In this document we reperform some of the analysis provided in Risk Analysis of the Space Shuttle: Pre-Challenger Prediction of Failure by Siddhartha R. Dalal, Edward B. Fowlkes, Bruce Hoadley published in Journal of the American Statistical Association, Vol. 84, No. 408 (Dec., 1989), pp. 945-957 and available here.
On the fourth page of this article, they indicate that the maximum likelihood estimates of the logistic regression using only temperature are: \(\hat{\alpha}=5.085\) and \(\hat{\beta}=-0.1156\) and their asymptotic standard errors are \(s_{\hat{\alpha}}=3.052\) and \(s_{\hat{\beta}}=0.047\). The Goodness of fit indicated for this model was \(G^2=18.086\) with 21 degrees of freedom. Our goal is to reproduce the computation behind these values and the Figure 4 of this article, possibly in a nicer looking way.
We will be using the R language using the ggplot2 library.
library(ggplot2)
sessionInfo()
## R version 4.1.2 (2021-11-01)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19043)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=French_France.1252 LC_CTYPE=French_France.1252
## [3] LC_MONETARY=French_France.1252 LC_NUMERIC=C
## [5] LC_TIME=French_France.1252
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] ggplot2_3.3.5
##
## loaded via a namespace (and not attached):
## [1] knitr_1.37 magrittr_2.0.1 munsell_0.5.0 colorspace_2.0-2
## [5] R6_2.5.1 rlang_0.4.12 fastmap_1.1.0 fansi_0.5.0
## [9] stringr_1.4.0 tools_4.1.2 grid_4.1.2 gtable_0.3.0
## [13] xfun_0.29 utf8_1.2.2 withr_2.4.3 jquerylib_0.1.4
## [17] htmltools_0.5.2 ellipsis_0.3.2 yaml_2.2.1 digest_0.6.29
## [21] tibble_3.1.6 lifecycle_1.0.1 crayon_1.4.2 vctrs_0.3.8
## [25] glue_1.6.0 evaluate_0.14 rmarkdown_2.11 stringi_1.7.6
## [29] compiler_4.1.2 pillar_1.6.4 scales_1.1.1 pkgconfig_2.0.3
Here are the available libraries
devtools::session_info()
## - Session info ---------------------------------------------------------------
## setting value
## version R version 4.1.2 (2021-11-01)
## os Windows 10 x64 (build 19043)
## system x86_64, mingw32
## ui RTerm
## language (EN)
## collate French_France.1252
## ctype French_France.1252
## tz Europe/Paris
## date 2022-01-12
## pandoc 2.14.0.3 @ C:/Program Files/RStudio/bin/pandoc/ (via rmarkdown)
##
## - Packages -------------------------------------------------------------------
## package * version date (UTC) lib source
## cachem 1.0.6 2021-08-19 [1] CRAN (R 4.1.2)
## callr 3.7.0 2021-04-20 [1] CRAN (R 4.1.2)
## cli 3.1.0 2021-10-27 [1] CRAN (R 4.1.2)
## colorspace 2.0-2 2021-06-24 [1] CRAN (R 4.1.2)
## crayon 1.4.2 2021-10-29 [1] CRAN (R 4.1.2)
## desc 1.4.0 2021-09-28 [1] CRAN (R 4.1.2)
## devtools 2.4.3 2021-11-30 [1] CRAN (R 4.1.2)
## digest 0.6.29 2021-12-01 [1] CRAN (R 4.1.2)
## ellipsis 0.3.2 2021-04-29 [1] CRAN (R 4.1.2)
## evaluate 0.14 2019-05-28 [1] CRAN (R 4.1.2)
## fansi 0.5.0 2021-05-25 [1] CRAN (R 4.1.2)
## fastmap 1.1.0 2021-01-25 [1] CRAN (R 4.1.2)
## fs 1.5.2 2021-12-08 [1] CRAN (R 4.1.2)
## ggplot2 * 3.3.5 2021-06-25 [1] CRAN (R 4.1.2)
## glue 1.6.0 2021-12-17 [1] CRAN (R 4.1.2)
## gtable 0.3.0 2019-03-25 [1] CRAN (R 4.1.2)
## htmltools 0.5.2 2021-08-25 [1] CRAN (R 4.1.2)
## jquerylib 0.1.4 2021-04-26 [1] CRAN (R 4.1.2)
## knitr 1.37 2021-12-16 [1] CRAN (R 4.1.2)
## lifecycle 1.0.1 2021-09-24 [1] CRAN (R 4.1.2)
## magrittr 2.0.1 2020-11-17 [1] CRAN (R 4.1.2)
## memoise 2.0.1 2021-11-26 [1] CRAN (R 4.1.2)
## munsell 0.5.0 2018-06-12 [1] CRAN (R 4.1.2)
## pillar 1.6.4 2021-10-18 [1] CRAN (R 4.1.2)
## pkgbuild 1.3.1 2021-12-20 [1] CRAN (R 4.1.2)
## pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.1.2)
## pkgload 1.2.4 2021-11-30 [1] CRAN (R 4.1.2)
## prettyunits 1.1.1 2020-01-24 [1] CRAN (R 4.1.2)
## processx 3.5.2 2021-04-30 [1] CRAN (R 4.1.2)
## ps 1.6.0 2021-02-28 [1] CRAN (R 4.1.2)
## purrr 0.3.4 2020-04-17 [1] CRAN (R 4.1.2)
## R6 2.5.1 2021-08-19 [1] CRAN (R 4.1.2)
## remotes 2.4.2 2021-11-30 [1] CRAN (R 4.1.2)
## rlang 0.4.12 2021-10-18 [1] CRAN (R 4.1.2)
## rmarkdown 2.11 2021-09-14 [1] CRAN (R 4.1.2)
## rprojroot 2.0.2 2020-11-15 [1] CRAN (R 4.1.2)
## rstudioapi 0.13 2020-11-12 [1] CRAN (R 4.1.2)
## scales 1.1.1 2020-05-11 [1] CRAN (R 4.1.2)
## sessioninfo 1.2.2 2021-12-06 [1] CRAN (R 4.1.2)
## stringi 1.7.6 2021-11-29 [1] CRAN (R 4.1.2)
## stringr 1.4.0 2019-02-10 [1] CRAN (R 4.1.2)
## testthat 3.1.1 2021-12-03 [1] CRAN (R 4.1.2)
## tibble 3.1.6 2021-11-07 [1] CRAN (R 4.1.2)
## usethis 2.1.5 2021-12-09 [1] CRAN (R 4.1.2)
## utf8 1.2.2 2021-07-24 [1] CRAN (R 4.1.2)
## vctrs 0.3.8 2021-04-29 [1] CRAN (R 4.1.2)
## withr 2.4.3 2021-11-30 [1] CRAN (R 4.1.2)
## xfun 0.29 2021-12-14 [1] CRAN (R 4.1.2)
## yaml 2.2.1 2020-02-01 [1] CRAN (R 4.1.1)
##
## [1] D:/docs_nfourtun/R/win-library/4.1
## [2] C:/Program Files/R/R-4.1.2/library
##
## ------------------------------------------------------------------------------
Let’s start by reading data:
data = read.csv("https://app-learninglab.inria.fr/moocrr/gitlab/moocrr-session3/moocrr-reproducibility-study/raw/master/data/shuttle.csv?inline=false",header=T)
data
Let’s visually inspect how temperature affects malfunction:
plot(data=data, Malfunction/Count ~ Temperature, ylim=c(0,1))
I’ll only work on the raw data, because I find it more elegant than working on ratios. Let’s provide the “raw” data to R.
data_flat=data.frame()
for(i in 1:nrow(data)) {
temperature = data[i,"Temperature"];
malfunction = data[i,"Malfunction"];
d = data.frame(Temperature=temperature,Malfunction=rep(0,times = data[i,"Count"]))
if(malfunction>0) {
d[1:malfunction, "Malfunction"]=1;
}
data_flat=rbind(data_flat,d)
}
dim(data_flat)
## [1] 138 2
str(data_flat)
## 'data.frame': 138 obs. of 2 variables:
## $ Temperature: int 66 66 66 66 66 66 70 70 70 70 ...
## $ Malfunction: num 0 0 0 0 0 0 1 0 0 0 ...
Computing regression parameters.
logistic_reg_flat = glm(data=data_flat, Malfunction ~ Temperature, family=binomial(link='logit'))
summary(logistic_reg_flat)
##
## Call:
## glm(formula = Malfunction ~ Temperature, family = binomial(link = "logit"),
## data = data_flat)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.7774 -0.3677 -0.3106 -0.2209 2.6879
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.08498 3.05248 1.666 0.0957 .
## Temperature -0.11560 0.04702 -2.458 0.0140 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 66.540 on 137 degrees of freedom
## Residual deviance: 60.396 on 136 degrees of freedom
## AIC: 64.396
##
## Number of Fisher Scoring iterations: 6
Perfect. The estimates and the standard errors are the same as in the 1989 paper.
ggplot(data=data_flat, aes(y=Malfunction, x=Temperature)) +
geom_smooth(method = "glm", method.args = list(family = "binomial"), fullrange=T) +
geom_point(alpha=.5, size = .5) +
xlim(30,90) + ylim(0,1) + theme_bw()
## `geom_smooth()` using formula 'y ~ x'
Let’s check whether this confidence interval corresponds to the prediction obtained when calling directly predict. Obtaining the prediction can be done directly or through the link function.
Here is the “direct” (response) version I used in my very first plot:
pred = predict(logistic_reg_flat,list(Temperature=30),type="response",se.fit = T)
pred
## $fit
## 1
## 0.834373
##
## $se.fit
## 1
## 0.2293304
##
## $residual.scale
## [1] 1
The estimated Failure probability for 30° is thus \(0.834\). However, the \(se.fit\) value seems pretty hard to use as I can obviously not simply add \(\pm 2 se.fit\) to \(fit\) to compute a confidence interval.
Here is the “link” version:
pred_link = predict(logistic_reg_flat,list(Temperature=30), type="link", se.fit = T)
pred_link
## $fit
## 1
## 1.616942
##
## $se.fit
## [1] 1.659473
##
## $residual.scale
## [1] 1
logistic_reg_flat$family$linkinv(pred_link$fit)
## 1
## 0.834373
I recover \(0.834\) for the estimated Failure probability at 30°. But now, going through the linkinv function, we can use \(se.fit\):
critval = 1.96
logistic_reg_flat$family$linkinv(c(pred_link$fit-critval*pred_link$se.fit,
pred_link$fit+critval*pred_link$se.fit))
## 1 1
## 0.1630612 0.9923814
The 95% confidence interval for our estimation is thus [0.163,0.992]. This is what ggplot2 just plotted me. This seems coherent.
I am now rather confident that I have managed to correctly compute and plot the uncertainty of my prediction.