Commit b7d24697 authored by escuiller's avatar escuiller

export code+results ok

parent e9dbda51
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Risk Analysis of the Space Shuttle: Pre-Challenger Prediction of Failure"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this document we reperform some of the analysis provided in \n",
"*Risk Analysis of the Space Shuttle: Pre-Challenger Prediction of Failure* by *Siddhartha R. Dalal, Edward B. Fowlkes, Bruce Hoadley* published in *Journal of the American Statistical Association*, Vol. 84, No. 408 (Dec., 1989), pp. 945-957 and available at http://www.jstor.org/stable/2290069. \n",
"\n",
"On the fourth page of this article, they indicate that the maximum likelihood estimates of the logistic regression using only temperature are: $\\hat{\\alpha}=5.085$ and $\\hat{\\beta}=-0.1156$ and their asymptotic standard errors are $s_{\\hat{\\alpha}}=3.052$ and $s_{\\hat{\\beta}}=0.047$. The Goodness of fit indicated for this model was $G^2=18.086$ with 21 degrees of freedom. Our goal is to reproduce the computation behind these values and the Figure 4 of this article, possibly in a nicer looking way."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Technical information on the computer on which the analysis is run"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We will be using the python3 language using the pandas, statsmodels, numpy, matplotlib and seaborn libraries."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.6.4 |Anaconda, Inc.| (default, Jan 16 2018, 18:10:19) \n",
"[GCC 7.2.0]\n",
"uname_result(system='Linux', node='3a716011d2b6', release='4.4.0-116-generic', version='#140-Ubuntu SMP Mon Feb 12 21:23:04 UTC 2018', machine='x86_64', processor='x86_64')\n",
"IPython 6.4.0\n",
"IPython.core.release 6.4.0\n",
"PIL 5.2.0\n",
"PIL.Image 5.2.0\n",
"PIL._version 5.2.0\n",
"_csv 1.0\n",
"_ctypes 1.1.0\n",
"_curses b'2.2'\n",
"decimal 1.70\n",
"argparse 1.1\n",
"backcall 0.1.0\n",
"cffi 1.11.5\n",
"csv 1.0\n",
"ctypes 1.1.0\n",
"cycler 0.10.0\n",
"dateutil 2.7.3\n",
"decimal 1.70\n",
"decorator 4.3.0\n",
"distutils 3.6.4\n",
"ipaddress 1.0\n",
"ipykernel 4.8.2\n",
"ipykernel._version 4.8.2\n",
"ipython_genutils 0.2.0\n",
"ipython_genutils._version 0.2.0\n",
"ipywidgets 7.2.1\n",
"ipywidgets._version 7.2.1\n",
"jedi 0.12.1\n",
"json 2.0.9\n",
"jupyter_client 5.2.3\n",
"jupyter_client._version 5.2.3\n",
"jupyter_core 4.4.0\n",
"jupyter_core.version 4.4.0\n",
"kiwisolver 1.0.1\n",
"logging 0.5.1.2\n",
"matplotlib 2.2.2\n",
"matplotlib.backends.backend_agg 2.2.2\n",
"numpy 1.13.3\n",
"numpy.core 1.13.3\n",
"numpy.core.multiarray 3.1\n",
"numpy.core.umath b'0.4.0'\n",
"numpy.lib 1.13.3\n",
"numpy.linalg._umath_linalg b'0.1.5'\n",
"numpy.matlib 1.13.3\n",
"optparse 1.5.3\n",
"pandas 0.22.0\n",
"_libjson 1.33\n",
"parso 0.3.0\n",
"patsy 0.5.0\n",
"patsy.version 0.5.0\n",
"pexpect 4.6.0\n",
"pickleshare 0.7.4\n",
"platform 1.0.8\n",
"prompt_toolkit 1.0.15\n",
"ptyprocess 0.6.0\n",
"pygments 2.2.0\n",
"pyparsing 2.2.0\n",
"pytz 2018.5\n",
"re 2.2.1\n",
"scipy 1.1.0\n",
"scipy._lib.decorator 4.0.5\n",
"scipy._lib.six 1.2.0\n",
"scipy.fftpack._fftpack b'$Revision: $'\n",
"scipy.fftpack.convolve b'$Revision: $'\n",
"scipy.integrate._dop b'$Revision: $'\n",
"scipy.integrate._ode $Id$\n",
"scipy.integrate._odepack 1.9 \n",
"scipy.integrate._quadpack 1.13 \n",
"scipy.integrate.lsoda b'$Revision: $'\n",
"scipy.integrate.vode b'$Revision: $'\n",
"scipy.interpolate._fitpack 1.7 \n",
"scipy.interpolate.dfitpack b'$Revision: $'\n",
"scipy.linalg 0.4.9\n",
"scipy.linalg._fblas b'$Revision: $'\n",
"scipy.linalg._flapack b'$Revision: $'\n",
"scipy.linalg._flinalg b'$Revision: $'\n",
"scipy.ndimage 2.0\n",
"scipy.optimize._cobyla b'$Revision: $'\n",
"scipy.optimize._lbfgsb b'$Revision: $'\n",
"scipy.optimize._minpack 1.10 \n",
"scipy.optimize._nnls b'$Revision: $'\n",
"scipy.optimize._slsqp b'$Revision: $'\n",
"scipy.optimize.minpack2 b'$Revision: $'\n",
"scipy.signal.spline 0.2\n",
"scipy.sparse.linalg.eigen.arpack._arpack b'$Revision: $'\n",
"scipy.sparse.linalg.isolve._iterative b'$Revision: $'\n",
"scipy.special.specfun b'$Revision: $'\n",
"scipy.stats.mvn b'$Revision: $'\n",
"scipy.stats.statlib b'$Revision: $'\n",
"seaborn 0.8.1\n",
"seaborn.external.husl 2.1.0\n",
"seaborn.external.six 1.10.0\n",
"six 1.11.0\n",
"statsmodels 0.9.0\n",
"statsmodels.__init__ 0.9.0\n",
"traitlets 4.3.2\n",
"traitlets._version 4.3.2\n",
"urllib.request 3.6\n",
"zlib 1.0\n",
"zmq 17.1.0\n",
"zmq.sugar 17.1.0\n",
"zmq.sugar.version 17.1.0\n"
]
}
],
"source": [
"def print_imported_modules():\n",
" import sys\n",
" for name, val in sorted(sys.modules.items()):\n",
" if(hasattr(val, '__version__')): \n",
" print(val.__name__, val.__version__)\n",
"# else:\n",
"# print(val.__name__, \"(unknown version)\")\n",
"def print_sys_info():\n",
" import sys\n",
" import platform\n",
" print(sys.version)\n",
" print(platform.uname())\n",
"\n",
"import numpy as np\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import statsmodels.api as sm\n",
"import seaborn as sns\n",
"\n",
"print_sys_info()\n",
"print_imported_modules()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Loading and inspecting data\n",
"Let's start by reading data."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Date</th>\n",
" <th>Count</th>\n",
" <th>Temperature</th>\n",
" <th>Pressure</th>\n",
" <th>Malfunction</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>4/12/81</td>\n",
" <td>6</td>\n",
" <td>66</td>\n",
" <td>50</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>11/12/81</td>\n",
" <td>6</td>\n",
" <td>70</td>\n",
" <td>50</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>3/22/82</td>\n",
" <td>6</td>\n",
" <td>69</td>\n",
" <td>50</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>11/11/82</td>\n",
" <td>6</td>\n",
" <td>68</td>\n",
" <td>50</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4/04/83</td>\n",
" <td>6</td>\n",
" <td>67</td>\n",
" <td>50</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>6/18/82</td>\n",
" <td>6</td>\n",
" <td>72</td>\n",
" <td>50</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>8/30/83</td>\n",
" <td>6</td>\n",
" <td>73</td>\n",
" <td>100</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>11/28/83</td>\n",
" <td>6</td>\n",
" <td>70</td>\n",
" <td>100</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>2/03/84</td>\n",
" <td>6</td>\n",
" <td>57</td>\n",
" <td>200</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>4/06/84</td>\n",
" <td>6</td>\n",
" <td>63</td>\n",
" <td>200</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>8/30/84</td>\n",
" <td>6</td>\n",
" <td>70</td>\n",
" <td>200</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>10/05/84</td>\n",
" <td>6</td>\n",
" <td>78</td>\n",
" <td>200</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>11/08/84</td>\n",
" <td>6</td>\n",
" <td>67</td>\n",
" <td>200</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>1/24/85</td>\n",
" <td>6</td>\n",
" <td>53</td>\n",
" <td>200</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>4/12/85</td>\n",
" <td>6</td>\n",
" <td>67</td>\n",
" <td>200</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>4/29/85</td>\n",
" <td>6</td>\n",
" <td>75</td>\n",
" <td>200</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>6/17/85</td>\n",
" <td>6</td>\n",
" <td>70</td>\n",
" <td>200</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>7/2903/85</td>\n",
" <td>6</td>\n",
" <td>81</td>\n",
" <td>200</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>8/27/85</td>\n",
" <td>6</td>\n",
" <td>76</td>\n",
" <td>200</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>10/03/85</td>\n",
" <td>6</td>\n",
" <td>79</td>\n",
" <td>200</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20</th>\n",
" <td>10/30/85</td>\n",
" <td>6</td>\n",
" <td>75</td>\n",
" <td>200</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>21</th>\n",
" <td>11/26/85</td>\n",
" <td>6</td>\n",
" <td>76</td>\n",
" <td>200</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n",
" <td>1/12/86</td>\n",
" <td>6</td>\n",
" <td>58</td>\n",
" <td>200</td>\n",
" <td>1</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Date Count Temperature Pressure Malfunction\n",
"0 4/12/81 6 66 50 0\n",
"1 11/12/81 6 70 50 1\n",
"2 3/22/82 6 69 50 0\n",
"3 11/11/82 6 68 50 0\n",
"4 4/04/83 6 67 50 0\n",
"5 6/18/82 6 72 50 0\n",
"6 8/30/83 6 73 100 0\n",
"7 11/28/83 6 70 100 0\n",
"8 2/03/84 6 57 200 1\n",
"9 4/06/84 6 63 200 1\n",
"10 8/30/84 6 70 200 1\n",
"11 10/05/84 6 78 200 0\n",
"12 11/08/84 6 67 200 0\n",
"13 1/24/85 6 53 200 2\n",
"14 4/12/85 6 67 200 0\n",
"15 4/29/85 6 75 200 0\n",
"16 6/17/85 6 70 200 0\n",
"17 7/2903/85 6 81 200 0\n",
"18 8/27/85 6 76 200 0\n",
"19 10/03/85 6 79 200 0\n",
"20 10/30/85 6 75 200 2\n",
"21 11/26/85 6 76 200 0\n",
"22 1/12/86 6 58 200 1"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = pd.read_csv(\"https://app-learninglab.inria.fr/moocrr/gitlab/moocrr-session3/moocrr-reproducibility-study/blob/master/data/shuttle.csv\")\n",
"data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We know from our previous experience on this data set that filtering data is a really bad idea. We will therefore process it as such."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAGBNJREFUeJzt3XuQnXWd5/H3t5MACYmAxMkwBAQGhpUCJkDLReaSCFqBKpN1AYUtwXEGM1uSskRHYWZdhmGdqpVRmXFlFGRxhC2NXEbIzmaWixAdprgFiOEmTA8gdEDAGCANIemkv/vHefrxpOnLOZ1++vQ5vF9VqZznOb9++vvtp09/+rn070RmIkkSQFerC5AkTR2GgiSpZChIkkqGgiSpZChIkkqGgiSpVFkoRMTVEfFSRDwywvMREV+PiJ6IWBcRR1dViySpMVUeKfwDsHiU508BDin+LQO+WWEtkqQGVBYKmfkT4FejDFkKXJM19wB7RsQ+VdUjSRrb9BZ+7n2B5+qWe4t1LwwdGBHLqB1NMHPmzGP222+/SSmwUQMDA3R1dd7lmU7tCzq3N/tqP5PV25NPPvnLzHzXWONaGQoxzLph59zIzCuBKwG6u7tzzZo1VdbVtNWrV7Nw4cJWlzHhOrUv6Nze7Kv9TFZvEfHzRsa1Mnp7gfpf+ecDz7eoFkkSrQ2FlcA5xV1IxwOvZuZbTh1JkiZPZaePIuL7wEJgbkT0An8JzADIzG8Bq4BTgR7gDeATVdUiSWpMZaGQmWeN8XwC51X1+SVJzevMy/mSpHExFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklSqNBQiYnFEPBERPRFx4TDP7x8Rd0bEQxGxLiJOrbIeSdLoKguFiJgGXA6cAhwGnBURhw0Z9kXgusw8CjgT+Puq6pEkja3KI4VjgZ7MfCoztwIrgKVDxiTwjuLxHsDzFdYjSRpDZGY1G444HVicmecWy2cDx2Xm8rox+wC3AnsBuwMnZ+YDw2xrGbAMYN68ecesWLGikprHq6+vj9mzZ7e6jAnXqX1B5/ZmX+1nsnpbtGjRA5nZPda46RXWEMOsG5pAZwH/kJlfjYgTgGsj4vDMHNjhgzKvBK4E6O7uzoULF1ZR77itXr2aqVbTROjUvqBze7Ov9jPVeqvy9FEvsF/d8nzeenroT4DrADLzbmA3YG6FNUmSRlFlKNwPHBIRB0bELtQuJK8cMuZZ4CSAiHgPtVB4ucKaJEmjqCwUMnMbsBy4BXic2l1Gj0bEJRGxpBj2OeCTEfFT4PvAH2VVFzkkSWOq8poCmbkKWDVk3UV1jx8DTqyyBklS4/yLZklSyVCQJJUMBUlSyVCQJJUMBUlSyVCQJJUMBUlSyVCQJJUMBUlSyVCQJJUMBUlSyVCQJJUMBUlSyVCQJJUMBUlSyVCQJJUMBUlSyVCQJJUMBUlSyVCQJJUMBUlSyVCQJJUMBUlSyVCQJJUMBUlSyVCQJJUMBUlSyVCQJJUMBUlSyVCQJJUMBUlSyVCQJJUMBUlSyVCQJJUqDYWIWBwRT0RET0RcOMKYj0TEYxHxaER8r8p6JEmjm97IoIg4PDMfaWbDETENuBz4ANAL3B8RKzPzsboxhwB/DpyYmRsj4jea+RySpInV6JHCtyLivoj4VETs2eDHHAv0ZOZTmbkVWAEsHTLmk8DlmbkRIDNfanDbkqQKRGY2NrD2W/0fA2cA9wHfyczbRhl/OrA4M88tls8GjsvM5XVjbgKeBE4EpgEXZ+b/G2Zby4BlAPPmzTtmxYoVjXU3Sfr6+pg9e3ary5hwndoXdG5v9tV+Jqu3RYsWPZCZ3WMOzMyG/1H7wX0asB54HPgZ8J9GGHsGcFXd8tnA/xwy5p+AHwIzgAOpnWbac7QajjnmmJxq7rzzzlaXUIlO7Suzc3uzr/YzWb0Ba7KBn/MNnT6KiCMj4rIiCN4PfCgz31M8vmyED+sF9qtbng88P8yYmzOzPzOfBp4ADmmkJknSxGv0msI3gAeB383M8zLzQYDMfB744ggfcz9wSEQcGBG7AGcCK4eMuQlYBBARc4HfAZ5qrgVJ0kRp6O4j4FRgc2ZuB4iILmC3zHwjM68d7gMyc1tELAduoXba6erMfDQiLqF2GLOyeO6DEfEYsB34fGZu2MmeJEnj1Ggo3A6cDPQVy7OAW4H3jfZBmbkKWDVk3UV1jxP4bPFPktRijZ4+2i0zBwOB4vGsakqSJLVKo6HwekQcPbgQEccAm6spSZLUKo2ePvoMcH1EDN49tA/w0WpKkiS1SkOhkJn3R8R/AA4FAvhZZvZXWpkkadI1eqQA8F7ggOJjjooIMvOaSqqSJLVEoxPiXQv8NrCW2q2jAAkYCpLUQRo9UugGDituIZUkdahG7z56BPjNKguRJLVeo0cKc4HHIuI+YMvgysxcUklVkqSWaDQULq6yCEnS1NDoLak/joh3A4dk5u0RMYvafEaSpA7S6NTZnwRuAK4oVu1LbYZTSVIHafRC83nU3h3tNYDM/DfA91OWpA7TaChsydr7LAMQEdOp/Z2CJKmDNBoKP46IvwBmRsQHgOuB/1NdWZKkVmg0FC4EXgYeBv6U2nskjPSOa5KkNtXo3UcDwLeLf5KkDtXo3EdPM8w1hMw8aMIrkiS1TDNzHw3aDTgDeOfElyNJaqWGrilk5oa6f+sz82+B91dcmyRpkjV6+ujousUuakcOcyqpSJLUMo2ePvpq3eNtwDPARya8GklSSzV699GiqguRJLVeo6ePPjva85n5tYkpR5LUSs3cffReYGWx/CHgJ8BzVRQlSWqNZt5k5+jM3AQQERcD12fmuVUVJkmafI1Oc7E/sLVueStwwIRXI0lqqUaPFK4F7ouIH1L7y+YPA9dUVpUkqSUavfvoryPin4HfL1Z9IjMfqq4sSVIrNHr6CGAW8Fpm/h3QGxEHVlSTJKlFGn07zr8ELgD+vFg1A/jfVRUlSWqNRo8UPgwsAV4HyMzncZoLSeo4jYbC1sxMiumzI2L36kqSJLVKo6FwXURcAewZEZ8Ebsc33JGkjtPo3UdfKd6b+TXgUOCizLyt0sokSZNuzCOFiJgWEbdn5m2Z+fnM/LNGAyEiFkfEExHRExEXjjLu9IjIiOgeaYwkqXpjhkJmbgfeiIg9mtlwREwDLgdOAQ4DzoqIw4YZNwf4NHBvM9uXJE28Rv+i+U3g4Yi4jeIOJIDM/PQoH3Ms0JOZTwFExApgKfDYkHH/HbgU+LNGi5YkVaPRUPi/xb9m7MuOs6j2AsfVD4iIo4D9MvOfImLEUIiIZcAygHnz5rF69eomS6lWX1/flKtpInRqX9C5vdlX+5lqvY0aChGxf2Y+m5nfHce2Y5h1WbftLuAy4I/G2lBmXglcCdDd3Z0LFy4cRznVWb16NVOtponQqX1B5/ZmX+1nqvU21jWFmwYfRMSNTW67F9ivbnk+8Hzd8hzgcGB1RDwDHA+s9GKzJLXOWKFQ/9v+QU1u+37gkIg4MCJ2Ac7k12/SQ2a+mplzM/OAzDwAuAdYkplrmvw8kqQJMlYo5AiPx5SZ24DlwC3A48B1mfloRFwSEUuaK1OSNBnGutD8uxHxGrUjhpnFY4rlzMx3jPbBmbkKWDVk3UUjjF3YUMWSpMqMGgqZOW2yCpEktV4z76cgSepwhoIkqWQoSJJKhoIkqfS2CYUNfVv46XOvsKFvS6tLkdSEDX1b2Ny/3dfuJHlbhMLNa9dz4pfv4GNX3cuJX76DlWvXt7okSQ0YfO0+/fLrvnYnSceHwoa+LVxw4zre7B9g05ZtvNk/wBduXOdvHdIUV//a3Z7pa3eSdHwo9G7czIyuHduc0dVF78bNLapIUiN87bZGx4fC/L1m0j8wsMO6/oEB5u81s0UVSWqEr93W6PhQ2Hv2rlx62pHsNqOLObtOZ7cZXVx62pHsPXvXVpcmaRT1r91pEb52J0mjb7LT1pYs2JcTD55L78bNzN9rpt9UUpsYfO3ed/dd/OuS3/O1OwneFqEAtd86/IaS2s/es3dl5oxpvn4nScefPpIkNc5QkCSVDAVJUslQkCSVDAVJUslQkCSVDAVJUslQkCSVDAVJUslQkCSVDAVJUslQkCSVDAVJUslQkCSVDAVJUslQkCSVDAVJUslQkCSVDAVJUslQkCSVDAVJUqnSUIiIxRHxRET0RMSFwzz/2Yh4LCLWRcSPIuLdVdYjSRpdZaEQEdOAy4FTgMOAsyLisCHDHgK6M/NI4Abg0qrqkSSNrcojhWOBnsx8KjO3AiuApfUDMvPOzHyjWLwHmF9hPZKkMURmVrPhiNOBxZl5brF8NnBcZi4fYfw3gF9k5peGeW4ZsAxg3rx5x6xYsaKSmserr6+P2bNnt7qMCdepfUHn9mZf7Weyelu0aNEDmdk91rjpFdYQw6wbNoEi4mNAN/CHwz2fmVcCVwJ0d3fnwoULJ6jEibF69WqmWk0ToVP7gs7tzb7az1TrrcpQ6AX2q1ueDzw/dFBEnAz8V+APM3NLhfVIksZQ5TWF+4FDIuLAiNgFOBNYWT8gIo4CrgCWZOZLFdYiSWpAZaGQmduA5cAtwOPAdZn5aERcEhFLimF/A8wGro+ItRGxcoTNSZImQZWnj8jMVcCqIesuqnt8cpWfv51t6NtC78bNzN9rJnvP3nXCxraTTu2rKj0vbmLjG/30vLiJg+fNaXU5alOVhoLG5+a167ngxnXM6Oqif2CAS087kiUL9t3pse2kU/uqykU3Pcw19zzL547YxvmX/YRzTtifS5Ye0eqy1Iac5mKK2dC3hQtuXMeb/QNs2rKNN/sH+MKN69jQ99Zr8M2MbSed2ldVel7cxDX3PLvDumvufpaeFze1qCK1M0NhiunduJkZXTvulhldXfRu3LxTY9tJp/ZVlbXPvdLUemk0hsIUM3+vmfQPDOywrn9ggPl7zdypse2kU/uqyoL99mxqvTQaQ2GK2Xv2rlx62pHsNqOLObtOZ7cZXVx62pHDXmhtZmw76dS+qnLwvDmcc8L+O6w754T9vdiscfFC8xS0ZMG+nHjw3IbuvGlmbDvp1L6qcsnSIzjn+AN4+IF7uP384w0EjZuhMEXtPXvXhn8QNjO2nXRqX1U5eN4cemfNMBC0Uzx9JEkqGQqSpJKhIEkqGQqSpJKhIEkqGQqSpJKhIEkqGQqSpJKhIEkqGQqSpJKhIEkqGQqSpJKhIEkqGQqSpJKhIEkqGQqSpJKhIEkqGQqSpJKhIEkqGQqSpJKhIEkqGQqSpJKhIEkqGQqSpJKhIEkqGQqSpJKhIEkqGQqSpFKloRARiyPiiYjoiYgLh3l+14j4QfH8vRFxQJX1SM3a0LeFnz73Chv6tow6bs3TG/jarU+w5ukNE7bNZsf2vLiJjW/00/PipjHHNqOqepv5/Jv7tzf8NbhhzXMd9zWocrtDTa9qwxExDbgc+ADQC9wfESsz87G6YX8CbMzMgyPiTODLwEerqklqxs1r13PBjeuY0dVF/8AAl552JEsW7PuWcR+76h7u6qmFwdfv6OH3D96ba889fqe22ezYi256mGvueZbPHbGN8y/7CeecsD+XLD1inJ1XX2+zn//T7+nn/C/f0dDXYFCnfA2q3O5wqjxSOBboycynMnMrsAJYOmTMUuC7xeMbgJMiIiqsSWrIhr4tXHDjOt7sH2DTlm282T/AF25c95bf0tY8vaEMhEH/0rNh2COGRrfZ7NieFzft8MMQ4Jq7n93p35arqnc8n3975tvya1DldkcSmVnNhiNOBxZn5rnF8tnAcZm5vG7MI8WY3mL534sxvxyyrWXAsmLxUOCJSooev7nAL8cc1X46tS8Yo7eYMXPW9L32+Z3o6po2uC4HBrZv2/jCk9m/+Y3BddPmzP2tabvvuc/Qj9/++isvbN/0y+fHs81mx3bN2mPv6e941wEA2994lWmz9gBg22svPzPwxqtjn8/aya9Bs2PH8/kH+2rka1CvTb4GE/K92IB3Z+a7xhpU2ekjYLjf+IcmUCNjyMwrgSsnoqgqRMSazOxudR0TrVP7gs7tLSLWbHv1JftqI1Pte7HK00e9wH51y/OB50caExHTgT2AX1VYkyRpFFWGwv3AIRFxYETsApwJrBwyZiXw8eLx6cAdWdX5LEnSmCo7fZSZ2yJiOXALMA24OjMfjYhLgDWZuRL4X8C1EdFD7QjhzKrqqdiUPbW1kzq1L+jc3uyr/Uyp3iq70CxJaj/+RbMkqWQoSJJKhsI4RMQzEfFwRKyNiDXFuosjYn2xbm1EnNrqOpsVEXtGxA0R8bOIeDwiToiId0bEbRHxb8X/e7W6zmaN0Fcn7K9D6+pfGxGvRcRn2n2fjdJXJ+yz8yPi0Yh4JCK+HxG7FTfj3Fvsrx8UN+a0rkavKTQvIp4Buuv/yC4iLgb6MvMrraprZ0XEd4F/ycyrim/MWcBfAL/KzP9RzF+1V2Ze0NJCmzRCX5+hzfdXvWJamfXAccB5tPk+GzSkr0/QxvssIvYF7gIOy8zNEXEdsAo4FfjHzFwREd8CfpqZ32xVnR4pCICIeAfwB9TuCCMzt2bmK+w4Fcl3gf/YmgrHZ5S+Os1JwL9n5s9p8302RH1fnWA6MLP4u6xZwAvA+6lN8wNTYH8ZCuOTwK0R8UAxBceg5RGxLiKubrdDduAg4GXgOxHxUERcFRG7A/My8wWA4v/faGWR4zBSX9De+2uoM4HvF4/bfZ/Vq+8L2nifZeZ64CvAs9TC4FXgAeCVzNxWDOsFqpnprkGGwvicmJlHA6cA50XEHwDfBH4bWEBth3+1hfWNx3TgaOCbmXkU8DrwlunO29BIfbX7/ioVp8SWANe3upaJNExfbb3PihBbChwI/BawO7WfIUO19Jy+oTAOmfl88f9LwA+BYzPzxczcnpkDwLepzRLbTnqB3sy8t1i+gdoP0xcjYh+A4v+XWlTfeA3bVwfsr3qnAA9m5ovFcrvvs0E79NUB++xk4OnMfDkz+4F/BN4H7FmcToLhpwOaVIZCkyJi94iYM/gY+CDwyOCLsPBh4JFW1DdemfkL4LmIOLRYdRLwGDtORfJx4OYWlDduI/XV7vtriLPY8RRLW++zOjv01QH77Fng+IiYFRHBr19jd1Kb5gemwP7y7qMmRcRB1I4OoHZq4nuZ+dcRcS21w9oEngH+dPC8bruIiAXAVcAuwFPU7vboAq4D9qf2TX1GZrbVpIUj9PV12nx/AUTELOA54KDMfLVYtzftv8+G66sTXmN/Re2NxLYBDwHnUruGsAJ4Z7HuY5lZ7durjVajoSBJGuTpI0lSyVCQJJUMBUlSyVCQJJUMBUlSqbJ3XpMmW3Er5o+Kxd8EtlOb4gJqf2C4tSWFjSIi/hhYVfw9hdRy3pKqjjSVZq2NiGmZuX2E5+4Clmfm2ia2N71urhxpQnn6SG8LEfHxiLivmIf/7yOiKyKmR8QrEfE3EfFgRNwSEcdFxI8j4qnB+foj4tyI+GHx/BMR8cUGt/uliLgPODYi/ioi7i/m0f9W1HyU2h9j/aD4+F0iojci9iy2fXxE3F48/lJEXBERt1Gb3G96RHyt+NzrIuLcyf+qqhMZCup4EXE4tWkR3peZC6idNj2zeHoP4NZigsOtwMXUph84A7ikbjPHFh9zNPCfI2JBA9t9MDOPzcy7gb/LzPcCRxTPLc7MHwBrgY9m5oIGTm8dBXwoM88GlgEvZeaxwHupTcy4/3i+PlI9ryno7eBkaj8419SmnGEmtSkUADZn5m3F44eBVzNzW0Q8DBxQt41bMnMjQETcBPwetdfPSNvdyq+nQwE4KSI+D+wGzKU2ZfI/N9nHzZn5ZvH4g8B7IqI+hA6hNq2FNG6Ggt4OArg6M//bDitrM1PW/3Y+AGype1z/+hh68S3H2O7mLC7YFfP4fIPa7KzrI+JL1MJhONv49RH80DGvD+npU5n5I6QJ5OkjvR3cDnwkIuZC7S6lcZxq+WDU3ut5FrU58f+1ie3OpBYyvyxm2D2t7rlNwJy65WeAY4rH9eOGugX41OCUy1F7X+OZTfYkvYVHCup4mflwMTvl7RHRBfQD/4Xm5q2/C/getTd5uXbwbqFGtpuZG6L2PtGPAD8H7q17+jvAVRGxmdp1i4uBb0fEL4D7RqnnCmqzoK4tTl29RC2spJ3iLanSGIo7ew7PzM+0uhapap4+kiSVPFKQJJU8UpAklQwFSVLJUJAklQwFSVLJUJAklf4/GKF1l7kqzyEAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"pd.set_option('mode.chained_assignment',None) # this removes a useless warning from pandas\n",
"import matplotlib.pyplot as plt\n",
"\n",
"data[\"Frequency\"]=data.Malfunction/data.Count\n",
"data.plot(x=\"Temperature\",y=\"Frequency\",kind=\"scatter\",ylim=[0,1])\n",
"plt.grid(True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Logistic regression\n",
"\n",
"Let's assume O-rings independently fail with the same probability which solely depends on temperature. A logistic regression should allow us to estimate the influence of temperature."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<table class=\"simpletable\">\n",
"<caption>Generalized Linear Model Regression Results</caption>\n",
"<tr>\n",
" <th>Dep. Variable:</th> <td>Frequency</td> <th> No. Observations: </th> <td> 23</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Model:</th> <td>GLM</td> <th> Df Residuals: </th> <td> 21</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Model Family:</th> <td>Binomial</td> <th> Df Model: </th> <td> 1</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Link Function:</th> <td>logit</td> <th> Scale: </th> <td> 1.0000</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Method:</th> <td>IRLS</td> <th> Log-Likelihood: </th> <td> -3.9210</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Date:</th> <td>Wed, 24 Oct 2018</td> <th> Deviance: </th> <td> 3.0144</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Time:</th> <td>11:05:55</td> <th> Pearson chi2: </th> <td> 5.00</td> \n",
"</tr>\n",
"<tr>\n",
" <th>No. Iterations:</th> <td>6</td> <th> Covariance Type: </th> <td>nonrobust</td>\n",
"</tr>\n",
"</table>\n",
"<table class=\"simpletable\">\n",
"<tr>\n",
" <td></td> <th>coef</th> <th>std err</th> <th>z</th> <th>P>|z|</th> <th>[0.025</th> <th>0.975]</th> \n",
"</tr>\n",
"<tr>\n",
" <th>Intercept</th> <td> 5.0850</td> <td> 7.477</td> <td> 0.680</td> <td> 0.496</td> <td> -9.570</td> <td> 19.740</td>\n",
"</tr>\n",
"<tr>\n",
" <th>Temperature</th> <td> -0.1156</td> <td> 0.115</td> <td> -1.004</td> <td> 0.316</td> <td> -0.341</td> <td> 0.110</td>\n",
"</tr>\n",
"</table>"
],
"text/plain": [
"<class 'statsmodels.iolib.summary.Summary'>\n",
"\"\"\"\n",
" Generalized Linear Model Regression Results \n",
"==============================================================================\n",
"Dep. Variable: Frequency No. Observations: 23\n",
"Model: GLM Df Residuals: 21\n",
"Model Family: Binomial Df Model: 1\n",
"Link Function: logit Scale: 1.0000\n",
"Method: IRLS Log-Likelihood: -3.9210\n",
"Date: Wed, 24 Oct 2018 Deviance: 3.0144\n",
"Time: 11:05:55 Pearson chi2: 5.00\n",
"No. Iterations: 6 Covariance Type: nonrobust\n",
"===============================================================================\n",
" coef std err z P>|z| [0.025 0.975]\n",
"-------------------------------------------------------------------------------\n",
"Intercept 5.0850 7.477 0.680 0.496 -9.570 19.740\n",
"Temperature -0.1156 0.115 -1.004 0.316 -0.341 0.110\n",
"===============================================================================\n",
"\"\"\""
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import statsmodels.api as sm\n",
"\n",
"data[\"Success\"]=data.Count-data.Malfunction\n",
"data[\"Intercept\"]=1\n",
"\n",
"logmodel=sm.GLM(data['Frequency'], data[['Intercept','Temperature']], \n",
" family=sm.families.Binomial(sm.families.links.logit)).fit()\n",
"\n",
"logmodel.summary()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The maximum likelyhood estimator of the intercept and of Temperature are thus $\\hat{\\alpha}=5.0849$ and $\\hat{\\beta}=-0.1156$. This **corresponds** to the values from the article of Dalal *et al.* The standard errors are $s_{\\hat{\\alpha}} = 7.477$ and $s_{\\hat{\\beta}} = 0.115$, which is **different** from the $3.052$ and $0.04702$ reported by Dallal *et al.* The deviance is $3.01444$ with 21 degrees of freedom. I cannot find any value similar to the Goodness of fit ($G^2=18.086$) reported by Dalal *et al.* There seems to be something wrong. Oh I know, I haven't indicated that my observations are actually the result of 6 observations for each rocket launch. Let's indicate these weights (since the weights are always the same throughout all experiments, it does not change the estimates of the fit but it does influence the variance estimates)."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<table class=\"simpletable\">\n",
"<caption>Generalized Linear Model Regression Results</caption>\n",
"<tr>\n",
" <th>Dep. Variable:</th> <td>Frequency</td> <th> No. Observations: </th> <td> 23</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Model:</th> <td>GLM</td> <th> Df Residuals: </th> <td> 21</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Model Family:</th> <td>Binomial</td> <th> Df Model: </th> <td> 1</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Link Function:</th> <td>logit</td> <th> Scale: </th> <td> 1.0000</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Method:</th> <td>IRLS</td> <th> Log-Likelihood: </th> <td> -23.526</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Date:</th> <td>Wed, 24 Oct 2018</td> <th> Deviance: </th> <td> 18.086</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Time:</th> <td>11:05:55</td> <th> Pearson chi2: </th> <td> 30.0</td> \n",
"</tr>\n",
"<tr>\n",
" <th>No. Iterations:</th> <td>6</td> <th> Covariance Type: </th> <td>nonrobust</td>\n",
"</tr>\n",
"</table>\n",
"<table class=\"simpletable\">\n",
"<tr>\n",
" <td></td> <th>coef</th> <th>std err</th> <th>z</th> <th>P>|z|</th> <th>[0.025</th> <th>0.975]</th> \n",
"</tr>\n",
"<tr>\n",
" <th>Intercept</th> <td> 5.0850</td> <td> 3.052</td> <td> 1.666</td> <td> 0.096</td> <td> -0.898</td> <td> 11.068</td>\n",
"</tr>\n",
"<tr>\n",
" <th>Temperature</th> <td> -0.1156</td> <td> 0.047</td> <td> -2.458</td> <td> 0.014</td> <td> -0.208</td> <td> -0.023</td>\n",
"</tr>\n",
"</table>"
],
"text/plain": [
"<class 'statsmodels.iolib.summary.Summary'>\n",
"\"\"\"\n",
" Generalized Linear Model Regression Results \n",
"==============================================================================\n",
"Dep. Variable: Frequency No. Observations: 23\n",
"Model: GLM Df Residuals: 21\n",
"Model Family: Binomial Df Model: 1\n",
"Link Function: logit Scale: 1.0000\n",
"Method: IRLS Log-Likelihood: -23.526\n",
"Date: Wed, 24 Oct 2018 Deviance: 18.086\n",
"Time: 11:05:55 Pearson chi2: 30.0\n",
"No. Iterations: 6 Covariance Type: nonrobust\n",
"===============================================================================\n",
" coef std err z P>|z| [0.025 0.975]\n",
"-------------------------------------------------------------------------------\n",
"Intercept 5.0850 3.052 1.666 0.096 -0.898 11.068\n",
"Temperature -0.1156 0.047 -2.458 0.014 -0.208 -0.023\n",
"===============================================================================\n",
"\"\"\""
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"logmodel=sm.GLM(data['Frequency'], data[['Intercept','Temperature']], \n",
" family=sm.families.Binomial(sm.families.links.logit),\n",
" var_weights=data['Count']).fit()\n",
"\n",
"logmodel.summary()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Good, now I have recovered the asymptotic standard errors $s_{\\hat{\\alpha}}=3.052$ and $s_{\\hat{\\beta}}=0.047$.\n",
"The Goodness of fit (Deviance) indicated for this model is $G^2=18.086$ with 21 degrees of freedom (Df Residuals).\n",
"\n",
"**I have therefore managed to fully replicate the results of the Dalal *et al.* article**."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Predicting failure probability\n",
"The temperature when launching the shuttle was 31°F. Let's try to estimate the failure probability for such temperature using our model.:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl8VOXZ//HPNUs2sgABwhI2NYDIngUQa8EqoFXcUEDEpSD2qUutlVb6WLVWuzz0+blXoYBrFakVROsjCIoLIgQEWWVHSNiXhITsyfX7YwYMMZAhmWSWXO/XK6/MOXOfc647J/nOyZkz9xFVxRhjTHhxBLoAY4wx/mfhbowxYcjC3RhjwpCFuzHGhCELd2OMCUMW7sYYE4ZqDHcRmSkiB0Rk3WmeFxF5RkS2isgaEenn/zKNMcacDV+O3F8Ghp/h+cuBFO/XROCFupdljDGmLmoMd1X9DDhyhiZXA6+qx1dAUxFp468CjTHGnD2XH9bRDthdaTrLO29v1YYiMhHP0T3R0dGp7du3r9UGKyoqcDjC4+0C60vwCZd+gPUlWNWlL5s3bz6kqi1rauePcJdq5lU7poGqTgOmAaSlpemKFStqtcHFixczePDgWi0bbKwvwSdc+gHWl2BVl76IyHe+tPPHy2AWUPkQPBnY44f1GmOMqSV/hPs84BbvVTMDgFxV/cEpGWOMMQ2nxtMyIvImMBhoISJZwCOAG0BVXwQ+AK4AtgIFwO31Vawxxhjf1BjuqjqmhucVuMtvFRljQkJpaSlZWVkUFRU1yPYSEhLYuHFjg2yrvvnSl6ioKJKTk3G73bXahj/eUDXGNEJZWVnExcXRqVMnRKq7rsK/8vLyiIuLq/ftNISa+qKqHD58mKysLDp37lyrbYTHdUXGmAZXVFREYmJigwR7YyMiJCYm1um/Igt3Y0ytWbDXn7r+bC3cjTEmDNk5d2NMyHI6nfTs2fPk9Ny5c+nUqVPgCgoiFu7GmJAVHR3N6tWrT/t8WVkZLlfjjDk7LWOMCSsvv/wyN9xwA1dddRVDhw4FYMqUKaSnp9OrVy8eeeSRk22feOIJunbtyqWXXsqYMWP429/+BsDgwYM5MTzKoUOHTv43UF5ezqRJk06ua+rUqcD3wwmMHDmSbt26MXbsWDxXiUNmZiYXXnghvXv3JiMjg7y8PIYNG3bKi9KgQYNYs2aNX38OjfMlzRjjV394bz0b9hzz6zq7t43nkasuOGObwsJC+vTpA0Dnzp2ZM2cOAEuXLmXNmjU0b96cBQsWsGXLFpYvX46qMmLECD777DOaNGnCrFmzWLVqFWVlZfTr14/U1NQzbm/GjBkkJCSQmZlJcXExgwYNOvkCsmrVKtavX0/btm0ZNGgQS5YsISMjg1GjRvHWW2+Rnp7OsWPHiI6O5pZbbuHll1/mqaeeYvPmzRQXF9OrVy8//NS+Z+FujAlZpzstc9lll9G8eXMAFixYwIIFC+jbty8A+fn5bNmyhby8PK699lpiYmIAGDFiRI3bW7BgAWvWrOHtt98GIDc3ly1bthAREUFGRgbJyckA9OnTh507d5KQkECbNm1IT08HID4+HoBrr72WQYMGMWXKFGbOnMltt91Wtx9ENSzcjTF1VtMRdkNr0qTJyceqyuTJk7nzzjtPafPUU0+d9nJDl8tFRUUFwCnXmqsqzz77LMOGDTul/eLFi4mMjDw57XQ6KSsrQ1Wr3UZMTAyXXXYZ7777LrNnz6a2I+SeiZ1zN8aEtWHDhjFz5kzy8/MByM7O5sCBA1x88cXMmTOHwsJC8vLyeO+9904u06lTJ1auXAlw8ij9xLpeeOEFSktLAdi8eTPHjx8/7ba7devGnj17yMzMBDyfTC0rKwNgwoQJ3HvvvaSnp5/8L8Of7MjdGBPWhg4dysaNGxk4cCAAsbGxvP766/Tr149Ro0bRp08fOnbsyI9+9KOTyzzwwAPceOONvPbaa1xyySUn50+YMIGdO3fSr18/VJWWLVsyd+7c0247IiKCt956i3vuuYfCwkKio6NZuHAhAKmpqcTHx3P77fU01qKqBuQrNTVVa+uTTz6p9bLBxvoSfMKlH6r125cNGzbU27qrc+zYsXpd/yOPPKJTpkyp122ccOzYMc3OztaUlBQtLy8/bbvqfsbACvUhY+20jDHGNLA33niD/v3788QTT9TbrQPttIwxxgCPPvpog23rpptu+sEbvP5mR+7GmFpTrfZ2ycYP6vqztXA3xtRKVFQUhw8ftoCvB+odzz0qKqrW67DTMsaYWklOTiYrK4uDBw82yPaKiorqFHbBxJe+nLgTU21ZuBtjasXtdtf6LkG1sXjx4pOfMg11DdEXOy1jjDFhyMLdGGPCkIW7McaEIQt3Y4wJQxbuxhgThizcjTEmDFm4G2NMGLJwN8aYMGThbowxYcjC3RhjwlDIhfuBY0V8mlVqgxUZY8wZhFy4v75sFy+tK2HCKys4mFcc6HKMMSYohVy43/eTFG7qFsHnWw8x/KnPWLhhf6BLMsaYoBNy4e5wCEM7ufnPPReRFB/FhFdX8Mi76ygqLQ90acYYEzRCLtxPSEmKY85dFzL+os68svQ7rnl+CVsP5Ae6LGOMCQohG+4AkS4nv7+yOy/dns6BvGJGPPcF767ODnRZxhgTcD6Fu4gMF5FNIrJVRB6s5vkOIvKJiKwSkTUicoX/Sz29IV1b8Z97L+KCtvH8ctZqfjdnLcVldprGGNN41RjuIuIEngcuB7oDY0Ske5VmDwGzVbUvMBr4u78LrUmbhGjevGMAP//xubyxbBc3vriU7JzChi7DGGOCgi9H7hnAVlXdrqolwCzg6iptFIj3Pk4A9vivRN+5nA4evLwbU8elsv3gca585nO+3HooEKUYY0xASU0fBhKRkcBwVZ3gnR4H9FfVuyu1aQMsAJoBTYBLVXVlNeuaCEwESEpKSp01a1atis7Pzyc2NvaMbfYdr+CZVUXsO66M6hrB0I4uRKRW26tPvvQlVIRLX8KlH2B9CVZ16cuQIUNWqmpajQ1V9YxfwA3A9ErT44Bnq7S5H/i19/FAYAPgONN6U1NTtbY++eQTn9rlFZXqHa9kasffvq/3v7Vai0rLar3N+uJrX0JBuPQlXPqhan0JVnXpC7BCa8htVfXptEwW0L7SdDI/PO0yHpjtfbFYCkQBLXxYd72KjXTx4s2p3HdpCv/+Ooux/1jGoXz7VKsxJvz5Eu6ZQIqIdBaRCDxvmM6r0mYX8BMAETkfT7gf9GehteVwCPdd2oXnb+rHuj25XP3cEjbtywt0WcYYU69qDHdVLQPuBuYDG/FcFbNeRB4TkRHeZr8G7hCRb4A3gdu8/z4EjZ/2asPsOwdSWl7ByBe+5PMtQfHaY4wx9cKn69xV9QNV7aKq56rqE955D6vqPO/jDao6SFV7q2ofVV1Qn0XXVq/kpsy9axDtmkVz+0uZvJW5K9AlGWNMvQjpT6jWRtum0fzr5wO58LwW/Pbfa3lq4WYbPtgYE3YaXbgDxEW5mXFrGiNTk3lq4RYmv7OWsvKKQJdljDF+4wp0AYHidjqYMrIXbROieObjrRzKL+a5m/oR5XYGujRjjKmzRnnkfoKIcP/Qrvzx6gtY9O0BbpmxnNzC0kCXZYwxddaow/2EcQM78czovqzafZRRU5faHZ6MMSHPwt3rqt5tmXFrOjsPH2fUVBt0zBgT2izcK7m4S0teG9+fg3nF3PjiUnYeOh7okowxplYs3KtI79ScNycOoLC0nBunLrW7OxljQpKFezV6tEtg1sQBVCiMnraUb/cdC3RJxhhzVizcT6NLUhyz7xyAy+Fg9LSvWL8nN9AlGWOMzyzcz+CclrG8decAYtxOxk5fxrpsC3hjTGiwcK9Bx8QmzJo40ALeGBNSLNx90CExhlkTB9IkwsnNM5axca+dgzfGBDcLdx91SIzhzYkDiHI5uXn6MrbstzHhjTHBy8L9LHRMbMIbd/TH6RDG/GMZ2w/aZZLGmOBk4X6WzmkZyxt39EdVGTt9GbuPFAS6JGOM+QEL91o4r1Ucr43vT0FJOWOnL2NfblGgSzLGmFNYuNdS97bxvPKzDI4cL+HmGcs4crwk0CUZY8xJFu510Kd9U6bfmsbuIwXcOnM5eUU2XLAxJjhYuNfRgHMSeeHmfmzce4wJr6ygqLQ80CUZY4yFuz9c0i2J/72xN8t3HuHuN1bZLfuMMQFn4e4nV/dpx6NXXcDCjfuZ/M5au+m2MSagGu09VOvDrRd24vDxEp5ZtIXE2EgevLxboEsyxjRSFu5+9qtLUzhyvJgXP91Gq7hIfnZR50CXZIxphCzc/UxE+MOIHhzKK+GP/9lAy7hIrurdNtBlGWMaGTvnXg+cDuGp0X1I79ic+2ev5suthwJdkjGmkbFwrydRbif/uCWNzi2acOdrK+1uTsaYBmXhXo8SYty8dHsGMZFObn8pk725hYEuyRjTSFi417N2TaN56bYM8orKuP2lTPsUqzGmQVi4N4DubeN54eZ+bD2Qzy/++TWl9iEnY0w9s3BvID9Kacmfru3J51sO8dCcdfYhJ2NMvbJLIRvQjent2X20gGc/3kqHxBjuGnJeoEsyxoQpC/cGdv9lXdh1pIAp8zfRMTGG2EAXZIwJS3ZapoGJCH+9vhdpHZtx/+xv2HrURpE0xvifT+EuIsNFZJOIbBWRB0/T5kYR2SAi60XkDf+WGV6i3E6m3ZJGm4Qonl5VZLfqM8b4XY3hLiJO4HngcqA7MEZEuldpkwJMBgap6gXAffVQa1hp3iSCmbelU14B41/J5JhdImmM8SNfjtwzgK2qul1VS4BZwNVV2twBPK+qRwFU9YB/ywxP57aM5e6+UWw/eNzGgTfG+JXUdEmeiIwEhqvqBO/0OKC/qt5dqc1cYDMwCHACj6rqh9WsayIwESApKSl11qxZtSo6Pz+f2NjweCsyPz+flUcjeWl9CZd2cHFz98hAl1Rr4bJfwqUfYH0JVnXpy5AhQ1aqalpN7Xy5WkaqmVf1FcEFpACDgWTgcxHpoao5pyykOg2YBpCWlqaDBw/2YfM/tHjxYmq7bLBZvHgxj1w5GOf7G5j+xQ4G9+vGzQM6BrqsWgmX/RIu/QDrS7BqiL74clomC2hfaToZ2FNNm3dVtVRVdwCb8IS98dHkK85nSNeWPDJvvY0iaYypM1/CPRNIEZHOIhIBjAbmVWkzFxgCICItgC7Adn8WGu6cDuGZMX05t2UTfv76SnYcOh7okowxIazGcFfVMuBuYD6wEZitqutF5DERGeFtNh84LCIbgE+ASap6uL6KDldxUW6m35KO0yGMfyWT3EK7gsYYUzs+Xeeuqh+oahdVPVdVn/DOe1hV53kfq6rer6rdVbWnqtbunVJDh8QYXrg5lV2HC7jnTbuCxhhTO/YJ1SA04JxE/nhNDz7bfJA//9+3gS7HGBOCbGyZIDUmowOb9uUx44sddGsdxw1p7WteyBhjvOzIPYg99NPzGXReIv89Zx0rvzsa6HKMMSHEwj2IuZwOnr+pH22aRnHnayvtNn3GGJ9ZuAe5pjERTL8ljaLScia+upKiUhtF0hhTMwv3EJCSFMdTo/qwbk8uv/33GruLkzGmRhbuIeLS7kk8MLQr767ew9TP7PNhxpgzs3APIb8YfC4/7dWGv374LYs32cCbxpjTs3APISLClJG96NY6nnveXMX2g/mBLskYE6Qs3ENMTISLaeNScTsd3PHqCrvJhzGmWhbuIah98xiev6kfOw8XcP9bq6mosDdYjTGnsnAPUQPPTeThK7uzcOMBnly4OdDlGGOCjA0/EMJuGdiR9XtyefbjrZzfJp4rerYJdEnGmCBhR+4hTET44zU96NuhKQ/86xu+3Xcs0CUZY4KEhXuIi3Q5efHmVGIjXdzx6gpyCkoCXZIxJghYuIeBpPgoXhyXyv7cYu5+w8aAN8ZYuIeNfh2a8fg1Pfhi6yH+YmPAG9Po2RuqYeTG9Pas25PL9C92cEG7eK7tmxzokowxAWJH7mHm91d2p3/n5jz477WsycoJdDnGmACxcA8zbqeDv4/tR4vYSO58bSUH84oDXZIxJgAs3MNQYmwkU8elcrSghF/8cyUlZfYGqzGNjYV7mOrRLoG/Xt+LzJ1HefS99YEuxxjTwOwN1TB2dZ92bNh7jKmfbueCtvGM7d8x0CUZYxqIHbmHud8M68aPu7TkkXfXs3zHkUCXY4xpIBbuYc7pEJ4Z05f2zWP4r9dXkp1jN9k2pjGwcG8EEqLd/OOWNErKKpj46goKS+wm28aEOwv3RuK8VrE8PaYPG/YeY9Lb39hNto0Jcxbujcgl3ZKYNKwr76/Zy98Xbwt0OcaYemTh3sj814/P5arebfnbgk0s2rg/0OUYY+qJhXsjIyL8z/W9uKBtPL+ctZot+/MCXZIxph5YuDdC0RFOpo1LI8rtZIKNAW9MWLJwb6TaNo1m6rhU9uYU8Yt/fk2pjQFvTFixcG/EUjs240/X9eTLbYf54/sbAl2OMcaPbPiBRm5kajKb9+cx7bPtpCTFMW6ADVFgTDiwI3fDb4d3Y0jXljw6bz1fbj0U6HKMMX7gU7iLyHAR2SQiW0XkwTO0GykiKiJp/ivR1LcTQxSc06IJ//XPr9lx6HigSzLG1FGN4S4iTuB54HKgOzBGRLpX0y4OuBdY5u8iTf2Li3Iz49Z0nA5h/MuZ5BaUBrokY0wd+HLkngFsVdXtqloCzAKurqbdH4H/AYr8WJ9pQB0SY3jx5lR2Hy3grjfsChpjQpnUNMaIiIwEhqvqBO/0OKC/qt5dqU1f4CFVvV5EFgMPqOqKatY1EZgIkJSUlDpr1qxaFZ2fn09sbGytlg02wdiXz7NKmbGuhMHtXdzaPQIR8Wm5YOxLbYRLP8D6Eqzq0pchQ4asVNUaT337crVMdX/ZJ18RRMQBPAncVtOKVHUaMA0gLS1NBw8e7MPmf2jx4sXUdtlgE4x9GQxEfPgtLyzexo96d2H8RZ19Wi4Y+1Ib4dIPsL4Eq4boiy+nZbKA9pWmk4E9labjgB7AYhHZCQwA5tmbqqFt0tCuDL+gNY//ZwMLN9gYNMaEGl/CPRNIEZHOIhIBjAbmnXhSVXNVtYWqdlLVTsBXwIjqTsuY0OFwCE+O6kOPtgncO2sV67JzA12SMeYs1BjuqloG3A3MBzYCs1V1vYg8JiIj6rtAEzjREU5m3JpG02g341/JZG+u3cXJmFDh03XuqvqBqnZR1XNV9QnvvIdVdV41bQfbUXv4aBUfxczb0zleXM7tL2WSV2SXSBoTCuwTqqZG3VrH8/zYfmw5kM9db6yySySNCQEW7sYnP+7Skieu6cFnmw/y8Lvr7DZ9xgQ5GzjM+Gx0Rgd2Hy3g+U+2kdwshruGnBfokowxp2Hhbs7Kry/rStbRQqbM30SbhCiu65cc6JKMMdWwcDdnxeEQpozszcG8Yn7z9hpaxUVxUUqLQJdljKnCzrmbsxbhcvDiuFTOaxXLz19fyfo9tb8Gfu6qbAb95WM6P/gfBv3lY+auyvZjpaa+2f4LXhbuplbio9y8fHsG8VEubnspk91HCs56HXNXZTP5nbVk5xSiQHZOIZPfWWsBESJs/wU3C3dTa60Tonh1fAYlZRXcMnM5x0rO7gqaKfM3UVhafsq8wtJypszf5M8yTT2x/RfcLNxNnZzXKo6Zt6WxN7eQJ1cUkV9c5vOye3Kq/8Tr6eab4GL7L7hZuJs6S+3YnL+P7cd3eRVMfHUFxWXlNS8EtG0afVbzTXCx/RfcLNyNX1zSLYnxPSL4ctth7pu1mvKKmk/RTBrWlWi385R50W4nk4Z1ra8yjR/Z/gtuFu7Gbwa1c/P7K7vzf+v2MfmdNTV+ivWavu3483U9adc0GgHaNY3mz9f15Jq+7RqmYFMntv+Cm13nbvxq/EWdyS0s5ZlFW4iPcvPfPz3/jHdyuqZvOwuDEGb7L3hZuBu/+9WlKRwrLGX6FzuIi3Lzy0tTAl2SMY2OhbvxOxHh4Su7k19cxpMLNxMT4eSOi88JdFnGNCoW7qZeOBzCX6/vRWFpOU98sJEot4NxAzsFuixjGg0Ld1NvnA7hyRv7UFRSzu/fXU+Ey8Go9A6BLsuYRsGuljH1KsLl4Pmx/bi4S0sefGct/16ZFeiSjGkULNxNvYtyO5k2LpULz01k0tvf8O5qG3vEmPpm4W4aRJTbyfRb0sno3JxfvbXaBpcypp5ZuJsGEx3hZOZt6fTvnMj9s1czZ5WdojGmvli4mwYVE+Fi5m3pDDgnkftnf8PsFbsDXZIxYcnC3TS46AgnM25N56LzWvCbt9fw+lffBbokY8KOhbsJiOgIJ/+4JY2fdGvFQ3PXMeOLHYEuyZiwYuFuAibK7eSFm1O5vEdr/vj+Bp5euKXGwcaMMb6xcDcBFeFy8OyYvlzfL5knF27mif9stIA3xg/sE6om4FxOB1NG9iIuysX0L3aQW1jKn6/rictpxx7G1JaFuwkKDofwyFXdSYh28/SiLRwtKOW5m/oSVeVmEMYY39ihkQkaIsKvLuvCH0ZcwKJv9zNuxjJyCkoCXZYxIcnC3QSdWy/sxDOj+/LN7lxGvriUrKMFgS7JmJBj4W6C0lW92/LKzzLYf6yI6/7+JeuycwNdkjEhxcLdBK2B5yby9s8vxOkQbpy6lI+/3R/okowJGRbuJqh1bR3H3LsG0blFEya8soJXvtwZ6JKMCQkW7iboJcVHMfvOgVzSrRWPzFvPw++uo6y8ItBlGRPUfAp3ERkuIptEZKuIPFjN8/eLyAYRWSMii0Sko/9LNY1Zk0gXU8elMfHic3h16Xfc9lImuQWlgS7LmKBVY7iLiBN4Hrgc6A6MEZHuVZqtAtJUtRfwNvA//i7UGKdD+N0V5zNlZC+W7TjMiOe/YPP+vECXZUxQ8uXIPQPYqqrbVbUEmAVcXbmBqn6iqieuV/sKSPZvmcZ874a09syaOICCknKufX4JH67bG+iSjAk6UtM4HiIyEhiuqhO80+OA/qp692naPwfsU9XHq3luIjARICkpKXXWrFm1Kjo/P5/Y2NhaLRtsrC+1d7SogmdXFbM9t4IrOru5PsWN0yF1Xq/tk+BkffEYMmTISlVNq7Ghqp7xC7gBmF5pehzw7Gna3oznyD2ypvWmpqZqbX3yySe1XjbYWF/qpqi0TCe/s0Y7/vZ9HT11qR7MK6rzOm2fBCfriwewQmvIV1X16bRMFtC+0nQysKdqIxG5FPhvYISqFvuwXmPqLNLl5E/X9uRvN/Tm611HueLpz1m67XCgyzIm4HwJ90wgRUQ6i0gEMBqYV7mBiPQFpuIJ9gP+L9OYMxuZmszcuwYRG+li7PSveGbRFsorbOhg03jVGO6qWgbcDcwHNgKzVXW9iDwmIiO8zaYAscC/RGS1iMw7zeqMqTfnt4ln3j0XMaJ3W/7fR5sZO/0r9uYWBrosYwLCpyF/VfUD4IMq8x6u9PhSP9dlTK0s3LCf5TuOALBs+xF+8r+fMjq9PfPX72dPTiFtm0YzaVhXrunbzu/bnrsqmynzN9X7dnzx0Ny1vLlsN/f1KGX85A8Y0789j1/TMyC1mMCw8dxN2Ji7KpvJ76ylsLQcAAUKS8qZuWTnyTbZOYVMfmctgF+Dt+q262s7vnho7lpe/2rXyely1ZPTFvCNhw0/YMLGlPmbTobrCdWddS8sLWfK/E31vu362I4v3ly2+6zmm/Bk4W7Cxp4c38+vZ59F27ps+2xq8pfy03x25XTzTXiycDdho23TaJ/bOh3CF1sO1fu2z6Ymf3FK9R/kOt18E54s3E3YmDSsK9FV7rnqdghu56mhFuF00LxJBDfPWMYD//qGI8frfiu/6rYd7XYyaVjXOq/7bI3p3/6s5pvwZG+omrBx4o3LqlesVDdveI/WPLNoC9M+286ijfv53RXnMzI1Ganl0e3pth2Iq2VOvGl64hy7U8SulmmELNxNWLmmb7tqA7W6eb8Z3o0Rfdry0Jx1THp7DbNX7OYPI3r4fduB8Pg1PXn8mp4sXryYbWMHB7ocEwB2WsY0at1axzP7zoH89fqebDt4nCuf/ZzXNhSTU1D3UzXGBJKFu2n0HA5hVHoHPvn1YG4e0JGPd5Xx4ymLeWnJDkrtjk8mRFm4G+OVEOPmsat78NigaHq0i+cP721g2JOf8eG6fSdGPTUmZFi4G1NF+zgHr4/vz/Rb0nA4hJ+/vpKRLy5l2XYbbdKEDgt3Y6ohIlzaPYkPf/kj/nxdT3YfKWDUtK+4ZeZy1mTlBLo8Y2pk4W7MGbicDsZkdODTSUP43RXdWJOVw4jnljD+5UwLeRPULNyN8UF0hJOJF5/L578ZwgNDu7Diu6OMeG4Jt720nMydRwJdnjE/YOFuzFmIi3Jz9yUpfPHbIUwa1pW1Wbnc8OJSbnxxKQs37KfCbhBigoSFuzG1EBfl5q4h5/HFby/h4Su7k51TyIRXV3DZk5/yxrJdFJaU17wSY+qRhbsxdRAd4eRnF3Vm8aTBPD26D1FuJ7+bs5aBf1nEX/7vW3YfKQh0iaaRsuEHjPEDt9PB1X3aMaJ3WzJ3HuWlJTuY9tk2pn62jUu6tmLsgA78uEsrnA4bmdE0DAt3Y/xIRMjo3JyMzs3Zk1PIm8t38eby3Sx6eQVtE6K4Ia09I1OTad88JtClmjBn4W5MPWnbNJpfD+3KPZeksGjjft5YvotnPt7C04u2MPCcRK5PTWZ4j9bERtqfofE/+60ypp5FuBxc3rMNl/dsQ9bRAt75Opu3V2bxwL++4aG5a7mse2tG9G7LxV1aEOly1rxCY3xg4W5MA0puFsO9P0nhnkvO4+tdR5mzKpv31+zlvW/2EBflYmj31lzeozUXpbQgym1Bb2rPwt2YABARUjs2J7Vjcx656gKWbD3Ee9/s5aMN+/j311nERrr4cdeWDO2exOCurUiIdge6ZBNiLNyNCTC308Hgrq0Y3LUVJWU9+XLbIT5ct4+FGw/wnzV7cTqE9E7NuKSbp01Kq9ha3zHKNB4W7sYEkQjX90FfUaGs2p3Dx9/uZ9HGA/zpg2/50wff0iYhih+ltOCilJZceG4iLWIjA122CUIW7sbIwl0aAAANK0lEQVQEKYdDSO3YjNSOzZg0rBt7cgr5bPNBPt18kA/X7WP2iiwAurWOY8A5iQw4J5H0Ts1ItLA3WLgbEzLaNo1mdEYHRmd0oLxCWZudy5Kth1i67TCzMnfx8pc7ATivVSxp3heF8uMVqKqdxmmELNyNCUFOh9CnfVP6tG/KXUPOo7isnLVZuSzfeYTMHUf4YO1eZmXuBuAvKz+id3JTerdvSu/kBHomJ9AqLirAPTD1zcLdmDAQ6XKS1qk5aZ2aw2CoqFC2HcznjQVfURiTxOrdOTz38RZODFrZKi6SHu0S6N4mnu5t4zm/TTwdmsfY8AhhxMLdmDDkcAgpSXH8uL2bwYN7AVBQUsb6PcdYk5XL+j25rMvO5dPNByn3Jn6U20FKqzi6JMXRJSmWlKRYzmsZR7tm0Rb6IcjC3ZhGIibCRXqn5qR3an5yXlFpOVsP5LNh7zE27ctj0748Pt9ykH9/nXWyTaTLQecWTejcogmdWjShc2ITOibG0KlFE1rGRuKw4A9KFu7GNGJRbic92iXQo13CKfNzCkrYeiCfbQfz2Xognx2HjrNpfx4fbdhPWaUbkkS6HLRvHkNys2jaN4uhXbNo2jWNPvm9RWykHfUHiIW7MeYHmsZEfH8Ov5Ky8gr25BSx4/Bxdh0pYPeRAr47fJyso4Ws2pVDbmHpKe1dDiEpPorWCVG0jo8iKT6KpPhIWsVH0iouilZxkbSIjaRpjNuu6PEzC3djjM9cTgcdEmPokFj9kMV5RaVk5xSSfbSQPblF7M0pZF9uEfuOFbFx7zE+2XSAgmruUuV2ColNIkmMjSAxNpLEJhE0r/TVLCaC746U02ZfHs1i3MRHu23snRpYuBtj/CYuyk231m66tY4/bZv84jL2HyviwLFiDuQVcSi/hEP5xRzMK+bIcc/j7QfzOXK85AcvBH9e/tnJx1FuBwnRbuKj3J7v0W7io1zERbmJ836PjXIRF+miSaSLWO9Xk0gnsZEuYiJdxLidYfuegU/hLiLDgacBJzBdVf9S5flI4FUgFTgMjFLVnf4t1ZjwNXdVNlPmb2JPTiFtm0YzaVhX/rViF0u2HTnZZtC5zbkhrcMP2gE/mLfiuyO8uWw39/UoZfzkDxjTvz2PX9PTp+1Wt75r+rbzue4T2y5XxSnyg23HRrqIbRnL2qzcGrf96FUp/KhLC44cL+HTpSvokHI+RwtK+WrbYT7dfJD9x4q9p4JiKCwtZ+uBMo4VlZJXVHbyKqCaRLudxEQ4iY448d1FtNtBTISLaLeTSLeDaLeTKLeTKLeDKNf3jyNdnucjXd7HLgeRbgcRTicRLsf3X87vv7udgmr930i9xnAXESfwPHAZkAVkisg8Vd1Qqdl44Kiqnicio4G/AqPqo2Bjws3cVdlMfmcthaWeo9TsnELue2v1D9ot2XbklLDPzilk0tvfgEKpN8iycwq5/63VVFRarlyV17/aBXBKyFa33Un/+gYESsu/X9/kd9YC/CDgq1ve39t+ZN56/nxdT67p246DiU4G92rL3FXZfPztgZPLFpVWkHW08GQ7AFWlqLSCvOJS8ovKyC/2fhWVUVBSzvGSMo4Xl3G8uJzjxWUUlJZTWFJOQUkZhaUVFJaUcTCvmELv/KLScgpLPd99fM04o3HdIxhS99WckS9H7hnAVlXdDiAis4CrgcrhfjXwqPfx28BzIiLaEC9PxoS4KfM3nQyqs3UiCCurqKYdwJvLdp8SsNVtt7Sa5CosLWfK/E0/CPfqlm+IbVe3bNV2IkK092i8VdxpiqoFVaW0XCkqK6e4tIKi0nJKyisoLq2guKyckrIKissqKCmr8MwvK6e0TCku98wrLa+gtKyCuPxd/ivqNKSm/BWRkcBwVZ3gnR4H9FfVuyu1Wedtk+Wd3uZtc6jKuiYCE72TXYFNtay7BXCoxlahwfoSfBq0HxGtz0utr3WXF+TijPn+MseSfVtX1na7lZet6/K1XLYFcOhMy1atMYjV5Xeso6q2rKmRL0fu1b3bUPUVwZc2qOo0YJoP2zxzQSIrVDWtrusJBtaX4BMu/QBPX8pyD4RNX8Jpv9R3Xxw+tMkC2leaTgb2nK6NiLiABOAIxhhjAsKXcM8EUkSks4hEAKOBeVXazANu9T4eCXxs59uNMSZwajwto6plInI3MB/PpZAzVXW9iDwGrFDVecAM4DUR2YrniH10fRaNH07tBBHrS/AJl36A9SVY1XtfanxD1RhjTOjx5bSMMcaYEGPhbowxYSjow11EokRkuYh8IyLrReQP3vmdRWSZiGwRkbe8b/YGPRFxisgqEXnfOx2q/dgpImtFZLWIrPDOay4iH3n78pGINAt0nb4QkaYi8raIfCsiG0VkYCj2RUS6evfHia9jInJfiPblV96/93Ui8qY3B0L1b+WX3n6sF5H7vPPqfZ8EfbgDxcAlqtob6AMMF5EBeIY4eFJVU4CjeIZACAW/BDZWmg7VfgAMUdU+la7XfRBY5O3LIu90KHga+FBVuwG98eyfkOuLqm7y7o8+eMZ5KgDmEGJ9EZF2wL1Amqr2wHMhx4lhTULqb0VEegB34Pmkf2/gShFJoSH2iaqGzBcQA3wN9Mfz6S6Xd/5AYH6g6/Oh/mTvjrwEeB/Ph79Crh/eWncCLarM2wS08T5uA2wKdJ0+9CMe2IH34oJQ7kuV+ocCS0KxL0A7YDfQHM8Vfe8Dw0LxbwW4Ac9giyemfw/8piH2SSgcuZ84lbEaOAB8BGwDclS1zNskC88vRLB7Cs+OPTEERyKh2Q/wfAJ5gYis9A4rAZCkqnsBvN9bBaw6350DHARe8p4umy4iTQjNvlQ2GnjT+zik+qKq2cDfgF3AXiAXWElo/q2sAy4WkUQRiQGuwPOBz3rfJyER7qparp5/NZPx/HtzfnXNGraqsyMiVwIHVLXy2Bc+DdsQpAapaj/gcuAuEbk40AXVkgvoB7ygqn2B4wT5aYuaeM9FjwD+FehaasN7/vlqoDPQFmiC5/esqqD/W1HVjXhOJ30EfAh8A5SdcSE/CYlwP0FVc4DFwACgqXeoA6h+SIRgMwgYISI7gVl4Ts08Rej1AwBV3eP9fgDPed0MYL+ItAHwfj8QuAp9lgVkqeoy7/TbeMI+FPtywuXA16q63zsdan25FNihqgdVtRR4B7iQ0P1bmaGq/VT1Yjwf8txCA+yToA93EWkpIk29j6Px7PiNwCd4hjoAz9AH7wamQt+o6mRVTVbVTnj+Zf5YVccSYv0AEJEmIhJ34jGe87vrOHUYipDoi6ruA3aLSFfvrJ/gGc465PpSyRi+PyUDodeXXcAAEYkREeH7fRJyfysAItLK+70DcB2efVPv+yToP6EqIr2AV/C8Y+4AZqvqYyJyDp4j4ObAKuBmVS0OXKW+E5HBwAOqemUo9sNb8xzvpAt4Q1WfEJFEYDbQAc8f6A2qGvQDyIlIH2A6EAFsB27H+7tG6PUlBs+bkeeoaq53XsjtF+8lz6PwnMJYBUzAc449pP5WAETkczzvr5UC96vqoobYJ0Ef7sYYY85e0J+WMcYYc/Ys3I0xJgxZuBtjTBiycDfGmDBk4W6MMWHIlxtkG9OgvJeJLfJOtgbK8QwRAJChqiUBKewMRORnwAfe6+aNCTi7FNIENRF5FMhX1b8FQS1OVS0/zXNfAHer6uqzWJ+r0lgpxviVnZYxIUVEbhXP+P6rReTvIuIQEZeI5IjIFBH5WkTmi0h/EflURLaLyBXeZSeIyBzv85tE5CEf1/u4iCwHMkTkDyKS6R2f+0XxGIVnOOq3vMtHiEhWpU9WDxCRhd7Hj4vIVBH5CM9gZS4R+X/eba8RkQkN/1M14cjC3YQM79jY1wIXegeSc/H9zdgTgAXewcxKgEfxfGz9BuCxSqvJ8C7TD7hJRPr4sN6vVTVDVZcCT6tqOtDT+9xwVX0LWA2MUs946jWdNuoLXKWq44CJeAaUywDS8QzC1qE2Px9jKrNz7iaUXIonAFd4hhwhGs9H7QEKVfUj7+O1QK6qlonIWqBTpXXMV9WjACIyF7gIz9/B6dZbwvdDLQD8REQmAVFACzxD0f7fWfbjXVUt8j4eCpwvIpVfTFLwfCTdmFqzcDehRICZqvr7U2Z6RgqsfLRcgecOXiceV/49r/omk9aw3kL1vjHlHbflOaCfqmaLyON4Qr46ZXz/n3HVNser9OkXqroIY/zITsuYULIQuFFEWoDnqppanMIYKp57psbgGTN8yVmsNxrPi8Uh76iY11d6Lg+IqzS9E8+t7qjSrqr5wC9ODGUrnvugRp9ln4z5ATtyNyFDVdd6RwtcKCIOPKPs/ZyzG9f7C+AN4FzgtRNXt/iyXlU9LCKv4Bne+DtgWaWnXwKmi0ghnvP6jwL/EJF9wPIz1DMVz8iAq72nhA7gedExpk7sUkjTaHivROmhqvcFuhZj6pudljHGmDBkR+7GGBOG7MjdGGPCkIW7McaEIQt3Y4wJQxbuxhgThizcjTEmDP1/pGenSMj5bcYAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"data_pred = pd.DataFrame({'Temperature': np.linspace(start=30, stop=90, num=121), 'Intercept': 1})\n",
"data_pred['Frequency'] = logmodel.predict(data_pred)\n",
"data_pred.plot(x=\"Temperature\",y=\"Frequency\",kind=\"line\",ylim=[0,1])\n",
"plt.scatter(x=data[\"Temperature\"],y=data[\"Frequency\"])\n",
"plt.grid(True)"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false,
"scrolled": true
},
"source": [
"This figure is very similar to the Figure 4 of Dalal *et al.* **I have managed to replicate the Figure 4 of the Dalal *et al.* article.**"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Computing and plotting uncertainty"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Following the documentation of [Seaborn](https://seaborn.pydata.org/generated/seaborn.regplot.html), I use regplot."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl8VPW9+P/XObNkmewhC0vYA4RFXBAQV6LIvrhVkSoWUWsv9ddqq3bzWnurtbetxfZ+Vdy3LooLQhSXoFAVURSJ7GsgAbJvk8w+5/z+mGRISIBJyGSWvJ+Ppsk5c+bk8zHMvOezvT+Krus6QgghxAnUUBdACCFEeJIAIYQQokMSIIQQQnRIAoQQQogOSYAQQgjRIQkQQgghOhS0APGLX/yCCy64gDlz5nT4uK7r/M///A/Tpk1j7ty5bN++PVhFEUII0QVBCxBXX301zzzzzEkf37BhA8XFxXzwwQf87ne/48EHHwxWUYQQQnRB0ALE+eefT3Jy8kkfLywsZMGCBSiKwtlnn01DQwMVFRXBKo4QQohOMobqF5eXl5Odne0/zs7Opry8nMzMzFM+z2pzoQAoCoDv5+OHzT+3ekzxHbe9TkFVfAfN3/zPEUII4ROyANFRho9A3qQbbW6qqhu7vTz+YNJcDkUBVVH8P7c+pzYfq4qCqoKqKv5rz1RGRiKVldYzvk+4iub6RXPdQOoX6TIyEjv9nJAFiOzsbMrKyvzHZWVlp209BJPe/H++73rrswFTFDAoii9gNH8ZmoOHQVUwGBQMqkwcE0JEhpAFiPz8fF555RVmz57N1q1bSUxMDGmA6A66Dh5dB+3kgUWB5mChYlAVjAYVg0HBZFBRVenmEkKEj6AFiLvvvpsvv/yS2tpaLrnkEn784x/j8XgAWLhwIZdeeinr169n2rRpxMXF8fDDDwerKGFFBzyajkfztntMVUAxGWmwuTAZVMwmVVocQoiQUSIt3fexqqagjEGEi7Q0CzU1Tf5jVVWIMaqYTQZiTIaIb2VEcz9vNNcNpH6RLqLGIERgNE3H7vJid/laHGajSqzZQKzZGPHBQggR3iRARBiXR8Pl0bDa3JhNBuJjjMSYDaEulhAiCkmAiFA64HR7cbq9GFSF+FgjcTFGVFnPIYToJjICGgW8mo7V5qaqzo7N4Ql1cYQQUUICRBTRdGiwuaiqs+N0t58lJYQQnSEBIgp5NJ1aq5P6JhdaZE1SE0KEEQkQUczu9FBV75DWhBCiSyRARDmtuTVhtblCXRQhRISRANFLNDk81DQ40E6RBkQIIVqTANGLuDwaVQ0O3B7pchJCnJ4EiF5G03RqGpzYnTIdVghxahIgeiEdqG9y0dDk6nBfDiGEAAkQvZrN6aHW6pSpsEKIDkmA6OVcHo2aegdeTQt1UYQQYUYChMCj6VQ3OHF7JEgIIY6TACGA5sFrq8xwEkIcJwFC+Ok61FqdeLzSkhBCSIAQJ9B0qJOBayEEEiBEBzyaTp3VKVNghejlJECIDrXsWieE6L0kQIiTsjk9OFyy4lqI3koChDilhiaXrJEQopeSACFOSdOhvlFShQvRG0mAEKfl8mg02mU8QojeRgKECEiT3S3rI4ToZSRAiIDoILOahOhlJECIgDndXpwuScUhRG8hAUJ0itUme0gI0VtIgBCd4tF0bLIbnRC9QsQFiD+89BV7SupCXYxerdHuRtOkFSFEtDOGugCddeBIPQeO1HP28D7MumAQCXGmUBep19F1aHK4SYw3h7ooQoggirgWhNL8/dt9Vfz1ta18u7dK+sRDwOb0SMZXIaJcxAWI+24+n+y0eMD3JvXax/t45YM9WG2y2rcn6TrYHDIWIUQ0i7gAMbR/Mv919VimTcjBoPraEzsP1fLX17fy7T5pTfQkm8MtrQgholjEBQgAg6oy9dz+LLt6HP0zLADYnV5eW7ePfxXulU+2PUTTwS4zmoSIWkENEBs2bGD69OlMmzaNFStWtHv86NGj3HTTTSxYsIC5c+eyfv36Tt0/Ky2eH84fy/SJx1sT3x2o4fGVW9lbKjOdekKTwyOtNiGiVNAChNfr5aGHHuKZZ56hoKCANWvWsG/fvjbXPPHEE8ycOZO3336bxx57jN/+9red/j0GVeHSs/vzo6vG+scmGmxunn93FwUbiyV/UJBpmo7dKaurhYhGQQsQRUVFDBo0iJycHMxmM7Nnz6awsLDNNYqi0NjYCIDVaiUzM7PLv69vuoUfXTWWi8/q65/p9Nl3ZTy5ajtVdfYu31ecns0hOZqEiEZBWwdRXl5Odna2/zgrK4uioqI21yxbtoxbb72VV155BbvdzvPPPx/QvdPSLCd9bNGs0UwYk81zq3dQ3+jkaFUT//fWNhZOH8nksX27Vpkedqr6havE5FhizYH9c8rISAxyaUInmusGUr/eJmgBoqN+aUVR2hwXFBRw1VVXsWTJErZs2cK9997LmjVrUNVTN2xqappO+XhGYgzLrh7Lm+sPsPNQLU63lxfW7GDb3krmXjgEkzF8x+bT0iynrV84arI6SE2MOe11GRmJVFZae6BEPS+a6wZSv0jXleAXtHfK7OxsysrK/Mfl5eXtupBWrlzJzJkzATjnnHNwOp3U1tZ2y++3xJr4/pUjmDtlsH8Ae/PuSp54e5t0OQWB0+2VrUmFiDJBCxDjxo2juLiYkpISXC4XBQUF5Ofnt7mmb9++bNy4EYD9+/fjdDpJS0vrtjIoisIFY7P54fwx/k+3ZTU2/v7Wd2w7WNNtv0f4yPRiIaJL0AKE0WjkgQceYOnSpcyaNYuZM2eSm5vL8uXL/YPV999/P6+99hrz5s3j7rvv5g9/+EO7bqju0D8jgWVXj2P04FQAXG6Nf3y4h/e/PCxJ57qR3SlTXoWIJooeYa/oY1VNVFU3dum5uq7z6XfHeH/TYVriwvD+yVx/+XAsseGR9C9SxyBaJFvMxMWcfGgrmvt5o7luIPWLdGE1BhGOFEXh4rP68YPZeVhifW9i+47U8//e2kZZjS3EpYsOsrJaiOjRqwJEi2H9kvmvq8cxoDlNR63VyZNvb2NHsYxLnCmXR5PFiUJEiV4ZIABSEmK4be4YzsntA/je2F75YA/rvimVfvQz5JB9q4WICr02QACYjCrXXjaMmZMH0jI2/tHmUl77eB9uj3wK7irpZhIiOvTqAAHHxyUWzxhFjMkAwNZ91TxbsINGu6SQ6AqvpuNySytCiEjX6wNEixE5KfxwwfH1EofLG3ni7W1U1Mqiuq6wSzeTEBFPAkQrWanx3LlgLAOzEoDmwetV2zh4rCHEJYs8TpesiRAi0kmAOEFCnIlbZ4/mrGHpgG/A9bmCnWzdVxXikkUWTfel3xBCRC4JEB0wGVW+lz+cS8/uB/j61P+9bh//2Xo0xCWLLLJPhBCRTQLESaiKwvSJA5l/0RD/DKf3Nh3m3S8OyT7MAXK5vZLKRIgIJgHiNCaNzuL7V47EZPD9p/q06BgrP94vmUsDoAMOl0x5FSJSSYAIQN6gVJbMziMuxjcN9tt9Vby0drdM5QyATdZECBGxJEAEaFB2IrfPG0OyxQzA3tJ6nnt3pywKOw2PV8ftkUAqRCSSANEJWanx3DF/DBkpsYBvrcTTq3dgtblCXLLwJvtECBGZJEB0UkpCDLfPG0P/Pr5Ef2U1Nla8s4NaqzPEJQtfDpdXBvaFiEASILrAEmvi1jl5DOnry69e3eBgxTvbqaqXVdcd0QGHdMUJEXEkQHRRrNnILTPzGDUwBYD6JhdPv7ODctlXokMyWC1E5JEAcQZMRpUbp41g7FDfPtpWu5unV+/gaFXk7ggXLDJYLUTkkQBxhowGlevzc/37SticHp5Zs4PSiq5tixrNbLKyWoiIIgGiGxhUhWsuG8bEvEzANyj7bMFODpdH7/62XSEJ/ISILBIguomqKMy/aAgXjMkGfInqnn93F4fKJEi0kAR+QkQWCRDdSFEU5kwZxIVjWwWJ93ZKkGhFFhYKETkkQHQzRVGYdcEgLj6rLwAutyZBohWHjEMIETEkQASBoijMmDSQS8YfDxIvvLdLxiQATdelm0mICCEBIkiU5nThLS2JljGJkgoJEg7ZjlSIiCABIohaWhIXjWsbJI708nUSTkkBLkREkAARZIqiMHPyQKY0D1y3bGFa1otXXGs6kipdiAggAaIHKIrC7AsGMWl0FuCbyfPsmh1U1Pbe3E3SzSRE+JMA0UMURWHuhYM5b2QGAE0OD88W7KC63hHikoWGQ1oQQoQ9CRA9SFUUrrp4KGcP96XlsNrcPFuwg7rG3pcqXNN06WYSIsxJgOhhanNajjFDfAn+6hpdPFuws1duOiStCCHCmwSIEDCoCtfnD2dEji9VeHW9g+cKdmJzuENcsp4l4xBChDcJECFiNKgsmjaCIX2TACivtfPCe7t61cY60s0kRHiTABFCJqPKzdNHkpOZAEBpZRNPvFmE26OFuGQ9R7qZhAhfAQWIW2+9lY8//rjTqZo3bNjA9OnTmTZtGitWrOjwmnfffZdZs2Yxe/Zs7rnnnk7dPxrEmA0snjGKrNQ4AHYfquVfhXvxar0jSEg3kxDhK6AAcf311/Piiy9yxRVXsGLFCmpra0/7HK/Xy0MPPcQzzzxDQUEBa9asYd++fW2uKS4uZsWKFfzzn/+koKCAX/7yl12rRYSLjzXyg9l5pCXFALDzUC1vrj+A1gv2TtA02WlOiHAVUIC48soreeGFF3j66aepqKhgzpw53HvvvWzbtu2kzykqKmLQoEHk5ORgNpuZPXs2hYWFba557bXXWLRoEcnJyQCkp6efQVUiW1K8mVtn55Gc4AsSW/ZW8e7GQ71igx27tCKECEvGrjzJZDIRExPDfffdx8UXX8z999/f7pry8nKys7P9x1lZWRQVFbW5pri4GIAbbrgBTdNYtmwZl1xyyWl/f1qapSvFDntpaRb+vxvO5s+vfE2Tw8Pn28rokxbPrClDQl20bnXi38+gKmSkR8ffNCMjMdRFCCqpX+8SUID44IMPeOWVV6iurubGG2+koKAAi8WCx+Phyiuv7DBAdPTJV1GUNsder5dDhw7x8ssvU1ZWxqJFi1izZg1JSUmnLE9NTfQmu+vXJ4GbZ4zk2TU7cXk03tlwADSNyaOzT//kCJCWZunw76e53JiMhhCUqPtkZCRSWRm92XqlfpGtK8EvoACxcuVKbrvtNi6++OK2TzYa+fWvf93hc7KzsykrK/Mfl5eXk5mZ2eaarKwszj77bEwmEzk5OQwZMoTi4mLOOuusztYjquRkJrLoyhG8tHY3Xk1n9afFxMeYOGtY9HbB2V3eiA8QQkSbgMYgnnrqqXbBoUV+fn6H58eNG0dxcTElJSW4XC4KCgraXXvFFVewadMmAGpqaiguLiYnJ6cz5Y9auQNS+F7+cBRAB17/eB/7jtSHulhBI7OZhAg/AQWIG2+8kfr6429OdXV1LFq06JTPMRqNPPDAAyxdupRZs2Yxc+ZMcnNzWb58uX+w+uKLLyYlJYVZs2axePFi7r33XlJTU8+gOtFl3NB05l40GACvpvPKB7s5UtkY2kIFiabJTnNChBtFD2CazPz581m1atVpz/WEY1VNVFVH55skdNxHX/h1KYVflwJgiTVyx/wx9EmOC0XxztjJxiAA4mKMJFvMPVyi7tMb+rClfpGrK2MQAbUgNE3DZju+wU1TUxNer3za6yn55/b37yXR5PDw/Lu7ojK5n9Pl6RXTeoWIFAEFiDlz5rBkyRJWrVrFqlWruPXWW5k3b16wyyaaKYrC3CmDGducAbbW6vTlbYqyrTs1HelmEiKMBDSL6Y477iAzM5N169ah6zo33HADCxYsCHbZRCuqqnDd1OE0OXZx8FgDx6ptvPLBHm6ZOQqjIXpSajlcXmLNXVqeI4ToZgGNQYST3jgG0ZrD5eHp1Ts4Vu3r8hs3NI3rL89FPWGNSbg6Xf0UICM1LmLq01pv6MOW+kWuoK2DqK6u5uWXX6akpASP53i3xvLlyzv9C8WZiTUbWTxzFE++vY26RhffHaghMf4Qsy8Y1G4hYiTSAafLS1yMtCKECLWAXoU//vGPGTZsGBdccAEGgyxmCrWkeDNLZuXx5Krt2Jy+lBxJFjOXjO8X6qJ1C4cECCHCQkCvwoaGBn73u98FuyyiE/qkxLF45kieWb0Tt1dj7abDJMabOCc3I9RFO2NOtxevpmFQo2dsRYhIFNArMDc3l/Ly8mCXRXRSTmYiC6/IRW3uWXrjkwPsLa0LbaG6id0ps5mECLWAWxDz5s3jnHPOISYmxn9exiBCb9SgVBZcPJQ3N/j2j3j1wz3cPncM/fpEdnZUm9NDQpwp1MUQolcLKEDMmTOHOXPmBLssoosmjMqkwebio82luNwaL763izvmjyEtKTbUResyTdNxurzEmGXMS4hQCShAXHXVVcEuhzhDU8/pT32ji692VWC1u3mhOUhYYiP3U7jN6ZEAIUQIBTQGUVxczMKFC/3ZWLdv387f/va3oBZMdI6iKMy7aAh5g3zJDqvqHby0djeuCN7Os2WwWggRGgEFiAcffJA777yTxETfQou8vDzWrl0b1IKJzjOoCtdfPpyBWQkAlFQ08u/CfXi1iFoL2YYMVgsROgEFCKvVyiWXXOJfiKWqKiZT5HZdRDOz0cBN00eSnuwbf9h5qJbVnx2M2CR4Nmd05ZsSIpIEFCAMBgNut9sfIMrLy1FljnrYssSa+MHMUViaZwF9ubOCT7YcDXGpukbT9KhLSihEpAh4w6Bly5ZRW1vL3/72N2688UaWLFkS7LKJM5CWFMstM0ZiNvr+xB9uLuGbPZUhLlXX2BwSIIQIhYBmMS1YsIABAwbw8ccfY7fbefTRR5kwYUKwyybOUP+MBG6cNoKX1u5C0+HN9QdIjDeROyAl1EXrFJdHw+3RMBml1SpETwo44c2ECRMkKESgETkpXHXJUN5Yf3wh3W1zx9A/whbS2Zweko2Ru9ucEJEooABxzTXXdJgpdOXKld1eINH9zhuZSX3T8YV0L0XgQjqH00NinAlVjfyMtUJEioACxH333ef/2el0UlBQQGZmZtAKJbpfpC+k05H0G0L0tIACxMSJE9scX3TRRTJIHWFaFtJZbW52Ha6lqt7By+/vZsnsPMzGyFitLAFCiJ7VpVG/xsZGSkpKurssIsgMqsINVwwnJ9O3kO5weWQtpJMpr0L0rE6PQWiaRmlpKT/4wQ+CWjARHGajgZtnjOTJVduprnf4F9LNv2hIROxIZ3N4ZM9qIXpIp8cgDAYDAwYMICsrK2iFEsHVspDuyVXbabS7+XJnBUkWM/nnDgh10U7L5dHweDWMBpnyKkSwdWkMQkS+tKRYFs8cxdOrt+Nya3y0uZSkeDMTRoX/5AObw0OSRaa8ChFsAQWIyZMnd9j9oOs6iqKwcePGbi+YCL7+fSwsmjaCF9/bjabrvP2fAyTEmxg1MDXURTslu8tDQrwJNQK6xISIZAEFiIULF1JXV8f111+Pruu88cYbZGVlMWvWrGCXTwRZ7oAUrrlsKK9/vB9Nh39+tJelc/LIyUwMddFOStfB4fQSHytjEUIEU0AduV999RX//d//zahRo8jLy+PXv/4169evp3///vTv3z/YZRRBdk5uBjMmDgTA7dF48b3dVNbZQ1yqU7M53aEughBRL6AAUVFRQU1Njf+4pqaGysrITPwmOnbx+L5MGZsN+NYbPP/uThqaXCEu1cl5vDout+wVIUQwBdRGX7x4MfPnz2fq1KkArF+/njvuuCOoBRM9S1EUZl0wCKvNzXcHqqlrdPHi2l3cNnd02E4rtTk9mE2RschPiEgU0Ct/0aJFnHfeeXz11Vfous6iRYsYOXJksMsmepiqKFw3dRhNDjcHjjZwrNrGy+/v4ZaZo8Iyk6rT5duS1CB7kwgRFAG/sgYMGMC5557LzTffLMEhihkNKt+/cgR90+MBOHisgdfW7UMLw9XWOrIlqRDBFFCAWL9+PbNnz+bHP/4xAN999x0//OEPg1owETqxZiO3zBxFWmIMANuLa3gnTLcttTncYVkuIaJBQAHi8ccfZ+XKlSQlJQEwbtw4Dh8+HNSCidBKjDfzg9l5bbYtLfy6NMSlak/TweGSVoQQwRBwF1NGRkabY7NZVrJGu/SkWH4wcxQxzQPB6745wsZtZSEuVXuyJakQwRFQgLBYLFRVVflXU2/atInExNMvpNqwYQPTp09n2rRprFix4qTXrV27lpEjR/Ldd98FWGzRU/r1sfD96SMwNG/Us/rzYr7dVxXiUrXl9moy5VWIIAhoFtM999zDbbfdRmlpKTfddBPFxcU88cQTp3yO1+vloYce4vnnnycrK4trr72W/Px8hg8f3ua6xsZGXn75ZcaPH9/1WoigGtYvmesvz+WfH+1B12Hlx/uJMxsYGUYpOWTKqxDdL6AWxPjx43nppZf405/+xNKlSykoKGDs2LGnfE5RURGDBg0iJycHs9nM7NmzKSwsbHfd8uXLWbp0KTExMV2rgegRY4ekseDioQBous4/PtzLoTJriEt1XMuUVyFE9zltC8Lr9fK9732PN954g0svvTTgG5eXl5Odne0/zsrKoqioqM01O3bsoKysjKlTp/Lcc88FfO+0NEvA10aicK3f9ClDQFV465P9uL0aL72/m3tuPJcBWZ3L2xSs+sXFmUhOCO0HjYyM8M1h1R2kfr3LaQOEwWAgNTUVp9PZqU/5HU09bJ0RVtM0HnnkER555JGA79mipqap08+JFGlplrCu34TcPlTV2PhP0THsTg+P/WsLd8wbTZ/kuICeH8z61QL2lNiQLZzLyEiksjJ8WlXdTeoX2boS/AIagxg8eDCLFi1i+vTpxMfH+88vWrTopM/Jzs6mrOz4jJfy8nIyM4/vNdDU1MSePXu4+eabAaisrOTOO+/kiSeeYNy4cZ2uiOgZiqIwY9JA7C4vm3dV0GR381zBTu6YNybkn951oMkue0UI0V0CChBNTU3k5uZy4MCBgG88btw4iouLKSkpISsri4KCAv785z/7H09MTGTTpk3+45tuuol7771XgkMEUBSFBRcNweHysO1ADXWNLp4t2Mnt88aQ0LxuIlTsTg+WOKOk3xCiG5wyQPzhD3/g/vvv55FHHuGzzz7jwgsvDPzGRiMPPPAAS5cuxev1cs0115Cbm8vy5csZO3Ysl19++RkXXoSOqip8b+pwnK7d7C2tp6rewfPv7mTpnNHExYQuuZ8ONNo9JEsrQogzpuinyFNw1VVX8dZbb7X7OZSOVTVRVd0Y6mIETbiPQZzI5fHywru7KG6e0ZSTmcCSWXnEmDuectoT9VOA9OTYHt+3ujf0YUv9IldXxiBO+QpqHTsk343oiNlo4OYZI+mf4ZuZVFLRyMsf7MbtCd2UU99YhGwoJMSZOmWAcLlc7N+/n3379rX5ueVLCPAl9/vBzFFkpfpmMh042sCrH+7G4w1dkLC7vLg9srpaiDNxyi6m/Pz8kz9RUTpc+BZs0sUUvqw2FytW76C63gFA3qBUbpyW22bAuCfrZzKopCfH9sjvgt7RRSH1i1zdPs113bp1XS6M6H0S483cOjuPp1fvoNbqZOehWv69bh/X5+f6czn1JLdXw+bwEB8bnjviCRHuZC6g6FYpCTHcOjvPP4to24EaVn4Sug2HGu2usNzsSIhIIB+tRLdLS4rl1jl5PP3ODqx2N1v3VaMqCtdcOqzL99xbWsfmXRXUWp2kJsYwYVQmuQNSTvs8TQer3S3TXiPItoPVfFp0jMo6OxkpcVx0Vl/GDkkPdbF6JWlBiKDokxzHrXNG+xfObdlbxZsbDqB1YTbc3tI63v+yhOoGJ5oO1Q1O3v+yhL2ldQE93+70hHRWlQjctoPVvLH+AOW1djQdymvtvLH+ANsOVoe6aL2SBAgRNJmpcdw6Jw9L8xjAN3sqeeW9nZ0OEpt3VXTqfEdsTtlUKBJ8WnSsU+dFcEmAEEGVlRrPrXNG+weKPy86xpvrD3RqXKDW6uzU+Y44nB4Zi4gAlXX2k5x39HBJBEiAED0gOy2epa2CxDd7Knlj/f6A37BTEztOAniy8x3RkVZEJMhI6TgrcEZKz01XFsdJgBA9oiVIJMYfH5NY+cl+vAEEiQmjMjt1/mRsTo9kBAhzF53Vt1PnRXBJgBA9Jjstnp8uPBdL88D1t/uq+Pe6vafdCS53QArTJ+aQnhSDqkB6UgzTJ+YENIupNU3TcbhkdXU4GzsknWsuHUpWahyqopCVGsc1lw6VWUwhItNcRY/ql5HAbXNG8+wa3xTYbQdq8Hj2svCKXEzGk39eyR2Q0umA0BGbwxPSbLPi9MYOSZeAECakBSF6XGZqHLfNG+1fm7DrcC2vfLAbVw/kTnJ7NcnRJESAJECIkOiTHMft80b7B5r3ltbzwru7cLiCP5Bsc8hgtRCBkAAhQiY1MZbb542hT3NCveIyK8+s2UljkFN1O1zeLi3YE6K3kQAhQirZYua2uaPpm+7b6/xoVRNPr95OfWPgaxw6S8e3LkIIcWoSIETIJcabWTpnNAOzEgDfoqin3tlO1UkWTXUHWRMhxOlJgBBhIS7GyJJZeeQOSAagrtHFk+9sp7QiOHt/eLw6LrcMVgtxKhIgRNgwmwzcNH0k44amAb7B5GfW7Ag4KV9n2aUVIcQpSYAQYcVoULk+P5fJo7MAcHk0Xlq7m2/3VXX773K4vJKfSYhTkAAhwo6qKsy9cDBXTBgAgFfTeW3dPtZ/e6RbU2Xo0CPTaoWIVBIgRFhSFIX8cwdw1cVDaNmt9P0vS3jns+Ju/dQvayKEODkJECKsnZ+Xxfenj/Sn4di0o5xXPtiDs5sGmD2aTpMjuOsuhIhUEiBE2Bs1MJXb5o72J/nbdbiWFe9031qJRpsbj1d2nBPiRBIgREQYkJHAnfPH+PcLOFZt44m3t3G0qumM760DDU2uM76PENFGAoSIGGlJsfxw/hiG9/etlWiwuXnqne1sO1hzxvd2eTSZ9irECSRAiIgSF2Nk8cyRnN+8WZDbo/GPD/dQ+HXpGedXstpcMu1ViFYkQIiIY1BVFlw8hFmTB6E0z3Aq/LqUf32bgCyaAAAfmklEQVS094xWR2s61Fgdp93ASIjeQgKEiEiKonDRWX1ZPGMUsWYDANsO1vDkqu1UN3R9g3uPV6emwSmD1kIgAUJEuBE5KfxowVh/yvCyGhv/9+Z37CnpenoOr6ZTY3Xi9kiQEL2bBAgR8fqkxHHngrGMGpgK+FJovPjeLtZ90/VxCU3TqbU6JEiIXk0ChIgKcTFGvj99BJefNwAF39TVjzaX8vLa3di6uBBO05EgIXo1CRAiaqiKwuXnDeCmGSP94xK7S+r4+5vfUVJh7dI9JUiI3iyoAWLDhg1Mnz6dadOmsWLFinaPP//888yaNYu5c+eyePFijhw5EsziiF5i1MBUll09jv59LIBvb4kV7+zgP0VHu9TldDxIyP4RoncJWoDwer089NBDPPPMMxQUFLBmzRr27dvX5pq8vDzeeOMNVq9ezfTp0/nf//3fYBVH9DJpSb79ric1pw33ajrvfXGYl9bu6tKe15oONQ3OLndXCRGJghYgioqKGDRoEDk5OZjNZmbPnk1hYWGbayZPnkxcnC91wtlnn01ZWVmwiiN6IZNRZf5FQ7g+fzgxJl+X056Sev62sqhLmxDp+FZv1zU6z3hRnhCRwBisG5eXl5Odne0/zsrKoqio6KTXr1y5kksuuSSge6elWc64fOFM6te9pk60MHZEJs+u2kbxsQasdjfPv7uL/Ak5XHXZMExGQ+dvalBJS47FYGj7GSsjI7GbSh2epH69S9ACREcbuygty15PsGrVKrZt28Yrr7wS0L1ras48QVu4SkuzSP2CwAAsmTWKjzaX8J+tx9CBdZtL2La/iuvzh9M3vfNBq6q6kdSEGH8q8oyMRCoruzYYHgmkfpGtK8EvaF1M2dnZbbqMysvLyczMbHfd559/zpNPPskTTzyB2WwOVnGEwGhQmTFpEEvm5JFs8f1bq6i18//e2sbH3xzB28k8TJqmU2N1dNveFEKEm6AFiHHjxlFcXExJSQkul4uCggLy8/PbXLNjxw4eeOABnnjiCdLT04NVFCHaGNYvmbuuPYuzhvn+zXk1nQ83l/Dkqm2U19g6dS9dhzqrU3amE1FJ0btzk98TrF+/nocffhiv18s111zDnXfeyfLlyxk7diyXX345t9xyC3v27CEjIwOAvn378uSTT57ynseqmqiqbgxWkUNOuph61tZ9VbzzWbE/1bdBVZh6bn8uGd8Po6Fzn59y+qXgsjtP2pUa6XpDF0y016+zghoggkECRGQLx/pt3V/FexsP0WA7PoU1NTGGtMQYnG4vqYkxTBiVSe6AlFPeJy3NQmODneQEMwa1c8Fl28FqPi06RmWdnYyUOC46qy9jh4RHq3rNxmI+2XKEJocHS6yRy87pz5wLBoe6WN1OAkR7QRukFiIS7C2t4z9bj2GJM6GqKg1NzuaFcU5qrU4ssUY8Xp33vywBOG2QcHk0quocxJoNxMea/APYp7LtYDVvrD/gPy6vtfuPQx0k1mwsZs1nxYBvkkmjze0/jsYgIdqSVBuiV9u8qwLwvfnFxxrJSI1HVY93ETU5PFTU2bE7PXy1szyge+qA3eWlusFBTYMDu9PT4ay+Fp8WHevU+Z70yZaOsxuc7LyILtKCEL1ardXZ5tigKhhU8IUIBa+mN2d29Q1EV9TZyWzeFzsQLo+Gy+PCaleIjzESF2No1/1UWWfv8LmVdV3f16K7nGzVeVMXVqOLyCMtCNGrpSbGtDtnUFVMRgMZqXEkxJn8551uL4+/XsS7XxzC4ercrCVN02m0u6mqc1DX6Gyz813GSQJORkpsp35HMLSuf2uWk5wX0UUChOjVJoxqvzYnPtaIJdaIqigkWcxkpMRhNvleKpqu82nRMf787618tbO803tY6/j2q6ixOqmqt2NzeLhwXHaH1150Vt9O16e7XXZO/06dF9HF8OCDDz4Y6kJ0RqPNjc3uCnUxgiYuzow9ipvv4Va/9KRYUhNjqLM6cbq8pCXFkH/uAEYOTPWfy0iJZfrEHEYPTqOkohGHy4vbo7HrcB3bD9aQlhRLenJsp+um6b5WSWKciczUOOqsThwuL5mpccyYNDDkA9Tg27EPBY5WN+HxaljiTFw5cWBUDlBbLDHYbNH73mKxtG8tn45Mcw0z4TgNtDtFev3cHo0NW4+yYevRNntEDO+fzHVXjCAxpgt5nVoxqAoxZgOxJgNm05ndq7v1hmmg0V6/zpIAEWYi/Q30dKKlfg1NLj7aXMLXuytp/QIaMySNaefndGog+2QMqkKs2UCs2RjQdNlg6w1voNFev86SWUxCdEGSxczVlw7jgrHZvP/lYfaU1AOw/WANO4prOHt4H6ae058+ZxAovJpOk8NDk8ODUVWIjTESYzKERbAQvYMECCHOQN90C7fMzOPgsQYKvznCgSP16Dps2VvFt/uqOHt4Hy47p/9JZyoFytM8C6rR7kZVwGT0BQqTQcVsUqM2vYcIrYjrYrI53JRXWNF0HV33TR/Udd9cdQ3QNZ2IqtAJoqUL5mSiuX6pqfFs/PYIH31dytGq43VUgDFD07js7P7069P9e2EogNlkIMakYjYZOp1DKlC9oQsm2uvXWRHXgoiPNZ10bnYLrTlg6Hrbn0GnZVairjcHEp3m78cDi64f389C03R/MIrkwCOCT1EURg1KZeTAFHYdqqXw61KOVtvQgW0Hath2oIYROclcdFY/hvVL6rZP/Tq+2VC+tONuVFUhxqhiMqoYDSpGo4oqLQzRBREXIAKhKgqqoftfELquNwec4z+3BKE2rZnmABMtrRrROYqikDc4jVGDUtldUscnW45wuNw3sWJPST17Surpmx7PRWf1ZdzQ9G7/xK9pOnaXF7vr+GI8o6pgMhkwtwocQpxOxHUxARHZDGwTULTWgcUXUDRdR9d0UtMsVFU1tgs+0SKau5hOVjdd1zl4zMr6b4+wt7S+zWOJcSYmjs5iYl4mifE9t2GWquBvXZgMKkaDgsFw6pZGb+iCifb6dVZUtiDCkaIoGFpefKeY3p6eHIfWQRqH1l1lHbZemgOMt/lLk1ZL2FAUhaH9khjaL4myGhufFh1j674qvJqO1e6m8OtSPtlyhLFD05iYl8Xg7MSgDzprekueKK3NeV8uKl+wMKgKJoOvxdE6gaHoPaQFEWa681OMV9Pwen0BQ9eh5T2n9diM/7um4+2B1kpvbEF0pKHJxaad5Xy5s6Jd4ruMlDgm5mVydm4fLLHhkfPIoCpkZyVRX2fDoCq+1odBiarZU9KCaE8CRJgJ9T9STdPxahoeb6uWSOtxlVY/n+5fTstbR+vLJEC05fFqfLe/mi92lFNS0XYBqEH1DXpPGJnB8AEpGEL8Kb6j+rUEC4OqoCi+1pKqKBgMiv+xSBHq116wSReTOGOqqqCqBkwB/stoGUdRUGj+H0CbT5atWzKJ8WZsjQ48Xg1NP359i+MzyaJr7OVkjAaVc0ZkcM6IDI5WNfHlznK+3VeFy63h1XS2H6xh+8EaEuJMjB+Wztm5fejXxxI2n9x9XZrekz6ugL/LymhoaXm0bX20fPBQUKQrK8xICyLM9IZPMYHW7/isMd/MMa318YlrYPTjU5hDpbtaR063l20Hqvl6dyXFZe3/W/VJjuWsYemMG5ZOVmr8Gf++QHV3609VlXYfBBSlZRzEN+6hNh+3tExU1fe8zm7pGoje8NrrLGlBiLDVMrDfmV6K1uMq/rGWDoLKic/xhtGgfozJwHkjMzlvZCZVdXb/quyWzY2q6h2s++YI6745QnZaPGOGpDFmSBpZqXFh07IIREep0nUdPF4dj/fkrRLwtUzU5gF1RfG1PFqCi6oo/haKqhzv+hKdJy2IMNMbPsWEa/1axl80zdd1ounNs8K8Gpqm4zlNEyWY4yuarnO43Mq3e6vYdrAGm6P9TLf0pFjyBqeSNyiVgVmJ3T5mEcnjR0rz/yn4goVC+4Wv6ekJ1NQ0+rpLOT6pQ2kJMs0/t7mPAgqK/1q1+XG1+RcqSvO6rDDoOpNB6igQzm+g3SGS6+fxajQ5PDicng5bGz31BurVNA4cbaBofzU7imuxO9sHi7gYIyNzUhiRk0JuTnK3zIaK5AARiGDWTwEU1dci9o3zKc2tneaWsnq8FdQScDrT6mm9iPd4l+vxljPA8MGd319EupiECJDRoJJsMZMQZ8Tm8GBzekIykG5QVXIHpJA7IIUFF2scPGb1Z5G12nxTZu1OD9/u83VNKUD/DAvDB6QwvH8SA7MSI2p2UTTQ8WVU0NDh1L1nfv5WT3OLp3Xw8K+HIrBMDV1tTUqAEKKTDKpKYrwZS5wJh9OXjtsbohFyg6oyvH8yw/snM/fCwRytamLXoVp2HarlaLUN8L05lVY2UVrZxCdbjmAyqgzOTvQv3uvXJyHkU2hFe/5ccW0+hfTsvzMJEEJ0kaooxMeaiI814dU0UpJj8ThcuD0aTo/W6f2qu6M8AzISGJCRwBUTcmiwudhbUseekjr2HanH7vR9dHV7NPaW1vvTfpiNKgOzEhmUncjgvonkZCSE3W52IjQkQAjRDQyqSqzZSHyrvn6PV/NlWW3ew7qn2xhJ8Wb/bChN0zla3cS+0nr2HanncLkVj9dXIpdHY98R33nwDbBmpcUzMCuRnMwEBmQm0Cc5todLL8KBBAghgqRlUZgl1oSm6TjdXmwOD26vdvondzNVPd66uOyc/ni8GiUVjRw42kBxWQOHyxv9e2xrOhyrtnGs2samHeWAb+rt4L5JZKbE0q+PhX59LKQnx0oa8SgnAUKIHqCqCnExRuJijDjdXprs7naJ8nqS0aAypG8SQ/omAb6ZUceqbBSXWTlcYaWkvJH6Jpf/eqfby+7Dtew+fPweJqNKdlo8fdPjyU6LJystnqzUeOJj5W0lWshfUogeFmMyEGMy4PZo2F0eHC5vj49XnMigqgxo7k6CvgDUNzqbB7cbKa1s5GiVrc2UWrfH1wo5MYdUYryJzNQ4MlLiyEzxfe+TEkdSvEkWrEUYCRBChIjJqGIymkmKB5fbi8PlxeHyhDxlSIvkhBiSE2IYMyQN8G2puv9QDUeqmjha1URZtY1jNTYaWrU0AKw2N1abm/1HGtqcN5tU+iTHkZ4UQ3pSLOnJsaQlxZKWGEOixSzdVWFIAoQQYcBsMmA2GUiymP0D2w536FsWrSmK4ntDT4pl3NDji66aHG7Ka2yU19gpq7FRUWunos7mnzXVwuXWONocXE5kNCikJMSQmhjT5ntygpmUhBiSLKag5F8SpyYBQogw09IFlYSvG8fp9uJyh2YmVCAssSaG9ktmaL9k/zld12m0u6mss1NZ56Cq3k5VnYOqBge1DU60E1YYerw6VfUOquodHf4OBUiIM5GUYCYp3kySxfc9Md7U/OX72RJrCou0FtFCAoQQYczUvIc0cSY0Xcft1nB5fMHC7dXCNiW6oijNb9rmNoEDfHmu6hqdVNc7qLU6qWlwUNPgpK7RSa3Via2D1CE6YLW7sdrdHOHk6TAUID7WSEKcCUucyfc91oQlzogl1kR8rJH4WN/PcTFG4mOMvv++okMSIISIEKqiEGM2EGM+vojN49VwuX3Bwu32hlVW2pMxqIpvDCKp47UVTpeX2kYn9Y1O6hpd1Dc6qW9y+b8amlz+Kbkn0oEmh291O7X2gMpjMqrExRhJjDdjMirEmY3ExRiIMxuJMRuINRuJNRuav1rOGfwtPZPp1Ht5RzIJEEJEsJa1Fq15vC0bNGn+XQEjaa/yGLOB7DTf1NmO6LpvTUmDzY21yYXV7qbR5sZqc9Fod7f5arJ72nVnncjt0XB7XO0G2zvDbFKJMRowmw3EGFX/mJLZqGI2qZiMLT/7vptafxlUjCf+3LwXeEcbLPWkoAaIDRs28Pvf/x5N07juuuu4/fbb2zzucrm499572b59OykpKTz22GMMGDAgmEUSImptO1jNp0XHqKyzk5ESx0Vn9WXskHSeLdjBVzsrcHs1TAaVCaMymDAqk8++O0ZlnYP0pFgm5mUyIieVnYdq+HJnBTUNDlITY5gwKpPSyka+3FGOzeUl3mxg4ugspp7T8et0b2kdm3dVUGt1+p+fOyDlpOc7c4+Pt5T6yuH0EB9jDKgcNQ0Oki1mRg1KxeH2sv1ADQ1NLmLMBjJS4og1+xIv2l0e3B4Nq82F3enF6Q4wo14zl9vXkuOE/cW7U8uOfAaDirFlq1fD8f3BW2//alBV/7avBoOKyaAwOjez078zaOm+vV4v06dP5/nnnycrK4trr72Wv/zlLwwfPtx/zauvvsru3bt56KGHKCgo4MMPP+Svf/3rae8dqemiAxHJ6bADEc31C2Xdth2s5o31B9qdt8Qa2Vlc2+acjq+fPiMlrs3580Zm8PXuyuPX6b6xgia7u3njHcWfOG7axBwuPzfHn2Za12F3SS1rN5W0K8OYIalsP1jb7vz0iTntgsTe0jre/7L9PbLT4vhuf3W785ed279dkOjoHg6XBwWIMbf9TNy6DK3Tfe8uqeX9TSX+LXVbdjQcOzSNFEsMDpcviLRMIHA0p1NpOdd6ckFLSpNQW/3n+Z1+TtBaEEVFRQwaNIicnBwAZs+eTWFhYZsAsW7dOpYtWwbA9OnTeeihh3z7G0dpf54QwfJp0bEOz+861P6NGcDewYZDn2w5QmK82X+sKApNdl9Kc0Vt28XxxfZyrr10eJvnv7F+v3/At/Xnzs27Kvz39Z/VoWh/FRNGHv9Uq+uwdV9Vh7OQOgoOAF/trGDW5MG0Hq3fsreSE99CWga+Y2PavuVt2VPJ2CG+KbuxZl/3D8DWvVW+T+An7JpubXIx/8IhHZblZHxpVjTcHi8uj2+syOXRfD/7v7y+caRW57ya7p+M4PF/6Xg8zT9rvp+9mt7mca3luLlL8UwELUCUl5eTnZ3tP87KyqKoqKjdNX37+lZtGo1GEhMTqa2tJS0t7ZT37srOSJFE6he5QlW32kZXh7NxNJ12b5bovjfqE69vcnhIO2HguKX/viU4tHy3OTzt6nqyMticXtKT22eHtdo9DByQ2u5crLn9tR5Nx2xsf97h8rbbCKfJ4SXuhECga4BCu/M2l5cRQ/v4j9OTfa2qJueOdte2XD9yWEa789EqaAGio56rE1sGgVwjhDi9v/zk0lAXoVvKEE33iAZBmwCcnZ1NWVmZ/7i8vJzMzMx21xw75msaezwerFYrKSkdD1wJIYToWUELEOPGjaO4uJiSkhJcLhcFBQXk5+e3uSY/P5+33noLgPfff5/JkydLC0IIIcJE0GYxAaxfv56HH34Yr9fLNddcw5133sny5csZO3Ysl19+OU6nk5///Ofs3LmT5ORkHnvsMf+gthBCiNAKaoAQQggRuSQJiRBCiA5JgBBCCNGhsM7F5HQ6WbRoES6Xy78y+6677qKkpIS7776b+vp6Ro8ezR//+EfMZvPpbxiGWsZnsrKyeOqpp6Kqbvn5+VgsFlRVxWAw8Oabb1JXV8dPf/pTjhw5Qv/+/fnrX/9KcnLy6W8WhhoaGvj1r3/Nnj17UBSFhx9+mCFDhkRF/Q4cOMBPf/pT/3FJSQl33XUXCxYsiIr6vfDCC7z++usoisKIESN45JFHqKioiJrX3osvvsjrr7+Orutcd9113HLLLV177elhTNM0vbGxUdd1XXe5XPq1116rb9myRb/rrrv0NWvW6Lqu67/5zW/0V199NZTFPCPPPfecfvfdd+u33367rut6VNVt6tSpenV1dZtzjz76qP7UU0/puq7rTz31lP7HP/4xFEXrFvfee6/+2muv6bqu606nU6+vr4+q+rXweDz6lClT9NLS0qioX1lZmT516lTdbrfruu57zb3xxhtR89rbvXu3Pnv2bN1ms+lut1tfvHixfvDgwS797cK6i0lRFCwWC+BbJ+HxeFAUhS+++ILp06cDcNVVV1FYWBjKYnZZWVkZn3zyCddeey3gWzgYLXU7mcLCQhYsWADAggUL+Oijj0Jcoq5pbGzkq6++8v/tzGYzSUlJUVO/1jZu3EhOTg79+/ePmvp5vV4cDgcejweHw0FGRkbUvPb279/P+PHjiYuLw2g0cv755/Phhx926W8X1gECfH/I+fPnM2XKFKZMmUJOTg5JSUkYjb7esezsbMrLy0Ncyq55+OGH+fnPf47avJVibW1t1NStxa233srVV1/Nv//9bwCqq6v9CyYzMzOpqakJZfG6rKSkhLS0NH7xi1+wYMECfvWrX2Gz2aKmfq0VFBQwZ84cIDr+fllZWSxZsoSpU6dy0UUXkZCQwJgxY6LmtTdixAg2b95MbW0tdrudDRs2UFZW1qW/XdgHCIPBwKpVq1i/fj1FRUUcONA+Y2UkLq77+OOPSUtLY+zYsae8LhLr1uKf//wnb731Fk8//TSvvvoqX331VaiL1G08Hg87duxg4cKFvP3228TFxbFixYpQF6vbuVwu1q1bx4wZM0JdlG5TX19PYWEhhYWF/Oc///G/iZ4oUl97w4YNY+nSpSxZsoSlS5cycuRIDIb2eawCEfYBokVSUhKTJk3i22+/paGhAY/Hl52xrKysXQqPSPDNN9+wbt068vPzufvuu/niiy/4/e9/HxV1a5GVlQVAeno606ZNo6ioiPT0dCoqKgCoqKg4bWLGcJWdnU12djbjx48HYMaMGezYsSNq6tdiw4YNjBkzhj59fAntoqF+n3/+OQMGDCAtLQ2TycSVV17Jli1bouq1d9111/HWW2/x6quvkpKSwqBBg7r0twvrAFFTU0NDQwMADoeDzz//nGHDhjFp0iTef/99AN566612KTwiwT333MOGDRtYt24df/nLX5g8eTJ//vOfo6JuADabjcbGRv/Pn332Gbm5ueTn5/P2228D8Pbbb3P55ZeHsphdlpGRQXZ2tr9Fu3HjRoYNGxY19WtRUFDA7Nmz/cfRUL9+/fqxdetW7HY7uq6zceNGhg8fHjWvPfB1BQIcPXqUDz74gDlz5nTpbxfWK6l37drF/fffj9frRdd1ZsyYwbJlyygpKeGnP/0p9fX15OXl8ac//Slip6MBbNq0ieeee84/zTUa6lZSUsJ//dd/Ab5xpDlz5nDnnXdSW1vLT37yE44dO0bfvn1Zvnx5xCZo3LlzJ7/61a9wu93k5OTwyCOPoGla1NTPbrdz2WWX8dFHH5GY6EvtHS1/v8cff5x3330Xo9FIXl4ev//97ykvL4+K1x7AjTfeSF1dHUajkV/84hdccMEFXfrbhXWAEEIIETph3cUkhBAidCRACCGE6JAECCGEEB2SACGEEKJDEiCEEEJ0KKyzuQpxKtdddx0ulwu3201xcTG5ubkAjB49mkceeSTEpQvM9u3bKSkpiaqVyiJ6yDRXEfFKS0u55ppr2LRpU6iL0o7H4/Hn9+nI66+/zueff85jjz3W7fcW4kzJvy4RlVauXMm//vUvvF4vSUlJ/Pa3v2Xw4MG8/vrrrF27FovFwp49e+jbty+//OUvefTRRykpKWH8+PE8+uijKIrCz372M+Li4jh8+DBlZWVMmjSJ3/zmN5hMJqxWKw8//DB79+7F6XQyZcoU7rvvPlRVZeHChUycOJEtW7YQHx/P448/7l8k6HQ6GT9+PL/97W9paGjg//7v/2hqamL+/PlMmjSJRYsWceONN/LZZ58BcOjQIf/xoUOHWLhwIddffz1ffPEFV199NfPnz+cvf/kLmzdvxuVykZeXx4MPPkhcXFyI/wIiKgQpJbkQPaakpESfOHGi//iLL77Q77jjDt3pdOq6ruuFhYX6okWLdF3X9ddee02fOHGiXlZWpuu6ri9ZskRfsGCBbrVadZfLpc+aNUv/4osvdF3X9XvuuUefP3++3tTUpLtcLv3mm2/W//GPf+i6ruv33Xefvnr1al3Xdd3r9ep33XWXvnLlSl3Xdf2GG27Qf/SjH+kej8f/eF1dnf/nu+++27+PxGuvvab/5Cc/8Ze9uLhYnzJlSofHxcXF+ogRI/S1a9f6H3/88cf9Of51XdcfeeQRffny5Wf2H1SIZtKCEFFn3bp17Nixg+uuuw7w7bPR1NTkf/y8887zJxIcPXo0DoeDhIQEAEaOHMnhw4eZNGkSALNmzSI+Ph7w5dD/5JNPWLhwIR9//DHbt2/n6aefBny5wgYOHOj/HXPnzvVn0NQ0jRUrVvDpp5+iaRp1dXVd3oUtPj7ev2dBS13tdjsFBQWAL/vqmDFjunRvIU4kAUJEHV3X+d73vseyZcs6fDwmJsb/s6qq7Y5bMnp2dN+WFNCapvHUU0/Rr1+/Dq9tCSoAq1atoqioiH/84x9YLBb+/ve/c+zYsQ6fZzAY0DTNf+x0Ok9635Yy/e53v+P888/v8H5CnAmZ5iqiTkvWypYNX7xeL9u2bevSvd577z3sdjtut5vVq1f7Wxb5+fmsWLECr9cL+DIPl5SUdHgPq9VKamoqFouF+vp6/6d9AIvFgtVq9R9nZmbicDj891qzZs1p6/rcc8/5A0ljYyP79+/vUl2FOJEECBF1Jk+ezLJly7jjjjuYN28ec+fO5ZNPPunSvc477zzuvPNO5syZQ05Ojn+L0d/85jdomsb8+fOZO3cut912G5WVlR3e46qrrqKuro45c+Zw9913t/m0f+GFF2K1Wpk3bx4PP/wwZrOZ+++/n8WLF3PTTTdhMplOWb4f/vCHDBs2jGuvvZa5c+eyaNEiDh482KW6CnEimeYqxEn87Gc/47zzzmPhwoWhLooQISEtCCGEEB2SFoQQQogOSQtCCCFEhyRACCGE6JAECCGEEB2SACGEEKJDEiCEEEJ06P8H8uC1Bmw5yFwAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.set(color_codes=True)\n",
"plt.xlim(30,90)\n",
"plt.ylim(0,1)\n",
"sns.regplot(x='Temperature', y='Frequency', data=data, logistic=True)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**I think I have managed to correctly compute and plot the uncertainty of my prediction.** Although the shaded area seems very similar to [the one obtained by with R](https://app-learninglab.inria.fr/moocrr/gitlab/moocrr-session3/moocrr-reproducibility-study/tree/master/challenger.pdf), I can spot a few differences (e.g., the blue point for temperature 63 is outside)... Could this be a numerical error ? Or a difference in the statistical method ? It is not clear which one is \"right\"."
]
}
],
"metadata": {
"celltoolbar": "Hide code",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
...@@ -35,7 +35,7 @@ possibly in a nicer looking way. ...@@ -35,7 +35,7 @@ possibly in a nicer looking way.
We will be using the python3 language using the pandas, statsmodels, We will be using the python3 language using the pandas, statsmodels,
numpy, matplotlib and seaborn libraries. numpy, matplotlib and seaborn libraries.
#+BEGIN_SRC python :session :export both :results output #+BEGIN_SRC python :session :exports both :results output
def print_imported_modules(): def print_imported_modules():
import sys import sys
for name, val in sorted(sys.modules.items()): for name, val in sorted(sys.modules.items()):
...@@ -61,7 +61,7 @@ print_imported_modules() ...@@ -61,7 +61,7 @@ print_imported_modules()
#+RESULTS: #+RESULTS:
#+begin_example #+begin_example
3.8.2 | packaged by conda-forge | (default, Apr 16 2020, 18:04:51) 3.8.1 (default, Jan 8 2020, 22:29:32)
[GCC 7.3.0] [GCC 7.3.0]
uname_result(system='Linux', node='hpisor', release='4.9.0-12-amd64', version='#1 SMP Debian 4.9.210-1 (2020-01-20)', machine='x86_64', processor='') uname_result(system='Linux', node='hpisor', release='4.9.0-12-amd64', version='#1 SMP Debian 4.9.210-1 (2020-01-20)', machine='x86_64', processor='')
_csv 1.0 _csv 1.0
...@@ -73,9 +73,9 @@ ctypes 1.1.0 ...@@ -73,9 +73,9 @@ ctypes 1.1.0
cycler 0.10.0 cycler 0.10.0
dateutil 2.8.1 dateutil 2.8.1
decimal 1.70 decimal 1.70
distutils 3.8.2 distutils 3.8.1
json 2.0.9 json 2.0.9
kiwisolver 1.0.1 kiwisolver 1.2.0
logging 0.5.1.2 logging 0.5.1.2
matplotlib 3.1.3 matplotlib 3.1.3
matplotlib.backends.backend_agg 3.1.3 matplotlib.backends.backend_agg 3.1.3
...@@ -92,8 +92,8 @@ pandas 1.0.3 ...@@ -92,8 +92,8 @@ pandas 1.0.3
patsy 0.5.1 patsy 0.5.1
patsy.version 0.5.1 patsy.version 0.5.1
platform 1.0.8 platform 1.0.8
pyparsing 2.4.6 pyparsing 2.4.7
pytz 2019.3 pytz 2020.1
re 2.2.1 re 2.2.1
scipy 1.4.1 scipy 1.4.1
scipy._lib._uarray 0.5.1+5.ga864a57.scipy scipy._lib._uarray 0.5.1+5.ga864a57.scipy
...@@ -144,7 +144,7 @@ Let's start by reading data. ...@@ -144,7 +144,7 @@ Let's start by reading data.
Note: url corrected based on forum post at https://www.fun-mooc.fr/courses/course-v1:inria+41016+self-paced/courseware/7bf2267c336246f9b6518db624692e14/96b7ce47bd11466a9a2e63d8e8a93d99/ Note: url corrected based on forum post at https://www.fun-mooc.fr/courses/course-v1:inria+41016+self-paced/courseware/7bf2267c336246f9b6518db624692e14/96b7ce47bd11466a9a2e63d8e8a93d99/
#+BEGIN_SRC python :session :export both :results value #+BEGIN_SRC python :session :exports both :results value
data = pd.read_csv("https://app-learninglab.inria.fr/moocrr/gitlab/moocrr-session3/moocrr-reproducibility-study/raw/master/data/shuttle.csv") data = pd.read_csv("https://app-learninglab.inria.fr/moocrr/gitlab/moocrr-session3/moocrr-reproducibility-study/raw/master/data/shuttle.csv")
data data
#+END_SRC #+END_SRC
...@@ -181,7 +181,7 @@ data ...@@ -181,7 +181,7 @@ data
We know from our previous experience on this data set that filtering We know from our previous experience on this data set that filtering
data is a really bad idea. We will therefore process it as such. data is a really bad idea. We will therefore process it as such.
#+BEGIN_SRC python :session :export both :results output #+BEGIN_SRC python :session :exports both :results output
#%matplotlib inline #%matplotlib inline
pd.set_option('mode.chained_assignment',None) # this removes a useless warning from pandas pd.set_option('mode.chained_assignment',None) # this removes a useless warning from pandas
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
...@@ -206,7 +206,7 @@ Let's assume O-rings independently fail with the same probability which ...@@ -206,7 +206,7 @@ Let's assume O-rings independently fail with the same probability which
solely depends on temperature. A logistic regression should allow us to solely depends on temperature. A logistic regression should allow us to
estimate the influence of temperature. estimate the influence of temperature.
#+BEGIN_SRC python :session :export both :results value #+BEGIN_SRC python :session :exports both :results value
import statsmodels.api as sm import statsmodels.api as sm
data["Success"]=data.Count-data.Malfunction data["Success"]=data.Count-data.Malfunction
...@@ -228,7 +228,7 @@ Model Family: Binomial Df Model: 1 ...@@ -228,7 +228,7 @@ Model Family: Binomial Df Model: 1
Link Function: logit Scale: 1.0000 Link Function: logit Scale: 1.0000
Method: IRLS Log-Likelihood: -3.9210 Method: IRLS Log-Likelihood: -3.9210
Date: mar., 05 mai 2020 Deviance: 3.0144 Date: mar., 05 mai 2020 Deviance: 3.0144
Time: 19:13:17 Pearson chi2: 5.00 Time: 22:25:31 Pearson chi2: 5.00
No. Iterations: 6 No. Iterations: 6
Covariance Type: nonrobust Covariance Type: nonrobust
=============================================================================== ===============================================================================
...@@ -252,7 +252,7 @@ for each rocket launch. Let's indicate these weights (since the weights ...@@ -252,7 +252,7 @@ for each rocket launch. Let's indicate these weights (since the weights
are always the same throughout all experiments, it does not change the are always the same throughout all experiments, it does not change the
estimates of the fit but it does influence the variance estimates). estimates of the fit but it does influence the variance estimates).
#+BEGIN_SRC python :session :export both :results value #+BEGIN_SRC python :session :exports both :results value
logmodel=sm.GLM(data['Frequency'], data[['Intercept','Temperature']], logmodel=sm.GLM(data['Frequency'], data[['Intercept','Temperature']],
family=sm.families.Binomial(sm.families.links.logit), family=sm.families.Binomial(sm.families.links.logit),
var_weights=data['Count']).fit() var_weights=data['Count']).fit()
...@@ -270,7 +270,7 @@ Model Family: Binomial Df Model: 1 ...@@ -270,7 +270,7 @@ Model Family: Binomial Df Model: 1
Link Function: logit Scale: 1.0000 Link Function: logit Scale: 1.0000
Method: IRLS Log-Likelihood: -23.526 Method: IRLS Log-Likelihood: -23.526
Date: mar., 05 mai 2020 Deviance: 18.086 Date: mar., 05 mai 2020 Deviance: 18.086
Time: 19:13:17 Pearson chi2: 30.0 Time: 22:25:31 Pearson chi2: 30.0
No. Iterations: 6 No. Iterations: 6
Covariance Type: nonrobust Covariance Type: nonrobust
=============================================================================== ===============================================================================
...@@ -297,7 +297,7 @@ of freedom (Df Residuals). ...@@ -297,7 +297,7 @@ of freedom (Df Residuals).
The temperature when launching the shuttle was 31°F. Let's try to The temperature when launching the shuttle was 31°F. Let's try to
estimate the failure probability for such temperature using our model.: estimate the failure probability for such temperature using our model.:
#+BEGIN_SRC python :session :results output :export both #+BEGIN_SRC python :session :results output :exports both
#%matplotlib inline #%matplotlib inline
data_pred = pd.DataFrame({'Temperature': np.linspace(start=30, stop=90, num=121), 'Intercept': 1}) data_pred = pd.DataFrame({'Temperature': np.linspace(start=30, stop=90, num=121), 'Intercept': 1})
data_pred['Frequency'] = logmodel.predict(data_pred) data_pred['Frequency'] = logmodel.predict(data_pred)
...@@ -323,7 +323,7 @@ Following the documentation of ...@@ -323,7 +323,7 @@ Following the documentation of
[[https://seaborn.pydata.org/generated/seaborn.regplot.html][Seaborn]], [[https://seaborn.pydata.org/generated/seaborn.regplot.html][Seaborn]],
I use regplot. I use regplot.
#+BEGIN_SRC python :session :results output :export both #+BEGIN_SRC python :session :results output :exports both
sns.set(color_codes=True) sns.set(color_codes=True)
plt.xlim(30,90) plt.xlim(30,90)
plt.ylim(0,1) plt.ylim(0,1)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment