ruA0zCM1BOs+7xpmuNM0xyXlpZ2pm8tIhJW3j3wLjbDxtx+c62OIiIWOeNiZRhGhtEyA55hGBNaXrPqTF9XRKQrMU2TJQeWMClzEqnRx/2/pYj0AI6TrWAYxqvADCDVMIwi4AHACWCa5rPAVcAPDMPwA83AtaZpmh2WWEQkDO2o3kFRYxE3jLrB6igiYqGTFivTNL92ksefAp5qt0QiIl3QqqJVGBiabV2kh9PM6yIi7WB10WpGpo0kJSrF6igiYiEVKxGRM1TVXMW2ym2cn625q0R6OhUrEZEzlFech4mpSUFFRMVKRORMrS5eTVp0GsNShlkdRUQspmIlInIGfEEfa4vXMi1nGi0zz4hID6ZiJSJyBjaXb6bB16DxVSICqFiJiJyR1UWrcdgcTMqaZHUUEQkDKlYiImdgZdFKxvYeS6wz1uooIhIGVKxERE5Tfm0+++v2Mzt3ttVRRCRMqFiJiJympQVLMTC4oO8FVkcRkTChYiUicpreL3ifsb3H6qTLItJKxUpE5DTsq9lHfl0+c/vNtTqKiIQRFSsRkdOw9KB2A4rIl6lYiYicIn/Qz5v73mRC5gTtBhSRY6hYiYicouWFyzncdJjrhl1ndRQRCTMqViIip+jlnS+THZfN9JzpVkcRkTCjYiUicgp2Ve9iQ9kGvjbsa9htdqvjiEiYUbESETkFr+x8hWhHNJcPvtzqKCIShlSsRETaqMZdwzv732HBwAUkRCRYHUdEwpCKlYhIG7174F28QS/XDr3W6igiEqZUrERE2uijQx8xKGkQg5IHWR1FRMKUipWISBvUuGvYULaBmX1mWh1FRMKYipWISBu8sP0FgmaQC/tfaHUUEQljKlYiIidR1lTGSzteYsHABQxJHmJ1HBEJYypWIiIn8fb+t/EFfdw46karo4hImFOxEhH5CqZpsjh/MWPSx5CbkGt1HBEJcypWIiJfYUfVDvbX7efSgZdaHUVEugAVKxGRr7A4fzERtgjm9ZtndRQR6QJUrERETsAX8LHkwBJm5s7UTOsi0iYqViIiJ7C6eDU1nhoWDFxgdRQR6SJUrERETmBx/mJSolKYnDXZ6igi0kWoWImIHEdpYykrClewYOACnDan1XFEpItQsRIROY5Xd70KwHXDrrM4iYh0JSpWIiJf4A/6WZy/mJl9ZpIZl2l1HBHpQlSsRES+YH3ZeqrcVVw84GKro4hIF6NiJSLyBe8deI9YZyzTsqdZHUVEuhgVKxGRo/gCPj44+AGz+swiyhFldRwR6WJUrEREjrK2ZC313nou7H+h1VFEpAtSsRIROcqSgiUkRiYyOVNzV4nIqVOxEhFp0exvZvmh5czJnYPTrrmrROTUqViJiLRYWbQSl9/Fxf11NKCInB4VKxGRFm/ufZOM2AzG9h5rdRQR6aJUrEREgKKGItaWrOWKwVdgt9mtjiMiXZSKlYgIsGjvImyGjcsHXW51FBHpwlSsRKTH8wV9vLnvTaZlTyMjNsPqOCLShalYiUiPt6pwFZXNlVw15Cqro4hIF6diJSI93ut7Xyc9Jp2p2VOtjiIiXZyKlYj0aMWNxawtDg1ad9gcVscRkS5OxUpEerRFexcBcMWgKyxOIiLdgYqViPRY/qCfN/e+ydTsqWTGZVodR0S6ARUrEemxVhWtoqK5QoPWRaTdqFiJSI/1zz3/JC06jfNzzrc6ioh0EypWItIjlTaWklecx+WDL9egdRFpNypWItIjLdrXMmh9sAati0j7UbESkR7nyKD1KVlTyI7LtjqOiHQjKlYi0uOsKV5DmatMg9ZFpN2pWIlIj/Pa7tfoFdWL6X2mWx1FRLoZFSsR6VH21ewjrziPa4Zdg9PmtDqOiHQzKlYi0qO8uONFouxRXDv0WqujiEg3pGIlIj1Guauct/e/zcJBC0mOSrY6joh0QyctVoZh/NkwjHLDMLad4HHDMIwnDcPYZxjGVsMwzm3/mCIiZ+6F7S8QNIN886xvWh1FRLqptmyxegG48CsevwgY3HK5AXjmzGOJiLSv4sZiXtv1GgsGLqBPQh+r44hIN3XSYmWa5iqg+itWuQz4qxmyDkgyDENnMxWRsPKHzX/AwOCHo39odRQR6cbaY4xVNlB41P2ilmVfYhjGDYZhrDcMY31FRUU7vLWIyMntr93P2/vf5mvDvkZGbIbVcUSkG2uPYmUcZ5l5vBVN03zeNM1xpmmOS0tLa4e3FhE5uac2P0WUPYrvjfye1VFEpJtrj2JVBBw9YCEHKGmH1xUROWPbq7bzwcEP+OaIb+pIQBHpcO1RrBYD32w5OnASUGeaZmk7vK6IyBn7n03/Q2Jkoo4EFJFO4TjZCoZhvArMAFINwygCHgCcAKZpPgu8C1wM7ANcwHc6KqyIyKlYf3g9a4rXcMfYO4iPiLc6joj0ACctVqZpfu0kj5uADrMRkbBimiZPbnqStOg0rh2mWdZFpHNo5nUR6Zb+b///sal8Ez8Y/QOiHdFWxxGRHkLFSkS6HZfPxW/X/5ZRaaO4cvCVVscRkR5ExUpEup1Xdr1Ctbuan4z7CTZDP+ZEpPPoJ46IdCu7q3fz7JZnmZEzg9Hpo62OIyI9jIqViHQbnoCHe1bdQ0JEAg9OedDqOCLSA530qEARka7imc3PkF+XzzNznqFXdC+r44hID6QtViLSLXxe8Tl/2f4XLh90OVOzp1odR0R6KBUrEenyPAEP9625j7ToNH4y/idWxxGRHky7AkWkSzNNk4fXPdy6C1AzrIuIlbTFSkS6tD9v+zNv7XuLm865SbsARcRyKlYi0mV9ePBDfr/x91zU7yJuPudmq+OIiKhYiUjXtL1yOz9d/VNGpY3il1N/iWEYVkcSEVGxEpGu53DTYW5ddispUSk8MfMJIu2RVkcSEQE0eF1EuhiXz8Wty27F5Xfx0kUvkRqdanUkEZFWKlYi0mUEggHuWXUPe2r28PTspxmcPNjqSCIix9CuQBHpMh7f8DgrilZwz/h7dASgiIQlFSsR6RJe3vkyL+54ka8N+xrXDb/O6jgiIselXYEiEtZM0+RP2/7EExufYGafmdw9/m6rI4mInJCKlYiEraAZ5LHPHuPlnS9zUf+LeGTqIzhs+rElIuFLP6FEJCx5A15+lvcz3i94n2+c9Q3uGncXNkOjF0QkvKlYiUjYafY3c+uyW/mk9BPuGHsH3x7xbU0AKiJdgoqViIQVt9/Nj1f8mE9LP+Xh8x7mskGXWR1JRKTNVKxEJGwcmfzzs8Of8dCUh1SqRKTLUbESkbCwr2Yf96y+h/zafH417VfMHzDf6kgiIqdMxUpELGWaJq/tfo3frv8tsc5Ynpr9lCb/FJEuS8VKRCzjDXh5YO0DvL3/baZmT+WX5/1S5/4TkS5NxUpELFHnqeP25bezvmw9t4y+hRtG3aAj/0Sky1OxEpFOt7dmL3esuIPixmJ+Pe3XGk8lIt2GipWIdJpAMMDre17nN+t/Q6wzlucueI7xGeOtjiUi0m5UrESkU2wu38wjnzzCrupdTMmawiNTH9F4KhHpdlSsRKRDBc0gf9n2F/5n0/+QHpPOf0//b+b1nafxVCLSLalYiUiHqXZX88DaB1hRuIK5fefy0JSHiIuIszqWiEiHUbESkXbnC/r4x+5/8PSmp2n2N3PvhHu5bth12kolIt2eipWItKvPDn/Grz75Fftq9zE5czL3TriXAUkDrI4lItIpVKxEpF14A15+v/H3vLTjJbLjsvn9zN8zq88sbaUSkR5FxUpEztiWii08uPZB9tXu49qh13LHuDuIdkRbHUtEpNOpWInIaXP5XDy56Ule2fkK6THpPD37ac7POd/qWCIillGxEpHTsqt6Fz/L+xn7avZxzdBruH3s7cQ6Y62OJSJiKRUrETklvqCPZzY/w5+2/YnEiESemfMM52WfZ3UsEZGwoGIlIm22u3o396+9nx1VO7hs4GX8ZPxPSIxMtDqWiEjYULESkZNq8Dbwv5//Ly9tf4mEyAQen/E4c/rOsTqWiEjYUbESkRM6MtHnc1ueo8ZTw8JBC7lr3F3aSiUicgIqViJyXHtr9vJfef/FzuqdTMyYyB3j7uCsXmdZHUtE5Bj13nr8QT8pUSlWRwFUrETkCyqbK3lx+4u8vPNl4iPieXzG48zOna2JPkUkbFQ2V/LegffYWb2TZYeWccmAS/j5pJ9bHQtQsRKRFvm1+by661Xe2vcW3oCXSwdeyp3j7gyb/wWKSM/mD/pZWbSSRXsXsaZ4DQEzQHp0Oudln8dVQ66yOl4rFSuRHq7aXc0vPv4FHx36iAhbBPMHzufbI75N/8T+VkcTkR6u0dvIJ6WfsL1qO4vzF1PmKiM9Op1vjfgWCwYuYGDSQKsjfomKlUgPtqpoFQ+sfYB6Tz03j76Za4Zeoy1UImIp0zTZVL6JN/a+wdKCpbgDbgAmZ07mpxN+yvQ+03HYQvXFX1VF/TvvENGvH3Hnh8dZH1SsRHqgyuZKfrP+N7yz/x0GJQ3i2TnPMjRlqNWxRKSHavY3s6ViC7uqdvHmvjfZX7efGEcM8wfO55L+lzAidcQx5x9t3r6dmr++RN2774LPR/J116lYiUjn8wa8/G3n33h+6/N4/B5uOucmrh95PRH2CKujichRfAEflc2VZMZlWh2lw9R761lVtIqPDn7EmpI1NPubARiVNopfTPkF8/rNI8YZ07q+6fPRsGw51S/9leb1G7DFxJB8zTUkX3sNkYMGWfUxvkTFSqSH2Fi2kZ+v+TmFDYVMz5nOnePu1DgqkTDg8rnYV7uP3TW7+bzicw43HWZLxRZcfhdvLniTQcnhUxpOR9AMUuupJb82n701e9lXu4+9NXvZVrkNv+knLTqNBQMXMKPPDAYkDiArLuuY57t376Zu0ZvU/d//EaiuxpmdTfq995B05ZXY4+Mt+lQnpmIl0s15A16e2vwUL2x7gay4LJ6b8xxTsqdYHUukRzJNk8KGQvbW7CW/Lp8tFVtYV7IOb9ALQHJkMplxmczKncXb+99ma+XWTi1WgWAAT8DTemn2N+MJeHD73V+67Q648fg9NAeacfvduP1uXH4XtZ5aat211HpqqfPUUeetI2gGW98jPiKewUmD+cZZ32B239mMTB2JzbAdkyPY3Ez9kveo/fvfad6yBZxO4mfOJPHyhcSdfz6G3d5p38mpUrES6ca2V23nvjX3sbdmL1cOvpKfjP8Jsc5Yq2OJ9DgH6g6w5MASlhxYQkF9Qevy3Phcrhl2DeN7j2dA0gBy43MxDIOgGWR54XJ2Ve86pfepcddQ0lRCnbuOGk9Na7lpLTmeOpp8TaGC1FKMjpQod8CNP+g/rc/ntDmJckQR7YgmKTKJpMgkhiQPISkyicTIRFKiUuiX2I/BSYNJj0k/4bx47j17qP37P6hbvJhgQwMRAwbQ+6f3krBgAY7k5NPK1tlUrES6oXJXOU9ufJLF+YtJiUrh6dlPc35OeAzsFOkJ9tbsJa84j3JXORvKNrCzeicGBhMyJvD14V9nZOpI+if2P2YM0dFsho2hyUPZXb37mOWmaVLmKmNPzR721Oxhb81eihuLafA2UOWuos5Td9zXi4+Iby08Mc4YEiMTibRHEuWIItIe+e+LI5IoexQR9gii7FFEOaL+fe34wv2W60h7ZOtReqfDDARo+PAjql98keaNGzGcTuLnziXpmv8gZvz4Ljc5sYqVSDdimiZ/3/13frfhd/iDfr494ttcP+p64iPCbxyCSHfjD/pZXricl3e+zIayDQDEOmMZmDSQu8ffzbx+80iPSW/z6w1JHsK/8v/FPavuYU/NHspd5TT7m/EFfa3rZMZmkhufS2piKuMzxpMZm0n/xP4kRyWTGJlIUmQSCREJZ1R8OoppmjSuWEH5Y/+N98ABnLm5pN99N4mXL+wyW6eOJ/y+aRE5ezoCvgAAIABJREFULZXNldy35j7yivM4L+s8/mvSf9Envo/VsUS6NU/Aw/LC5eys2smSA0sobSolOy6bO8feyfyB80mNTj3t156YOZHXdr/GpvJNDEkewviM8UQ5osiOzWZw8mAGJQ8iISKhHT9N5/FXVVH68/toXL6ciAEDyP7948RfcEFYj51qK8M0TUveeNy4ceb69esteW+R7ubDgx/y0McP0exv5s5xd3Lt0Gu73OZzka7E7Xfz+p7X+fO2P1PZXInNsDGu9ziuG34dM3JmYLe1T0HwBXw47c52ea1w0fTxxxTffTfBunrSfvQjUr75DQxn+H9GwzA2mKY57mTraYuVSBdW0ljCrz/9NSsKVzA8ZTiPTnuUAUkDrI4l0m0FzSD/2vcvntz0JJXNlUzImMAjUx9hQsaEDtnd1p1KlenzUfE/T1H1v/9LxIAB5P7xj0QN7X4TE6tYiXRR/9zzTx777DEA7hx7J18/6+s4bd3nh7BIODlQd4BFexfx6eFP2VG1g9Fpo3ns/McYnzHe6mhdgreoiJI776J5yxaSrr6a3j+9F1vM8Qfud3UqViJdjD/o5zfrf8PLO19mStYUHpz8YLeenVnESvXeep7e9DR/3/13bIaNgUkDefi8h1kwcIF2t7dR/ZIllN53PxgG2Y//joSLLrI6UodSsRLpQhq8Ddy96m7yivP4xlnf4M6xd7bbWA4R+begGeStfW/xxMYnqPXUcvWQq/nBOT+gV3Qvq6N1Gd7CQsp+9Wsaly8n+pxzyPrtb4nIybY6VodrU7EyDONC4AnADvzRNM1Hv/D4DOBfwIGWRYtM0/xFO+YU6fH21+7njhV3cLD+IPdPvp+rh1xtdSSRbqfZ38yivYt4O/9ttlVt49z0c/npxJ8yLGWY1dG6DF9pKZXPPUftG4swnE7Sf/KTLjNAvT2ctFgZhmEHngYuAIqAzwzDWGya5o4vrLraNM35HZBRpEczTZPX97zOf3/230Q7onn2gmeZmDnR6lgi3dLvN/yeV3a9QmZsJr+e9msu6X+Jdvm1ka+sjKrnnqf29dcxgaSrriT1pptw9u5tdbRO1ZYtVhOAfaZp7gcwDOM14DLgi8VKRNpZs7+Zn+f9nKUHlzI5czKPTH2EtJg0q2OJdCsun4v7197PofpD7K3Zy1VDruKByQ9YHavL8B48SPVLf6P2H//ADAZJuuIKUm+6EWdW1smf3A21pVhlA4VH3S8Cjvff5cmGYWwBSoC7TNPc/sUVDMO4AbgBIDc399TTivQg1e5qbl12K59XfM7t597Od87+zpdOVCoip8cT8LC5fDOHGg6RV5THssJlTMuextCUodw25jar44U90+ej4aNl1P7j7zSt/RgcDpIuX0ivG2/qEeOovkpbitXxtoF+cVbRjUBf0zQbDcO4GHgLGPylJ5nm88DzEJog9BSzivQYB+sP8oMPf0C5q5zHZzzO7L6zrY4k0m3UuGu4bdltbK7Y3Lrs+yO/z4/O/ZGFqboGb1ERtf94ndpFiwhUVuLIyiTtR7eReMWVOHu3/XQ93VlbilURcPR5MXIIbZVqZZpm/VG33zUM4w+GYaSaplnZPjFFeo7N5Zu5ddmtGBj8ad6fOCftHKsjiXQLDd4GHlz7IEsPLgXg5xN/zrScaSRHJRPtiLY4XXgy/X6at35O05o1NOXl0bx1KxgGcdOnk3ztNcROndotTkPTntpSrD4DBhuG0R8oBq4Frjt6BcMwMoAy0zRNwzAmADagqr3DinRnpmnyxt43ePTTR+kd05tn5jxDboJ2mYu0h8L6Qn647IcU1hfy3bO/y+SsyUzKnGR1rLATqK3Fs3cv7t17cH3yCU3r1hFsaADDIGrUSFJvvYWkyy/HmRlmc+cFg2ALj6ESJy1Wpmn6DcO4BXif0HQLfzZNc7thGDe1PP4scBXwA8Mw/EAzcK1p1UkIRbogl8/FPavuYUXRCiZmTuSx8x8jJSrF6lgiXZppmqwtWcsnhz/hn3v+ic2w8fzc53v8bOlBjwdfURHeQ4fwFRbiPXgI78GDePbswV9e3rqeIzOThAvnEXveecROmoQ9KcnC1EcJ+KD2EAQDsOUV2Pl/MHwBzAmPAw7aNI+VaZrvAu9+YdmzR91+CniqfaOJ9Awun4ubP7qZTeWbuHv83Xx9+Nc1SF3kDBU3FvPg2gdZV7oOA4NpOdO4Z/w93XYrsBkMEmxsJFBdjb+6hkBNNf7qagJV1fjKDuM/XIbv8GH8hw8TqKk55rm22Fgi+vYldvJkIocMJnLIECIHD8bRu3f4TDXh98D+FbBjMex+B5qPfAYDBl8AvUdYme4YmnldxELN/mZuWXYLm8o38ei0R7mof/c+1YNIRwuaQf6x+x/8bsPvsBk2fjbxZ1w+6HKiHFGdmsM0TUyfD9PtJuh2Y3o8odseL6bnK5a5PQQ9bsxm97+v3W7M5maCHk/o2u1ufd0jj5le7wmz2BMTcWRk4MzIIHrUKBy904nIySEiNxdnbi725OTwKVBHayyH2kKoL4K37wBXJUQmwtALof/5YI+A9OGQMdLqpMdQsRKxSLO/mVs/upUNZRt4ZOojKlUiZ8jlc/HQxw/x7oF3j3seTTMYJOhqJtjUdOzF1USwyQWGAQaYHi9Bd3NLqWkOlZgjt48UHveRUtRy7fUcu8zjgdMdEWMYGNHR2KKisEVFYRy5jo7GFheHPTW15X4UtqhobFGRGFHR2GJjcaQkY09JwZ6c0nrbFtW5pfKMBIOwfxms/wvsXgJmAACz12CCc54gkDKZgNsg2OglWO8jUOQj2LibyP6JxI7PsDh8iIqViAXcfje3LbuNTw9/yiNTH2H+AJ20QORUmH4/gdpafFVVfLJzKWu2v0tdWRFxTQGeiB3FkE0xeF/+GftragjU1BBsbCTocp3WexkREV8qOkZUJLbIKOxJSaFiE9myLCKypQi1LIuMCD0n8quWhS6hZZGh9wvHLUjtwAyYmB4/QXeAoCfw79tNPoyiNUTu+Dl2TzFBWxLNUVfj8Z9N0B3EUzwM8x8xfHFucsNpwxbrxJESPuVRxUqkk9W6a7l9xe1sLNvIL8/7JZcOvNTqSCJhIej1EqisxF9Zib+yCn9lBYGqKvwVlfirqvBXVRKoqiZQXU2gvr51i1Bv4IqW1zANA0dCAZ6UeuxJSTizs4kaMQJ7fBy22NgvX2KO3I4BDAgGQlt/oo8qUWE+nYDpCxL0+DH9JviDmF+6HG+5iekPQsAE08QMmhAM7cI8dlnL8uBRywImZiD0WOh+8N/LT3QdCGJ6Api+YGtuAxex9qXE2t/BbjRg4MJPFvXO/8KbMB1bXCz2WCeOOCcRsU7scU5ssU7scRHYYp3Y4pzYIuwc2LwBe1KABAv/DI6mYiXSiYoairjpw5soaSzh0WmPcvGAi62OJNIpTJ8Pf3k5vtJSfKWHW65L8JeUhm4fPkywvv64z7UlJOBITcWRkkLkkCFUR/n5pHknuzmMIyWFOaOuYMqIi4hITcOemIjh6Hq/2oLeAMFGH4FGL8FGH8FmP0G3H7O5ZYuO24/pPvp2oHUdAu1wEL5BaFeozcCw0XIduo/x72VHlht2A+y2Y+9H2LDZ/70OdgPjyDp2AyPSji3Sjs2oIbL4RRyH/oHhbySYMRHSz4bYeBxTbyU5NrVNkauKCln50h85sHkDw6fN5OJb7jzz76EddL2/fSJdVFlTGd9f+n0avA38ad6fGJM+xupIIu3ONE385eV4du3CvWs3nt27cO/eg7egAAKBY9a1JybiyMrCmZNDzLhxONJSsaem4uiViiMtFUevXqHxRBERbKvcxqu7XiWvOI9qdzVp0WncOOp+rhh8BU6705oPewpMfxB/tRt/hQtfRTP+ymYCdR4CdV4C9R5Md+CEzzUibBhRDmxRdmxRDmwxTmy9orFF2VuWO7BF2DCcdnAYGA7bMZfWZU4bhv3ItQGOlmujpQh1pOoDoTFTAS98+r/QUAojFsLkH2LLHntKL9XcUM/a119hywfvEhEVzfT//C6jLwyfLf8qViKdoMZdww0f3ECNu4Y/zfsTZ6eebXUkkTMW9Hjw7NuHZ9duPHt2h4rUrl0E6upa13FmZxM5dCjxc+bgzMnGmZmFMysTZ0YGtpiYr3x9t9/NuwVLeG3Xa2yr2kaMI4Y5fecwMnUkCwct7PQj/drC9AfxHW7CV9qEt6QRf5kLf7WbQJ3nmJPB2eKc2JOjcKRFEzUoCVt8RGhX15HraEdrmTLsXXj6lYI18PFToVJ15AuIz4QblkPmqZ1VIuD3s2XpO6z95yt4Xc2MmnMhU/7j68QkJLZ/7jOgYiXSwRq8Ddz4wY0UNxbzzJxnVKqky/JXVtL08cc0rVmLe/s2PPsPtG6FMqKiiBwyhPi5c4kcNpSooUOJHDoUe3z8Kb1HuaucJQeWsL1qO3nFeTR4G+if2J+fTvgpCwYuIC4iriM+2mkJNvvxFjbgPVSPr7QJX7kLf1UztAwjMiLtOHvHENk/EXtyJI5e0TjTY3CkRWOL6qa/fptroHIvBP2w4UXY+hrE9IJpd8LYb4Vu2yPB3vbPb5om+zd+xsq//ZmakiL6jhrDjG98j9Tcfh33Oc5AN/2TFQkPjd5GfvjRD9lbs5cnZj3R42d8lq4l6PXSvGEDTWvW0LhmLZ6dOwGwJycTPXo0cXPmtBaoiNzc0x7k7fK5WFa4jLfz3+bj0o8JmkEyYzOZmjWVq4ZcxfiM8ZYfJRd0+UIlqrQptEWqpAl/ectRhgY4ekXj6B1D9NmpODNjiciKw54S1fG72KxmmnBwDexfCQV5UPRpqFRBaJ6pqXfA9LvBeernYgz4/eRv+ITN779D4fatJGdmc/k9D9B/zDjL/z58FRUrkQ5S56njBx/+gJ1VO3n0/Ec5P+d8qyOJnFSwqYn6996jYdlymj7+GNPlAqeTmDFjSLvjDmLPm0LU8OEYZ3hetvzafJYeXMr+2v2sKlqFy+8iKzaL74/8PvMHzKd/Yv92+kSnzjRNAtVuPAfq8RTU4T1Yj7+iufVxe1IkzoxYYkanEZEbT0ROfPfcAhUMgrcRfK7QpSofKvdAxe7QVilvA7jrQqeXMeyQNRqm3Aq5k8Fmh/QRkHDq5xR0NzWx4f8WsfWj93DV1xGXlMK0K65l5PgpGD4/7q1b/z2vmNtN0NVMRL++xJx7bgd8CaeuG/5NELFeVXMVN3xwAwfqDvC7Gb9jZu5MqyOJfCX3nj3Uvv5P6t58k2BjI46sTBIvW0DctPOJnTgBW2zsGb9Ho7eRt/a9xVv73mJ3zW5sho30mHTm9ZvHpQMvZWzvsZaczskMmvjLXXgO1LVc6gk2hGYyt8U4iMhNIObc3qESlRWHLbrr/Oo0XXWY1UWY1QWYVfvB6wKfB7O5DsNVCZ6GlvLUhOF3gd+FEWjGCLgxTM9xXzNoxBJwpBE0osGMxRO9EI9jGGadE3NDEPOTDZh+H/hXYvr8mP4jFx8cc98fmp2+ZbnP7+eAI8ieSBs+u430uibOqqonrSEfY+VnFHzF50y65hoVK5Huqtpdzffe/x4lTSU8PftpJmdNtjqSyHH5a2qoe/Mt6t58E8/eveB0kjBvHsnXfY3oMWPOeHeLaZrsrN7JmuI17K/bz7JDy3D5XYxMHcm9E+5lXr95pEa37dD69hSo9+LeW/PvsVFlLkxPaKyYPSGCyIGJRPZLJLJ/Ao60GMt255mBAL6iQnwH9xKsrSBYWxbaOtRYAc214KkHTyP4PdjtLux2Lza7P3RxBDEME5vD5ETp/R6DoM9G0GcQ9IeuA623HQT9ztDjfgMzaOBtsOOtdxDw2gFvywWwbwDbptDfF7sdw+FoveB0YDicJ14WGUmdYVIY8LDf3YDXDJIRm8DYYaPoFRuPYbe3TLgamlvMOHqm+eiWSVZjY8LnBNGoWIm0qzpPHTcsvYHixmL+MOcPGlMlYSnQ2EjVs89S/deXML1eos85h973/ZyECy/E0avXGb/+gboDLDmwhCUHllBQXwBASlQKF/S9gK8N+xojUjv/hLmBRi/N26pwbanAW1AHZsvg8qw4YsakE5ETT2T/hNC4qI4av+P3QH0JBHyhXWuVewhWFRM4fIBgdQlmfQU012D4GjDMZmyGB6czSMTxNuLZgRgIRtkAOwEzliAJmLZo/LYoTHsM2B0EHQkQmUwwohdmXB+IjG2ZJT4BIyoGI6JlpvfICJwREUQcmfnd4QCbLbTLt+VifOEau/20v6vGmmp2rl7O9pUfUVV0CAyDQeMmMm7+FWQPO+tMvmXLqViJtBOXz8XNH97M/rr9PDXrKZUqCTum30/tG4uoePJJAlVVJF52GSnf+y5RQ4ac0etWNleysnAlO6p2sLVyK7uqd2FgMD5jPN8a8S0u6HsBiZGde0i8GTTxHKijeWsFngN1+MtDY6QcadEkzM4lakQqzt7tuDXK54a6QqgvDpWn+mJoqoLGw1C+C7PxMEZzzZeeZmu5BLwGAa+NYDCCgC0G09EbI7YXtuRMjF452OKTMRLTsGUOwZacA1GJEJmAreXouq4wIYPH1cT+DZ+yc81KCjZvxDSDZA0ZzgXX38KgCZPDbtqE06ViJdIOvAEvty+/nW1V2/jdjN8xJXuK1ZFEjtG4Oo/yx/4fnr37iB47lt7PPkv0yNOf+uNg/UGWFixlReEKtlZuBSAhIoEBiQO4Z/w9zO03l/SY9PaK3yamaeIrbsS1uQLX1gqC9V6MCBuRA5KIGZ1O1PBeODNiTn+LVMAHJZuhuRpKNoUuDaVgBqFiDwSOHZNkOmIxbdF4/cm4Cx34quPxuewYcUnY4hMJRGUSOWoyEUNHEtF3AM7sLGyRke3wTYQPd2Mj+Rs+Yc+6PA5u3UTA7yeuVyoTFl7FWefPJiUr2+qI7U7FSuQM+YN+frr6p3xc+jG/PO+XzM6dbXUkkVa+4mLKHn2Uhg8+xJmbS/YTTxA/94JTLhd1njreL3ifFYUrKKgvoLChEICze53NLaNvYUafGQxJHmLJYfC+cheuzeU0b6nAX+UGu0HU0BRizkkjangKtog2TgPhdUFjWagsFeSFZguvOQBV+0JjmYJ+CPpaVjYgbRgk5YZOBdN3KsHUETRtP0j96s00bskn2OgOren0Ejt1LvH/OZek86bgTO/cwtmZgsEAFQUHKNm7i/0bP+PQ55sJBgIkpKUzet58hkw6j8xBQ8/4qNJwpmIlcga8AS8/WfkTlhUu465xd7Fw0EKrI4m0qn3jDQ7/8mEwDNLuuIOUb38LW0REm5/f7G/mw4Mf8unhT8krzqOyuZKcuBxGpI7gmqHXMK/fPDJiMzrwE5yYv8aNa0sFzVsq8JU2gQGRA5OIn9GH6BG9sMW0nObGNMFVDU0V0FgOTeWh69bbFdBQAnXFoS1RR4vPgpT+MORCiE4GwwZZY0Izh/c+C9OIxLVpM65PP8XzWT5NK39P0OUiYuBAEhdeRfSokUQOHUZETna7HFUZruoryinauY1D27aQv/Ez3A2hcz4m9c5k7PzLGTLxPHoPGBTWc0+1JxUrkdPk8rn40fIfsa50HfdOuJevD/+61ZFEAAg2N1P2//4fta/9ndgpk8l8+GGcWVknfZ5pmmyv2s57B95jZdFKShpL8Aa9pESl0C+hH0/MfIKRqSPb7xdkMBgal3Rkq89JeEsaaf68Es/uIoKlRRg0EpluEj8plsg+kdjrVkJJKew5UpxaylTrVqajGHaIS4fYtFCByhkPCdkQnxEav9R/OkQlHDeHZ+9eqn75/2h4dwlBlwtsNpyZmcTPnUvSf/wH0WNGd8sSEfD7qT1cSlXxIaqKDlFVeIiSvbtoqKwAICo2jv7njqf/6LFkDz2L+NS0bvk9nIyKlchpqPPUcfNHN7OtchuPTH2EBQMXWB1JBAD37j0U33kH3n35pHz3u6T/+HYM51efpLi0sZS397/N4vzFFNQX4LA5mJQ5iRl9ZjA9Zzpje489vV+QRyaPbKqAQ+tCW4UaSqC+NLS7zecKnZR37Hdg1H+ETofiqgZfM7hrofYQZk0JwcrQQHB7MEA8HhKNJjgyFKkO2NxyObosxfWG3iNabqeH7h+5HZse2gLVxt1R3qJiGpctw19ZiXvb5zSt/RgjKoqESy4mftYsYiZMOOVT94Qzv9dLdUkRVcWFVBcXhkpUUSG1h0sIHnUi7YS0dDIHDWX8pVeQM/xsUvv07da7+NpKxUrkFFU2V3LjBzeGJv+c/jtm99WYKgkPDcuWUXzHndji4ujzxz8SN/W8467nC/pYW7yWd/a/w7rSddR4Qkerje09lu+c/R3m9J1DQsTxt9Z8STAQKk9mEIrWw/7loRm6q/PBVfXv9QxbqNAkZELKAOh3HkTEQsNh2PCX0OULArYUAv4UAmYyxPTDkRqHIz0ReuWGdsdFJ0FkQujUKTYbpA0HZ/ucmNkMBmlavZrqV16hadXq0C5Fm42I3FzSbv8RSddcgyM5uV3eyyoel4ualgJV1VKgqosKqSsvwzRDJzw0DBtJGZmkZPdh0PhJ9MrJpVd2H1KycnBGhd9JsMOBipXIKShpLOH6pddT0VyhyT8lrNS89hqHf/FLokaMoM8zf8CReuzEm0EzyObyzbyz/x2WHlxKraeWxMhEZuTMoH9if+b2m0uf+D5te7PqA7B3KRxYBQWrQ1umjojrDalDYNj8UIFK7hfapZYzASKPcwLlYBBGf51AvRt3kYFrfwBfSYAg0Tgzk4kemRo6/156zOl/OW1gBoM0b95C08dr8VdU0LRmLb7CQuxpqaTefDOJly8kIienQzN0BI/LRUNlOXUVZVSXFFNTUkRNaQnVJUW46mpb17PZHaRkZZPefyDDp82gV04uKdl9SM7MxnGSLZ5yLBUrkTbaUbWD25bdhsvv4vkLnmd0+mirI4lgmiYVTzxB1bPPETd9OtmP/w5bTEzreKllh5axqmgV+bX5+E0/UfYoZvaZySUDLmFK1hSc9jb80vR7YdsbULw+tJtu6z9C45aS+sLwS0OlyRkdKlX9z2/TeKmgx49nX8spZPbH4ysJ7UJyZscRd2EqMWen4kg99RP3ngrT78dfVkbd2+9Q89pr+EtLwTCwJSQQPeIs0n98O/Fz5mCcwoD/zmaaJk21NdSWllBzuISa0mJqSkuoLSulvqIcb7PrmPWj4xNIzsym/5hxpGTlkJyVTa/sPiT1zsR2mifRlmOpWImchGmavLD9BZ7Y+AS9onrxl3l/YWjKUKtjiWD6fJTedz91b71F0tVXE7zzej6t20re9jw+OPgBJU0l2A07o9NH880R32RQ0iBm5c4i1tnGI9Saa2HDC/DJs6ExUZGJYHeEytTs+0NHzLVR0BvAV9SA52ADnvxaPAfqIGCCwyAiJ57Ei/oTPTIVR0rH7F4yTRP39h00vP8eTes+wX/4MP6qqtAWMyB2ymTS7/gxcTNmhOV4KZ/bTXVJUWjMU3FRqEAdLqH2cCk+91EniHY4SEzPICkziz5njSS+VyrxqWkkpKaTnJVNdFz4fbbuRsVK5Cs0+Zq4b819fHDwAy7oewEPTH6g02eQFjmeQGMTxbffTlNeHgeunsifxm1jz78uBsBhczA5czI/GP0DZvaZeXp/Z4s2wEuXg6cudITcZU/BwNlt2hplmiaBajfeQw14DtXjPdSAr7QRQh0GR+8Y4qZmEzUkmci+CRiO9h/wHPR4aPr4Y3yFRfiKCmlYthxfYSE4HMSMGUPs+dNw9u6NI703MWPPJXLw4HbPcDr8Ph/VxYVUFh6kqvBg6LroEHXlZa3rGDYbiem9Sc7IImf4CJIzs0nOyCI5M4v41DRsNm15spKKlcgJ7K/dz+0rbudg/UHuHHsn3xrxrR556LCEB9M02V+3n9KmUooPbif3F38l/lA1z19sY8WgjYyJGMNd4+5iSPIQRqSOaPvg86MVb4Rlv4SagtA0BTEp8K3FkHXi3d5Btx9vcSO+kkZ8h134K1z4K5sJuvwAGBF2IvrEET+9DxF9E4joE489tmPG7AQam2hatZL6Dz6gaeWq0FQIgBERQcyECaTedCPxs2eHzQl7A34fZfv3UbxrB4f376PyUAE1pcWYLVvRjox7yhg4hBEz5oQGjWf3Ifn/t/fm0XUc953vp3q7Ky72hQBJENwXkdoparUWUxpZSrxIcqzJsRNPbCXvvWTsJH6Tbd7Jm/jEdibx5CVHTuzYsR0nlp0o8diybFnUbknWLlIUKe4kuAHEvt2t13p/dN+LCxAUQQokALI+PM2qrq7qrlvoW/29Vb/+1YJWdEPZPc1VlLBSKKbgZ4d+xp/+4k+JG3G+vvnrbFywcbarpLiIkFJS8AqM2CN057p5/vjzPHboMY5nj9PWL/nDh33iOfjJb27gfXd+lD9ddDP1ifewePJoNzz1Z/DWQ6FLgo73gRGH6z8DjeE6gjKQeAMF3BM53O5oO5HDHxpfxkWrsjAbEyTWN2AuSGMtrsJsSc3cenwVSNdl7OlnyL34IoXt2/H6+/GHhsD30evrydx9N1WbNxNfuwa9pgYxB+yHAt+nt/MgR3du58jO7RzftRPXDr2zZxqbaWxfwoqN19GwuJ3GxUuoaWlFN9Rjer6h/mIKRQX9hX6+8MoXeOLwE2xo2MCXb/7yrHmWVlw8jNgjvDPwDjsHdvJW71u8euJV8t640bEudDa1buJ3nfex6KGH0eIJFn3377h8w6Xv/eJ7HoN//43QGP36z8CNnyOQSdzuLO7eHO7P9+F0Z/F68kg3mssT4WLG1qIqzI0tWK1pzLY0enrmjbz90VGczk6cw0dwDh3CPngQ5+BBnM5OpOOgVVWRuPRSEhs2oNfXkb7hBhKXXTYnhBTAcM8JOre9waG33uDYOzvKxuR1bYtYd/NtLFq3gbZVa0nVzG/XDYpxlLBSKAhHCH566Kd88dUvhh695ceSAAAgAElEQVTVr/gMv7bu1zA1NdyumHn68n283P0yL3e/zLbebRwZO1I+trhqMXcvvZvWdCu18VoaEg2sq18H3/8xvX/5l8RWrWLR330Fc8GCs69AYRje+BayOAqvfROZbqew7q+xB2pxHtyL1z9uDK0lDcwFKVLXLMBsSWEuSGE2JRDmzAgXKSVBNovb1YXTeRinsxP3+HG8/n68nh6Ku3aVDczRNMxFC4l1LCV1ww0kr76K9E03zRkRBaF38mPv7ODAm6/Que0Nhrq7AKhubmH19TexaN0GFq1dr4TUBYwSVoqLnhO5E3zxlS/y9NGn2dC4gc9f93mW1iyd7WopLgAKXoH9Q/vZM7SH/cP76S/0887AO+UFjKtj1VzZdCUfXvFh1tWvY2392pMMzaXj0P0//gcj//EDqjZvpvUvvoSWPHOfTjKQeINFgm2PYr76x2hOL6Djyzr6Rz+D1+2iVQ1hLcqQvLIZqy2N2ZJCqzLfk22hDAL8wUHcEz14PSdwjx8PBdSRI7hdXXgnTpRtoUrotbUYTU0YDQ3U/+YDJNZvwFzYhtXejhaLneJKs4edz3Fo2xsceP0VDm17HTuXwzAtFq1bz2V3/BIdl11BTUurstG8SFDCSnHRUvAKfHvnt/nWjm8RyIDfv/L3+fjaj6OrN2oUZ0FJNO0d2svuwd3sGdzDkbEjBJEH66SRpCHRwMralXx05UfZuGAjq+tWo4lTvxHn9fdz7LOfpfD6GzT8n/8HDb/929NeMiTIu9ido9idozidI/hdB6gRXyWhv4obLGYo83eI9quxWlPUNCYxmpLo1dYZPfyllPhDQ3gnTuBGm9d9ArcnCk+cwDtxAulOXKtPS6exFi8mtnw5qRuux2xuwVzQgtnejtW+BD099xcsLmTH2PvS8+x9+UWO7dpB4PskqjIsv/pall+1ifYNl2HGlGfyixElrBQXHVkny7/v/Xf+edc/05vv5fb22/m9q36PtnTbbFdNMceRUtKT72HP4B46RzvpL/RzaOQQ7wy8Q1+hr5yvLd3GytqV3NlxJ6tqV7GybiVt6bZ3FVGVBLbN4He+w8DX/gHpurR++a+ovuuudy3jjdjYe4awO0dwjo7h9RUAia73YzVDQ+IPEUEW7/I/Qr/1v1I/zVGvwHFCG6cDB7D3H8A5eiQSTz2haHKciQUMA7OpCaOlhcT69Ri3b8ZsWYC5oAWjuQWzdQF6Xd28HL3xPZdDW9/gneef5uAbr+J7HrWtC7ny7g+z7MprWLBipXJ1oFDCSnHx0JPr4bu7vsvDex8m62a5uuVqvnTjl7i65erZrppiDpJ38xwcOcjh0cPsGdzDzoGd7B7czagzWs5jaRaLqhaxacEm1tSvYU3dGlbVraLKOjsnjDIIGP3JT+j967/G6+omffPNNP3fnyO2bNnJed0A59gYxT2DFHcP4Z7IAaClTaxFVaRX9JE8+pdofW/AIOFbfp/agrFgaoN3P5ujuONt8m++SeGtt/D7+vFHRnC7uyfaOLW0YCxYEIqmze/HbG7BWNCC2RJuen39BbUQr5SSngP72Pnzp9j9i+cpjo2SyFRz6eYPsPamW2nqWDYvRaLi3KGEleKCJufmePboszze+TjPH3+eQAZsbt/MJ9d9knUN62a7eoo5RtEr8tSRp/jZoZ/xi65f4AThaIypmayqXcXm9s2sqlvF6rrVLK1eSsbKzNhDNffqq/T+z7+kuGMHsbVraP3CF0ht2lQ+7mcdirsGsQ+P4h7P4vbkIZCgCWJLMlR/oIP4qloMcRTx0oPw5r9AqgE2fz4MWzZAyyUEto29bz/2nt3hW3aHOnH278c5ciRcaFgIYsuXYbS2Yi1dSvUHfxmrYymx5cuwOjrQLpKFd0f7+9j94nPsfO4pBo8fxTAtll11DWtvupX2DZcrNwiKUyKklLNy4auuukq+/vrrs3JtxYVNSUxt6dzCC8dfwAkcmhJN3NFxB/evvn/6C80qLhp68708efhJHtz2IGPOGC2pFt6/+P1c1XIV7VXttGfap7em3llgHzxE75e/TPappzBaWmj63c+SvuMDeD2FyNlmMZzeOzwKMnpLry2N1VaFtShNbGk12uB26N8Ho13wzJ+D0ODqT8PNf4CXdbH37sXev5/inj2MPb6FIJsFQJgmZvtiYh0dxNasIXHJJSQuuww9cxbORS8AsoMD7H3lRfb84nm69u4CoHXVWta971ZWXXsjseTct/1SnDuEEG9IKa86bT4lrBQXAjk3x3NHn2PL4S08f+z5spjavGQzdyy5g0sbL522fYvi4iCQAS8cf4GHdj3Ei10vArBpwSY+vf7TXNVy1Tm/X4p79jL47W8z8sgjaLE4mQ/+KvHL7sTtsnGOjYXr6AFoArMlSXxNPYm19ZitqXCUrH8/HHgadj8Kh54rn1e2X0/xkj9g+CfPMPbkU/j9/eVjenU1qRtuoGrz+4mvXo25aNGcclUwG2QHB9j/2svseel5ju3eCVLSuHgJK6+9kVXX3UhtS+tsV1ExR1DCSnHBk3fzPHfsObZ0buH5489j+zaNiUZuX3I7t7ffzmVNlykxpTgJKSVPHnmSB7c+yMGRgzQlmrh35b1sat10zgV4YNtkX3yR4YceJvfCswgzjtlxPeayO9FiGdAFVluaWEc1VnsGsymJbo4genfAie3Q+w44eSgMwpGXws8Ty+C0f4yRvS5ubx+F/X24R44i4nGqbr2VxKUbiK1cSWz5cvSGhovWHkgGASN9vRPW4Duxfy/DPd0A1C9czKprb2TltTdQ36ZGtWcLKSWFQDLieYx4PlkvoOAHFIKAvB+QD8L9fJRWil9Tk+YjzefWN9h0hZWaJFbMKwYKAzx//HmePfosLxx/oSym7llxD7cvuZ3Lmy5XYkoxJb35Xh7a9RCPdz7OsewxllYv5S9u/As2L9l8Th3B+mNZRn60hdHHtlB8+xWkUwQzibXqbuJXfIDE2jbizQVM6zCG7EKMHIaRY7A9gMFD0Ltz/GTViyBeA7qBfN8fk3eW0fPVf8b+p0cRySTWknZiy1dQ/6lPkbnzTvSqszOin49IKSlmxxjt62W0v5fRvr4oDLfB7mN49vjyO5nGJhrbl3Lp5jtZcukVNCxeMnuVv0iQUtLvenQWHDoLNp0Fm8MFhyNFh0HXY9j1GfF83DMY8EloGkldo8rQz7mwmi5qxEox5+kv9LOlcwuPdz7O1t6tSCRNySZuW3wbt7eHYkr5nlK8G9t6t/GbT/wmtm+zacEm7l52N3cuufOc3DeB55N76W2yz75M/tVf4BzYCoGHiFURW9JB1domqlZqmEYv2thhyA9A9sT4CcxkKKB0E+LVsOpOgro15DpzuP1Z3KNHsPfto7DzHYKREfSGBpr/4A+o2vz+C9qwXEpJfmS4LJxGensqRFS4ldbdK2HEYmQamsg0NlHXupCGRe3UL1xM/cLFxM7Cyari9BT8gC7b4UjB4XDRKYunzoLN4aJD3g/KeQXQGjNZnLBoME1qTJ1qo2IzddK6TlLXygIqoWsktTBMaOK8jsCqqUDFvKYr28WTh5/k6aNPs7V3K4EMWF6znNvbb+fmRTezum71RTuloTgzurJdfPyxjxPTY3zt/V9jUWZmp3mCfJb8L54l9+Sz5LfvwD7aVXaIaSQFVYscqhZmSTTYaCJ6qOgxqF0CdUvDN/Zq26H9hnA/3QTRve12dZF//XV6//r/w+sOp6xEPE5s+XJiq1ZSddttpG64Ac2a+TX6zjcyCMgND4Wiqa+X0d6esmga6etlrK8Xz53oMyueroqEUyOZxubxeCSm4umqC7KfcANJMQgoRtNjxdJ+RbzgB1EeGaWHcSeQ+Eh8KfEl+FISSMppQZTmE4WT8nlS4kmJIyVuUBmGdRl0/Ql1jWuCxfEY7QmLJQmL9kSMJYkY7XGLRXGLuD5/ZhjUVKBi3nE8e5wnOp9gy+EtvN3/NgAra1fywIYHuKP9DpbXLp/lGirmC4EMeHDrg+iazg/2/oCCV+Art33l7EVVtg96dyJ73sHdt5P8wQEKe45QPDJAcUhAED68rYxL9SKHRLNGoj2FtaQDUb8cknWAgNbLoPVyqGqFKXw9FbZtY+TRb+D19FB4+228E+FIlrl4MYu+/nXia1aHzjXnoZ+owPcZG+gfH2GaMF3Xw1h/H77nTSiTqMqQaWymcVE7S6+4murGplBANTaRaWia16NObiAZcj0GXI9B12PQ9aNw4n7WC8j6PmO+T84LGPN9vLMcD9EASxNoQmAI0AnjugBdCDTCcHw/yicEWhTqCCxNUK1rmEJgagIrCuOaRmvMpC1usTAeCqlmy0S7AMXtu6GElWJWOTp6lCeOPMGWzi3sHAhtSdbUreEzV3yG29tvZ3Fm8SzXUDEf+ds3/5Z/3PGPADQmGvn2nd9mZe3K0xcM/NCuqedtOLEDOXYC+/XnQiHVb5HvjeEVw+lDYYBVW0V6TQOJlStI3Xgt8cvWIxIZqFlcHnU6HTIIKG7fTt/f/z25536OSCQwm5tJXnEFicsvJ3H55cRXr0LMcb9JrmMz1t83UTT19ZTj2cEBpAwmlEnV1JJpaKKpYzkrNl4XiaZGqqPRJ3OeTm0W/IATtkuX7dBlu3TbbhQ6dBfDeL/rnbJ8la5RZxrUmDoZQ6fBipE2NNK6TloPp8TimkZc14hrgoRW2g/FTSme0MIptFI+U5zfqbOLlbn9TVVckBwdPcojBx/hycNPsn94PwDr6tfxu1f+LpsXb57xqRrFxcXO/p18a+e3+MiKj3B7++0sr1lOc6r55IxSQt9uyPVDtgde+wZ0v0VQyJPrjZHtSpDtSuDlBVCDXlWF1rSMWO1a4usuI3XDBpLrGjCakmf8sJKex8iPH2X4X/+Vws6d4LpomQxNn/t9au+/Hy01d/wlSSmx8zlyQ0PkhgfJDQ2SHR4iNzQYCqn+Xkb7+8iPDE8oJzSNqvoGMg1NLFp7CZnGJqqiKbpMQxOZhkaMeTqFOeJ6HLNdjhUdjhadCeGxosvAFKKpxtBZEDNZEDPZUJWkOWbQYJnUmTr1pkGdaVBvGtSaOtY8HJFUjKOEleK8MFwc5tljz/LIgUd47cRraELj8qbL+W9X/zduWXQLC6sWznYVFfMcKSWPHnyUL776ReridXzuqs+dvLSM70HfLtjzM9j6zzB8OEx2BKODi8n2rSa3rx/peIhEgtjqK7EyaxCxpYiqelKXNpG+rhVr4VkuWeO6jDzyY/q/9jXcI0eIrVhO3cc/TnzVStK33HJeHXMGgU9hdJTs0GAkmIbIDQ+V49kozA8PnWTbBGCYFlUNjWQam1jW3lG2a8o0NJFpaiJdW482D31kOUFQHmHqKoYjTsei8HgkoMb8iSNvcU3QFgtthtY3JGmLm7TGLNrioZBqiZmk5mFbKM4OJawU54z+Qj+PHXqMp488zZu9bxLIgIXphfzO5b/DLy/7ZVpSLbNdRcUFwkBhgM+//HmeOvIUlzZeyp/f8Ofjoqp/H+x7ArxCKKiOvQqA7LiZXPWHGH7pENmXtiFdF7NVo/rej2K0XorbXUeQk1jtGZJXNpFc34iWOPMu0z50iOxTT5F76WWKe/fg9/UTX7eO5r/7CulbbpnxqRnPccYF0vBQeaQpOzQumnIjQ+SHh0+amgOIpVKkaupI19bStmoNqdo6UjW10VZHqraWdG0dVuLMR+pmG19Keh2XrqLL8QrhdNx2OF4Mp+76HI/JJky1hk5r3GRh3GJTTZqFkQ3RwrjJorhFg2nMu7ZQnDuUsFLMKIEMePXEq/zbnn/jmSPP4EmP5TXL+dT6T3HroltZW79WdUCKGcMLPH6w7wc8uPVBsm6W37vy9/jE2k+gj3XDz/8Kdv4wtJcqEcvg3fhnjB0MGPrBc9h7HkavqaHmY/dT/cEPEngNjD1xBHt/EWtxmupfXUJsac0Z10tKSe6FFxn8znfIPf98eOkVK0hds4nM3XeRft/7zuh7IKXEKeTJDg2SHx4qT8XlKsMoXsxlTyovhEayurosjJo6loVCqbaWdJSWqgkF1HydnpNSMuj6dEUi6Xhk31Qpnk7Y7kmG30ldoy1m0hazWJvO0BqzaI2H+60xk9a4Gm1SnBnK3YJiRhgsDvKj/T/i3/f+O0fGjlAdq+ZDyz7EPSvvoaO6Y7arp7gAGSgM8MATD7B3aC9XNF7GFxZ+gLaBQ+A78Po3oTgCCzfCug/jL76NsZffZvSxx8m99BL4PtbyZdT/l9+g6q4P4BzKMfp4J253DqM5SfUdS4ivqTsj8eMcPcrY44/jHD5M/o03cQ4eRG9soPb++6m55x7M5pPtvKSUFHNZcoMDZIcGw2m5CsGUrZia8xz7pPK6aY6PItXUkaypJV1TG44yRWIpXVtHIpNBm4e+3vJ+wIDrMeCEb8+V4oPuxP0B1+OE7VIIJj7PLCFYEImjklBqi08Mqw1d/dhTTAvlx0pxzpFS8nrP6zy892GePPwkbuByRdMV3LfqPja3byamx2a7iooLkOHiMH+z9W947uhzrBju4f9Jr6Ht+FuIXG+YQWjQsp7g7r8nu/M4oz99jOwzzyBtG7O1lcxdHyBz553E1qzBOTzKyM86cTpH0eviZDa3k7y0EaFN70HrHD3KyCOPMProT3AOHQJAb2gg1tFBzX33krz1VkaGBkID795eRvp6GO3vIzcUCqnc4OCU9kuxZCoaUaqYhqutGxdN0ehSLJWaN6LAl5IRz2fY9ScIokHXo/8U4mmyUCphClE2+q63QqPvlmjUqSSi2uIm9aZx0b3qfzqklPiBxAvGw2DCfkAQgBcEE/JNjpfy+u96XOJPOs/J15MEUuL5Yd5SuuMF2H6A6wU4foDjhZvrB9hRmluRfu+VC/mTu9ae07ZTfqwU54wRe4RHDjzCw3sf5tDIIaqsKj666qPcu+Je5WtKce6Qkhe3/xM7XvgS64pZPmTVcunAMbCGYcVmWH03Qcf7yf7iVUYfe4zs1z6BzOfR6+qoufdeMnffReKyyxBC4HRlGfindyjuHkSrMqn54DJSV7cgjFO/jSV9n8Kbb5J97jnsAwdxu7qw9+wBILlxI6l7PoKzdhUDo8McPHiA3ue30P+9byCDcTsm3TTJNDSSrmugdcXqUCzV1pOuq4uEUzjSZMbmnpsBKSV5P2DEC5cdGT1NWFqeZNjzGHH9kwy+K0loGvVWKJQaTINVqXgomkqbNTFepWvzRlCWCAJJwfXJOz7FKAz3PQpRvOiOi4WygPAqBIT/LumexPYnpVfEbT/A8wNOoVVnBV0ToW8sTWBoAl0f37cMLdz0iWEqZoT7WkDCGSFmj2AUh2ixAc6tsJouasRKMW22923nX/f8K493Po7t22xo3MB9K+/jjiV3kDASs109xYVGcRTcPMePvYTz0lfInNhBvVMAwEvWYWgWrL8XefOfkH9rB6M//jGjj28hGB1Fr6+n6v3vJ3PH7SQ3biz7gHK6sow9d4zCW32IuEHVzQtJX9eKZk09TSZdl+KeveReeIGh734Xr68PTBOtYwnZ+lqybQsYy6ToO9HFUNfxsjF4srqG5o5lNHUsp37R4tAvU2MTqeqaWXPuKaUkHwTjAsidnkCqjPuneVwkdY1qI/S9VBOF1YZeXqqkxgh9M1WKpTrTIDlHvW8HgSTneIwVPbJ2GI4V3XI8W/QYs6O0yjy2R7bolgVT3vGxvVMLy9Nh6gJTn1poWIYWHtPH47EKUWIaAkvXo2MVIkbT0DXQNS3aH9+Mk+JnmFeEIql8bNJ+EI1IFdyArO2Rsz1yjkfODoVm0fUpOD5FL6Do+ozmigyNZhnJ5hnJFRjNFcnbLp4U+GhI3eSWZdX81Sdvm8G//smoESvFjPHaidf42vav8Ur3K6TMFB9a/iHuW3kfq+pWzXbVFBcC9ljomLNvDxx4Cgb2I7u3Iwb2AdAGDGsa2zP1xC75Za686U/QM4vIb3uLsccfZ/RLd+N1dyOSSTKbN5P5pV8itemaCQ413d48Iz89RHH3IMLUqLp5IVU3LURLTlx8WQYBhTfeYPhHPyL3wot4J07g6BqjiRiF1SvIXXcFg4Ucwz3d4Rp/+wZI19XT1LGMVdfeSPPSZTR1LCNdW39eR1QCKel3PLodN3JA6dAdOaYc35xTTq2VSGjjwqja0GkwTZYl4+X9yWF1xX7G0DGnOYV6PvADyVjRZTjvMlxwGSu6pxVDk9Oy9qmdeFaSjhlUxQ3SMYN03KA6YdJWEydhGiQtnYSlkzD1SXGDhKWRMA0SVngsbuiREJoomLRJ7Vqazgtk+Lf3g3DpGRlEy9AEMsxTyhdE+WQ4DReGk8pKiR8QnVeWjwVRuutLbNcrnzMURqFozDs+BceLwijNnSLN8Si4Pu7pFPokNAIMAnQCTA0SZoxkOk1dMkYmFScdt7hyVdMZnfNcokasFFPi+i5bDm/hod0Psb1vO/Xxej55ySe5b+V9JM35u4yEYhZxi2CPwrHX4ejL0LMTTuyYsACxRDCWrOUdXfKqERAkarm69To6rv0MC+pWUdi6jdGf/pSxLVvwensRpknq+uvJ3HUXVbfdijZpiRN/1Gb0maPkXulGmDpVNy8itbEFPRUKKiklzsFwWq+wdSu9P/4xA8MDjGbS5Ba2Mix9snahfL5MY3M0ErWM5qXLaVqylFRN7blttkDS40wUSCVv3iXv3j22hzupLzeFoDlm0Bqzyo4p6yNv3tWGcZJQyhjajDimlFKGD2EvHKWxvQDbHY87XlDxwK542EebHY1SFN0A2wunzcKyfvkhXSiNaLg+BbeUPxzhsKPQmcYIkaEJTEPDjEJLD0dkDD1MM8r7laM0YZqIlngRgnB9vcmCZFpihvLnHi/LBFFzUtmo3FzD0iGmC2I6WLogpklMDSxNYhBg4KNJDz3wEIGL8B3wbHTpYeJjEGCKMDREQMLUWdDUQGtzI81NjTQ1NdHU1EQ6nZ61aWA1YqU4KwYKA3x/z/d5eM/DDBQHaM+084cb/5B7VtxD3Jh7dh+KOYZbBCcHzljo6mD0OBx5CUaOQWFoPJ9mQuNqnCXX0xmLcyB7lO3Zo/zAcMlrGlc2X8nHVn2M21rfh7PtbbL/+GMOPPkZ3CNHELEY6ZtupOr2O0jfcjN6On1SNZzjWXKvdpN7owcCSWrjAjLvX4yetpBBQPaNNzj+kx/T/crLDOfGGItbjCZiFOtiUNcKQG1thrYlkYjqWE7T0mUk0mfnGPR0SCnptl325ovsy9nsyxfZmytyqGDTO4VfpYQmWBAJpk3VaVojJ5StMYsFcZPW2Hsz3A4CSX/W5thQgcODOY4PFekZK9I3atOftRmzPWzXn2RUHBozn+loxLlGEK4upEUiSFSse1eZFkQLCbtCoHlB+VhlqEUhpXXztHCJGF2LzqeV1t4TaBqYmhaVC/OWzqFrYd7SGnyl+KnOJ5AEvo8MKregnBb4XrRNPD4x9PGnOEcpjpRhWyERoiJeDiem6UiMkhAiGF/BSQLRQJ9hGOi6jmVZxONxYrFYFMaJx2smpYVhJpMhk8mQTM4/P2kl1IiVAoCDwwd5aPdD/HD/D3F8hxsX3sj9q+/nutbr0MTctH9QzCK+B4EHw0dgx39A707o3QWDB6HS6aQRh8WboG4pbrqJHr9Ip6GxNZXmld6tvN3/NoEMqDKr2NS6iWuaN3KVt5Dat4+Q+8UvyL/8CkE2C6ZJ6uqryfzSL1G1eTN6+uQlX2QgKe4aZOzZozhHx8AQGKurKHa49O/dysCunQx3HWckN0bO0Ami6RUhBDV1DTQvX0nLqjU0dSyjaclSYsmZX1YmkJJjRYe9eZu9uSJ7cqGA2pcvkq0w7q4xdFam4nQkLJpNkwZDp17XqRU6NbrA9MGJRoWc0qhQNFrj+AG2G5RHeUqjRLbnl9NL+0U3oOh6jBV9Rotu2bDamwELZ02AqWvRSJAgpuvETI2YoWMZgpgR7scNjZgZToPFTJ24qRE3oikzSyNh6MQtnYRpUJ00yMRNahIW6biBoYsJgifUPJP25+DDWUqJbdvkcjlyuRzZbLYcn2q/WCxO67yWZWGaJqZpYhjGhG1ymq7rE7aZTtMvQN9fyt2C4rT4gc/Pj/2ch3Y/xMvdL2NqJncvvZtPXvJJ5XtKMY7vQtc2OPRcaAfVtxt63wmFFYTuDeqWQtMaaFxDkKpnsDjM4caldBo6Owd2sqN/B/uG9uHJsIwudNbUreGG5k1cn2ul7dAY9rbtFLZtw+vpAcBcuJDUtdeSuulGUtdeN0FMlfw/5YeHyB7vx909it4pMQsGRZHnYHE7e3pfxfHGp/FEIElKyFRlaFyylAXXXk/TytXUtS3CMCfaWk2F64c2JcXSVJQbCpXSVFUpHHE8Trgeva5LfxAw6PsMyYBBETCkgVfxnLc8ScIOsAo+Rt5DZD1k1sHN+9jemduiTIWphyKmZAAtBCDDKUbH8yk4AX70HNAE1CYtmjIxGtIxapMW9WmLhpRFTcoq2wHFIvFTEkrxSBAlzFJcR59D9lbnGt/3KRQK5PP5CdvktEqx5HlT228lEglSqRSpVIp0Ol2OJ5NJLMsiFouVw8q4aZpoao3Bc4oSVopT4gYujx54lG/u+Cado500J5v5lVW/wj0r76EuXjfb1VPMBnY2dKh58JnQ9mn4SLiO3vCRML1E9SJoWAkt6yFejW/EONp+DfvcIXYN7GJ7/3Z29O8g5+bKRarMKtY1rGN9w3rWm0tY0pknsfc49ts7KLz1FrIQih+tpRltxQqCZUvxlndgp5LY+Rx2Po+dy2HnsuX167zRIq3WUhal19AUDxftHrS7OZjbxkjxANbgEIlsjqTjUrdiFQvuvJOqG29lKF7FYM5huOAykncZKYTbaKEiXnQZKXhkbZeCE1D0ffICPEMgLQ1MDWlpSEsHS0NG+5TSzEkPt0AiHIN2v7QAABiBSURBVB+zEBAr+iTtgLQrqfYhJTTipk4sGrWJGeP75XSjdHw8bhna+DGzFA/3g0DSPVLk+HCBo4N5Dg3kONSf42BfboIxdjpmsLqlijULMqxZkGF9WzUrW9LEjAtvpOF0BEGAbdvYtk2xWKRYLE4rXhJMtn2y89YSpmmSTCZPKZgq46lU6oIc6blQUMJKcRK2b/PDfT/kmzu+SVeuizV1a/iN9b/BbYtvw9CUud0Fi5Thm3dj3TB2IrR1OvQcDB2G0a5wsyvEk5mEmsXlTaaaKKZqObbwSg7a/RwcPsj+4f0cHDrA8aEjCDfAdDUSns4q2lgVNLCwkCKT9YmNFLDGCjAyij40TKJ/ECElgRBkEzEGExaD6QRDqTi2OfU9aMRiZFINNKQW0ZRYRB3NJNxw9MpllOLwOxR3PY3RdxgjkMhMNdnVG+hZcwXb6zp4yUlybKjAcN4NbZVKAsnSy6LITBiYCQM9rkNMJzA1XB1sTeCfYuBFB6o0jYyuUaPr1BoG9ZZOayxcR25JKsaSZIyFCQtjhkYS/EAykLXpGbXpGQ3tnnpGbXpHixwdynOwL0f3yMRpo7aaBEsbUyxtSLG0MU1HQ4qljSlaqxMnvW02E0gpCYIA3/dPub3X4zOdZzrPQcMwJtgCxePxsmBKJpMTtso0cxqjoYr5gRJWijJ5N8/Dex/mn3b+E32FPi5tvJQHNjzAjW03zkn7A8UZku2FoU4oDCMLgwS5QYJsPwweROveipbrQVRMiQH4ehI7sQDHrCGvZRj1LHJOQI8T51jexMvnCPI5KBTRig6m4xNzIeZJLE8SdwNiboDl+Vi+j+UFmJ7PVPLBFwI3ZuGmkhRbGiks7YDFC7Ey1cSSKWKJFHEzSUxPYhHHCEy0ERfZX0QOewRZwA/PLGVAMHoY79hWvBPbkcU+jFWr6V24nJdiLfzIr6ezpgGZMpEJHSttUlUdg7iOYwiySNxTNGNS1yY4payLHFaW9yPfSyWP32e6FIofSLJFj9Hotf9Kf0ih36PxtKztRfZQ0fRiwaVntEjfmH2Sg0choCEdo7UmwbJINHU0pKMwRdw8eQQkCILyiEsulytPWzmOM+Xmui6e5+H7/mnDIDh7f02nQwhxkh2PpmlT2vecSR5N08oG1pPFU2nfMNSPz4sdJawUjDqjfG/X9/iXXf/CsD3MNQuu4YH1D3B1y9UXnaCSUoLvI30f6Xrge0jPQ3r+eNz3IQhOCvHDt2fC8gEEZxL6BK6H7zgEjo1vFwjsAoFdJHBKmw1uEekUwbXBs8FzwHMQnguBh/BdROCXN016aDJAShBSghThK9gSpBQgwQ8Etmfg+xoyEAQBEAhEAARhOS2QU4qhd21LgHgCmUghEilEogqRSKOlMmiJKvRkBj1Zi5GsQUtUgxYDN0C6AdILwrbxIhv3QAdpwRT3Y1AYJsj2EGS7CXK9CC2LnvIptjazrX0tL1a38bKepiuQyKSBSBv4sYkiIqFpLIiZNMcMWiyT5phJs2VSb4Uevs/ESaXt+QzlwqnC0UIojkaLLqNFr7w/ViGaRifsT88nkq4JquIGKcsgbo5P9aVjBi2ZOM2ZOM2ZWBSGW0PaQtcEhULhJKPnSuE0Of5ufX9JaJS2kuFzpaHyqcKZFDyT8ygbIsVsotwtXMQMFAb47q7v8r3d3yPrZnnfwvfx6Q2f5tLGS8/sRJ4T2tcUR8CIQawqNGT2baRrg1NEOjbSdZGuA64Dnot03bCs7yGdIn4+T5DPIwsFgkKRoGgjiw5B0Q432yUoOkjHJbAdpFcSJsF4OClOIKM0GaXJKE1WHI/SJMypdRymRIKI9IWQUTi+SREdFIAwQFhINIQmkOgEwgR0pDBA6EgMhNBB19BNE3QDoZkIzUDoVhQ3EboJmgGagSiFegyMGMKIgRFHVMb1GOjWuwpzKQMoOng5D4Ii+GPIwAXfRfouBKFYREiQDmAjNBdhSLSaOEFDhsHWBk401rPb2MBucRX7fEG35zOqSbxJXtITEtrjFutrUixLxliajLM0YbE4ETvt0ic526NvzOadbJbesXBKrXfMpm/MZjDnMJBzGIy20wkjS9eoihvRZpJJGDSm0+X9qrhBJhGFFWkpSydhCEzhowUeruviOA62bU8YNbLtERynD2fIIXfCZpdt81o2y9jYGGNjY6ccKSrZ9iSTSRoaGspTVKW0UjyRSJSFlBqdUcwVpJRI6RIELlI6BEFl3CGQLjJwMc06ksn22a4uME1hJYT4T8DfEJoVfENK+aVJx0V0/ANAHvh1KeWbM1xXxbvg+A6v97zO452P8+iBR3EDl83tm/n0hk+zuno5wVAX3r7XYbQPOdYP2UFkfgBy/ZAfRNoDSHsQzRtFCwoIv4h0fHxHw3cEvq3hOxqBqxG4gsCLNlcbj3snH5PBdEfGJJoRbkKXCA2EVhIbErRIV2iEaVqoL7BEdDx8tToMZbiIrmA8FKJcFqFFcVERCmT0enZ4McrlpIgeziWHOJECEmWxU7FVVE4KHTCRGEjMMK0Ux0BKi9AbjAnEkEGMIIhCGQM/hsSIhohkFETDUshy+oR4dFwSRMurlIanwnYs+eAhalu0qI2iUGiAriF0QPcRegEMG6FrCEMLQ1MP46YOpo6wdDTTQMQMhGWgxUyEYSHMFBgG0jApJpIMWTEGNIM+YdAXwIDjc6Lg0FMMvYT3+z4jSIpTDEoI3yPhSdo0nSWWxcamKm5YUMuKqjh1pkHR9cvG58M5l+7+MXblB8ppI4VxD9wjBZehnEPfmE3B9U+6lqEJGtIWtUmL2qRB64IU1fEM1XGdjKWRNCFpCOK6JK4FWCLA0gKEH06Xua6L6+Yq4i7umIs7GMYHPY+eKL0knqY7c1AaSSq9DVZVVcWSJUuoqqoqG0FXGkMnEgk1yjNHkKXvpvTL383xeBhKGSDxoRSXfpQvyksQHZsUn3S+8BzRtSrj0p9QhwnXOlVc+mHvE5WfXAcpo/3oM4wfq6xDKZ9PIF2CwEEGblkUBZFIKqVViigpTzV5P5G2tl9l9ao/O2d/vzPhtMJKCKEDXwE2A8eA14QQj0gp36nIdiewItquAf4+Ci8cpAxtWQpD4OYiPz7RL+/K+OnO8e4ZTlteBhA4Aq8IXflRXhvbx/O5HbzqHyIvPGJS465sFf95OE3HgacRT/4A1xklcCmLI98RUajh2Ra+Y+HbepQWJ3AspHcaR4gC0HVkuIAUUtOQeugbKEho+JpGoOv4Whj3dR1X0/E0HU/XcHUNT9NwdBGla0Rf2VAqBDJySSfLrVKKjT+EQiGhRV/0UCsEaGVndhJNhFNdkeZCQ6KVnAQS6gsN0IIK3zdamKYLLfKFEwkOTQOtJLLCzxx6DtSQWklQaRWjS6V8AoQ+rgyFhhQgonNIJFLYIFykyBOI8LxS00E3kXqpPTWkpuMLDV8LjwdR20oEvq4TiKi9pcCTAg9wEeX9AIEnQ7nlSfAR4SbDLRACD0EgCfPL0NdfmI8wjxS4QsNFw0PD9XQ8X8Mrariaji8EnpD4mo8vJL7wQRbDUcPS1GVAeV/3PSzXxXQcanwPy/OIBT5xGRCTAaaUSKnhSA070OgKBP8WaPyLFNhBmO7JdxMPkoTwiWs+ceER13xSwqNR90gaLknhEsMljkMMFyNww4E0BxgeP0sx2qaDqRN689bDzdAEZuSROqUJTFNgxgVWjYalx4kZAksXmAZYusSKQlMH05Ch92oDdE0ipRdZikkk/dFDVSJdCcMSORx+azwko5HIpvxNqgjLgn1Sevglq/jmBePfvQl5K/YrBP/4kcr9oCK18htdWX78fBPznuKa0d7J14xS5FRlprj2SfvvHq9sz5OPvfs55j1SUPoHINAq4pXHpo6H/zQ0NAQ6RjmuoUkNjTiCZJSqlfNqUq8oJ9DQ0eT4uTR04vbC2WuXSUxnxGojsF9KeRBACPF94INApbD6IPAdGX47XhZC1AghFkgpu2e8xtPk2Z98n63PfI/SzSzk+FdKCDl+j8vx4+XEqMMR4YGKvFD55RBEv/rLowVivBzhV0pIMX6daLCACacZv2bpmIjKaoCOD9LHFx6e8HEDFyfwsYMAzQPLg0scyV15j5ZCQKYIgZPHc3UOOALhxYGpPab7QpCLJ8jGEmFYnSQbTzAWS5KLwrF4KgxjSbKxJFkrQd6K42oVb7qUm0icnCbEhP5k4scW5XYql53U94xrUTHxz1MZOVX6FHF5muOT45LwFjipQlOWk1OnS8anIicdv3As3UqjYxN/XOjRdjq8aLPR0IUeeaT20YXA1FwszcbSXEzdJW26WJqLpbuYwiWmuSSMIkmjSFIvkDQKJPUiSaNASi8Q14voFV+88Hs9fveFu5FX6egPXultuvL4xPhET9Ugw1FWJKHOk9E0rgxPXI6H15AVabYAW7zLDSHhlFb385lytzv+/R7vM6eXDiL8u8mJ/U9pXxDFK/qc8E9TcY6Kc49fR4yfo1ReCkAv75dCjYrjFeVF5XUr8k+5H4iJnyUKxYRzl+pdthGoqNdU15jUNlKM12vCPpPOGaVVXpvo2jNhnzuVTSUl+T2tE0zaDahfO0xqw3us1wwxHWHVBhyt2D/GyaNRU+VpAyYIKyHEA8ADAIsXLz7Tup4Rb73yE/7To3vP6TVmGwl4hoanmRTNND1mkr1GmpFkipyZIGfGGbOS4WYmGa2IZ60keSP2Ll+S0gOg4ha2QTglgRg+LE4qLuTEW16UgugBNWl/wvmpEJ+V5xGTy1deV048Z0W5Ut4wPh6OH5cTjk9MLz0wo2tUCG0xKU/lg7hU1wlxMfFBTEWaKF+78pqynLd0ncpRuInnjY4LiZBhmlYatRMSDb+8r4kgjMvxuE6AIEBHogm/fB1d+lEeiU4Uj8pV1jtqkglLYCDCHyqi4m9giABdBOjCRxMSXfjRfrQR7k+0h5pKbItTHpt050WJGpCsKFfOXH5YjLfiyccmUvngnng8fGFAR0oNpIaUGjIYj4+Hepg3mJS3FA+myFs6b1B5LjEeUpkWpUcPyDD/xLTxclEetIoHb+lYqe3EhLxh/vEHe6kepTZ5t3NVliuHCsUMcYneRttsVyJiOsJqqrtfnkUepJT/APwDhG8FTuPaZ83lN36Yn9klJ4VRJ1C2gSlVMOqUyk9mEY0Wlf6PyoRP1HDwKsoro6mk0uNEaISDUkIb7+BLS8EIENF1BBBEaz9NvDblKSNNhB2UNAw8LYawMlhmLaaZQJgJsCwC00QaBkJoaIAhwumGmCbICI16XRDXxqchDDT06HJ6VCZchwo0EQ2vaqVFRQVChHZGImozQUU7CIh+o1GyNSr9kgkfpqVfN1pFc2sT7JdKOcJTlNqpdO3xTnfijTXpoTpF2pSGytPov6f/I2x6GWf8pctpnk9MP+P0ss3w55jxt1Fn/HPM3b/v+XyT9+wvdeYFz+pa51GTzfl2P4sy0+4n5hGaMXc+03SE1TFgUcX+QqDrLPKcV27a/BFu2vyR2ayCQqFQKBSKi4zpvC7yGrBCCNEhhLCAjwGPTMrzCPAJEbIJGJlN+yqFQqFQKBSK2eC0I1ZSSk8I8dvA44R2qN+UUu4UQvxWdPyrwE8JXS3sJ3S38MlzV2WFQqFQKBSKucm0/FhJKX9KKJ4q075aEZfA/zWzVVMoFAqFQqGYXyjPcQqFQqFQKBQzhBJWCoVCoVAoFDOEElYKhUKhUCgUM4QSVgqFQqFQKBQzhBJWCoVCoVAoFDOEElYKhUKhUCgUM4QSVgqFQqFQKBQzhBJWCoVCoVAoFDOEElYKhUKhUCgUM4QSVgqFQqFQKBQzhBJWCoVCoVAoFDOEElYKhUKhUCgUM4QSVgqFQqFQKBQzhBJWCoVCoVAoFDOEElYKhUKhUCgUM4QSVgqFQqFQKBQzhBJWCoVCoVAoFDOEElYKhUKhUCgUM4QSVgqFQqFQKBQzhJBSzs6FhegDDp/i8GLgyHmsTjUwcgFdB85vG57Pz3W+r3eh3ovn+1qqHWeOC7EtL9R7UfWNM8dcaMtVUsqq05aUUs65Deg7z9f7hwvpOue7Dc/n57qQ23EWPptqx3l2rQu1LS/Ue1H1jfPzs53qesDr0yk7V6cCh8/z9X58gV0Hzm8bns/Pdb6vd6Hei+f7WqodZ44LsS0v1HtR9Y0zx7xpy1mbCnw3hBCvSymvmu16zGdUG84Mqh1nBtWOM4dqy/eGar+Z4WJsx+l+5rk6YvUPs12BCwDVhjODaseZQbXjzKHa8r2h2m9muBjbcVqfeU6OWCkUCoVCoVDMR+bqiJVCoVAoFArFvEMJK4VCoVAoFIoZYlaFlRAiO5vXvxAQQnxYCCGFEKtnuy7zndPdj0KIZ4UQF5Wx5pkghFgohPiREGKfEOKAEOJvhBDWu+T/rBAieT7rOJ9Q/eN7Q/WNM4fqG88MNWI1/7kfeAH42JkUEkLo56Y6iosRIYQAfgD8UEq5AlgJpIE/f5dinwWUsFKcK1TfqJgVZl1YCSHSQoinhBBvCiHeFkJ8MEpfIoTYJYT4uhBipxBiixAiMdv1nUsIIdLA9cBvEHUeQoibhRA/F0L8byHEO0KIrwohtOhYVgjxZ0KIV4BrZ6/mc5eo/R6t2H9QCPHrs1il+cKtQFFK+S0AKaUP/C7wX4QQKSHEX0Xf7+1CiN8RQvxXoBV4RgjxzCzWe06j+sezQ/WNM4/qG6fPrAsroAh8WEp5BXAL8OXo1y/ACuArUsp1hM7I7pmlOs5VPgT8TEq5FxgUQlwRpW8Efh9YDywDPhKlp4AdUsprpJQvnPfaKi5k1gFvVCZIKUcJl7z4FNABXC6l3AB8V0r5t0AXcIuU8pbzXdl5hOofzw7VNypmjbkgrATwBSHEduBJoA1ojo4dklJui+JvAEvOf/XmNPcD34/i34/2AV6VUh6MRg2+B9wQpfvAf5zfKiouEgQwle8WAdwEfFVK6QFIKQfPZ8XmOap/PDtU36iYNYzZrgDwq0AjcKWU0hVCdALx6Jhdkc8H1FB3hBCinnD65RIhhAR0wgfbTzn5AVfaL0YdiuLUeEz8wRE/VUbFBHYyacRECJEBFgEHmVp0KU6P6h/PENU3njNU3zhN5sKIVTXQG3UatwDts12hecK9wHeklO1SyiVSykXAIcJfYBuFEB2R/cCvEBpwKqbHYWCtECImhKgGbpvtCs0TngKSQohPQNkA+MvAt4EtwG8JIYzoWF1UZgw4/UrxFzeqfzxzVN94blB94zSZNWEVdbI28F3gKiHE64S/znbPVp3mGfcD/3tS2n8A/xl4CfgSsIOwQ5mcTzGJ0v0opTwK/BuwnfDe3DqrFZsnyHAJhw8D9wkh9gF7Ce2D/hj4BqGt1XYhxFuE9yiEy0M8pozXT0b1j+8J1TfOIKpvPHNmbUkbIcSlwNellBtnpQIXKEKIm4HPSSnvnu26zCfU/aiYS6j7ceZRfePZoe7FM2dWRqyEEL9FaDj432fj+gpFJep+VMwl1P2omCuoe/HsUIswKxQKhUKhUMwQ52XESgixSAjxTOTQbqcQ4jNRep0Q4gkRLoHxhBCiNkrfLIR4I3KI94YQ4taKc10Zpe8XQvxthU8XhUKhmHfMcP/450KIo0Ith6NQzBrnZcRKCLEAWCClfFMIUUXoc+VDwK8Dg1LKLwkh/hColVL+gRDicqBHStklhLgEeFxK2Rad61XgM8DLhK/P/q2U8rFz/iEUCoXiHDDD/eMmwre39kkp07PygRSKi5xZmQoUQvwIeDDabpZSdkedy7NSylWT8gqgn3D5izrgGSnl6ujY/VH53zyvH0ChUCjOEWfbP0op7Yr0rBJWCsXscN6N14UQS4DLgVeAZillN0AUNk1R5B5ga9RptAHHKo4di9IUCoVi3vMe+0eFQjEHOK+e16OFMf8D+KyUcvR05lFCiHXAXwC3l5KmyKas7xUKxbxnBvpHhUIxBzhvI1ZCCJOw0/iulPIHUXJPNMRdsjPorci/kNB52yeklAei5GPAworTLiRcyFWhUCjmLTPUPyoUijnA+XorUAD/COySUv6vikOPAL8WxX8N+FGUvwb4CfBHUsoXS5mj4fAxIcSm6JyfKJVRKBSK+chM9Y8KhWJucL7eCrwBeB54Gwii5D8mtCP4N2Ax4ZIX90kpB4UQ/x34I2BfxWlul1L2CiGuIlx/LAE8BvyOVM64FArFPGWG+8f/Sbh0SyvhaP43pJT/73n5IAqFAlAOQhUKhUKhUChmjFlbhFmhUCgUCoXiQkMJK4VCoVAoFIoZQgkrhUKhUCgUihlCCSuFQqFQKBSKGUIJK4VCoVAoFIoZQgkrhUKhUCgUihlCCSuFQqFQKBSKGUIJK4VCoVAoFIoZ4v8HvwwTeQp2jgwAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "dataToPlot.T.plot(figsize=(10,10))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }