diff --git a/journal-de-bord/.ipynb_checkpoints/tutorial-checkpoint.ipynb b/journal-de-bord/.ipynb_checkpoints/tutorial-checkpoint.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..82cab93eb151c107aff9a8c43aafa39fc9b1129c --- /dev/null +++ b/journal-de-bord/.ipynb_checkpoints/tutorial-checkpoint.ipynb @@ -0,0 +1,193 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Titre du document" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "2+2" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "10\n" + ] + } + ], + "source": [ + "x=10\n", + "print(x)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "20\n" + ] + } + ], + "source": [ + "x = x + 10\n", + "print(x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Petit exemple de completion" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "mu, sigma = 100, 15" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "x = np.random.normal(loc=mu, scale=sigma, size=10000)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAD8CAYAAACVZ8iyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvAOZPmwAAEGRJREFUeJzt3X+s3XV9x/Hna1TY/LFQ1gvDtu5WU7eBUSQdspEtKBMKGIvJTEqMNI6kZoFNF/ejaDKchgQ3lY2EsVTpKJuDMcXRSCd2nZnxD34UhoVaGXfQwaUdrUPRjQQF3/vjfBoP7bm395x7e889+HwkJ+d83+fzPd/PJ5/b+7rfH+fbVBWSpJ9sPzXsDkiShs8wkCQZBpIkw0CShGEgScIwkCRhGEiSMAwkSRgGkiRg0bA7MJ0lS5bU+Pj4sLshSSPlvvvu+3ZVjfWzzoIOg/HxcXbs2DHsbkjSSEnyX/2u42EiSZJhIEkyDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCSxwL+BLC1k4xvuGMp291x94VC2q5c29wwkSYaBJMkwkCRhGEiSMAwkSRgGkiS8tFQjbliXd0ovNe4ZSJIMA0mSYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSSJGYRBkuVJvppkd5JdST7Q6h9N8mSSB9rjgq51rkgykeThJOd11Ve32kSSDUdnSJKkfs3kdhTPAx+qqvuTvAq4L8m29t41VfXJ7sZJTgHWAqcCrwb+Jcnr29vXAW8HJoF7k2ypqm/OxUAkSYM7YhhU1T5gX3v9/SS7gaXTrLIGuKWqngMeSzIBnNHem6iqRwGS3NLaGgaSNGR9nTNIMg68Gbi7lS5PsjPJpiSLW20p8ETXapOtNlVdkjRkMw6DJK8EvgB8sKq+B1wPvA44jc6ew6cONu2xek1TP3Q765PsSLLjwIEDM+2eJGkWZhQGSV5GJwg+V1W3AVTVU1X1QlX9CPgMPz4UNAks71p9GbB3mvqLVNXGqlpVVavGxsb6HY8kaQAzuZoowA3A7qr6dFf95K5m7wIeaq+3AGuTHJdkBbASuAe4F1iZZEWSY+mcZN4yN8OQJM3GTK4mOgt4L/Bgkgda7cPAxUlOo3OoZw/wfoCq2pXkVjonhp8HLquqFwCSXA7cCRwDbKqqXXM4FknSgGZyNdHX6X28f+s061wFXNWjvnW69SRJw+E3kCVJhoEkyTCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJKYQRgkWZ7kq0l2J9mV5AOtfkKSbUkeac+LWz1Jrk0ykWRnktO7Pmtda/9IknVHb1iSpH7MZM/geeBDVfXLwJnAZUlOATYA26tqJbC9LQOcD6xsj/XA9dAJD+BK4C3AGcCVBwNEkjRcRwyDqtpXVfe3198HdgNLgTXA5tZsM3BRe70GuKk67gKOT3IycB6wraqerqrvANuA1XM6GknSQPo6Z5BkHHgzcDdwUlXtg05gACe2ZkuBJ7pWm2y1qeqSpCGbcRgkeSXwBeCDVfW96Zr2qNU09UO3sz7JjiQ7Dhw4MNPuSZJmYUZhkORldILgc1V1Wys/1Q7/0J73t/oksLxr9WXA3mnqL1JVG6tqVVWtGhsb62cskqQBzeRqogA3ALur6tNdb20BDl4RtA64vat+Sbuq6EzgmXYY6U7g3CSL24njc1tNkjRki2bQ5izgvcCDSR5otQ8DVwO3JrkUeBx4d3tvK3ABMAE8C7wPoKqeTvJx4N7W7mNV9fScjEKSNCtHDIOq+jq9j/cDnNOjfQGXTfFZm4BN/XRQknT0+Q1kSZJhIEkyDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEliZv/TmaQFZHzDHUPb9p6rLxzatnV0uWcgSTIMJEmGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkiRmEQZJNSfYneair9tEkTyZ5oD0u6HrviiQTSR5Ocl5XfXWrTSTZMPdDkSQNaiZ7BjcCq3vUr6mq09pjK0CSU4C1wKltnb9KckySY4DrgPOBU4CLW1tJ0gJwxLuWVtXXkozP8PPWALdU1XPAY0kmgDPaexNV9ShAklta22/23WMtSMO8k6ak2ZvNOYPLk+xsh5EWt9pS4ImuNpOtNlVdkrQADBoG1wOvA04D9gGfavX0aFvT1A+TZH2SHUl2HDhwYMDuSZL6MVAYVNVTVfVCVf0I+Aw/PhQ0CSzvaroM2DtNvddnb6yqVVW1amxsbJDuSZL6NFAYJDm5a/FdwMErjbYAa5Mcl2QFsBK4B7gXWJlkRZJj6Zxk3jJ4tyVJc+mIJ5CT3AycDSxJMglcCZyd5DQ6h3r2AO8HqKpdSW6lc2L4eeCyqnqhfc7lwJ3AMcCmqto156ORJA1kJlcTXdyjfMM07a8CrupR3wps7at3kqR54TeQJUmGgSTJMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEnMIAySbEqyP8lDXbUTkmxL8kh7XtzqSXJtkokkO5Oc3rXOutb+kSTrjs5wJEmDmMmewY3A6kNqG4DtVbUS2N6WAc4HVrbHeuB66IQHcCXwFuAM4MqDASJJGr4jhkFVfQ14+pDyGmBze70ZuKirflN13AUcn+Rk4DxgW1U9XVXfAbZxeMBIkoZk0HMGJ1XVPoD2fGKrLwWe6Go32WpT1Q+TZH2SHUl2HDhwYMDuSZL6MdcnkNOjVtPUDy9WbayqVVW1amxsbE47J0nqbdAweKod/qE972/1SWB5V7tlwN5p6pKkBWDQMNgCHLwiaB1we1f9knZV0ZnAM+0w0p3AuUkWtxPH57aaJGkBWHSkBkluBs4GliSZpHNV0NXArUkuBR4H3t2abwUuACaAZ4H3AVTV00k+Dtzb2n2sqg49KS1JGpIjhkFVXTzFW+f0aFvAZVN8ziZgU1+9kyTNC7+BLEkyDCRJhoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kSsGjYHZA0OsY33DGU7e65+sKhbPcniXsGkqTZhUGSPUkeTPJAkh2tdkKSbUkeac+LWz1Jrk0ykWRnktPnYgCSpNmbiz2Dt1bVaVW1qi1vALZX1Upge1sGOB9Y2R7rgevnYNuSpDlwNA4TrQE2t9ebgYu66jdVx13A8UlOPgrblyT1abZhUMBXktyXZH2rnVRV+wDa84mtvhR4omvdyVaTJA3ZbK8mOquq9iY5EdiW5FvTtE2PWh3WqBMq6wFe85rXzLJ7P3mGdbWHpNE2qz2DqtrbnvcDXwTOAJ46ePinPe9vzSeB5V2rLwP29vjMjVW1qqpWjY2NzaZ7kqQZGjgMkrwiyasOvgbOBR4CtgDrWrN1wO3t9RbgknZV0ZnAMwcPJ0mShms2h4lOAr6Y5ODn/H1VfTnJvcCtSS4FHgfe3dpvBS4AJoBngffNYtuSpDk0cBhU1aPAm3rU/wc4p0e9gMsG3Z4k6ejxG8iSJMNAkmQYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJErBo2B2QpCMZ33DH0La95+oLh7bt+eSegSTJMJAkGQaSJDxncFQM8/imJA3CPQNJ0vyHQZLVSR5OMpFkw3xvX5J0uHkNgyTHANcB5wOnABcnOWU++yBJOtx87xmcAUxU1aNV9QPgFmDNPPdBknSI+T6BvBR4omt5EnjL0dqYJ3Ilzdawfo/M95fd5jsM0qNWL2qQrAfWt8X/TfLwNJ+3BPj2HPVtIXFco8VxjZaRGFc+0fcq3eP6hX5Xnu8wmASWdy0vA/Z2N6iqjcDGmXxYkh1VtWruurcwOK7R4rhGi+Pqbb7PGdwLrEyyIsmxwFpgyzz3QZJ0iHndM6iq55NcDtwJHANsqqpd89kHSdLh5v0byFW1Fdg6Rx83o8NJI8hxjRbHNVocVw+pqiO3kiS9pHk7CknSaIVBkmOS/HuSL7XlFUnuTvJIkn9oJ6VHTpLjk3w+ybeS7E7yq0lOSLKtjW1bksXD7me/kvx+kl1JHkpyc5KfHsU5S7Ipyf4kD3XVes5POq5tt1vZmeT04fV8elOM68/bz+HOJF9McnzXe1e0cT2c5Lzh9PrIeo2r670/SFJJlrTlkZ6vVv/dNie7kvxZV72v+RqpMAA+AOzuWv4EcE1VrQS+A1w6lF7N3l8CX66qXwLeRGeMG4DtbWzb2/LISLIU+D1gVVW9gc4FA2sZzTm7EVh9SG2q+TkfWNke64Hr56mPg7iRw8e1DXhDVb0R+A/gCoB225i1wKltnb9qt5dZiG7k8HGRZDnwduDxrvJIz1eSt9K5i8Mbq+pU4JOt3vd8jUwYJFkGXAh8ti0HeBvw+dZkM3DRcHo3uCQ/C/wGcANAVf2gqr5LZ4I3t2YjOTY6Fyj8TJJFwMuBfYzgnFXV14CnDylPNT9rgJuq4y7g+CQnz09P+9NrXFX1lap6vi3eRee7QNAZ1y1V9VxVPQZM0Lm9zIIzxXwBXAP8ES/+outIzxfwO8DVVfVca7O/1fuer5EJA+Av6Ezkj9ryzwHf7frBnaRzu4tR81rgAPA37RDYZ5O8AjipqvYBtOcTh9nJflXVk3T+SnmcTgg8A9zHS2POYOr56XXLlVEd428D/9xej/S4krwTeLKqvnHIWyM9LuD1wK+3Q6//luRXWr3vcY1EGCR5B7C/qu7rLvdoOoqXRi0CTgeur6o3A//HiB0S6qUdQ18DrABeDbyCzi75oUZxzqbzkvi5TPIR4HngcwdLPZqNxLiSvBz4CPAnvd7uURuJcTWLgMXAmcAfAre2oyZ9j2skwgA4C3hnkj107nT6Njp7Cse3QxDQ49YWI2ISmKyqu9vy5+mEw1MHd1fb8/4p1l+ofhN4rKoOVNUPgduAX+OlMWcw9fwc8ZYrC12SdcA7gPfUj689H+VxvY7OHyXfaL9DlgH3J/l5Rntc0On/be0w1z10jpwsYYBxjUQYVNUVVbWsqsbpnBT516p6D/BV4Ldas3XA7UPq4sCq6r+BJ5L8YiudA3yTzm061rXaKI7tceDMJC9vf6kcHNfIz1kz1fxsAS5pV6mcCTxz8HDSKEiyGvhj4J1V9WzXW1uAtUmOS7KCzgnXe4bRx35V1YNVdWJVjbffIZPA6e3f3kjPF/BPdP44JsnrgWPp3Kyu//mqqpF6AGcDX2qvX9sGOAH8I3DcsPs34JhOA3YAO9vkLqZzTmQ78Eh7PmHY/RxgXH8KfAt4CPhb4LhRnDPgZjrnPX5I5xfJpVPND53d8+uA/wQepHM11dDH0Me4Jugca36gPf66q/1H2rgeBs4fdv/7Gdch7+8BlrxE5utY4O/av7H7gbcNOl9+A1mSNBqHiSRJR5dhIEkyDCRJhoEkCcNAkoRhIEnCMJAkYRhIkoD/B8IGXPTxqh8eAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib inline\n", + "plt.hist(x)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Utilisation d'autres langages" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext rpy2.ipython" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAMAAABKCk6nAAAC9FBMVEUAAAACAgIDAwMEBAQFBQUICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUWFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJycoKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6Ojo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tMTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1eXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29wcHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGCgoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OUlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWmpqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4uLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnKysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7///88pmfTAAAXMUlEQVR4nO2deWAUVZ7H4+IxLqITBnDVdZVZZ1xcRlaHpEM6CUkgECAG5RIE5DAcKjeKhlPliqKIAuGQUS4JlyCow30GQQ4FwhGJyBHOXBBD0un0+2ermjh0upvqrq73qqp//f388Tq+fvWrn3zSnbre+4UxQJowoxMAYoFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HE0SD4yjJgApbbRAn+sstsYDyWn4UJ/iTwbQE3enEQ7Ljm8NILwaZAs+Dy0X++M6xWwzEV7m9AsCnQLPillJ2FlYXZnXq6vwHBpkCz4PAbzhf7I+5vQLAp0Cy48Wrny9an3d+AYFOgWfDeBk917N3p6Qf3ub8BwaZA+1F05YbMyZkbKj36IdgUcDhNKnK2xe7dEKwLBZeU39csOOfJOx5bKZ0teYyEYB242ialY/M8pRGaBVun2DbX3wnBxtB1B2PHWyiN0Cy4ThVjq/5qcxH8/SQn7fr7mSQInBi5aefx59EFzYIb7paa9gNcBJ/Z4CQ1xa8UgRacgpPKFEZoFpxVO66AFT7TxGPkoI4+twVaGTqbsa87K43QfhSdv6qUMVvWSPd+CNaB8pFWa5rSNzSXu0negWBTAMHE0Sz4+O+4vwHBpkCz4BZhd9d34v4GBJsC7V/Rr6R574dgU6Bd8NbJ3vsh2BTgIIs4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJo64sjoQbArEldWBYFMgrqwOBJsCcWV1INgUiCurA8GmQFxZHQg2BeLK6kCwKcBpEnFwmkQcnCYRR8Bp0vJ4J4/EaUoM8AGnScTBaRJxcJpEHNwuJA4EEwdldYiDsjrEQVkd4qCsDnFwkEUcCCYOBBMHgokDwcSBYOJAcHDzS8akI4oDIDio2Ry3+ps2i5RGQHBQE1fEWEWEt2cefweCg5qYz5NaTH/hksIICA5qGg4sLZ/YAJ9gsjRqsW1PpydsCiMgOKiJOfz2yOz2VxVGQHBQ00bSd7WZ0ggIDmpOWt4ab9mjNAKCg5uK7ZtKFQdAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTI6ff8x+Uu/w3BNPiR+uBK/PaujzDA8G06CmvtDDgwK0OCBbD0TbW6LkG7DdRXlJy2upbHRAshOuWX5it12rfA3kzYr3UJJ++1QHBQtjwjtRc6KT/jout4xa0n+rSAcFCWJshNYXPGbDnym8+O+H63xAshKvR1xmbMMfoNBgEi2Jj5IvWEUozDvQCgkVxzmOJdEPAkv7EwZL+xMGS/sRB5TMv/FZldAb8wJL+HhyOb2UZZjc6C15gSX93KixnGcvIMDoNXghY0v+n2U6aJ2tMzSD2D5EaW4LRafCC03nwFZefTyxz0rptwEkZysHBDIJduNTzmeFX/nbn4x6rNQXrV7QtKo+xdz8yOg1eaBac/PzyNnUzHR96lMEKVsHsWKuEqHQyx9GaBdcuZmfurmC/3e/+RtAKlo6zjE6AI5oFN/yKfRF2nB16zP2NIBZMCc2CV95Vv96MJ19v6PFHC4JNgfaj6Cvfl7JtY9Z79EOwKcDtQkHY864bnYITCBbDNxE9E14zw6E4BAvhsrWMsSkzjU6DQbAg1rwvNUUpRqfBIFgQGydIzfkuRqfBIFgQpZYT7MZL64xOg0GwKE6mxlkXGp2EDAQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwUGN47OWidOUCp9BcHDz/pDfKqa+rjQCgoMaq/zQSBxqF5IlRm5Qu5AubXMZuxKtNAKC9aJw3YYb3IPmWkaNs3yvNAKCdWJL1JTxlpPcw1bs2PSb4gAI1omIEsZOGTCjFoL14ea6lTH67xiC9aFCnl5badV/xxCsE4PeK73aJ1P//UKwTthntXpuhcptjr8Qk7RZ434h2LwUSEfdV1se8D1QCQg2L0s/lZp9Q7UFgWDzMnux1OT21hYEgs3LsXZVjKUv0RYEgg2jZHGm8j8+mxs9OGmIxr34J7jCpfUXCFbmZMQni1r/Q3nM9QNKN4r8wj/BjeSm/CFVkSFYmdRcxiojy30P1IY/gmvVCqslk6oqMgQr47xsOfCw6N349wluE0BkCFYmseT3Rih+HmSdYLYV8xUf7vIAgpX5Z8tDp98eLHw3/glOv8c+6cm/91UVGYJ9sH9AjyXiC+/4J/iPeeyhPUV/UhUZgk2Bf4IfKPyhQdX1OrcZhLI6JsY/wX0bPz7lclOvS7ijrI658U+wPWtJZf4kr0d8KKtjblBWx5OtY6df8T0qSPBH8L07Gt3E2wh6ZXVGv7JlSdNco7PghT+Cvy08chNvI8iV1bmYJDXHzLBIHRcElNX5somTes01pmYQ29Pl1oDnH8Xgj+Dwm9RNvO2wwmuefcH6Cc6XH17+OUiT98QfwcXFE5P2XNzb1uvquCdjTuU9+2+1rGfc3whWwWzo4L1rI48anQUv/PuK/s9SqSn7L28jItIrk98uLx+T5P5G0Apm64dPOm90DtzwT/CDx6TmxMPeRtSpYI9eZ6wq3P2N4BVMCv8ET20wdsG4Bh94GxG7iHX5irGNdE6TaOHnUfTGAe1f3eJ1xC+NmrSu1TKhwR73NyDYFHB46G73/MmzvvG8VwzBpgBPVYrBvqDf2HzlITkjB64VnwgEi6FDxrFvIvKURmxrvvPwoLeEJwLBQtjfT2r2DVAa0rJQapp7uULEFwgWQtYMqbnRUmmI82Loqz+JzgSChXCss9RsGK40JOVXxqos/NdlcQOC/eH8ObVbDE1b97FFcVrC0Yh/rE6drTJsVZ7aqQ4Q7JuzCZ1fjP9V5UY7pn5RpjziauY0tY+977P0aNdBeVUddyDYNymHGDsSyLP/vLFHXGZslbrpaBDsk8p4uW0hfBaRb472l1t1t6oh2CeOWLltbjc6D8ZOd5cae5yqbSDYN/0/Y2yhumkdgkjcweyjPla1CQT7pmxETMwwdYc2/rC9e/tMlV8LF3vERn+gbroLBBvF2pSfr05KE74bCDaKBPkpmVZFoncDwUZhqgnggQDBynTIYawiQt26JwEAwXw4u/2iyi1+iZycmZAlJBlXIJgLw9qlt5ygcpuyNYtVX+JWDwTzYM0wqem10+g0vAHBPBi+V2q+e8/oNLwBwTyYuF5qFs0yOg1vQDAPfok+zY5HqT3M0gUI5sKh9jFdjqvcJispfoKPW8YcgGCj+Pzla/YFnYXvBoKNorl8jeM54WtFQLBROC9V9hc+TRWCjaK7dGpV2rTS90BtQDDLWX5Qj90UrP1njUOqS9Yh46M2CN8tBA/t8nGfblXCd7OpWcY7lhOuPfa9G4XPa4BgtlWeXzJxofD9yLUL8wx4NDPkBU9ZJzWHB4reTb7zhAi1C/XnC/kC49fCLyNXyI9monahAZRYttj2WcQvujLknWuXe80RvhsPQl4wuzA4vp/iRF4+2Gcnt18lfjceQDBxIJg4EEwcCCYOBAvihxkrhD8S6w8QLIa3ey6b0kz4tAU/4CEYVVc8OPGC1Kx/w+g0GAfBqLriDecqO2UeK/AagGbBqLrijX2vSs0B8XMHfYOqK0JwpHx6ZqvlpNFpMA6C6VVd8YMMS0xKjbosa6Nj4za7dthmdht5Wt+kvKNZMLmqK34wd0QVO97M5ajjUOtSVtT8lHEZ3R4BVVdOLXPSup3G1MxLK3k9h2Euv9Jjt0jNyo8MSkcRTufBu11+3jfJSVTrgJMyO4nyh3fUrlsdzp+/nmpUPkpwEnyvZxfhr+ip0mf1isXlEbodXe3M1k74wqKBoFlw7btkwu66y/0NwoLtA2NfiN7r2jMrolPTxUalo4hmwUee6ZJ38eI9Fz1mXhEWzFjFZbeOqgvii3kHhPavaPvERttC7Cs6mODxNzgnYiAEmxUuB1lV73f17IRgU4DbhV4oFbLwaJkh94ch2IMf45KbDeGu+EzrpPhuOkxVcQeC3amQH5L+cArvsC1/ZGzNK7yj+gaC3flhKPt9EXCOFD0nt5i6YgIODZKaitsXww6MEueVeQg2AbZmucwxXt2q237QdhdjC1/nHdU3xASv7Tdc7RXhgtQnWtW4c3siOc4yjvt1qYudYq0DxC+q4wEtwaNfO7KnxUZVm5Tc3/u7obVr3psXU57BmKIPpASXyX/jShJUbTNInpQ9qK2QfMwAKcEnnJUz1B3JJMmLxK5+SkQ6poCUYFtEJWNnk1VtM9YiNZ29XGolAinBbH7blQsi1R1lVT3SdEx8+HWVOyo46fYXtfSY+jKTl34Wv/YLMcEsZ/octdUbq95t84bKq8S2l9r0jtzq2jM5Oi1qprog11NTX47ar26bACAmWB8mzGfsmqX0VsfGPtIvSscfVAUZuE46d7II/wxDcAAk2KQmffutjjeypWb9ZFVBnMeCfU/4GqYVCA6AZPlP9uADtzomyOfey2aoChIrf3i7CF/9BYIDYHFaBdsf4/IoeE7CVZZvPaMqyLS3q9jmVpwz8wSCA2GONbbrWdeOrYmxrfbebrR3HBnRsX2EryYMwdSBYOJAMHEgmDjUBdsP7HG7CZu7rcCYVIyBuODz1lfftGS7dFR2fnFM7HzD8tEf4oI7HmSswOLSMW0WY1VJpph7rw/EBTuvB3ZzuQKRKn8/z1xqUDoGQF2wfD2wlcvNwD5yfbJx6p7qCWqIC/5oSIVjfg+XjuxWV1h2tPp7t0ELLcFlE5q3rDEP2zE3PnZ8jcPoLcnWtHzXjrweMZ1rPCNQ8kZc669dO+wzEhKmCy9wJAhagrvOt5emqVs3v8ByiOU2c1ny3dF6laOwwxqXIeljK2zvmmFZwkAgJbhYfkKyMk7VNgvmSc13LuXZT/aSmhLXB7ui5cZq0hn8viAl+GfZjcqnKqfK38Y/vnarY9coqXHE3uqwOZ/DTTLgoXUekBJc1fQaYwdeVLXN7pelZvSyWx3XoioY+3awy5AWvzJ2jvdsNL0gJZhtsYweYr2gOMSxM6vminRj277Tob9rx8rocQNalLh0HLW8OcpymFuS+kJLMLu+ZZ/yDJGypCEzUmquWHb2O7eqOkWbDtb8g1u+a2c5l/QMgJhgn7wrn0U9Z4ZlYHUi1ASnyMvszzbnmmVCCDXB/X+UmlHbjE5DP0JN8GHrkfKV8cF6WSoATCx4Voy1r/uKgdr56eWWY0p8DyODeQXPfc3GtiYG6fUj82DesjoJ8oywXrk+xwFFzFtWJ1b+rRkifvodccxbVmfYKsaKI01RHi6YMW9ZndLUF/pbdmqL4YWKrOnfq93m/Jw557gnohNmLqtzPsemNYQHxdapK3oPV7fN5ujPv4jZwD0VfQi1sjrp8p38F4+o2sZaxNi1ZmLyEY6AsjpfNnFSr7nG1ITQrlhqMhep2eTm/WBnKZ0ghMNp0s0iqsXu3eb8BL++R2oG7/I5zpUo6bfXHikmH+FoFpzz5B2PrZTOljxGmlNwXsSm05+2VXf5ZG6XozkvqVxixTRoFmydYttcf6dJBOd3iIkaqXxkdnZU95lqj9229EvbFHhSxqJZcJ0qxlb91WYOwS2kM6Dpo/Xfr4nRLLihXNWu/QBTCL7YSW5rPHRn358dpEdHnNAsOKt2XAErfKaJGQSf6Sa3roLPWV97M3L3bYaHBNqPovNXlUqnElkj3fuN+Iq2Sv83y11X3e54iLGCYD0A5oJ5bxd6UjZn1FLlleFOJqQkvOT6lewxuzDkCCLB16Izd01M8bH2X1HNeWUeswtDjiASnCE/Kpe+XtU2Hw0ud8zr4XscXYJIcB/5Ydc176vaxjEvIWZCkE464UMQCc6Q5+WPXsc5KnWCSPC1qHnfT22ref3dKo+r5qQJIsHst5nDF2kuXTIhIqVZCD0WHVSCebBwhIOVRItfA9Q0hJrgzvLcww9XGZ2GfoSaYOcqwBlrjU5DP0JN8Oq+lexCVJHRaehHqAlmn0bGJYbSw9YhJ5ix0JoNE4KCQwsIJg4EE0cvwaU5pbcbqIHynNC67hgAOgn+MLp/tLr7QP6wzJKWOCi0jplUo4/gXd0czNFz++0HB8Svcom58Qs4RyWGPoKdpd+2pwcezCuLM6XmvLqF7UIOfQRPk6cgrlNXvNE3X8lf+sdf4RyVGPoIzou5yC7FKe9KPSWWXHY9lfcXPzF0OsjKbhWbpG7Glz8cf94a/xX3qLTAeTBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgmFrwyKfatUJ7ZywfzCl7WtcSR1U5bDGBiwS3kab3dQqhWtxjMK9i5vMYwjzVOgTrMK7j/ZsZuRIb07Hwe6CX44OKDKrcvjB8wppm6FTmAJzoJ7ttrZu9eKp9/dBzcei3w3YOb6CN4zZtSk74y8GAgUPQRPFpeNCE7WKukBzX6CJ71udQs+TjwYCBQ9BFcGLntxvbIq4EHA4GiU+Wz/MFJg86rSAvwwryVzwAXBFQ+u/yDk86pmpMD2hFQ+WzbSCfxvTUlBvggrvLZl58EmBLgibjKZxBsCgRUPqsGgk2BuPNgCDYFEEwcCCaOOMHfNo5X5E/3PyCAP9wnImrtfxcR9b4/iIh6f3iNf+YnlC8gahDsCzHFbsZsERH1izkiou5+U0TUSx3UjIZgJxAcABAMwQEAwRAcABAcABBMXHD3cyKijheybNbi+SKi7nlLRNQrndSMFihYzCOxpZoLZ3mjolxEVIeIBXhV/sMKFAzMAAQTB4KJA8HEgWDiQDBxIJg4EEwcYYKjw8LCknkHffa41Ox7um53rtclnFE557v8z3Vij3HPtTqqmlyFCX7oVGnpDb4ht/UJk1RUNlhV1m4076ic871Qe1fV5P/hnWt1VFW5ihJcfi//mJPT7pZUbHiKsZ3/zTsq53xXxTFmu6OIc67VUVXlKkrwsTpN6jTP5R21vqQisyNjhXfyrJYlR+Wcb2kBY5sf451rdVRVuYoSvCcx1zbi/3hHlVVM7i19TYfxvJMhR+Wf7+p6KwTkKkdVlavIo+gbdxRwjuj8BHeSPhW1eH+CZXjmW/j8X3byz/VmVBm/cxUleNdmxiru5H27TFax4WnGshvyjso5X9uz/W2Me67VUVXlKkrwpro5VeMSeUeVVVQ+uNXeeQzvqJzzzWpSLsE71+qoqnIV9hU9tUHdlHzeQZ1fpvv+9jDf82BnVL75vhEmU8w519+jqskVV7KIA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSDYheJwozPgDwS7AMHBjj0tPHw0W9qnW0TUUcY2/2+9Duf+9ZLxH49OguAgJ6txwal7TiyttY8tbOS4Er69cmQcq37ZWD/neksIDnKWPL6f2dlSC2OOernzOjNWca+j+mXAWMayITjIqZzU4OEptqXPSz823jE2vJHE1eqX9gsYuwDBQU7+5arsJ1csfVZS/cCpmT0ZqzrOql9eHcfYXggOciY1LS3++/ylYWuq3mns+DX8YOV7Uaz6ZcuDJ2+0rWt0gvwJLcHFre8L721b2iL5j01zGPvqL/fH5f3r5f2HHp3JfTqk8YSW4Jss7Wp0BjoCwcQJRcEhBQQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJs7/A0ZodobFaD/UAAAAAElFTkSuQmCC\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%%R\n", + "plot(cars)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/journal-de-bord/tutorial.ipynb b/journal-de-bord/tutorial.ipynb index 82cab93eb151c107aff9a8c43aafa39fc9b1129c..0bab2105459e147f2407c58fb3a13d6498d93635 100644 --- a/journal-de-bord/tutorial.ipynb +++ b/journal-de-bord/tutorial.ipynb @@ -82,7 +82,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -91,7 +91,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -100,14 +100,14 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 7, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAD8CAYAAACVZ8iyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvAOZPmwAAEGRJREFUeJzt3X+s3XV9x/Hna1TY/LFQ1gvDtu5WU7eBUSQdspEtKBMKGIvJTEqMNI6kZoFNF/ejaDKchgQ3lY2EsVTpKJuDMcXRSCd2nZnxD34UhoVaGXfQwaUdrUPRjQQF3/vjfBoP7bm395x7e889+HwkJ+d83+fzPd/PJ5/b+7rfH+fbVBWSpJ9sPzXsDkiShs8wkCQZBpIkw0CShGEgScIwkCRhGEiSMAwkSRgGkiRg0bA7MJ0lS5bU+Pj4sLshSSPlvvvu+3ZVjfWzzoIOg/HxcXbs2DHsbkjSSEnyX/2u42EiSZJhIEkyDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCSxwL+BLC1k4xvuGMp291x94VC2q5c29wwkSYaBJMkwkCRhGEiSMAwkSRgGkiS8tFQjbliXd0ovNe4ZSJIMA0mSYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSSJGYRBkuVJvppkd5JdST7Q6h9N8mSSB9rjgq51rkgykeThJOd11Ve32kSSDUdnSJKkfs3kdhTPAx+qqvuTvAq4L8m29t41VfXJ7sZJTgHWAqcCrwb+Jcnr29vXAW8HJoF7k2ypqm/OxUAkSYM7YhhU1T5gX3v9/SS7gaXTrLIGuKWqngMeSzIBnNHem6iqRwGS3NLaGgaSNGR9nTNIMg68Gbi7lS5PsjPJpiSLW20p8ETXapOtNlVdkjRkMw6DJK8EvgB8sKq+B1wPvA44jc6ew6cONu2xek1TP3Q765PsSLLjwIEDM+2eJGkWZhQGSV5GJwg+V1W3AVTVU1X1QlX9CPgMPz4UNAks71p9GbB3mvqLVNXGqlpVVavGxsb6HY8kaQAzuZoowA3A7qr6dFf95K5m7wIeaq+3AGuTHJdkBbASuAe4F1iZZEWSY+mcZN4yN8OQJM3GTK4mOgt4L/Bgkgda7cPAxUlOo3OoZw/wfoCq2pXkVjonhp8HLquqFwCSXA7cCRwDbKqqXXM4FknSgGZyNdHX6X28f+s061wFXNWjvnW69SRJw+E3kCVJhoEkyTCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJKYQRgkWZ7kq0l2J9mV5AOtfkKSbUkeac+LWz1Jrk0ykWRnktO7Pmtda/9IknVHb1iSpH7MZM/geeBDVfXLwJnAZUlOATYA26tqJbC9LQOcD6xsj/XA9dAJD+BK4C3AGcCVBwNEkjRcRwyDqtpXVfe3198HdgNLgTXA5tZsM3BRe70GuKk67gKOT3IycB6wraqerqrvANuA1XM6GknSQPo6Z5BkHHgzcDdwUlXtg05gACe2ZkuBJ7pWm2y1qeqSpCGbcRgkeSXwBeCDVfW96Zr2qNU09UO3sz7JjiQ7Dhw4MNPuSZJmYUZhkORldILgc1V1Wys/1Q7/0J73t/oksLxr9WXA3mnqL1JVG6tqVVWtGhsb62cskqQBzeRqogA3ALur6tNdb20BDl4RtA64vat+Sbuq6EzgmXYY6U7g3CSL24njc1tNkjRki2bQ5izgvcCDSR5otQ8DVwO3JrkUeBx4d3tvK3ABMAE8C7wPoKqeTvJx4N7W7mNV9fScjEKSNCtHDIOq+jq9j/cDnNOjfQGXTfFZm4BN/XRQknT0+Q1kSZJhIEkyDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEliZv/TmaQFZHzDHUPb9p6rLxzatnV0uWcgSTIMJEmGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkiRmEQZJNSfYneair9tEkTyZ5oD0u6HrviiQTSR5Ocl5XfXWrTSTZMPdDkSQNaiZ7BjcCq3vUr6mq09pjK0CSU4C1wKltnb9KckySY4DrgPOBU4CLW1tJ0gJwxLuWVtXXkozP8PPWALdU1XPAY0kmgDPaexNV9ShAklta22/23WMtSMO8k6ak2ZvNOYPLk+xsh5EWt9pS4ImuNpOtNlVdkrQADBoG1wOvA04D9gGfavX0aFvT1A+TZH2SHUl2HDhwYMDuSZL6MVAYVNVTVfVCVf0I+Aw/PhQ0CSzvaroM2DtNvddnb6yqVVW1amxsbJDuSZL6NFAYJDm5a/FdwMErjbYAa5Mcl2QFsBK4B7gXWJlkRZJj6Zxk3jJ4tyVJc+mIJ5CT3AycDSxJMglcCZyd5DQ6h3r2AO8HqKpdSW6lc2L4eeCyqnqhfc7lwJ3AMcCmqto156ORJA1kJlcTXdyjfMM07a8CrupR3wps7at3kqR54TeQJUmGgSTJMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEnMIAySbEqyP8lDXbUTkmxL8kh7XtzqSXJtkokkO5Oc3rXOutb+kSTrjs5wJEmDmMmewY3A6kNqG4DtVbUS2N6WAc4HVrbHeuB66IQHcCXwFuAM4MqDASJJGr4jhkFVfQ14+pDyGmBze70ZuKirflN13AUcn+Rk4DxgW1U9XVXfAbZxeMBIkoZk0HMGJ1XVPoD2fGKrLwWe6Go32WpT1Q+TZH2SHUl2HDhwYMDuSZL6MdcnkNOjVtPUDy9WbayqVVW1amxsbE47J0nqbdAweKod/qE972/1SWB5V7tlwN5p6pKkBWDQMNgCHLwiaB1we1f9knZV0ZnAM+0w0p3AuUkWtxPH57aaJGkBWHSkBkluBs4GliSZpHNV0NXArUkuBR4H3t2abwUuACaAZ4H3AVTV00k+Dtzb2n2sqg49KS1JGpIjhkFVXTzFW+f0aFvAZVN8ziZgU1+9kyTNC7+BLEkyDCRJhoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJEoaBJAnDQJKEYSBJwjCQJGEYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kSsGjYHZA0OsY33DGU7e65+sKhbPcniXsGkqTZhUGSPUkeTPJAkh2tdkKSbUkeac+LWz1Jrk0ykWRnktPnYgCSpNmbiz2Dt1bVaVW1qi1vALZX1Upge1sGOB9Y2R7rgevnYNuSpDlwNA4TrQE2t9ebgYu66jdVx13A8UlOPgrblyT1abZhUMBXktyXZH2rnVRV+wDa84mtvhR4omvdyVaTJA3ZbK8mOquq9iY5EdiW5FvTtE2PWh3WqBMq6wFe85rXzLJ7P3mGdbWHpNE2qz2DqtrbnvcDXwTOAJ46ePinPe9vzSeB5V2rLwP29vjMjVW1qqpWjY2NzaZ7kqQZGjgMkrwiyasOvgbOBR4CtgDrWrN1wO3t9RbgknZV0ZnAMwcPJ0mShms2h4lOAr6Y5ODn/H1VfTnJvcCtSS4FHgfe3dpvBS4AJoBngffNYtuSpDk0cBhU1aPAm3rU/wc4p0e9gMsG3Z4k6ejxG8iSJMNAkmQYSJIwDCRJGAaSJAwDSRKGgSQJw0CShGEgScIwkCRhGEiSMAwkSRgGkiQMA0kShoEkCcNAkoRhIEnCMJAkYRhIkjAMJEkYBpIkDANJErBo2B2QpCMZ33DH0La95+oLh7bt+eSegSTJMJAkGQaSJDxncFQM8/imJA3CPQNJ0vyHQZLVSR5OMpFkw3xvX5J0uHkNgyTHANcB5wOnABcnOWU++yBJOtx87xmcAUxU1aNV9QPgFmDNPPdBknSI+T6BvBR4omt5EnjL0dqYJ3Ilzdawfo/M95fd5jsM0qNWL2qQrAfWt8X/TfLwNJ+3BPj2HPVtIXFco8VxjZaRGFc+0fcq3eP6hX5Xnu8wmASWdy0vA/Z2N6iqjcDGmXxYkh1VtWruurcwOK7R4rhGi+Pqbb7PGdwLrEyyIsmxwFpgyzz3QZJ0iHndM6iq55NcDtwJHANsqqpd89kHSdLh5v0byFW1Fdg6Rx83o8NJI8hxjRbHNVocVw+pqiO3kiS9pHk7CknSaIVBkmOS/HuSL7XlFUnuTvJIkn9oJ6VHTpLjk3w+ybeS7E7yq0lOSLKtjW1bksXD7me/kvx+kl1JHkpyc5KfHsU5S7Ipyf4kD3XVes5POq5tt1vZmeT04fV8elOM68/bz+HOJF9McnzXe1e0cT2c5Lzh9PrIeo2r670/SFJJlrTlkZ6vVv/dNie7kvxZV72v+RqpMAA+AOzuWv4EcE1VrQS+A1w6lF7N3l8CX66qXwLeRGeMG4DtbWzb2/LISLIU+D1gVVW9gc4FA2sZzTm7EVh9SG2q+TkfWNke64Hr56mPg7iRw8e1DXhDVb0R+A/gCoB225i1wKltnb9qt5dZiG7k8HGRZDnwduDxrvJIz1eSt9K5i8Mbq+pU4JOt3vd8jUwYJFkGXAh8ti0HeBvw+dZkM3DRcHo3uCQ/C/wGcANAVf2gqr5LZ4I3t2YjOTY6Fyj8TJJFwMuBfYzgnFXV14CnDylPNT9rgJuq4y7g+CQnz09P+9NrXFX1lap6vi3eRee7QNAZ1y1V9VxVPQZM0Lm9zIIzxXwBXAP8ES/+outIzxfwO8DVVfVca7O/1fuer5EJA+Av6Ezkj9ryzwHf7frBnaRzu4tR81rgAPA37RDYZ5O8AjipqvYBtOcTh9nJflXVk3T+SnmcTgg8A9zHS2POYOr56XXLlVEd428D/9xej/S4krwTeLKqvnHIWyM9LuD1wK+3Q6//luRXWr3vcY1EGCR5B7C/qu7rLvdoOoqXRi0CTgeur6o3A//HiB0S6qUdQ18DrABeDbyCzi75oUZxzqbzkvi5TPIR4HngcwdLPZqNxLiSvBz4CPAnvd7uURuJcTWLgMXAmcAfAre2oyZ9j2skwgA4C3hnkj107nT6Njp7Cse3QxDQ49YWI2ISmKyqu9vy5+mEw1MHd1fb8/4p1l+ofhN4rKoOVNUPgduAX+OlMWcw9fwc8ZYrC12SdcA7gPfUj689H+VxvY7OHyXfaL9DlgH3J/l5Rntc0On/be0w1z10jpwsYYBxjUQYVNUVVbWsqsbpnBT516p6D/BV4Ldas3XA7UPq4sCq6r+BJ5L8YiudA3yTzm061rXaKI7tceDMJC9vf6kcHNfIz1kz1fxsAS5pV6mcCTxz8HDSKEiyGvhj4J1V9WzXW1uAtUmOS7KCzgnXe4bRx35V1YNVdWJVjbffIZPA6e3f3kjPF/BPdP44JsnrgWPp3Kyu//mqqpF6AGcDX2qvX9sGOAH8I3DcsPs34JhOA3YAO9vkLqZzTmQ78Eh7PmHY/RxgXH8KfAt4CPhb4LhRnDPgZjrnPX5I5xfJpVPND53d8+uA/wQepHM11dDH0Me4Jugca36gPf66q/1H2rgeBs4fdv/7Gdch7+8BlrxE5utY4O/av7H7gbcNOl9+A1mSNBqHiSRJR5dhIEkyDCRJhoEkCcNAkoRhIEnCMJAkYRhIkoD/B8IGXPTxqh8eAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjYAAAGdCAYAAAABhTmFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAkAElEQVR4nO3df1BVdf7H8dcNkNSBsyLB5SYZzVpZuNZig5ibloq6Els2q+VGNutYTf6I1FJrm9yd/Yq5k7Ybk2nTZKmt/aPWri6JW1GOoYZR6prZhqXJDWvxXjC6kHy+fzSduiAkP+zih+dj5s54z3lz/dzPuMuzw70XjzHGCAAAwALnRXoBAAAAnYWwAQAA1iBsAACANQgbAABgDcIGAABYg7ABAADWIGwAAIA1CBsAAGCN6Egv4GxpbGzUsWPHFBcXJ4/HE+nlAACAM2CMUU1NjXw+n847r+3XX6wNm2PHjik1NTXSywAAAO1w5MgR9evXr81fZ23YxMXFSfp2Y+Lj4yO8GgAAcCaCwaBSU1Pd7+NtZW3YfPfjp/j4eMIGAIBzTHtfRsKLhwEAgDUIGwAAYA3CBgAAWIOwAQAA1iBsAACANQgbAABgDcIGAABYg7ABAADWIGwAAIA1CBsAAGANwgYAAFiDsAEAANYgbAAAgDUIGwAAYI3oSC8AQORdvGBzpJfQZoeXTIj0EgB0QVyxAQAA1iBsAACANQgbAABgDcIGAABYg7ABAADWIGwAAIA1CBsAAGANwgYAAFiDsAEAANbgk4cBnJP4tGQAp8MVGwAAYA3CBgAAWIOwAQAA1iBsAACANQgbAABgDcIGAABYg7ABAADWIGwAAIA1CBsAAGANwgYAAFiDsAEAANYgbAAAgDUIGwAAYA3CBgAAWIOwAQAA1iBsAACANQgbAABgDcIGAABYg7ABAADWIGwAAIA12hQ2BQUFuuaaaxQXF6ekpCTddNNNOnjwYNjMnXfeKY/HE3YbOnRo2EwoFNKsWbOUmJio3r17Kzc3V0ePHg2bqa6uVl5enhzHkeM4ysvL04kTJ9r3LAEAQLfQprApKSnRjBkzVFpaquLiYn3zzTfKzs7WyZMnw+bGjRunyspK97Zly5aw8/n5+dq4caPWr1+v7du3q7a2Vjk5OTp16pQ7M2XKFJWXl6uoqEhFRUUqLy9XXl5eB54qAACwXXRbhouKisLuP/fcc0pKSlJZWZmuu+4693hsbKy8Xu9pHyMQCOjZZ5/VmjVrNHr0aEnS2rVrlZqaqm3btmns2LE6cOCAioqKVFpaqszMTEnSM888o6ysLB08eFCXXXZZm54kAADoHjr0GptAICBJSkhICDv+xhtvKCkpSZdeeqmmT5+uqqoq91xZWZkaGhqUnZ3tHvP5fEpPT9eOHTskSW+//bYcx3GjRpKGDh0qx3HcmaZCoZCCwWDYDQAAdC/tDhtjjObMmaPhw4crPT3dPT5+/HitW7dOr732mh5//HHt3r1bN9xwg0KhkCTJ7/erR48e6tOnT9jjJScny+/3uzNJSUnN/s6kpCR3pqmCggL39TiO4yg1NbW9Tw0AAJyj2vSjqB+aOXOm3n//fW3fvj3s+OTJk90/p6ena8iQIerfv782b96siRMntvh4xhh5PB73/g//3NLMDy1cuFBz5sxx7weDQeIGAIBupl1XbGbNmqVXXnlFr7/+uvr169fqbEpKivr3769Dhw5Jkrxer+rr61VdXR02V1VVpeTkZHfm888/b/ZYx48fd2eaio2NVXx8fNgNAAB0L20KG2OMZs6cqQ0bNui1115TWlraj37Nl19+qSNHjiglJUWSlJGRoZiYGBUXF7szlZWV2rdvn4YNGyZJysrKUiAQ0K5du9yZnTt3KhAIuDMAAABNtelHUTNmzNCLL76ol19+WXFxce7rXRzHUc+ePVVbW6tFixbplltuUUpKig4fPqyHHnpIiYmJuvnmm93ZadOmae7cuerbt68SEhI0b948DRo0yH2X1MCBAzVu3DhNnz5dK1eulCTdddddysnJ4R1RAACgRW0KmxUrVkiSRo4cGXb8ueee05133qmoqCjt3btXL7zwgk6cOKGUlBRdf/31eumllxQXF+fOL1++XNHR0Zo0aZLq6uo0atQorV69WlFRUe7MunXrNHv2bPfdU7m5uSosLGzv8wQAAN2AxxhjIr2IsyEYDMpxHAUCAV5vA/yIixdsjvQSuoXDSyZEeglAl9fR79/8rigAAGANwgYAAFiDsAEAANYgbAAAgDUIGwAAYA3CBgAAWIOwAQAA1iBsAACANQgbAABgDcIGAABYg7ABAADWIGwAAIA1CBsAAGANwgYAAFiDsAEAANYgbAAAgDUIGwAAYA3CBgAAWIOwAQAA1iBsAACANQgbAABgDcIGAABYg7ABAADWIGwAAIA1CBsAAGANwgYAAFiDsAEAANYgbAAAgDUIGwAAYA3CBgAAWIOwAQAA1iBsAACANQgbAABgDcIGAABYg7ABAADWIGwAAIA1CBsAAGANwgYAAFiDsAEAANYgbAAAgDUIGwAAYA3CBgAAWIOwAQAA1iBsAACANQgbAABgDcIGAABYg7ABAADWIGwAAIA1CBsAAGANwgYAAFiDsAEAANYgbAAAgDXaFDYFBQW65pprFBcXp6SkJN100006ePBg2IwxRosWLZLP51PPnj01cuRI7d+/P2wmFApp1qxZSkxMVO/evZWbm6ujR4+GzVRXVysvL0+O48hxHOXl5enEiRPte5YAAKBbaFPYlJSUaMaMGSotLVVxcbG++eYbZWdn6+TJk+7M0qVLtWzZMhUWFmr37t3yer0aM2aMampq3Jn8/Hxt3LhR69ev1/bt21VbW6ucnBydOnXKnZkyZYrKy8tVVFSkoqIilZeXKy8vrxOeMgAAsJXHGGPa+8XHjx9XUlKSSkpKdN1118kYI5/Pp/z8fM2fP1/St1dnkpOT9dhjj+nuu+9WIBDQBRdcoDVr1mjy5MmSpGPHjik1NVVbtmzR2LFjdeDAAV1xxRUqLS1VZmamJKm0tFRZWVn64IMPdNlll/3o2oLBoBzHUSAQUHx8fHufItAtXLxgc6SX0C0cXjIh0ksAuryOfv/u0GtsAoGAJCkhIUGSVFFRIb/fr+zsbHcmNjZWI0aM0I4dOyRJZWVlamhoCJvx+XxKT093Z95++205juNGjSQNHTpUjuO4M02FQiEFg8GwGwAA6F7aHTbGGM2ZM0fDhw9Xenq6JMnv90uSkpOTw2aTk5Pdc36/Xz169FCfPn1anUlKSmr2dyYlJbkzTRUUFLivx3EcR6mpqe19agAA4BzV7rCZOXOm3n//ff39739vds7j8YTdN8Y0O9ZU05nTzbf2OAsXLlQgEHBvR44cOZOnAQAALNKusJk1a5ZeeeUVvf766+rXr5973Ov1SlKzqypVVVXuVRyv16v6+npVV1e3OvP55583+3uPHz/e7GrQd2JjYxUfHx92AwAA3UubwsYYo5kzZ2rDhg167bXXlJaWFnY+LS1NXq9XxcXF7rH6+nqVlJRo2LBhkqSMjAzFxMSEzVRWVmrfvn3uTFZWlgKBgHbt2uXO7Ny5U4FAwJ0BAABoKrotwzNmzNCLL76ol19+WXFxce6VGcdx1LNnT3k8HuXn52vx4sUaMGCABgwYoMWLF6tXr16aMmWKOztt2jTNnTtXffv2VUJCgubNm6dBgwZp9OjRkqSBAwdq3Lhxmj59ulauXClJuuuuu5STk3NG74gCAADdU5vCZsWKFZKkkSNHhh1/7rnndOedd0qSHnzwQdXV1enee+9VdXW1MjMztXXrVsXFxbnzy5cvV3R0tCZNmqS6ujqNGjVKq1evVlRUlDuzbt06zZ492333VG5urgoLC9vzHAEAQDfRoc+x6cr4HBvgzPE5Nj8NPscG+HER/RwbAACAroSwAQAA1iBsAACANQgbAABgDcIGAABYg7ABAADWIGwAAIA1CBsAAGANwgYAAFiDsAEAANYgbAAAgDUIGwAAYA3CBgAAWIOwAQAA1iBsAACANQgbAABgDcIGAABYg7ABAADWIGwAAIA1CBsAAGANwgYAAFiDsAEAANYgbAAAgDUIGwAAYA3CBgAAWIOwAQAA1iBsAACANQgbAABgDcIGAABYg7ABAADWIGwAAIA1CBsAAGANwgYAAFiDsAEAANYgbAAAgDUIGwAAYA3CBgAAWIOwAQAA1iBsAACANQgbAABgDcIGAABYg7ABAADWiI70AgDbXLxgc6SXAADdFldsAACANQgbAABgDcIGAABYg7ABAADW4MXDAPATORdfWH54yYRILwFoE67YAAAAaxA2AADAGoQNAACwBmEDAACsQdgAAABrtDls3nzzTd14443y+XzyeDzatGlT2Pk777xTHo8n7DZ06NCwmVAopFmzZikxMVG9e/dWbm6ujh49GjZTXV2tvLw8OY4jx3GUl5enEydOtPkJAgCA7qPNYXPy5EkNHjxYhYWFLc6MGzdOlZWV7m3Lli1h5/Pz87Vx40atX79e27dvV21trXJycnTq1Cl3ZsqUKSovL1dRUZGKiopUXl6uvLy8ti4XAAB0I23+HJvx48dr/Pjxrc7ExsbK6/We9lwgENCzzz6rNWvWaPTo0ZKktWvXKjU1Vdu2bdPYsWN14MABFRUVqbS0VJmZmZKkZ555RllZWTp48KAuu+yyti4bAAB0A2flNTZvvPGGkpKSdOmll2r69Omqqqpyz5WVlamhoUHZ2dnuMZ/Pp/T0dO3YsUOS9Pbbb8txHDdqJGno0KFyHMedaSoUCikYDIbdAABA99LpYTN+/HitW7dOr732mh5//HHt3r1bN9xwg0KhkCTJ7/erR48e6tOnT9jXJScny+/3uzNJSUnNHjspKcmdaaqgoMB9PY7jOEpNTe3kZwYAALq6Tv+VCpMnT3b/nJ6eriFDhqh///7avHmzJk6c2OLXGWPk8Xjc+z/8c0szP7Rw4ULNmTPHvR8MBokbAAC6mbP+du+UlBT1799fhw4dkiR5vV7V19eruro6bK6qqkrJycnuzOeff97ssY4fP+7ONBUbG6v4+PiwGwAA6F7Oeth8+eWXOnLkiFJSUiRJGRkZiomJUXFxsTtTWVmpffv2adiwYZKkrKwsBQIB7dq1y53ZuXOnAoGAOwMAANBUm38UVVtbq48++si9X1FRofLyciUkJCghIUGLFi3SLbfcopSUFB0+fFgPPfSQEhMTdfPNN0uSHMfRtGnTNHfuXPXt21cJCQmaN2+eBg0a5L5LauDAgRo3bpymT5+ulStXSpLuuusu5eTk8I4oAADQojaHzTvvvKPrr7/evf/d61qmTp2qFStWaO/evXrhhRd04sQJpaSk6Prrr9dLL72kuLg492uWL1+u6OhoTZo0SXV1dRo1apRWr16tqKgod2bdunWaPXu2++6p3NzcVj87BwAAwGOMMZFexNkQDAblOI4CgQCvt8FP6uIFmyO9BKDTHF4yIdJLQDfT0e/f/K4oAABgDcIGAABYg7ABAADWIGwAAIA1CBsAAGANwgYAAFiDsAEAANYgbAAAgDUIGwAAYA3CBgAAWIOwAQAA1iBsAACANQgbAABgDcIGAABYg7ABAADWIGwAAIA1CBsAAGANwgYAAFiDsAEAANYgbAAAgDUIGwAAYA3CBgAAWIOwAQAA1iBsAACANQgbAABgDcIGAABYg7ABAADWIGwAAIA1CBsAAGANwgYAAFiDsAEAANYgbAAAgDUIGwAAYA3CBgAAWIOwAQAA1iBsAACANQgbAABgDcIGAABYg7ABAADWIGwAAIA1CBsAAGANwgYAAFiDsAEAANYgbAAAgDUIGwAAYA3CBgAAWIOwAQAA1iBsAACANQgbAABgDcIGAABYg7ABAADWIGwAAIA12hw2b775pm688Ub5fD55PB5t2rQp7LwxRosWLZLP51PPnj01cuRI7d+/P2wmFApp1qxZSkxMVO/evZWbm6ujR4+GzVRXVysvL0+O48hxHOXl5enEiRNtfoIAAKD7aHPYnDx5UoMHD1ZhYeFpzy9dulTLli1TYWGhdu/eLa/XqzFjxqimpsadyc/P18aNG7V+/Xpt375dtbW1ysnJ0alTp9yZKVOmqLy8XEVFRSoqKlJ5ebny8vLa8RQBAEB34THGmHZ/scejjRs36qabbpL07dUan8+n/Px8zZ8/X9K3V2eSk5P12GOP6e6771YgENAFF1ygNWvWaPLkyZKkY8eOKTU1VVu2bNHYsWN14MABXXHFFSotLVVmZqYkqbS0VFlZWfrggw902WWX/ejagsGgHMdRIBBQfHx8e58i0GYXL9gc6SUAnebwkgmRXgK6mY5+/+7U19hUVFTI7/crOzvbPRYbG6sRI0Zox44dkqSysjI1NDSEzfh8PqWnp7szb7/9thzHcaNGkoYOHSrHcdyZpkKhkILBYNgNAAB0L50aNn6/X5KUnJwcdjw5Odk95/f71aNHD/Xp06fVmaSkpGaPn5SU5M40VVBQ4L4ex3Ecpaamdvj5AACAc8tZeVeUx+MJu2+MaXasqaYzp5tv7XEWLlyoQCDg3o4cOdKOlQMAgHNZp4aN1+uVpGZXVaqqqtyrOF6vV/X19aqurm515vPPP2/2+MePH292Neg7sbGxio+PD7sBAIDupVPDJi0tTV6vV8XFxe6x+vp6lZSUaNiwYZKkjIwMxcTEhM1UVlZq37597kxWVpYCgYB27drlzuzcuVOBQMCdAQAAaCq6rV9QW1urjz76yL1fUVGh8vJyJSQk6KKLLlJ+fr4WL16sAQMGaMCAAVq8eLF69eqlKVOmSJIcx9G0adM0d+5c9e3bVwkJCZo3b54GDRqk0aNHS5IGDhyocePGafr06Vq5cqUk6a677lJOTs4ZvSMKAAB0T20Om3feeUfXX3+9e3/OnDmSpKlTp2r16tV68MEHVVdXp3vvvVfV1dXKzMzU1q1bFRcX537N8uXLFR0drUmTJqmurk6jRo3S6tWrFRUV5c6sW7dOs2fPdt89lZub2+Jn5wAAAEgd/BybrozPsUGk8Dk2sAmfY4OfWpf6HBsAAIBIImwAAIA1CBsAAGANwgYAAFiDsAEAANYgbAAAgDUIGwAAYA3CBgAAWIOwAQAA1iBsAACANQgbAABgDcIGAABYg7ABAADWIGwAAIA1CBsAAGANwgYAAFiDsAEAANYgbAAAgDUIGwAAYA3CBgAAWIOwAQAA1iBsAACANQgbAABgDcIGAABYg7ABAADWIGwAAIA1CBsAAGANwgYAAFiDsAEAANYgbAAAgDUIGwAAYA3CBgAAWIOwAQAA1iBsAACANQgbAABgDcIGAABYg7ABAADWIGwAAIA1CBsAAGANwgYAAFiDsAEAANYgbAAAgDUIGwAAYA3CBgAAWIOwAQAA1iBsAACANQgbAABgDcIGAABYIzrSCwBac/GCzZFeAgDgHMIVGwAAYA3CBgAAWIMfRQEAWnQu/jj48JIJkV4CIogrNgAAwBqdHjaLFi2Sx+MJu3m9Xve8MUaLFi2Sz+dTz549NXLkSO3fvz/sMUKhkGbNmqXExET17t1bubm5Onr0aGcvFQAAWOasXLG58sorVVlZ6d727t3rnlu6dKmWLVumwsJC7d69W16vV2PGjFFNTY07k5+fr40bN2r9+vXavn27amtrlZOTo1OnTp2N5QIAAEucldfYREdHh12l+Y4xRk888YQefvhhTZw4UZL0/PPPKzk5WS+++KLuvvtuBQIBPfvss1qzZo1Gjx4tSVq7dq1SU1O1bds2jR079mwsGQAAWOCsXLE5dOiQfD6f0tLSdOutt+rjjz+WJFVUVMjv9ys7O9udjY2N1YgRI7Rjxw5JUllZmRoaGsJmfD6f0tPT3ZnTCYVCCgaDYTcAANC9dHrYZGZm6oUXXtCrr76qZ555Rn6/X8OGDdOXX34pv98vSUpOTg77muTkZPec3+9Xjx491KdPnxZnTqegoECO47i31NTUTn5mAACgq+v0sBk/frxuueUWDRo0SKNHj9bmzd++VfD55593ZzweT9jXGGOaHWvqx2YWLlyoQCDg3o4cOdKBZwEAAM5FZ/3t3r1799agQYN06NAh93U3Ta+8VFVVuVdxvF6v6uvrVV1d3eLM6cTGxio+Pj7sBgAAupezHjahUEgHDhxQSkqK0tLS5PV6VVxc7J6vr69XSUmJhg0bJknKyMhQTExM2ExlZaX27dvnzgAAAJxOp78rat68ebrxxht10UUXqaqqSn/+858VDAY1depUeTwe5efna/HixRowYIAGDBigxYsXq1evXpoyZYokyXEcTZs2TXPnzlXfvn2VkJCgefPmuT/aAgAAaEmnh83Ro0d122236YsvvtAFF1ygoUOHqrS0VP3795ckPfjgg6qrq9O9996r6upqZWZmauvWrYqLi3MfY/ny5YqOjtakSZNUV1enUaNGafXq1YqKiurs5QIAAIt4jDEm0os4G4LBoBzHUSAQ4PU257Bz8ffUAIgsflfUua2j37/5XVEAAMAahA0AALAGYQMAAKxB2AAAAGsQNgAAwBqEDQAAsAZhAwAArEHYAAAAaxA2AADAGoQNAACwBmEDAACsQdgAAABrEDYAAMAahA0AALAGYQMAAKxB2AAAAGsQNgAAwBqEDQAAsAZhAwAArEHYAAAAaxA2AADAGoQNAACwBmEDAACsQdgAAABrEDYAAMAahA0AALAGYQMAAKxB2AAAAGsQNgAAwBqEDQAAsAZhAwAArEHYAAAAaxA2AADAGoQNAACwBmEDAACsQdgAAABrEDYAAMAahA0AALAGYQMAAKxB2AAAAGsQNgAAwBqEDQAAsAZhAwAArBEd6QXgp3Pxgs2RXgIAAGcVV2wAAIA1uGIDALDKuXp1+vCSCZFeghW4YgMAAKxB2AAAAGsQNgAAwBqEDQAAsAZhAwAArEHYAAAAa3T5sHnqqaeUlpam888/XxkZGXrrrbcivSQAANBFdemweemll5Sfn6+HH35Y7777rn71q19p/Pjx+vTTTyO9NAAA0AV5jDEm0otoSWZmpn75y19qxYoV7rGBAwfqpptuUkFBQatfGwwG5TiOAoGA4uPjz/ZSzwnn6odWAQC6prPxoYId/f7dZT95uL6+XmVlZVqwYEHY8ezsbO3YsaPZfCgUUigUcu8HAgFJ327Q2ZD+6Ktn5XEBADhXnI3vsd89Znuvu3TZsPniiy906tQpJScnhx1PTk6W3+9vNl9QUKA//vGPzY6npqaetTUCANCdOU+cvceuqamR4zht/rouGzbf8Xg8YfeNMc2OSdLChQs1Z84c935jY6P+97//qW/fvqedDwaDSk1N1ZEjR/hRVTuwfx3D/nUM+9cx7F/HsH8d82P7Z4xRTU2NfD5fux6/y4ZNYmKioqKiml2dqaqqanYVR5JiY2MVGxsbduxnP/vZj/498fHx/MPsAPavY9i/jmH/Oob96xj2r2Na27/2XKn5Tpd9V1SPHj2UkZGh4uLisOPFxcUaNmxYhFYFAAC6si57xUaS5syZo7y8PA0ZMkRZWVlatWqVPv30U91zzz2RXhoAAOiCunTYTJ48WV9++aX+9Kc/qbKyUunp6dqyZYv69+/f4ceOjY3Vo48+2uzHVzgz7F/HsH8dw/51DPvXMexfx5zt/evSn2MDAADQFl32NTYAAABtRdgAAABrEDYAAMAahA0AALBGtwqbgoICeTwe5efnu8eMMVq0aJF8Pp969uypkSNHav/+/ZFbZBfz2Wef6fbbb1ffvn3Vq1cvXXXVVSorK3PPs38t++abb/SHP/xBaWlp6tmzpy655BL96U9/UmNjozvD/n3vzTff1I033iifzyePx6NNmzaFnT+TvQqFQpo1a5YSExPVu3dv5ebm6ujRoz/hs4ic1vavoaFB8+fP16BBg9S7d2/5fD7dcccdOnbsWNhjsH8t//v7obvvvlsej0dPPPFE2HH2r/X9O3DggHJzc+U4juLi4jR06FB9+umn7vnO2r9uEza7d+/WqlWr9Itf/CLs+NKlS7Vs2TIVFhZq9+7d8nq9GjNmjGpqaiK00q6jurpa1157rWJiYvSvf/1L//nPf/T444+HfaIz+9eyxx57TE8//bQKCwt14MABLV26VH/5y1/05JNPujPs3/dOnjypwYMHq7Cw8LTnz2Sv8vPztXHjRq1fv17bt29XbW2tcnJydOrUqZ/qaURMa/v31Vdfac+ePXrkkUe0Z88ebdiwQR9++KFyc3PD5ti/lv/9fWfTpk3auXPnaT/un/1ref/++9//avjw4br88sv1xhtv6L333tMjjzyi888/353ptP0z3UBNTY0ZMGCAKS4uNiNGjDD33XefMcaYxsZG4/V6zZIlS9zZr7/+2jiOY55++ukIrbbrmD9/vhk+fHiL59m/1k2YMMH8/ve/Dzs2ceJEc/vttxtj2L/WSDIbN25075/JXp04ccLExMSY9evXuzOfffaZOe+880xRUdFPtvauoOn+nc6uXbuMJPPJJ58YY9i/H2pp/44ePWouvPBCs2/fPtO/f3+zfPly9xz7973T7d/kyZPd/+87nc7cv25xxWbGjBmaMGGCRo8eHXa8oqJCfr9f2dnZ7rHY2FiNGDFCO3bs+KmX2eW88sorGjJkiH77298qKSlJV199tZ555hn3PPvXuuHDh+vf//63PvzwQ0nSe++9p+3bt+vXv/61JPavLc5kr8rKytTQ0BA24/P5lJ6ezn6eRiAQkMfjca/Asn+ta2xsVF5enh544AFdeeWVzc6zfy1rbGzU5s2bdemll2rs2LFKSkpSZmZm2I+rOnP/rA+b9evXa8+ePSooKGh27rtfsNn0l2omJyc3++Wb3dHHH3+sFStWaMCAAXr11Vd1zz33aPbs2XrhhRcksX8/Zv78+brtttt0+eWXKyYmRldffbXy8/N12223SWL/2uJM9srv96tHjx7q06dPizP41tdff60FCxZoypQp7i8hZP9a99hjjyk6OlqzZ88+7Xn2r2VVVVWqra3VkiVLNG7cOG3dulU333yzJk6cqJKSEkmdu39d+lcqdNSRI0d03333aevWrWE/x2vK4/GE3TfGNDvWHTU2NmrIkCFavHixJOnqq6/W/v37tWLFCt1xxx3uHPt3ei+99JLWrl2rF198UVdeeaXKy8uVn58vn8+nqVOnunPs35lrz16xn+EaGhp06623qrGxUU899dSPzrN/315N+Otf/6o9e/a0eS/YP7lvmPjNb36j+++/X5J01VVXaceOHXr66ac1YsSIFr+2Pftn9RWbsrIyVVVVKSMjQ9HR0YqOjlZJSYn+9re/KTo62v2vv6Y1WFVV1ey/DLujlJQUXXHFFWHHBg4c6L6K3ev1SmL/WvLAAw9owYIFuvXWWzVo0CDl5eXp/vvvd68esn9n7kz2yuv1qr6+XtXV1S3OdHcNDQ2aNGmSKioqVFxc7F6tkdi/1rz11luqqqrSRRdd5H4v+eSTTzR37lxdfPHFkti/1iQmJio6OvpHv5901v5ZHTajRo3S3r17VV5e7t6GDBmi3/3udyovL9cll1wir9er4uJi92vq6+tVUlKiYcOGRXDlXcO1116rgwcPhh378MMP3V9CmpaWxv614quvvtJ554X/TywqKsr9rxf278ydyV5lZGQoJiYmbKayslL79u1jP/V91Bw6dEjbtm1T3759w86zfy3Ly8vT+++/H/a9xOfz6YEHHtCrr74qif1rTY8ePXTNNde0+v2kU/evTS81tsAP3xVljDFLliwxjuOYDRs2mL1795rbbrvNpKSkmGAwGLlFdhG7du0y0dHR5v/+7//MoUOHzLp160yvXr3M2rVr3Rn2r2VTp041F154ofnnP/9pKioqzIYNG0xiYqJ58MEH3Rn273s1NTXm3XffNe+++66RZJYtW2beffdd9107Z7JX99xzj+nXr5/Ztm2b2bNnj7nhhhvM4MGDzTfffBOpp/WTaW3/GhoaTG5urunXr58pLy83lZWV7i0UCrmPwf61/O+vqabvijKG/Wtt/zZs2GBiYmLMqlWrzKFDh8yTTz5poqKizFtvveU+RmftX7cPm8bGRvPoo48ar9drYmNjzXXXXWf27t0buQV2Mf/4xz9Menq6iY2NNZdffrlZtWpV2Hn2r2XBYNDcd9995qKLLjLnn3++ueSSS8zDDz8c9o2E/fve66+/biQ1u02dOtUYc2Z7VVdXZ2bOnGkSEhJMz549TU5Ojvn0008j8Gx+eq3tX0VFxWnPSTKvv/66+xjsX8v//po6Xdiwf63v37PPPmt+/vOfm/PPP98MHjzYbNq0KewxOmv/PMYY07ZrPAAAAF2T1a+xAQAA3QthAwAArEHYAAAAaxA2AADAGoQNAACwBmEDAACsQdgAAABrEDYAAMAahA0AALAGYQMAAKxB2AAAAGsQNgAAwBr/D3ZHRtM+v82EAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "
" ] }, "metadata": {}, @@ -129,26 +129,26 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Unable to determine R library path: Command '('C:\\\\Users\\\\Utilisateur\\\\miniconda3\\\\envs\\\\mooc-rr-jupyter\\\\lib\\\\R\\\\bin\\\\Rscript', '-e', 'cat(Sys.getenv(\"LD_LIBRARY_PATH\"))')' returned non-zero exit status 1.\n" + ] + } + ], "source": [ "%load_ext rpy2.ipython" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAMAAABKCk6nAAAC9FBMVEUAAAACAgIDAwMEBAQFBQUICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUWFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJycoKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6Ojo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tMTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1eXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29wcHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGCgoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OUlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWmpqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4uLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnKysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7///88pmfTAAAXMUlEQVR4nO2deWAUVZ7H4+IxLqITBnDVdZVZZ1xcRlaHpEM6CUkgECAG5RIE5DAcKjeKhlPliqKIAuGQUS4JlyCow30GQQ4FwhGJyBHOXBBD0un0+2ermjh0upvqrq73qqp//f388Tq+fvWrn3zSnbre+4UxQJowoxMAYoFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HE0SD4yjJgApbbRAn+sstsYDyWn4UJ/iTwbQE3enEQ7Ljm8NILwaZAs+Dy0X++M6xWwzEV7m9AsCnQLPillJ2FlYXZnXq6vwHBpkCz4PAbzhf7I+5vQLAp0Cy48Wrny9an3d+AYFOgWfDeBk917N3p6Qf3ub8BwaZA+1F05YbMyZkbKj36IdgUcDhNKnK2xe7dEKwLBZeU39csOOfJOx5bKZ0teYyEYB242ialY/M8pRGaBVun2DbX3wnBxtB1B2PHWyiN0Cy4ThVjq/5qcxH8/SQn7fr7mSQInBi5aefx59EFzYIb7paa9gNcBJ/Z4CQ1xa8UgRacgpPKFEZoFpxVO66AFT7TxGPkoI4+twVaGTqbsa87K43QfhSdv6qUMVvWSPd+CNaB8pFWa5rSNzSXu0negWBTAMHE0Sz4+O+4vwHBpkCz4BZhd9d34v4GBJsC7V/Rr6R574dgU6Bd8NbJ3vsh2BTgIIs4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJo64sjoQbArEldWBYFMgrqwOBJsCcWV1INgUiCurA8GmQFxZHQg2BeLK6kCwKcBpEnFwmkQcnCYRR8Bp0vJ4J4/EaUoM8AGnScTBaRJxcJpEHNwuJA4EEwdldYiDsjrEQVkd4qCsDnFwkEUcCCYOBBMHgokDwcSBYOJAcHDzS8akI4oDIDio2Ry3+ps2i5RGQHBQE1fEWEWEt2cefweCg5qYz5NaTH/hksIICA5qGg4sLZ/YAJ9gsjRqsW1PpydsCiMgOKiJOfz2yOz2VxVGQHBQ00bSd7WZ0ggIDmpOWt4ab9mjNAKCg5uK7ZtKFQdAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTI6ff8x+Uu/w3BNPiR+uBK/PaujzDA8G06CmvtDDgwK0OCBbD0TbW6LkG7DdRXlJy2upbHRAshOuWX5it12rfA3kzYr3UJJ++1QHBQtjwjtRc6KT/jout4xa0n+rSAcFCWJshNYXPGbDnym8+O+H63xAshKvR1xmbMMfoNBgEi2Jj5IvWEUozDvQCgkVxzmOJdEPAkv7EwZL+xMGS/sRB5TMv/FZldAb8wJL+HhyOb2UZZjc6C15gSX93KixnGcvIMDoNXghY0v+n2U6aJ2tMzSD2D5EaW4LRafCC03nwFZefTyxz0rptwEkZysHBDIJduNTzmeFX/nbn4x6rNQXrV7QtKo+xdz8yOg1eaBac/PzyNnUzHR96lMEKVsHsWKuEqHQyx9GaBdcuZmfurmC/3e/+RtAKlo6zjE6AI5oFN/yKfRF2nB16zP2NIBZMCc2CV95Vv96MJ19v6PFHC4JNgfaj6Cvfl7JtY9Z79EOwKcDtQkHY864bnYITCBbDNxE9E14zw6E4BAvhsrWMsSkzjU6DQbAg1rwvNUUpRqfBIFgQGydIzfkuRqfBIFgQpZYT7MZL64xOg0GwKE6mxlkXGp2EDAQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwUGN47OWidOUCp9BcHDz/pDfKqa+rjQCgoMaq/zQSBxqF5IlRm5Qu5AubXMZuxKtNAKC9aJw3YYb3IPmWkaNs3yvNAKCdWJL1JTxlpPcw1bs2PSb4gAI1omIEsZOGTCjFoL14ea6lTH67xiC9aFCnl5badV/xxCsE4PeK73aJ1P//UKwTthntXpuhcptjr8Qk7RZ434h2LwUSEfdV1se8D1QCQg2L0s/lZp9Q7UFgWDzMnux1OT21hYEgs3LsXZVjKUv0RYEgg2jZHGm8j8+mxs9OGmIxr34J7jCpfUXCFbmZMQni1r/Q3nM9QNKN4r8wj/BjeSm/CFVkSFYmdRcxiojy30P1IY/gmvVCqslk6oqMgQr47xsOfCw6N349wluE0BkCFYmseT3Rih+HmSdYLYV8xUf7vIAgpX5Z8tDp98eLHw3/glOv8c+6cm/91UVGYJ9sH9AjyXiC+/4J/iPeeyhPUV/UhUZgk2Bf4IfKPyhQdX1OrcZhLI6JsY/wX0bPz7lclOvS7ijrI658U+wPWtJZf4kr0d8KKtjblBWx5OtY6df8T0qSPBH8L07Gt3E2wh6ZXVGv7JlSdNco7PghT+Cvy08chNvI8iV1bmYJDXHzLBIHRcElNX5somTes01pmYQ29Pl1oDnH8Xgj+Dwm9RNvO2wwmuefcH6Cc6XH17+OUiT98QfwcXFE5P2XNzb1uvquCdjTuU9+2+1rGfc3whWwWzo4L1rI48anQUv/PuK/s9SqSn7L28jItIrk98uLx+T5P5G0Apm64dPOm90DtzwT/CDx6TmxMPeRtSpYI9eZ6wq3P2N4BVMCv8ET20wdsG4Bh94GxG7iHX5irGNdE6TaOHnUfTGAe1f3eJ1xC+NmrSu1TKhwR73NyDYFHB46G73/MmzvvG8VwzBpgBPVYrBvqDf2HzlITkjB64VnwgEi6FDxrFvIvKURmxrvvPwoLeEJwLBQtjfT2r2DVAa0rJQapp7uULEFwgWQtYMqbnRUmmI82Loqz+JzgSChXCss9RsGK40JOVXxqos/NdlcQOC/eH8ObVbDE1b97FFcVrC0Yh/rE6drTJsVZ7aqQ4Q7JuzCZ1fjP9V5UY7pn5RpjziauY0tY+977P0aNdBeVUddyDYNymHGDsSyLP/vLFHXGZslbrpaBDsk8p4uW0hfBaRb472l1t1t6oh2CeOWLltbjc6D8ZOd5cae5yqbSDYN/0/Y2yhumkdgkjcweyjPla1CQT7pmxETMwwdYc2/rC9e/tMlV8LF3vERn+gbroLBBvF2pSfr05KE74bCDaKBPkpmVZFoncDwUZhqgnggQDBynTIYawiQt26JwEAwXw4u/2iyi1+iZycmZAlJBlXIJgLw9qlt5ygcpuyNYtVX+JWDwTzYM0wqem10+g0vAHBPBi+V2q+e8/oNLwBwTyYuF5qFs0yOg1vQDAPfok+zY5HqT3M0gUI5sKh9jFdjqvcJispfoKPW8YcgGCj+Pzla/YFnYXvBoKNorl8jeM54WtFQLBROC9V9hc+TRWCjaK7dGpV2rTS90BtQDDLWX5Qj90UrP1njUOqS9Yh46M2CN8tBA/t8nGfblXCd7OpWcY7lhOuPfa9G4XPa4BgtlWeXzJxofD9yLUL8wx4NDPkBU9ZJzWHB4reTb7zhAi1C/XnC/kC49fCLyNXyI9monahAZRYttj2WcQvujLknWuXe80RvhsPQl4wuzA4vp/iRF4+2Gcnt18lfjceQDBxIJg4EEwcCCYOBAvihxkrhD8S6w8QLIa3ey6b0kz4tAU/4CEYVVc8OPGC1Kx/w+g0GAfBqLriDecqO2UeK/AagGbBqLrijX2vSs0B8XMHfYOqK0JwpHx6ZqvlpNFpMA6C6VVd8YMMS0xKjbosa6Nj4za7dthmdht5Wt+kvKNZMLmqK34wd0QVO97M5ajjUOtSVtT8lHEZ3R4BVVdOLXPSup3G1MxLK3k9h2Euv9Jjt0jNyo8MSkcRTufBu11+3jfJSVTrgJMyO4nyh3fUrlsdzp+/nmpUPkpwEnyvZxfhr+ip0mf1isXlEbodXe3M1k74wqKBoFlw7btkwu66y/0NwoLtA2NfiN7r2jMrolPTxUalo4hmwUee6ZJ38eI9Fz1mXhEWzFjFZbeOqgvii3kHhPavaPvERttC7Cs6mODxNzgnYiAEmxUuB1lV73f17IRgU4DbhV4oFbLwaJkh94ch2IMf45KbDeGu+EzrpPhuOkxVcQeC3amQH5L+cArvsC1/ZGzNK7yj+gaC3flhKPt9EXCOFD0nt5i6YgIODZKaitsXww6MEueVeQg2AbZmucwxXt2q237QdhdjC1/nHdU3xASv7Tdc7RXhgtQnWtW4c3siOc4yjvt1qYudYq0DxC+q4wEtwaNfO7KnxUZVm5Tc3/u7obVr3psXU57BmKIPpASXyX/jShJUbTNInpQ9qK2QfMwAKcEnnJUz1B3JJMmLxK5+SkQ6poCUYFtEJWNnk1VtM9YiNZ29XGolAinBbH7blQsi1R1lVT3SdEx8+HWVOyo46fYXtfSY+jKTl34Wv/YLMcEsZ/octdUbq95t84bKq8S2l9r0jtzq2jM5Oi1qprog11NTX47ar26bACAmWB8mzGfsmqX0VsfGPtIvSscfVAUZuE46d7II/wxDcAAk2KQmffutjjeypWb9ZFVBnMeCfU/4GqYVCA6AZPlP9uADtzomyOfey2aoChIrf3i7CF/9BYIDYHFaBdsf4/IoeE7CVZZvPaMqyLS3q9jmVpwz8wSCA2GONbbrWdeOrYmxrfbebrR3HBnRsX2EryYMwdSBYOJAMHEgmDjUBdsP7HG7CZu7rcCYVIyBuODz1lfftGS7dFR2fnFM7HzD8tEf4oI7HmSswOLSMW0WY1VJpph7rw/EBTuvB3ZzuQKRKn8/z1xqUDoGQF2wfD2wlcvNwD5yfbJx6p7qCWqIC/5oSIVjfg+XjuxWV1h2tPp7t0ELLcFlE5q3rDEP2zE3PnZ8jcPoLcnWtHzXjrweMZ1rPCNQ8kZc669dO+wzEhKmCy9wJAhagrvOt5emqVs3v8ByiOU2c1ny3dF6laOwwxqXIeljK2zvmmFZwkAgJbhYfkKyMk7VNgvmSc13LuXZT/aSmhLXB7ui5cZq0hn8viAl+GfZjcqnKqfK38Y/vnarY9coqXHE3uqwOZ/DTTLgoXUekBJc1fQaYwdeVLXN7pelZvSyWx3XoioY+3awy5AWvzJ2jvdsNL0gJZhtsYweYr2gOMSxM6vminRj277Tob9rx8rocQNalLh0HLW8OcpymFuS+kJLMLu+ZZ/yDJGypCEzUmquWHb2O7eqOkWbDtb8g1u+a2c5l/QMgJhgn7wrn0U9Z4ZlYHUi1ASnyMvszzbnmmVCCDXB/X+UmlHbjE5DP0JN8GHrkfKV8cF6WSoATCx4Voy1r/uKgdr56eWWY0p8DyODeQXPfc3GtiYG6fUj82DesjoJ8oywXrk+xwFFzFtWJ1b+rRkifvodccxbVmfYKsaKI01RHi6YMW9ZndLUF/pbdmqL4YWKrOnfq93m/Jw557gnohNmLqtzPsemNYQHxdapK3oPV7fN5ujPv4jZwD0VfQi1sjrp8p38F4+o2sZaxNi1ZmLyEY6AsjpfNnFSr7nG1ITQrlhqMhep2eTm/WBnKZ0ghMNp0s0iqsXu3eb8BL++R2oG7/I5zpUo6bfXHikmH+FoFpzz5B2PrZTOljxGmlNwXsSm05+2VXf5ZG6XozkvqVxixTRoFmydYttcf6dJBOd3iIkaqXxkdnZU95lqj9229EvbFHhSxqJZcJ0qxlb91WYOwS2kM6Dpo/Xfr4nRLLihXNWu/QBTCL7YSW5rPHRn358dpEdHnNAsOKt2XAErfKaJGQSf6Sa3roLPWV97M3L3bYaHBNqPovNXlUqnElkj3fuN+Iq2Sv83y11X3e54iLGCYD0A5oJ5bxd6UjZn1FLlleFOJqQkvOT6lewxuzDkCCLB16Izd01M8bH2X1HNeWUeswtDjiASnCE/Kpe+XtU2Hw0ud8zr4XscXYJIcB/5Ydc176vaxjEvIWZCkE464UMQCc6Q5+WPXsc5KnWCSPC1qHnfT22ref3dKo+r5qQJIsHst5nDF2kuXTIhIqVZCD0WHVSCebBwhIOVRItfA9Q0hJrgzvLcww9XGZ2GfoSaYOcqwBlrjU5DP0JN8Oq+lexCVJHRaehHqAlmn0bGJYbSw9YhJ5ix0JoNE4KCQwsIJg4EE0cvwaU5pbcbqIHynNC67hgAOgn+MLp/tLr7QP6wzJKWOCi0jplUo4/gXd0czNFz++0HB8Svcom58Qs4RyWGPoKdpd+2pwcezCuLM6XmvLqF7UIOfQRPk6cgrlNXvNE3X8lf+sdf4RyVGPoIzou5yC7FKe9KPSWWXHY9lfcXPzF0OsjKbhWbpG7Glz8cf94a/xX3qLTAeTBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgmFrwyKfatUJ7ZywfzCl7WtcSR1U5bDGBiwS3kab3dQqhWtxjMK9i5vMYwjzVOgTrMK7j/ZsZuRIb07Hwe6CX44OKDKrcvjB8wppm6FTmAJzoJ7ttrZu9eKp9/dBzcei3w3YOb6CN4zZtSk74y8GAgUPQRPFpeNCE7WKukBzX6CJ71udQs+TjwYCBQ9BFcGLntxvbIq4EHA4GiU+Wz/MFJg86rSAvwwryVzwAXBFQ+u/yDk86pmpMD2hFQ+WzbSCfxvTUlBvggrvLZl58EmBLgibjKZxBsCgRUPqsGgk2BuPNgCDYFEEwcCCaOOMHfNo5X5E/3PyCAP9wnImrtfxcR9b4/iIh6f3iNf+YnlC8gahDsCzHFbsZsERH1izkiou5+U0TUSx3UjIZgJxAcABAMwQEAwRAcABAcABBMXHD3cyKijheybNbi+SKi7nlLRNQrndSMFihYzCOxpZoLZ3mjolxEVIeIBXhV/sMKFAzMAAQTB4KJA8HEgWDiQDBxIJg4EEwcYYKjw8LCknkHffa41Ox7um53rtclnFE557v8z3Vij3HPtTqqmlyFCX7oVGnpDb4ht/UJk1RUNlhV1m4076ic871Qe1fV5P/hnWt1VFW5ihJcfi//mJPT7pZUbHiKsZ3/zTsq53xXxTFmu6OIc67VUVXlKkrwsTpN6jTP5R21vqQisyNjhXfyrJYlR+Wcb2kBY5sf451rdVRVuYoSvCcx1zbi/3hHlVVM7i19TYfxvJMhR+Wf7+p6KwTkKkdVlavIo+gbdxRwjuj8BHeSPhW1eH+CZXjmW/j8X3byz/VmVBm/cxUleNdmxiru5H27TFax4WnGshvyjso5X9uz/W2Me67VUVXlKkrwpro5VeMSeUeVVVQ+uNXeeQzvqJzzzWpSLsE71+qoqnIV9hU9tUHdlHzeQZ1fpvv+9jDf82BnVL75vhEmU8w519+jqskVV7KIA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSDYheJwozPgDwS7AMHBjj0tPHw0W9qnW0TUUcY2/2+9Duf+9ZLxH49OguAgJ6txwal7TiyttY8tbOS4Er69cmQcq37ZWD/neksIDnKWPL6f2dlSC2OOernzOjNWca+j+mXAWMayITjIqZzU4OEptqXPSz823jE2vJHE1eqX9gsYuwDBQU7+5arsJ1csfVZS/cCpmT0ZqzrOql9eHcfYXggOciY1LS3++/ylYWuq3mns+DX8YOV7Uaz6ZcuDJ2+0rWt0gvwJLcHFre8L721b2iL5j01zGPvqL/fH5f3r5f2HHp3JfTqk8YSW4Jss7Wp0BjoCwcQJRcEhBQQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJs7/A0ZodobFaD/UAAAAAElFTkSuQmCC\n" - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "%%R\n", "plot(cars)" @@ -171,7 +171,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -185,9 +185,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.7.12" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } diff --git a/journal-de-bord/tutorial.org b/journal-de-bord/tutorial.org new file mode 100644 index 0000000000000000000000000000000000000000..86fdfe7ed8b5409d30e922f9d3346e0c590b315f --- /dev/null +++ b/journal-de-bord/tutorial.org @@ -0,0 +1,171 @@ +# -*- coding: utf-8 -*- +# -*- mode: org -*- + +#+TITLE: Une petite démo d'Org-Mode +#+AUTHOR: Arnaud Legrand +#+STARTUP: overview indent inlineimages logdrawer +#+LANGUAGE: en +#+HTML_HEAD: +#+PROPERTY: header-args :eval never-export + +* Section 1 +** Sous-section +* Section 2 +** Foo +*** Hello +Avec du texte +- ici du *gras* +- et là, de /l'italique/ +*** Salut +*** Etc +** Bar +** Baz +* Exécution de calculs :noexport: + +#+begin_src R :results output :session *R* :exports both +cars +#+end_src + +#+RESULTS: +#+begin_example + speed dist +1 4 2 +2 4 10 +3 7 4 +4 7 22 +5 8 16 +6 9 10 +7 10 18 +8 10 26 +9 10 34 +10 11 17 +11 11 28 +12 12 14 +13 12 20 +14 12 24 +15 12 28 +16 13 26 +17 13 34 +18 13 34 +19 13 46 +20 14 26 +21 14 36 +22 14 60 +23 14 80 +24 15 20 +25 15 26 +26 15 54 +27 16 32 +28 16 40 +29 17 32 +30 17 40 +31 17 50 +32 18 42 +33 18 56 +34 18 76 +35 18 84 +36 19 36 +37 19 46 +38 19 68 +39 20 32 +40 20 48 +41 20 52 +42 20 56 +43 20 64 +44 22 66 +45 23 54 +46 24 70 +47 24 92 +48 24 93 +49 24 120 +50 25 85 +#+end_example + +#+begin_src R :results output graphics :file (org-babel-temp-file "figure" ".png") :exports results :width 600 :height 400 :session *R* +plot(cars) +#+end_src + +#+RESULTS: +[[file:/tmp/babel-148945lI/figure14894n0r.png]] +#+begin_src R :results output :session *R* :exports both +(x=10) +#+end_src + +#+RESULTS: +: [1] 10 + +#+begin_src R :results output :session *R* :exports both +(x = x+10) +#+end_src + +#+RESULTS: +: [1] 20 +* Autres langages + +#+begin_src python :results output :exports both +print(2+2) +#+end_src + +#+RESULTS: +: 4 + +#+begin_src shell :results output :exports both +ls /tmp +#+end_src + +#+RESULTS: +#+begin_example +babel-148945lI +babel-1933r-E +babel-7506nSG +emacs1000 +emacs14894axZ +firefox-esr_alegrand +mozilla_alegrand0 +pulse-PKdhtXMmr18n +RtmpsK10QZ +RtmpvMPlZs +ScientificMethodologyProjectGithub.ipynb +ssh-KQXcWTA8Cx6u +systemd-private-0461cab7d3944a9e974b73d23efc09af-apache2.service-QPpUU4 +systemd-private-0461cab7d3944a9e974b73d23efc09af-colord.service-wdsVAi +systemd-private-0461cab7d3944a9e974b73d23efc09af-iio-sensor-proxy.service-UYGEGU +systemd-private-0461cab7d3944a9e974b73d23efc09af-ModemManager.service-FKfsh9 +systemd-private-0461cab7d3944a9e974b73d23efc09af-rtkit-daemon.service-43AVDL +systemd-private-0461cab7d3944a9e974b73d23efc09af-systemd-timesyncd.service-4pB1fo +thunderbird_alegrand +tracker-extract-files.1000 +tutoriel.pdf +#+end_example + +#+begin_src shell :session *shell* :results output :exports both +hostname +#+end_src + +#+RESULTS: +: +: icarus + +#+begin_src shell :session *shell* :results output :exports both +ssh nipmuk +#+end_src + +#+RESULTS: +: The programs included with the Debian GNU/Linux system are free software; +: the exact distribution terms for each program are described in the +: individual files in /usr/share/doc/*/copyright. +: +: Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent +: permitted by applicable law. +: Last login: Tue Apr 10 12:10:47 2018 from ligone.imag.fr + +#+begin_src shell :session *shell* :results output :exports both +hostname +ls /tmp/ +#+end_src + +#+RESULTS: +: nipmuk +: ATN452-P5785-Linux-X64.bin tina_update vgauthsvclog.txt.0 +: P57 tn_pipe vmware-root +: ssh-0xgYrn2tUz upgrade_linux.batch