From 60ef7fe25f5229c6e86d0af5b3a5e3ef97bfdf69 Mon Sep 17 00:00:00 2001 From: Juju BC Date: Mon, 23 Dec 2024 16:46:16 +0100 Subject: [PATCH] =?UTF-8?q?normalement=20c'est=20juste=20l=C3=A0?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- module2/exo1/toy_document_fr.Rmd | 47 ++++++++++++++++++++++---------- 1 file changed, 32 insertions(+), 15 deletions(-) diff --git a/module2/exo1/toy_document_fr.Rmd b/module2/exo1/toy_document_fr.Rmd index ab5dd29..8286cde 100644 --- a/module2/exo1/toy_document_fr.Rmd +++ b/module2/exo1/toy_document_fr.Rmd @@ -1,33 +1,50 @@ --- -title: "Votre titre" -author: "Juju BC" -date: "La date du jour" output: html_document --- +# À propos du calcul de pi +#### *Arnaud Legrand* +#### *25 juin 2018* + ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE) ``` -## Quelques explications - -Ceci est un document R markdown que vous pouvez aisément exporter au format HTML, PDF, et MS Word. Pour plus de détails sur R Markdown consultez . +## En demandant à la lib maths -Lorsque vous cliquerez sur le bouton **Knit** ce document sera compilé afin de ré-exécuter le code R et d'inclure les résultats dans un document final. Comme nous vous l'avons montré dans la vidéo, on inclue du code R de la façon suivante: +Mon ordinateur m’indique que π vaut *approximativement* -```{r cars} -summary(cars) +```{r pi, echo=TRUE} +pi ``` -Et on peut aussi aisément inclure des figures. Par exemple: +## En utilisant la méthode des aiguilles de Buffon + +Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** : -```{r pressure, echo=FALSE} -plot(pressure) +```{r buffon, echo=TRUE} +set.seed(42) +N = 100000 +x = runif(N) +theta = pi/2*runif(N) +2/(mean(x+sin(theta)>1)) ``` -Vous remarquerez le paramètre `echo = FALSE` qui indique que le code ne doit pas apparaître dans la version finale du document. Nous vous recommandons dans le cadre de ce MOOC de ne pas utiliser ce paramètre car l'objectif est que vos analyses de données soient parfaitement transparentes pour être reproductibles. +## Avec un argument “fréquentiel” de surface +Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X∼U(0,1)$ et $Y∼U(0,1)$ alors $P[X^2+Y^2≤1]=π/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait: -Comme les résultats ne sont pas stockés dans les fichiers Rmd, pour faciliter la relecture de vos analyses par d'autres personnes, vous aurez donc intérêt à générer un HTML ou un PDF et à le commiter. +```{r fréquentiel, echo=TRUE} +set.seed(42) +N = 1000 +df = data.frame(X = runif(N), Y = runif(N)) +df$Accept = (df$X**2 + df$Y**2 <=1) +library(ggplot2) +ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() +``` + +Il est alors aisé d’obtenir une approximation (pas terrible) de π en comptant combien de fois, en moyenne, $X^2+Y^2$ est inférieur à 1: -Maintenant, à vous de jouer! Vous pouvez effacer toutes ces informations et les remplacer par votre document computationnel. +```{r approx, echo=TRUE} +4*mean(df$Accept) +``` -- 2.18.1