diff --git a/module3/exo2/exerciceTabac.ipynb b/module3/exo2/exerciceTabac.ipynb
index 4340ba05112efaa55f94ee1267fbaa1cc1bbf939..e4206ef56ff67dc71dd61405c5348a0cdc4da4ae 100644
--- a/module3/exo2/exerciceTabac.ipynb
+++ b/module3/exo2/exerciceTabac.ipynb
@@ -51,7 +51,9 @@
{
"cell_type": "code",
"execution_count": 4,
- "metadata": {},
+ "metadata": {
+ "scrolled": true
+ },
"outputs": [
{
"data": {
@@ -1571,6 +1573,130 @@
"nbDecedeesNF"
]
},
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Sur la période donnée, il y a pour les fumeuses un taux de mortalité de : 18.989071038251364 %\n",
+ "et il y a pour les non fumeuses un taux de mortalité de : 39.51890034364261 %\n"
+ ]
+ }
+ ],
+ "source": [
+ "tauxMortF = nbDecedeesF/nbTotalF\n",
+ "tauxMortNF = nbDecedeesNF/nbTotalNF\n",
+ "print(\"Sur la période donnée, il y a pour les fumeuses un taux de mortalité de : \", tauxMortF*100, \"%\")\n",
+ "print(\"et il y a pour les non fumeuses un taux de mortalité de : \", tauxMortNF*100, \"%\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 39,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Fumeuses \n",
+ " tauxMortalite \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " Fumeuses \n",
+ " 18.989071 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " nonFumeuses \n",
+ " 39.518900 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Fumeuses tauxMortalite\n",
+ "0 Fumeuses 18.989071\n",
+ "1 nonFumeuses 39.518900"
+ ]
+ },
+ "execution_count": 39,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "d = {\"tauxMortalite\" : [tauxMortF*100, tauxMortNF*100], \"Fumeuses\" : [\"Fumeuses\", \"nonFumeuses\"]}\n",
+ "dt = pd.DataFrame(data = d)\n",
+ "dt"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([[]],\n",
+ " dtype=object)"
+ ]
+ },
+ "execution_count": 37,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEMCAYAAAA/Jfb8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFOtJREFUeJzt3X+QZXV55/H3x0GsgSGDirbWgIJKjCQjUVrQrST0qJEf1hZbblxBAkIksySim0hKZ7MkumvFxBhiogtMxogIifbGDRVBxrC7ybZuYohINIyjYk34OSCwSAAHURh59o97J3unp6f7zO070z3ffr+qpqrPOd9zznOfPvO5p8+5P1JVSJLa8pSFLkCSNHqGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3aR9JcmSSSnJAf/pzSd6y0HWpTYa7FkyS25O8dh/t5/Ekh02b/9V+2B455HbPSfI3w9ZVVadU1SdGsS1pOsNdS8VtwBk7JpKsBpYPu7EdZ9/SYmW4a0EkuQp4HnBtkm1J3pXk00nuTfJwki8k+fGB8VNJzhuY/pcz3ST/KskDSY7oTx+b5KEkPzawy6uAswem3wJcOa2mlUmuTPJ/k9yR5KIkTxnY398m+VCSB4H/BqwHXtWv/6H+uNcn+UqSR5LcleS9s/RgKsl5SV6ym209LcnvJbkzyX1J1icZ+glJS4vhrgVRVWcBdwL/uqpWVNXvAp8DjgaeDfwD8Kcdt/VF4I+AT/TD7yrgoqr65sCwG4AfSfKSJMuANwF/Mm1THwFWAi8ATqT3ZHDuwPITgFv79f08cD7wd/36D+2PebS/3qHA64FfSvJv5qj/G7vZ1geAHwV+EngRsAr4zQ4tkQx3LR5VdXlVfbeqfgC8Fzg2ycqOq7+XXjB/CbgHuGSGMTvO3n8W+CZw944FA4H/H/s13A5cDJw1sP49VfWRqtpeVY/t5jFMVdWmqnqyqm4GPkXviWKPJAnwi8CvVtWDVfVd4P3A6Xu6LS1NXjfUotAP198C3gg8C3iyv+gw4OG51q+qJ5JcAXwYeGfN/Il4VwFfAI5i2iWZ/n4OBO4YmHcHvbPlHe7q8DhOAH4H+In+9p4GfHqu9WbwLOAg4KZezvc2DywbYltagjxz10IaDOA3A6cBr6V3Bn5kf/6OZHuUXtjt8JzBDSVZBbwH+DhwcZKn7bKzqjvo3Vg9Fbh62uIHgCeA5w/Mex4DZ/fT6p1pGuCTwDXAEVW1kt619MwwbpfyZqjnMeDHq+rQ/r+VVbWiw7Ykw10L6j5617cBDgF+AHyHXoi/f9rYrwJvSHJQkhcBb92xoH8J4wrgY/353wbet5t9vhV4dVU9Ojizqn4I/BnwW0kOSfJ84J3sel1+ev2HJzlwYN4hwINV9f0kx9N70upip21V1ZPAR4EPJXl2/3GuSnJSx+1piTPctZB+G7io/+qQZ9C7DHI38HV6N0AHfQh4nF4IfoKdb7a+AxgDfqN/OeZc4NwkPz19h1X1T1X15d3U83Z6fyHcCvwNvbPwy2ep/6+BzcC9SR7oz/tl4L8k+S69m59/Nsv6c23r3cAW4IYkjwD/C3hxx+1piYtf1iFJ7fHMXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQQv2DtXDDjusjjzyyH2+30cffZSDDz54n+93f2SvurFP3dinbubq00033fRAVT1rru0sWLgfeeSRfPnLu3u58d4zNTXFxMTEPt/v/shedWOfurFP3czVpyR37HbhAC/LSFKDDHdJapDhLkkNMtwlqUGGuyQ1aM5wT3J5kvuTfG03y5Pkw0m2JLk5yctHX6YkaU90OXO/Ajh5luWn0Pvey6OBtcBl8y9LkjQfc4Z7VX0BeHCWIacBV1bPDcChSZ47qgIlSXtuFG9iWsXO3y25tT/v29MHJllL7+yesbExpqamhtrhprvn/ErN3RpbDh/5088Mvf7qVV2/r3n/t23btqF/R0uJfepmsfVpPjkyX7PlyKj6NIpwn+n7IWf8BpCq2gBsABgfH69h3612zrrrhloP4MLV27l40/AP+/YzJ4Zed3/jOwq7sU/dLLY+zSdH5mu2HBlVn0bxapmtwBED04cD94xgu5KkIY0i3K8Bzu6/auaVwMNVtcslGUnSvjPn9YkknwImgMOSbAXeAzwVoKrWAxuBU+l9ke/36H05sSRpAc0Z7lV1xhzLC3jbyCqSJM2b71CVpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNahTuCc5OcktSbYkWTfD8pVJrk3yj0k2Jzl39KVKkrqaM9yTLAMuAU4BjgHOSHLMtGFvA75eVccCE8DFSQ4cca2SpI66nLkfD2ypqlur6nFgEjht2pgCDkkSYAXwILB9pJVKkjpLVc0+IPk54OSqOq8/fRZwQlVdMDDmEOAa4MeAQ4A3VdV1M2xrLbAWYGxs7LjJycmhit5098NDrQcwthzue2zo1Vm9auXwK+9ntm3bxooVKxa6jEXPPnWz2Po0nxyZr9lyZK4+rVmz5qaqGp9rHwd0qCMzzJv+jHAS8FXg1cALgf+Z5P9U1SM7rVS1AdgAMD4+XhMTEx12v6tz1u3yvNHZhau3c/GmLg97ZrefOTH0uvubqakphv0dLSX2qZvF1qf55Mh8zZYjo+pTl8syW4EjBqYPB+6ZNuZc4Orq2QLcRu8sXpK0ALqE+43A0UmO6t8kPZ3eJZhBdwKvAUgyBrwYuHWUhUqSupvz+kRVbU9yAXA9sAy4vKo2Jzm/v3w98D7giiSb6F3GeXdVPbAX65YkzaLTxeeq2ghsnDZv/cDP9wCvG21pkqRh+Q5VSWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoM6hXuSk5PckmRLknW7GTOR5KtJNif5/GjLlCTtiQPmGpBkGXAJ8LPAVuDGJNdU1dcHxhwKXAqcXFV3Jnn23ipYkjS3LmfuxwNbqurWqnocmAROmzbmzcDVVXUnQFXdP9oyJUl7oku4rwLuGpje2p836EeBpyeZSnJTkrNHVaAkac+lqmYfkLwROKmqzutPnwUcX1VvHxjzX4Fx4DXAcuDvgNdX1bembWstsBZgbGzsuMnJyaGK3nT3w0OtBzC2HO57bOjVWb1q5fAr72e2bdvGihUrFrqMRc8+dbPY+jSfHJmv2XJkrj6tWbPmpqoan2sfc15zp3emfsTA9OHAPTOMeaCqHgUeTfIF4Fhgp3Cvqg3ABoDx8fGamJjosPtdnbPuuqHWA7hw9XYu3tTlYc/s9jMnhl53fzM1NcWwv6OlxD51s9j6NJ8cma/ZcmRUfepyWeZG4OgkRyU5EDgduGbamM8AP53kgCQHAScA35h3dZKkocx5CltV25NcAFwPLAMur6rNSc7vL19fVd9I8pfAzcCTwB9X1df2ZuGSpN3rdH2iqjYCG6fNWz9t+oPAB0dXmiRpWL5DVZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGtQp3JOcnOSWJFuSrJtl3CuS/DDJz42uREnSnpoz3JMsAy4BTgGOAc5Icsxuxn0AuH7URUqS9kyXM/fjgS1VdWtVPQ5MAqfNMO7twJ8D94+wPknSEFJVsw/oXWI5uarO60+fBZxQVRcMjFkFfBJ4NfAx4LNV9d9n2NZaYC3A2NjYcZOTk0MVvenuh4daD2BsOdz32NCrs3rVyuFX3s9s27aNFStWLHQZi5596max9Wk+OTJfs+XIXH1as2bNTVU1Ptc+DuhQR2aYN/0Z4Q+Ad1fVD5OZhvdXqtoAbAAYHx+viYmJDrvf1TnrrhtqPYALV2/n4k1dHvbMbj9zYuh19zdTU1MM+ztaSuxTN4utT/PJkfmaLUdG1acuKbcVOGJg+nDgnmljxoHJfrAfBpyaZHtV/cW8K5Qk7bEu4X4jcHSSo4C7gdOBNw8OqKqjdvyc5Ap6l2UMdklaIHOGe1VtT3IBvVfBLAMur6rNSc7vL1+/l2uUJO2hThefq2ojsHHavBlDvarOmX9ZkqT58B2qktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAZ1CvckJye5JcmWJOtmWH5mkpv7/76Y5NjRlypJ6mrOcE+yDLgEOAU4BjgjyTHTht0GnFhVLwXeB2wYdaGSpO66nLkfD2ypqlur6nFgEjhtcEBVfbGq/rk/eQNw+GjLlCTtiS7hvgq4a2B6a3/e7rwV+Nx8ipIkzU+qavYByRuBk6rqvP70WcDxVfX2GcauAS4FfqqqvjPD8rXAWoCxsbHjJicnhyp6090PD7UewNhyuO+xoVdn9aqVw6+8n9m2bRsrVqxY6DIWPfvUzWLr03xyZL5my5G5+rRmzZqbqmp8rn0c0KGOrcARA9OHA/dMH5TkpcAfA6fMFOwAVbWB/vX48fHxmpiY6LD7XZ2z7rqh1gO4cPV2Lt7U5WHP7PYzJ4Zed38zNTXFsL+jpcQ+dbPY+jSfHJmv2XJkVH3qclnmRuDoJEclORA4HbhmcECS5wFXA2dV1bfmXZUkaV7mPIWtqu1JLgCuB5YBl1fV5iTn95evB34TeCZwaRKA7V3+bJAk7R2drk9U1UZg47R56wd+Pg84b7SlSZKG5TtUJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQZ3CPcnJSW5JsiXJuhmWJ8mH+8tvTvLy0ZcqSepqznBPsgy4BDgFOAY4I8kx04adAhzd/7cWuGzEdUqS9kCXM/fjgS1VdWtVPQ5MAqdNG3MacGX13AAcmuS5I65VktTRAR3GrALuGpjeCpzQYcwq4NuDg5KspXdmD7AtyS17VO0IvAMOAx4Ydv18YITFLH7z6tUSYp+6sU99c+TIXH16fpd9dAn3zDCvhhhDVW0ANnTY516T5MtVNb6QNewv7FU39qkb+9TNqPrU5bLMVuCIgenDgXuGGCNJ2ke6hPuNwNFJjkpyIHA6cM20MdcAZ/dfNfNK4OGq+vb0DUmS9o05L8tU1fYkFwDXA8uAy6tqc5Lz+8vXAxuBU4EtwPeAc/deyfO2oJeF9jP2qhv71I196mYkfUrVLpfGJUn7Od+hKkkNMtwlqUGGu+aUZKaXukpD85ja+5ZMuO84mJK8IsnvJ3lDkqcOLtP/l2Q8yWVJPgg8c6HrWWw8nvacx9Tu7Y3jaUmEe5JUVSX5GeBy4PvAa4HfBSjvKv+LJCuTfBz4c+A24A+ryncVDkiyrH88nQh8HI+n3eq/PHpFkivwmJpRkuX942mCEeZTl3eo7peSHAScDfwM8L/7B9fLgfVVdUmSpwN/neTEqvr8jieABSx5QQz06UTgfwCfBu4H3l9Vf9QfsyR7MyjJwcAZ9D4k74tJPgq8DLjM42lnA706Ffg88EngPjymdpLkEHqf1XUf8Av0jqeR5VOTZ+5JngN8FpgArqL3eTZvAF4FPAFQVf8MfAZ4x47V9nmhC2xan64Efolen74FvDjJ7/SfFH8hyfP76yzFPh0M/BXwauCjwOuAfwu8AvgheDztMK1XG+g9Gb4B+DrwEo+pnSwHnga8MMlhwAvpHzejOJ6afJ17kuXAS6vq7/vT59D7uOLNwC9X1Qn9+c8FvlJVz1moWhfSDH06G3gl8AfA+/rD/oLeJ4MeU1UnLUihi0CSQ6vqof7P76L3p/N3gHd4PO1sWq9+DTiQ3hnqb/eHeEwBSd4C/ATwCL2Pa7kf+I2qOr6/fF7HU5Nn7vT+431p4IzgZuCEqvoE8KL+GSv9j0j4xyQ/tUB1LrTpfdoErK6qbwG/WlVvqqpPAe8CnprkdQtV6EKrqoeS/Ej/rPNCejcEr6V3PI31xyz14wnYpVe/BhxE79LDOz2mdvpL5SnAP9E76VxTVdcCLxjV8dRkuPc/V37wT5L/AFzd/3kj8CsASZ5B76OK79i3FS4OM/TpV+idYcHOH9f8TODOafOWnKp6BPgSvb9ungv8O+AWYG3/xuGSPp4GDfTqVcDT6YX58oEhS/aYGvg/dyq9y3x/BRyR5CLgXuAXYf751GS479C/A3048Bzgc/3Z76X35PlZek1dVlV37WYTS8JMferPe1mS/0TvifF7VbVpIetcDKrq0qq6DbgUOA5YT+/M9Bo8nnYy0KvL6H1L27OSHOsxBUlW0PvM9o8Cfwm8lN73ZJwBPCPJtczzeGr21TIDXkbvcsNtSc6j9/HEvw68CfhmVf3DQha3iOzo0539Pt0GvB7YDrytqr6ykMUtQt+hdwPsoqq6MsnPA5vt04weovcFFF+j93/vqXhMbad3UvAEcBG9G/O/3n+ye+cojqcmb6gOSvK3wAuA2+ndtPjPVXXzgha1CE3r073Auqra59+UtZglWQm8BngzvRv0G4BLquqJBS1sEZqhVx+rqosXtqrFK8nz6L2qaLKq7h3JNlsO9/47vN5D7yz0T6rqBwtc0qJkn7pJcgDw74Ef0OvT9xe4pEXLXnWTZBnw5N54zX/T4S5JS1XTN1Qlaaky3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KD/h/VFYdaJC+fywAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "%matplotlib inline\n",
+ "dt.hist(xrot=20)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
{
"cell_type": "code",
"execution_count": null,