Update toy_document_fr.Rmd

parent dbf822ae
...@@ -17,7 +17,7 @@ pi ...@@ -17,7 +17,7 @@ pi
``` ```
## En utilisant la méthode des aiguilles de Buffon ## En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la __méthode__ des [aiguilles de Buffon] (https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ : Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ :
```{r} ```{r}
set.seed(42) set.seed(42)
...@@ -28,9 +28,9 @@ theta = pi/2*runif(N) ...@@ -28,9 +28,9 @@ theta = pi/2*runif(N)
``` ```
## Avec un argument "fréquentiel" de surface ## Avec un argument "fréquentiel" de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2\leq 1]= \pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait : Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2\leq 1] = \pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :
```{r} ```{r}
d'appel à la fonction sinus se base sur le fait que si $\X∼U(0,1) et Y∼U(0,1) alors P[X2+Y2≤1]=π/4 (voir méthode de Monte Carlo sur Wikipedia). Le code suivant illustre ce fait :
set.seed(42) set.seed(42)
N = 1000 N = 1000
df = data.frame(X = runif(N), Y = runif(N)) df = data.frame(X = runif(N), Y = runif(N))
...@@ -42,3 +42,5 @@ Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ en compta ...@@ -42,3 +42,5 @@ Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ en compta
```{r} ```{r}
4*mean(df$Accept) 4*mean(df$Accept)
``` ```
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment