diff --git a/module3/exo2/exerciceTabac.ipynb b/module3/exo2/exerciceTabac.ipynb index 2a3553f37b8a04ff4f1356316943f1d8326fe47a..36d21e7cd0cd32d8f73554369a34397b18af09b9 100644 --- a/module3/exo2/exerciceTabac.ipynb +++ b/module3/exo2/exerciceTabac.ipynb @@ -1643,7 +1643,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 35, "metadata": {}, "outputs": [ { @@ -1656,10 +1656,10 @@ } ], "source": [ - "tauxMortF = nbDecedeesF/nbTotalF\n", - "tauxMortNF = nbDecedeesNF/nbTotalNF\n", - "print(\"Sur la période donnée, il y a pour les fumeuses un taux de mortalité de : \", tauxMortF*100, \"%\")\n", - "print(\"et il y a pour les non fumeuses un taux de mortalité de : \", tauxMortNF*100, \"%\")" + "tauxMortF = nbDecedeesF/nbTotalF*100\n", + "tauxMortNF = nbDecedeesNF/nbTotalNF*100\n", + "print(\"Sur la période donnée, il y a pour les fumeuses un taux de mortalité de : \", tauxMortF, \"%\")\n", + "print(\"et il y a pour les non fumeuses un taux de mortalité de : \", tauxMortNF, \"%\")" ] }, { @@ -1671,7 +1671,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 36, "metadata": {}, "outputs": [ { @@ -1720,13 +1720,13 @@ "1 nonFumeuses 31.420765" ] }, - "execution_count": 11, + "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "d = {\"tauxMortalite\" : [tauxMortF*100, tauxMortNF*100], \"Statut\" : [\"Fumeuses\", \"nonFumeuses\"]}\n", + "d = {\"tauxMortalite\" : [tauxMortF, tauxMortNF], \"Statut\" : [\"Fumeuses\", \"nonFumeuses\"]}\n", "dt = pd.DataFrame(data = d)\n", "dt" ] @@ -1740,7 +1740,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 37, "metadata": {}, "outputs": [ { @@ -1783,37 +1783,251 @@ "# Etape 2" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Première tentative pour calculer le nombre total de fumeuses et de non fumeuses ayant entre 18 et 34 ans" + ] + }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 65, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "179 219\n" + ] + } + ], "source": [ - "nb18_34F = len(fumeuses.loc[fumeuses[\"Age\"]<=34]) - len(fumeuses.loc[fumeuses[\"Age\"]<18])\n", - "nb18_34NF = len(nonFumeuses.loc[nonFumeuses[\"Age\"]<=34]) - len(nonFumeuses.loc[nonFumeuses[\"Age\"]<18])" + "nb18_34F = len(fumeuses.loc[fumeuses[\"Age\"]<34]) - len(fumeuses.loc[fumeuses[\"Age\"]<18])\n", + "nb18_34NF = len(nonFumeuses.loc[nonFumeuses[\"Age\"]<34]) - len(nonFumeuses.loc[nonFumeuses[\"Age\"]<18])\n", + "print(nb18_34F, nb18_34NF)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Calcul avec une autre méthode du nombre de fumeuses entre 18 et 34 ans et calcul du nombre de fumeuses de appartenant à cet intervalle d'âge qui sont mortes." ] }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 63, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ + "179\n", "5 fumeuses ayant entre 18 et 34 ans lors du premier sondage sont décédées durant la période de 20 ans\n" ] } ], "source": [ - "test = fumeuses.loc[fumeuses[\"Age\"]<=34]\n", - "t2 = test.loc[test[\"Age\"]>18]\n", - "\n", + "test = fumeuses.loc[fumeuses[\"Age\"]<34]\n", + "t2 = test.loc[test[\"Age\"]>=18]\n", + "print(len(t2))\n", "nbDecedees18_34F = len(t2.loc[t2[\"Status\"]==\"Dead\"])\n", "print(nbDecedees18_34F, \"fumeuses ayant entre 18 et 34 ans lors du premier sondage sont décédées durant la période de 20 ans\")" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Calcul du taux de mortalité pour les fumeuses entre 18 et 34 ans." + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2.793296089385475" + ] + }, + "execution_count": 64, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tauxMort18_34F = nbDecedees18_34F/nb18_34F*100\n", + "tauxMort18_34F" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Une fois les calculs trouvés et testés sur le premier intervalle d'âge \\[18, 34[ , il vaut mieux créer une fonction qui calcule le taux de mortalité pour un intervalle et une DataFrame donnés." + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [], + "source": [ + "def calculTMparClAge(borneInf, borneSup, data): # la borne supérieure de l'intervalle n'est pas comprise :\n", + " t1 = data.loc[data[\"Age\"]=borneInf]\n", + " nb = len(t2)\n", + " #print(nb)\n", + " nbMort = len(t2.loc[t2[\"Status\"]==\"Dead\"])\n", + " #print(nbMort)\n", + " tauxM = nbMort/nb*100\n", + " return tauxM\n", + " \n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Le taux de mortalité des fumeuses pour la classe d'âge 18-34 est de : 2.793296089385475 %\n", + "Le taux de mortalité des non fumeuses pour la classe d'âge 18-34 est de : 2.73972602739726\n" + ] + } + ], + "source": [ + "tauxMort18_34Fv2 = calculTMparClAge(18, 34, fumeuses)\n", + "print(\"Le taux de mortalité des fumeuses pour la classe d'âge 18-34 est de :\", tauxMort18_34Fv2, \"%\")\n", + "\n", + "tauxMort18_34NF = calculTMparClAge(18, 34, nonFumeuses)\n", + "print(\"Le taux de mortalité des non fumeuses pour la classe d'âge 18-34 est de :\", tauxMort18_34NF)" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Le taux de mortalité des fumeuses pour la classe d'âge 34-54 est de : 17.154811715481173 %\n", + "Le taux de mortalité des non fumeuses pour la classe d'âge 34-54 est de : 9.547738693467336 %\n" + ] + } + ], + "source": [ + "tauxMort34_54F = calculTMparClAge(34, 54, fumeuses)\n", + "print(\"Le taux de mortalité des fumeuses pour la classe d'âge 34-54 est de :\", tauxMort34_54F, \"%\")\n", + "\n", + "tauxMort34_54NF = calculTMparClAge(34, 54, nonFumeuses)\n", + "print(\"Le taux de mortalité des non fumeuses pour la classe d'âge 34-54 est de :\", tauxMort34_54NF, \"%\")" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Le taux de mortalité des fumeuses pour la classe d'âge 54-64 est de : 44.34782608695652 %\n", + "Le taux de mortalité des non fumeuses pour la classe d'âge 54-64 est de : 32.773109243697476 %\n" + ] + } + ], + "source": [ + "tauxMort54_64F = calculTMparClAge(54, 64, fumeuses)\n", + "print(\"Le taux de mortalité des fumeuses pour la classe d'âge 54-64 est de :\", tauxMort54_64F, \"%\")\n", + "\n", + "tauxMort54_64NF = calculTMparClAge(54, 64, nonFumeuses)\n", + "print(\"Le taux de mortalité des non fumeuses pour la classe d'âge 54-64 est de :\", tauxMort54_64NF, \"%\")" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Le taux de mortalité des fumeuses de la classe d'âge 64-150 est de : 85.71428571428571\n", + "Le taux de mortalité des fumeuses de la classe d'âge 64-150 est de : 85.12820512820512\n" + ] + } + ], + "source": [ + "tauxMort64_150F = calculTMparClAge(64, 150, fumeuses)\n", + "print(\"Le taux de mortalité des fumeuses de la classe d'âge 64-150 est de :\", tauxMort64_150F)\n", + "\n", + "tauxMort64_150NF = calculTMparClAge(64, 150, nonFumeuses)\n", + "print(\"Le taux de mortalité des fumeuses de la classe d'âge 64-150 est de :\", tauxMort64_150NF)" + ] + }, + { + "cell_type": "code", + "execution_count": 100, + "metadata": {}, + "outputs": [], + "source": [ + "d2 = {\"classeAge\" : [\"18-34F\", \"18-34NF\", \"34-54F\", \"34-54NF\", \"54-64F\", \"54-64NF\", \"64+F\", \"64+NF\"],\n", + " \"tauxMortalite\" : [tauxMort18_34Fv2, tauxMort18_34NF, tauxMort34_54F, tauxMort34_54NF, tauxMort54_64F, tauxMort54_64NF, tauxMort64_150F, tauxMort64_150NF]}\n", + "dt2 = pd.DataFrame(data = d2)" + ] + }, + { + "cell_type": "code", + "execution_count": 101, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAFNCAYAAAD7De1wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xm8HFWZ//HPlyTsEAK5iWGTLSzqbwS8KqgwSEARHMCFbUADggHHHRyNDgo4ilFhGBEUI1tUBKKAgCgCAURHWcJOBAxCWENy2Yki6/P745wLRdPdt/om3X3r5vt+vfrVtZ56qqrvffqcqj6liMDMzMyqaZluB2BmZmaD50RuZmZWYU7kZmZmFeZEbmZmVmFO5GZmZhXmRG5mZlZhTuRmNSRtKumFbsexJEjaSdJdhfG/Sdq6xHojJP1W0kfbG2HrJC0vKSSt3e1Y6pH0sKR3NZl/vKQ5kkZ1Mi4bvpzIrWskLSq8XpL0TGF8327HNxRJmibp5MGuHxEbRsSfS5T1XeBXEfGTwW7LXj7GUwvjmwGbAacAn+xaYDasjOx2ALb0ioiV+4clzQMOiojLuhfR0CapY3+vEXFop7YFad8iYli0ggxgPeBgYB7w8a5GYsOGa+Q2ZEl6p6RrJD0p6SFJx/Uns3rN35KulrRfHj5N0hmFed+TdFGD7YzM8x/NzdA71sxfXdJPcpPp/ZKOkFT3byfXwM6QdHZuWbhJ0vp5nUckzZP07sLy60r6jaTHJP1V0uSasn6ey3oa2Bs4FJicy742L3ewpDskPS3pLkkfa3JMH5b0Lkm7Nyir1X09U9I5edvXSXpjYf7XJN2T590maZfCvEMkXS7pREmPA1PrlD8yb/9uSU/l8l9XZ7kPSLo5L3OvpK8U5q0k6ax8fJ/In6cxed7H8/l4Om9jj8J6B0u6M693kaS1mhzTAyXdJ6lP0n82Wa4H+AxwDfAIsLOkCYX5G0n6vxzPxZJ+VGwxkbRNjv8JSTdIemejbdlSJiL88qvrL1INZYeaaW8D3gqMADYE7gIOyfM2BV6oWf5qYL88vApwDyn5TQIWAq9rsO3PAbcCawI9wB+LZQO/Bb4PrAhMAG4EJjcoaxrwD+DdpBavs3McX8jjnwZuLyx/DXAcsBzQCzwGvLNQ1rPAzqQv3SvkaSfXbHNXYH1AwA7AM8Ab87ydgLsKyz4MvKtQfm1Zre7rc3n7o4DDgTuBEXn+XrmMZYCPAE8DY/O8Q4AXSLXSEcAKdcr/at7+RrmMLYDVgOWBANbOy00C3piX2TIfw53yvM8Cv8zHbmT+PK0EjAGeADbMy60FbJaH9wZuBzbO+/UN4IoGx2DzvF9b53N4Yt6vd9VZdjywW45lNHA+cFZh/g3AN4Flge2Av/efH1JN/tF8fpfJn4k+YEy3/3b96v6r6wH45VdE/UReZ5mpwJl5uGkiz+PbkGo+DwAfbFLun4D9C+O79pcNvD7/Qx1VmH8A8NsGZU0DLiyM75H/ASuP9+QktAIwEfhnMYmRkvpJhbIuqVP+yY32JS9zMXBwHi6dyAe5r1cWxkfmfX1rg+XvAN6bhw8B/jrAftzbv3zN9Fcl8jrzTwK+lYf/A/g98KaaZfoT+W7A8jXzrgD2LYyPAp4HxtfZ1tHA6YXx0cBL1EnkddbdCpifhzcmfQFbrjD/l7ySyI8Aflyz/u+BvRb3b8+v6r/ctG5DlqQ3KN05vUDSU8DXgLEtFPFHYD4pWZ7XZLk1gfsL4/cWhl9PShx9uUnzCeB7pNpVIwsKw88AfRERhXFItcI187xnCsvfS6od9ivGVZekXSVd2998DGxPa8ep32D29eX4Il3jfoi0X/1NzrcUytqoJq6G+yZJpOPwt4GCVroE8/vctP0ksH9hO6eQEt4vJT0g6WhJIyLicWBfUlP3w5IukLRR4TicVIi7j1TLrneX/Ks+OxHxJPBkgzhXkXRqboZ/CrikEGf/Z+HZwirF4/N6YL/+mHJcvXk9W8o5kdtQ9mNSc+OGEbEq8HVS8zGkmuMIScsVlq+9fnooqSb1FKn5vJH5wDqF8XULw/cDi0hNmKvl16oRsWXLe/NaDwE9klao2faDhfHaxxO+alzSSsAvgP8GxkXEasDlvHKcmqktezD7+vJxkzSClFgekrQxqYl+CrB6juuumrgaPnoxf/F5kHRJZSAzSZcw1omI0cDp/duJiGcj4msRsSmwLamFZO8876KImJRjvg/4YeE47F84BqtFxAoRcX2dbb/qsyNpNKlWXs9U0peBt+bP83t45XjMJ30Wip/n4mfyflLtvBjTShFx3MCHx4Y7J3IbylYBnoyIRfkmquJdvg+Rakr7Kv3m+T8o1GQlvYl0zXa//PqapDc02M5M4POSJkgaC3yxf0ZE3ENqsv9OrlEtI2mimvxOuAV3AbcA35C0nKQtgcnAGU3WWQCsn2uskJroR5HuAXhJ0q6k66tlvKqsQe7rOyS9X+k30V8kNa3fAKxMamLuA5aRdAipRt6Kk4GjJW2gZAtJqxUXyLGvDDwaEf+U9A5Ssu6fv0Nu2VmG9IXuBeBFSWtJ2kXSiqT7EBYBL+bVTgIOl7RJLmOMpA81iHEm8EFJb89J+Bt5v+tZhXT/xBP5c3Z4Yd5fSZceDpc0StK2pMsi/WYAe0ialD/vK+Th19z8Z0sfJ3Ibyj4PHCRpEekmorP7Z0TEi8BBpGuHj5BqL9cDSFoW+BlwVET8JSL+QqrN/1T1O+E4AfgDMId089nMmvn7kG6yuoN0I9XZNG9uLiXXOvcE3kC6dn028J8R8Ycmq51FuhHtMUl/iohHSDfSXUhKorsDvykZwqvKytNa3ddzgI8BjwMfAj4UES9GxA2khDibVNtcPw+3YhpwEamF4alcXrHG2n8MDwGOUbqz/4ukFop+a5FuKnsauI10bGaSbrD7Mum4P0q6Ce7TucwzSZ+Jc3MT+E3U/JKhsP0bgcNI17MfINXsH2mwP8eQmtIfJV32efk85f3Ym3Qz2+PAV/J+PJvn3006vkfl8u8l3cjn/+H28g04ZmYtkTSNdBf6Qd2OZTiSdD5wdUR8q9ux2NDmb3NmZkNAbp5fL1/S+DdS0/oF3Y7Lhr62JnJJn1XqCGKOpM/laatLulTS3Pw+pp0xmJlVxNqkJvdFpC5yPxYRc7obklVB25rW881GZ5E69XiO9NvWT5BuWHosIvr7IB4TEV9qSxBmZmbDXDtr5JuRru/8I/++9PfAB0gdMMzIy8wg3ZxjZmZmg9DORH4bsK2kNfJPPHYm3Vk8PiLmA+T3cfVWljRF0uz8uq2NcZqZmQ0pki4uu2zbnqYUEbdL+jZwKemaz82k33CWXX86MB1g9OjR0dvb69vrzcxsafFU2QXb+ljEiDiF1EUiko4m/c5ygaQJETFf6ck/CwcqZ+LEicye3epPUM3MzKpJ0tyyy7b7rvVx+X1d4IPAmaSfU/Q/qnEyqbMGMzMzG4S21siBcyStQerv+pMR8XjuRGKmpANJvSDt0bQEMzMza6jdTevb1Jn2KOn5wWZmZraY3LObmZlZhTmRm5mZVZgTuZmZWYU5kZuZmVWYE7mZmVmFOZGbmZlVmBO5mZlZhbW7QxgzM+ug5486rNshlDLqiGO7HcKw4Rq5mZlZhblGbmZmQ9a0Gx/pdgilTN1ibNe27Rq5mZlZhTmRm5mZVZgTuZmZWYU5kZuZmVWYE7mZmVmFOZGbmZlVmBO5mZlZhTmRm5mZVZgTuZmZWYU5kZuZmVWYE7mZmVmFtTWRS/q8pDmSbpN0pqTlJa0u6VJJc/P7mHbGYGZmNpy1LZFLWgv4DNAbEW8CRgB7A1OBWRExEZiVx83MzGwQ2t20PhJYQdJIYEXgIWA3YEaePwPYvc0xmJmZDVttS+QR8SBwDHAfMB94MiIuAcZHxPy8zHxgXLtiMDMzG+7a2bQ+hlT7Xh9YE1hJ0n4trD9F0mxJs/v6+toVppmZWaW1s2l9B+CeiOiLiOeBc4F3AAskTQDI7wvrrRwR0yOiNyJ6e3p62himmZlZdbUzkd8HbCVpRUkCJgG3AxcAk/Myk4Hz2xiDmZnZsDayXQVHxDWSfgncALwA3AhMB1YGZko6kJTs92hXDGZmZsNd2xI5QEQcARxRM/lZUu3czMzMFpN7djMzM6swJ3IzM7MKcyI3MzOrMCdyMzOzCnMiNzMzqzAncjMzswpzIjczM6swJ3IzM7MKcyI3MzOrMCdyMzOzCnMiNzMzqzAncjMzswpzIjczM6swJ3IzM7MKcyI3MzOrMCdyMzOzCnMiNzMzqzAncjMzswpzIjczM6swJ3IzM7MKcyI3MzOrMCdyMzOzCmtbIpe0iaSbCq+nJH1O0uqSLpU0N7+PaVcMZmZmw13bEnlE3BkRm0fE5sBbgH8A5wFTgVkRMRGYlcfNzMxsEDrVtD4J+FtE3AvsBszI02cAu3coBjMzs2GnU4l8b+DMPDw+IuYD5Pdx9VaQNEXSbEmz+/r6OhSmmZlZtbQ9kUtaFtgV+EUr60XE9IjojYjenp6e9gRnZmZWcZ2okb8PuCEiFuTxBZImAOT3hR2IwczMbFjqRCLfh1ea1QEuACbn4cnA+R2IwczMbFhqayKXtCKwI3BuYfI0YEdJc/O8ae2MwczMbDgb2c7CI+IfwBo10x4l3cVuZmZmi8k9u5mZmVWYE7mZmVmFOZGbmZlVmBO5mZlZhTmRm5mZVZgTuZmZWYU5kZuZmVWYE7mZmVmFOZGbmZlVmBO5mZlZhTmRm5mZVZgTuZmZWYU5kZuZmVWYE7mZmVmFOZGbmZlVmBO5mZlZhTmRm5mZVVjpRC5puXYGYmZmZq1rmMiV7CnpfEkLgHmSHpV0i6RvSdqgg3GamZlZHc1q5FcAbwSOAtaMiAkRsQawA3AT8D+S9u1AjGZmZtbAyCbz3hsRz9ZOjIiFwNnA2ZKWbVtkZmZmNqCGNfLaJC5pOUn7S/qEpDF5meeaFS5pNUm/lHSHpNslbS1pdUmXSpqb38csmV0xMzNb+rRy1/r3gJXy8K9aWOfiiNgUeDNwOzAVmBURE4FZedzMzMwGodnNbj+VtF5h0hrAacCMPNyUpFWBbYFTINXeI+IJYLdcBvl998EEbmZmZs1r5EcB35Y0TdIqwHHAb4DLgf8uUfYGQB9wmqQbJZ0saSVgfETMB8jv4+qtLGmKpNmSZvf19bWwS2ZmZkuPZtfI74qIvYCLgXNITePbR8RWEXF2ibJHAlsCP4yILYC/00IzekRMj4jeiOjt6ekpu5qZmdlSpVnT+mhJB5Nq1h8CngUukbRTybIfAB6IiGvy+C9JiX2BpAl5GxOAhYMN3szMbGnXrGn9V4CA1YCfRsSppOvb75Q04M1uEfEwcL+kTfKkScBfgAuAyXnaZOD8QcZuZma21Gv2O/Ie4HRgeeDfASLi78BXJa1dsvxPA2fk35vfDRxA+vIwU9KBwH3AHoML3czMzJol8q+Tend7Efiv4oyIeKBM4RFxE9BbZ9aksgGamZlZYw0TeUTMBGZ2MBYzMzNrUbOb3X4oadMG81aQ9FFJ+7QvNDMzMxtIs6b1k4Gj881qt5B+E748MBEYS7p+fmK7AzQzM7PGmjWtXw98MPfQ9jZgAvAM8L2ImNOh+MzMzKyJZjVyACLiKeCyDsRiZmZmLWrloSlmZmY2xDiRm5mZVVjpRC5puXYGYmZmZq2rm8gljSwMv03SrcDcPP5mSd/vUHxmZmbWRKMa+cGSts7DxwPvBx4FiIibgXd3IDYzMzMbQKNE/iNg3/5lIuLemvkvti8kMzMzK6vuz88i4gXgU3n0fklvA0LSCNKDUP7aofjMzMysiTI3u30COBRYF1gAbAUc0s6gzMzMrJwBO4QBNoiIvYsTJG1FvmZuZmZm3VOmRv6DOtPcx7qZmdkQ0LBGnq+Lbw30SPpMYdaqwKh2B2ZmZmYDa9a0vhLpKWcjgZ7C9KeBPdoZlJmZmZXT7OlnVwBXSDotIu7uYExmZmZWUrOm9WMj4jDgWElROz8iPtjWyMzMzGxAzZrWz87vJ3QiEDMzM2tds6b1a/P7rM6FY2ZmZq1o1rR+I/CaJvV+EbHlQIVLmke6Oe5F4IWI6JW0Oqm2vx4wD9gzIh5vKWozMzMDmjetf3gJbePdEfFIYXwqMCsipkmamse/tIS2ZWZmtlRp1rT+tzZtczdguzw8A7gSJ3IzM7NBGbBnN0lvlXS1pCcl/VPSs5KeKll+AJdIul7SlDxtfETMB8jv4xpsd4qk2ZJm9/X1ldycmZnZ0qVMX+s/APYDzgLeBuwPrFOy/HdGxEOSxgGXSrqjbGARMR2YDtDb29vwWr2ZmdnSrExf68tExJ3AyIh4PiJ+DOxQpvCIeCi/LwTOI30RWCBpAkB+XzioyM3MzKxUIv+7pGWBmyUdLenTwMoDrSRpJUmr9A8D7wFuAy4AJufFJgPnDypyMzMzK9W0vj8p4X8KOAyYCHyoxHrjgfMk9W/n5xFxsaTrgJmSDgTuw/22m5mZDVqZRL5zRJwA/BP4KoCkTwFzm62U+2d/c53pjwKTWg/VzMzMapVpWv9YnWkHLulAzMzMrHXNenbbC9gb2EDSuYVZqwJPtDswMzMzG1izpvVrgUeBtYETC9OfBm5sZ1BmZmZWTrOe3e6RdB/wmB+cYmZmNjQ1vUYeES8Cz0latUPxmJmZWQvK3LW+iPQb8kuAv/dPjIhD2xaVmZmZlVImkV+WX2ZmZjbEDJjII+IUSSOBjfKkuyLihfaGZWZmZmUMmMglbQP8FHgQEPA6SR+JiP9rd3BmZmbWXJmm9eNIvbv9BUDSZqTE3tvOwMzMzGxgZXp2W7Y/iQNExO3Asu0LyczMzMoqUyO/QdKPSLVwgH1xhzBmS63njzqs2yGUMuqIY7sdgllHlEnkhwCfAb5IukZ+FfD9dgZlZmZm5ZS5a/2fwHfyy8zMzIaQAa+RS9pJ0nWSFkp6TNLjkh7rRHBmZmbWXJmm9ROAPYFbgZfaG46ZmZm1okwifwC4KSKcxM3MzIaYMon8i8CFkq4Enu2fGBHHtysoMzMzK6dMIj8KeB5YDTetm5mZDSllEvm4iHhL2yMxMzOzlpXp2W2WpO3bHomZmZm1rEwi/zhwmaRFg/n5maQRkm6U9Os8vrqkSyXNze9jBhu8mZnZ0q5MIh8LjAJGAz15vKeFbXwWuL0wPhWYFRETgVl53MzMzAZhwEQeES/We5UpXNLawC7AyYXJuwEz8vAMYPdWgzYzM7OkTI18cfwv6edrxbvdx0fEfID8Pq7NMZiZmQ1bbUvkkt4PLIyI6we5/hRJsyXN7uvrW8LRmZmZDQ+lErmkrSR9NA+vIWndEqu9E9hV0jzgLGB7ST8DFkiakMuaACyst3JETI+I3ojo7elp5ZK8mZnZ0qPMQ1MOB44ADs+Tlgd+PtB6EfHliFg7ItYD9gYuj4j9gAuAyXmxycD5g4jbzMzMKFcj/zCwM/B3gIh4EFh1MbY5DdhR0lxgxzxuZmZmg1CmZ7dnIyIkBYCkFVvdSERcCVyZhx8FJrVahpmZmb1WmRr5uZJOBEZLOgC4BDi1vWGZmZlZGQPWyCPi25LeBzwHvBn4ZkT8tu2RmZmZ2YDKNK2TE7eTt5mZ2RDTMJFLehyIRvMjYvW2RGRmZmalNauRjwVE+ulZH/DTPL4v0PINb2ZmZrbkNUzk/f2pS3pPRLy9MOv7kq4Gvt3u4MzMzKy5Mneth6S9JAlA0l5tjsnMzMxKKpPI/x34KPCopEeAj5Ca183MzKzLyvz87G7So0jNzMxsiGn3Y0zNzMysjZzIzczMKsyJ3MzMrMLKPMb0NEmrFMbXlnRJe8MyMzOzMsrUyGcD10p6T35oyhXAD9sblpmZmZVR5q71EyXdTErgjwBbRsT8tkdmZmZmAyrTtL4P6bGlHwN+Blwo6U3tDszMzMwGVubpZ/sC20bEwwCStgbOID3S1Mys0qbd+Ei3Qyhl6hZjux2CDVFlmtbfXzP+Z0lvb7S8mZmZdc6AiVzS9AazpizhWMzMzKxFZZrWZxWGlwc+ANzfnnDMzMysFWWa1s8ujkv6KXBp2yIyMzOz0gbTs9v6wOsHWkjS8pKulXSzpDmSjsrTV5d0qaS5+X3MIGIwMzMzyv387HFJj+XXE6Ta+FdKlP0ssH1EvBnYHNhJ0lbAVGBWREwkNdtPHXz4ZmZmS7cy18iLv3l4KSKiTMF5uUV5dFR+BbAbsF2ePgO4EvhSmTLNzMzs1cpcI39R0mhgQ2B5Sf3T/zTQupJGANcDGwEnRsQ1ksb39wwXEfMljVucHTAzM1ualfn52YHAocBawK3AW4GreaVW3VBEvAhsLmk14LxWeoSTNIX8E7d111237GpmZmZLlTI3u30O6AXmRcQ2wFuAlvpaj4gnSE3oOwELJE0AyO8LG6wzPSJ6I6K3p6enlc2ZmZktNcok8n9GxDMAkpaNiDnApgOtJKkn18SRtAKwA3AHcAEwOS82GTh/MIGbmZlZk6Z1SSMj4gVgfk7IFwK/k/QYsKBE2ROAGfk6+TLAzIj4taQ/AzNzk/19wB6LvRdmZmZLqWbXyK8lPbJ01zz+VUmTgNHARQMVHBG3AFvUmf4oMGkQsZqZmVmNZolctRMiYla9Bc3MzKw7miXyHkmHNpoZEf/ThnjMzMysBc0S+QhgZerUzM3MzGxoaJbI50fE1zsWiZmZmbWs2c/PXBM3MzMb4polct9ZbmZmNsQ1TOQR8VgnAzEzM7PWDeZ55GZmZjZEOJGbmZlVmBO5mZlZhTmRm5mZVZgTuZmZWYU5kZuZmVWYE7mZmVmFOZGbmZlVmBO5mZlZhTmRm5mZVZgTuZmZWYU5kZuZmVWYE7mZmVmFOZGbmZlVmBO5mZlZhbUtkUtaR9IVkm6XNEfSZ/P01SVdKmlufh/TrhjMzMyGu3bWyF8ADouIzYCtgE9KegMwFZgVEROBWXnczMzMBqFtiTwi5kfEDXn4aeB2YC1gN2BGXmwGsHu7YjAzMxvuOnKNXNJ6wBbANcD4iJgPKdkD4xqsM0XSbEmz+/r6OhGmmZlZ5bQ9kUtaGTgH+FxEPFV2vYiYHhG9EdHb09PTvgDNzMwqrK2JXNIoUhI/IyLOzZMXSJqQ508AFrYzBjMzs+GsnXetCzgFuD0i/qcw6wJgch6eDJzfrhjMzMyGu5FtLPudwEeAWyXdlKd9BZgGzJR0IHAfsEcbYzAzMxvW2pbII+KPgBrMntSu7ZqZmS1N3LObmZlZhTmRm5mZVVg7r5GbDcrzRx3W7RBKGXXEsd0OwczMNXIzM7MqcyI3MzOrMCdyMzOzCnMiNzMzqzAncjMzswpzIjczM6swJ3IzM7MKcyI3MzOrMCdyMzOzCnMiNzMzqzAncjMzswpzIjczM6swJ3IzM7MKcyI3MzOrMCdyMzOzCnMiNzMzqzAncjMzswpzIjczM6uwtiVySadKWijptsK01SVdKmlufh/Tru2bmZktDdpZIz8d2Klm2lRgVkRMBGblcTMzMxuktiXyiLgKeKxm8m7AjDw8A9i9Xds3MzNbGnT6Gvn4iJgPkN/HNVpQ0hRJsyXN7uvr61iAZmZmVTKy2wE0EhHTgekAvb290eVwzAZt2o2PdDuEUqZuMbbbIZjZIHS6Rr5A0gSA/L6ww9s3MzMbVjqdyC8AJufhycD5Hd6+mZnZsNLOn5+dCfwZ2ETSA5IOBKYBO0qaC+yYx83MzGyQ2naNPCL2aTBrUru2aWZmtrRxz25mZmYV5kRuZmZWYU7kZmZmFeZEbmZmVmFO5GZmZhXmRG5mZlZhTuRmZmYV5kRuZmZWYU7kZmZmFeZEbmZmVmFO5GZmZhXmRG5mZlZhTuRmZmYV5kRuZmZWYU7kZmZmFeZEbmZmVmEjux1ANzx/1GHdDqGUUUccW2q5aTc+0uZIloypW4ztdghmZsOOa+RmZmYV5kRuZmZWYU7kZmZmFeZEbmZmVmFdSeSSdpJ0p6S7JE3tRgxmZmbDQccTuaQRwInA+4A3APtIekOn4zAzMxsOulEjfxtwV0TcHRHPAWcBu3UhDjMzs8pTRHR2g9KHgZ0i4qA8/hHg7RHxqZrlpgBT8ugmwJ0dDbR1Y4Fq/KC7HO/P0Ob9Gdq8P0NbFfbn9RHRU2bBbnQIozrTXvNtIiKmA9PbH86SIWl2RPR2O44lxfsztHl/hjbvz9A23PanG03rDwDrFMbXBh7qQhxmZmaV141Efh0wUdL6kpYF9gYu6EIcZmZmldfxpvWIeEHSp4DfASOAUyNiTqfjaIPKXAYoyfsztHl/hjbvz9A2rPan4ze7mZmZ2ZLjnt3MzMwqzInczMyswpzIM0mnSloo6bbCtM0lXS3pJkmzJb2twbr/LemWvNwlktasmb+upEWSvlCYNk/SrXmdmyS9o4Lxn1MY/7Ck0/Pw/pL6Cvv2k8Xct+UlXSvpZklzJB1VM/8LkkJS3QeeSzpS0oOFeHYuuX9L8vx0ax86co4K2+s/ZrNb2b+8zKdz181zJH2n5P4tyXPUjfg7dn7qxLuapF9KukPS7ZK2LswbcH/rlLdEz0eJ7bUj/q6dj8USEX6l+wS2BbYEbitMuwR4Xx7eGbiywbqrFoY/A5xUM/8c4BfAFwrT5gFjKx7/vcAb8/iHgdPz8P7ACUtw3wSsnIdHAdcAW+XxdUg3Tt7b6HgCRxZjrzO/E+enW/vQkXPU7JiV3L93A5cBy+XxcV04R92Iv2Pnp07MM4CD8vCywGpl9jd/Fvcve/wqFn/XzsfivFwjzyLiKuCx2snAqnl4NA1+7x4RTxVGV6LQwY2k3YG7gbbemd+l+I8BvjLIkEuLZFEeHZVf/TEeB3yROp0KldHB89OtfejIORpAmf37BDAtIp4FiIiF/TM6dY6aaGf8XTk/klYlffk/BSAinouIJ/Lsxfo8dkIb4x8Kfy8tcyJv7nPAdyXdTzrBX260oKRv5uX2Bb6Wp60EfAk4qsFqV+RmmmuWbNgva3f8M4EtJW1UZ95ehWaoAxZnJ3IsIyTdBCwELo2IayTtCjwYETeXKOJTSpcPTpU0JpfZ0fPTpX3o2Dki/eO8RNL1Sl0s08L+bQxsI+kaSb+h3u0tAAALZElEQVSX9Na8fifPUTfi7+T5KdoA6ANOk3SjpJMlrdTi57Gedv9P69eu+Lt1PhZPt5sEhtILWI9XN00fD3woD+8JXFaijC8DR+XhY4A945XmnLY1C3YrfuBjpG/FHWmGAlYDrgD+hdQ8PXqg4wmMJ/VZsAzwTVLfBR0/P93ah06dI2DN/D4OuJlUYyq7f7flz6tID1a6Jw937Bx1K/5O/w3l8nuBF0jPuQD4HvDdRvsL/D/gpvx6GLivML5Gu/9mOhl/N87HYh+PbgcwlF68NhE+ySu/tRfwVB4+LX8AflOnjNf3lwH8IX845gFPkJq+P1X7Iaty/KQm4rnAoR38J3QE8FVSzbY/vhfyH+frBti/l49Rp89Pt/ahS+foyFb2D7gY2K6w/t+Anm6do07G36Xz8zpgXmF8G2BWo/2tc2z2r1Nm285HJ+PvxvlY3Fc3HppSJQ8B/wpcCWxPOrlExKuaVSRNjIi5eXRX4I683DaFZY4EFkXECW2P+hVtjz8inpd0HDAVuLwdOyGpB3g+Ip6QtAKwA/DtiBhXWGYe0BsRjwC1+zchIubn0Q+Qak8dPT/d3IcOnaOVgGUi4uk8/B7g62X3D/gV6TN6paSNSTcvPdKpc9TN+DtxfmpFxMOS7pe0SUTcCUwCboiISYV45/HK/g4p7Yy/G+djcTmRZ5LOBLYDxkp6gFRj+jjwPUkjgX/yymNVa02TtAnwEumux0PaH/GrdTn+U4DDBxN3SROAGZL6m5ZnRsSvW1j/O5I2J10DnQccvORDHFC396Hd52g8cJ4kSP9Xfh4RF7ew/qnAqUo/n3wOmBy5KtQh3Y6/3eennk8DZyg98+JuXvvlZKhrZ/zdOB+D5i5azczMKsx3rZuZmVWYE7mZmVmFOZGbmZlVmBO5mZlZhTmR27AhaZ/80x8zs6WGE7m9hqTXSTpL0t8k/UXSbyRtLGk9FZ6u1qXY5ik/0Sj/TrR/+ibALsDXl/D2dpfU32Vt7RPIpi3hbW2ay71R0oZLsuyhROlJUms2mHd6PsbL5fGx/ec5f/6eKRz/m/JPj4Y0SctJuizHu1e34xkMScdI2r7bcVh9/h25vYrSD2nPA2ZExN552uak39ne383YBrAB8ElSP8njI2LBEir3i6ROcvodFxHHlF1Z0piIeLzk4rsD50fEEa0EWEH7kzq0qfsQH+BFUjeZP6wz728RsXnZDbV4/NtlC2BUK3EPQd8HfkxFOkhZ2rhGbrXeTeqB7KT+CRFxU0T8obhQrh39QdIN+fWOPH2CpKty7eM2SdsoPSzk9Dx+q6TP52U3lHSx0kMq/iBp09pgJK2h9Iz0GyX9iNTVbL++vMzKwBdI/ZcfD2xVWP+rSs8rvlTSmcrPgy657Y2BZxezZ6vZkn4uafv8JakupeeLfw44SNIVta0fSs9XPjIPXynpuHycb5f0VknnSpor6RuFdfZTegb6TZJ+lDujQdKiwjLFZy7vkc/RzZKuytNGSPqupOuUHthycJ7+mvNcZ5/eovQAkesl/S6v82FSP9ln5HVXqHM4/hf4vFJHRovrP/MxOFjpiVkN5ZaCc/PnYq4KzxRXumxza97XbxemL1J64NDNkq6WNL6mzHHAz4DN8/5uqFe3KvVKujIPHylpRv68z5P0QUnfydu9WNKovNxrjmuefqWk3jxcbMl4Y+FzcIukiXn6az4favC3GhH3AmtIet1inQ1rj273EevX0HqRnkd+XIN56/FKH98rAsvn4YnA7Dx8GPBfeXgEsArwFtLTvvrL6X9u8CxgYh5+O3B5nW0eD3wtD+9C6tlsbM0yI8nPVCf1lXwXKeH3kvrDXiHHMZf80IqS2z4AOLYwfiTwIK88bOG9JY7nCOD9wLnA7aRHJK7ZYNkjC/G9fKzz+BeAI/PwlaTuXQE+S6rZTgCWAx4A1gA2Ay4k1QQBfgB8NA8vKpRbfDDErcBaNedoCnB4Hl4OmA2sX+881+zLKOBPQE8e34tXHvRyJanrzHrH4PQc06n5+I8l96mdj8kzheN/YsnP9CbAt/Pn4nTgXQ2W25/UQ9hoYHlSL4frAGuS+uzuIX3WLgd2z+sE8G95+Dv9x6qm3O2AXxfG5/HKwzx6gSsL5/+P+di9GfgH8L487zxSi02p41pz3L4P7JuHlyX9PdT9fNDgbzUP/5j8ECa/htbLTes2WKOAE5Sa3V8kPcYR4DpSV5WjgF9FxE2S7gY2kPR94CLSoyJXBt4B/KJQUV2uzna2BT4IEBEXSarXTCrgaEnbkrqZXYt0KeBdpKbqZwAkXZjfy257ArnWX9BS03pEvAj8Gvi1Un/r3wLuk/SOiLi2bDl1XJDfbwXmRO6HPR/rdUj7/hbguryPK5AeKNHM/wGnS5pJ+uIBqc/xf8k1aUhJbiJ1znNNWZsAbwIuzdsfAcynvKPzPl5UM72lpnWASH1xf0nSV4C9SefiJxHxmTqLz4qIJwEk/YX0EKE1SMm2vwXoDNLn8lek7lj7u9q9Htixldjq+G2kvr5vJR2z/m5ibyV9kRnMcf0z8F+S1gbOjYi5kiZR//NxITV/q4VyFpK+1NgQ40RuteaQakQD+TywgFRzWIbUlzsRcVVOqLsAP5X03Yj4iaQ3A+8lXcfek9SM/ETJf8oD9SO8L6m29Jb8T3AeqUbVqCl7mZLbfoaUuEqRtA7pHyHASZEvT0gaTao5HQA8DxwI3DJAcS/w6ktfy9fMfza/v1QY7h8fSdr3GRFR7xn0xeP5crkRcYikt5PO3U35S5qAT0fE72oLqXeei7NJXzC2brKPDUXEXUrPbt+zlfUknUa6Jv1QROycp4l0yegAUuvLCcDJDYooHssXeeVYNvJ8RETN8gMpntu65zUiXpJULLt4Xhsd17rlRsTPlZ4PvgvwO0kH0eTzUedv9WOFMp8psX/WYb5GbrUuB5aT9PH+CUrXYP+1ZrnRwPyIeAn4CKlmgKTXAwsj4sekBw9sma8HLhMR55AeDbllRDwF3CNpj7ye8j+QWleREjWS3geMqbPM6LzN5yW9m1SLgtRM+W+Sls+18F0AWtj27cBGjQ/Vq0XE/RGxeX71J/GfATeQbsb7aERsGxEzIuKfAxS3ABindI/AcqTm+VbMAj6cr9EiafV8bgAWSNpM0jKkJ6mRl9kwIq6JiK8Bj5Bq9r8DPlG4PruxpJXqneea7d8J9EjaOq83StIb87ynSZc6BvJN0iWF0iLigHz8+5P4vqSn+X0SOBPYLCIOj4h5LRR7DfCv+brzCGAf4PetxFVjHqk2DPChFtdtdlyL5b78ZVzSBsDdEXE8qZXjX2jw+aj3t1rY9sbkp+7Z0OIaub1KRISkDwD/K2kqqaY9j1SDLvoBcE5OhlcAf8/TtyPdYPQ8sIh03W0t4LScOAD6awH7Aj+UdDipqf4s4Oaa7RwFnCnpBtI/z/vqhH0GcKGk2aRrp/2PYb1O0gW5zHtJ13efbGHbVwHHSlKhZtSqmaRnH7/Qykr5S8nXSUnknv59amH9v+R9uyQf9+dJyexe0uMZf036FcJtwMp5te/mG6FE+kd/M6nlYD3ghlyz7SNdq92O157n4vafy83xx+cWiZGkm9jmkK5TnyTpGWDr/ksfdfZhTj7vtV8SWnEvsE1EDHRZoaGImC/py6TPuUjPID9/MWI6CjglN/Vf02IszY7rMcBMSR/h1XeX7wXsl8/Vw6THsz7W4PPxDHX+VvMXuY1If0M2xPjpZzasSVo5IhZJWpGUmKdExA0trP894MKIuKxtQZoNcfnL/ZYR8dVux2Kv5aZ1G+6m52utNwDntJLEs6NJd+ibLc1GAsd2OwirzzVyMzOzCnON3MzMrMKcyM3MzCrMidzMzKzCnMjNzMwqzInczMyswpzIzczMKuz/AyRkfG+WO+1gAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib inline\n", + "plt.figure(figsize=(8, 5))\n", + "plt.bar(dt2[\"classeAge\"], dt2[\"tauxMortalite\"], color=['salmon', 'skyblue'])\n", + "\n", + "plt.title(\"Taux de mortalité par classe d'âge\")\n", + "plt.xlabel(\"Classe d'âge (F -> fumeuses et NF -> non fumeuses)\")\n", + "plt.ylabel(\"Taux de mortalité (%)\")\n", + "\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "code", "execution_count": null,