Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mooc-rr
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
26c634550904aba62520384fc8aa7dec
mooc-rr
Commits
afc4fbe9
Commit
afc4fbe9
authored
Apr 24, 2020
by
26c634550904aba62520384fc8aa7dec
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
no commit message
parent
26f18b70
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
45 additions
and
5 deletions
+45
-5
exercice.ipynb
module3/exo3/exercice.ipynb
+45
-5
No files found.
module3/exo3/exercice.ipynb
View file @
afc4fbe9
...
...
@@ -624,7 +624,7 @@
"y_wheat=list(raw_data[\"Wheat\"])\n",
"graphique1 = plt.figure()\n",
"ax = graphique1.add_subplot(111)\n",
"ax.set(xbound=[1550,1850],ybound=[0,100],ylabel=\"
Pound
s\",xlabel=\"Year\",Title=\"Evolution of wheat prices and wages\")\n",
"ax.set(xbound=[1550,1850],ybound=[0,100],ylabel=\"
Shilling
s\",xlabel=\"Year\",Title=\"Evolution of wheat prices and wages\")\n",
"ax.xaxis.set_major_locator(plt.MultipleLocator(50))\n",
"ax.bar(x,y_wheat,width=5, color=\"black\",label=\"Wheat Price\")\n",
"ax.plot(x,y_wages,color=\"red\",label=\"Wages\")\n",
...
...
@@ -680,7 +680,7 @@
"zero=[0 for i in x]\n",
"graphique2 = plt.figure()\n",
"ax1 = graphique2.add_subplot(111)\n",
"ax1.set(xbound=[1550,1850],ybound=[0,100],ylabel=\"
Pound
s\",xlabel=\"Year\",Title=\"Evolution of wheat prices and wages\")\n",
"ax1.set(xbound=[1550,1850],ybound=[0,100],ylabel=\"
Shilling
s\",xlabel=\"Year\",Title=\"Evolution of wheat prices and wages\")\n",
"ax1.xaxis.set_major_locator(plt.MultipleLocator(50))\n",
"ax1.plot(x,zero,color=\"black\",label=\"Wheat\")\n",
"ax1.plot(x,y_wages,color=\"red\",label=\"Wages\")\n",
...
...
@@ -700,10 +700,50 @@
},
{
"cell_type": "code",
"execution_count":
null
,
"execution_count":
98
,
"metadata": {},
"outputs": [],
"source": []
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.legend.Legend at 0x7fa2ed4bc470>"
]
},
"execution_count": 98,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAacAAAEWCAYAAADCeVhIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl8VOXVwPHfyR5CyMYiCAiiqIiyiIIi7ha0ClZRQa271NcVt4rWvlipvtSq1WqrxV2LC+ICaC1aEUFBFBRl0yJrQAhrQiALWc77x3MDQ8hMbpbJTJLz/Xzmk9y525kJzJnnuc89j6gqxhhjTDSJiXQAxhhjTGWWnIwxxkQdS07GGGOijiUnY4wxUceSkzHGmKhjyckYY0zUseTUjImIisghtdx3kIj8WN8x+TjvYSLyrYjki8gtdTjOahE5oz5jCxcR6SwiO0UkNtKx1JSInCIi6yIdh2l8LDk1At4HaaH3AVXxeKqBY9gnkanqbFU9rCFj8PwWmKmqqar61wicPyQRuVJEPq/PY6rqWlVtqapl9XlcY6JZXKQDML6dq6r/iXQQUeAg4I1IB9FQRCROVUsjHYcxDc1aTo2YiCSKSK6I9Ax4ro3XymrrLV8nIj+JyDYRmSoiHYIca6aIXBuwvKcFICKzvKe/81ptF1furhGRI7xj5IrIEhEZGrDuJRH5m4h84HXHzRORbiFe11DvGLneMY/wnp8BnAo85cXRvdJ+p4rIooDl/4jIVwHLn4vIeQG79BaR70UkT0TeFJGkgG3PEZGFXgxzROTogHVjRGSF91qWisivKt4D4BngeC++3BDv9f+JyFfeuaeISKa3rovXSr1GRNYCMwKei/O2yRSRF0XkZxHZLiLv+Yz7bhFZ78X9o4icHiS+X3pdpztEJFtE7g9YVxHLFSKyVkS2iMjvAtYne3/v7SKyFDi2qnN42/5BRJ70fo8XkV0i8nDAcYpEJMNbfktENnrv1ywROTLgOFkiMs2L92sR+WNg61VEDheRj73/Az+KyEUB6872/ob53ntzZ7B4TQNTVXtE+QNYDZwRZN0LwIMByzcC//Z+Pw3YAvQFEoEngVkB2ypwiPf7TODagHVXAp9Xta23fAqwzvs9HvgJuBdI8M6bDxzmrX8J2AYch2utTwTeCPJ6ugO7gDO94/7WO3ZCVXFW2jcJKARae+fZCPwMpALJ3rqsgPf0K6ADkAksA6731vUFNgH9gVjgCm/7RG/9hd5+McDFXrztq3rfgsQ5E1gP9ARSgLeBf3rrunjv9SveuuSA5+K8bT4A3gQyvPfo5OriBg4DsoEOAefpFiS+U4CjvNd3NJADnFcpvme92HoBxcAR3vrxwGzvPe0ELMb7d1LFeU4DFnm/nwCsAOYFrPsuYNurvb9jIvA4sDBg3RveowXQw3udn3vrUrzlq7x/E31x/yeO9NZvAAZ5v2cAfSP9/90e3t810gHYw8cfyX3A7ARyAx7XeevOAFYGbPsFcLn3+/PAwwHrWgIlQBdvub6S0yBcIogJWP86cL/3+0vAcwHrzgZ+CPJafw9MCliOwX2Qn1JVnFXsPxs4HxgAfARMAobgWlzfV3pPLwtYfhh4xvv9aWBcpeP+iJcEqjjnQmBYVe9bkO1nAuMDlnsAu3EJpYv3Xh8csL7iuTigPVAOZFRx3KBxA4fgEtcZQHwN//09DvylUiwdA9Z/BYzwfl8JDAlYN4rgySkZKAKygDG4LzfrcP9O/wD8Nch+6V4Mad57VoL3Rchb/0f2JqeLgdmV9v8HMNb7fS3wG6BVQ/1/toe/h3XrNR7nqWp6wONZ7/kZQLKI9BeRg4DewLveug7AmooDqOpOYCtwYD3H1gHIVtXygOfWVDrPxoDfC3AfQMGOFRhzOe6br9+YP8MlzpO832fiPpxP9pYDBYvpIOAOr2ss1+ue6+TFhohcHtB1lotrAbX2GV+F7IDf1+BaQK2DrA/UCdimqturWBc0blX9CRgN3A9sEpE3JHgXb38R+VRENotIHnA9+7++YO9dhypeW5VUtRCYj/vbVPy95gADCfh7iUisiIz3ulJ34L5Y4MXUBpe0A88Z+PtBQP9K78mlwAHe+gtwX5bWiMhnInJ8sHhNw7Lk1Mh5H96TgJHAJcD7qprvrf4Z958TABFJwX1LXV/FoXbhukUqHFDFNsH8DHQSkcB/T52DnMfPsQJjFtwHrN9jVU5OnxE8OQWTjesqDfwy0EJVX/e+ADwL3ITrIkzHdV2Jt6/fMv+dAn7vjPv2vyXguWDHyQYyRSS9JnEDqOprqnoi7v1V4E9BzvEaMBXopKppuOtoEmTbyjZU8dpC+QzXhdcH+NpbHozrAq641nkJMAzX6kvDtd7wYtoMlAIdA44ZeP5s4LNK70lLVf0fAFX9WlWHAW2B93D/l0wUsOTUNLyG67641Ps98PmrRKS3iCQCD+H69FdXcYyFwPki0kLckPFrKq3PAQ4Ocv55uOT2W+/C9inAudRuVN0k4JcicrqIxAN34K5pzPG5/xzc9ZXjgK9UdQnet2f2fthV51ngeq8FISKS4g0SSMVdw1DchyIichWu5VQhB+goIgnVnOMyEekhIi2AB4DJ6mOouKpuAD4E/i4iGd77fVJ1cYu7P+w0799BEe76W7DzpeJaZ0UichwuOfg1CbjHi60jcHM1238GXA4sVdXdeN22wCpV3RwQTzGu1d8C9++44v0oA94B7vf+7R7uHa/C+0B3Efm1917Fi8ix4gbwJIjIpSKSpqolwA6CvyemgVlyajymyb73OVV03aGqFcmhA+6Dq+L5T3DXcN7GfaPtBowIcvy/4K575AAv4wYtBLofeNnrGrkocIX3oTIUOAv37f/vuOteP9T0Rarqj8BluMEbW3BJ7lzvHH723wV8AywJ2GcusEZVN/k8xnzgOuApYDtuQMaV3rqlwKPeMXNwAwe+CNh9BrAE2CgigS2hyl7FXYvbiBvIUZMbin+Na2n9gLuONLq6uHEDCcbj3tONuJbCvUGOfwPwgIjkA/9LzVoTf8B15a3CXfN7tZrt5+CuPVV8cViKS56BXyRe8Y653lv/ZaVj3IRrUW30zvc6Lpnh9SL8Avfv/mdvmz/h3g9w7+Vqr7vwety/PRMFRNUmGzSmIYnITNzovOciHUtTJCJ/Ag5Q1SsiHYupPWs5GWMaNe8+pqO9rszjcF3S71a3n4luViHCGNPYpeK68jrgujkfBaZENCJTZ9atZ4wxJupYt54xxpio06i79WJiYjQ5OTnSYRhjTKNSUFCgqhrVjZNGnZySk5PZtWtXpMMwxphGRUQKIx1DdaI6cxpjjGmeLDkZY4yJOpacjDHGRJ2wXXMSkReAc4BNqtrTey4TNw9NF1xl4YsqqiuLyD24m+fKgFtUdXptzltSUsK6desoKiqq82toKpKSkujYsSPx8fGRDsUYY3wJ231OXjHKncArAcnpYVxByfEiMgY3J83dItIDdxPdcbgb6f4DdK+uEGZKSopWHhCxatUqUlNTycrKwhW0bt5Ula1bt5Kfn0/Xrl0jHY4xJgqISIGqpkQ6jlDC1q2nqrNws58GGoYrKor387yA599Q1WJVXYUrWHlcbc5bVFRkiSmAiJCVlWUtSWOMfyJJiHyFyHeILEHkD97zmYh8jMhy72dGuEJo6GtO7byS/xWl/9t6zx/IvhOErSPI5HIiMkpE5ovI/NLS0ipPYolpX/Z+GGNqqBg4DdVeuAlMhyAyADdj8SeoHgp84i2HRbQMiKjq07PK/kZVnaCq/VS1X1xco75NyxjT3O3eDU88ATNmRDqSfbm50nd6S/HeQwne+1XvGjo55YhIewDvZ8X8OuvYd/bKjri5Vxql2267jccff3zP8uDBg7n22mv3LN9xxx089thjkQjNGBMNVHlkwADWpaXB6NG8OeI3DBo0iEGDBjF8+PCGiCCuogfKe4zabwuRWEQW4j6nP8bNG9cOr/eLfXu/6l1DJ6epQMUcK1ewt3LwVGCEiCSKSFfgUOCrBo6t3pxwwgnMmeMmbi0vL2fLli0sWbJkz/o5c+YwcODASIVnjImkuXNh4EDunDeP3bGtGH3YjTzT40o6depEp06dyMnJaYgoSit6oLzHhP22UC1DtTeusXAcIj332yaMwpacROR13Gyhh4nIOhG5BjcT55kishw401vGm0p7Em6Wy38DN/qZsjpaDRw4cE9yWrJkCT179iQ1NZXt27dTXFzMsmXLOOKIIzj99NPp27cvRx11FFOm7K3wP27cOA4//HDOPPNMRo4cySOPPALAihUrGDJkCMcccwyDBg3ihx/cRLNvvfUWPXv2pFevXpx00kn7B2SMibyVK+Gii+CEE9j931X8rt25XNX7ThYe0BGi+bqwai4wExgC5OD1frFv71e9C9tFG1UdGWTV6UG2fxB4sF6DGD0aFi6s10PSuzcEdNlVpUOHDsTFxbF27VrmzJnD8ccfz/r165k7dy5paWkcffTRtGjRgnfffZdWrVqxZcsWBgwYwNChQ1mwYAFvv/023377LaWlpfTt25djjjkGgFGjRvHMM89w6KGHMm/ePG644QZmzJjBAw88wPTp0znwwAPJzc2t39drjKm7pUvRE09Ei4pZcsH9LB92B1P+dC/tEosoK4vC+w9F2gAlqOYikgycgZvevqL3azz79n7VOxtRECYVrac5c+Zw++23s379eubMmUNaWhonnHACqsq9997LrFmziImJYf369eTk5PD5558zbNgwKqqtn3vuuQDs3LmTOXPmcOGFF+45R3Fx8Z5zXXnllVx00UWcf/75Df9ijTHBZWejgwdTEpvEhw/Op+XRB5MZCyJRPZdee+BlRGJxPWyTUH0fkbnAJFxP2FrgwlAHqYumnZyqaeGEU8V1p0WLFtGzZ086derEo48+SqtWrbj66quZOHEimzdvZsGCBcTHx9OlSxeKiooIdlN0eXk56enpLKyiJfjMM88wb948PvjgA3r37s3ChQvJysoK90s0xlRn2zYYMoTy3B18dM9sWvU+OKp78PZQ/R7oU8XzWwnS+1XfomUoeZMzcOBA3n//fTIzM4mNjSUzM5Pc3Fzmzp3L8ccfT15eHm3btiU+Pp5PP/2UNWvWAHDiiScybdo0ioqK2LlzJx988AEArVq1omvXrrz11luAG+n53XffAe5aVP/+/XnggQdo3bo12dnZVQdljGk4hYUwdCi6/Cdm3DKF5P5HN47EFCUsOYXJUUcdtedaUuBzaWlptG7dmksvvZT58+fTr18/Jk6cyOGHHw7Asccey9ChQ+nVqxfnn38+/fr1Iy0tDYCJEyfy/PPP06tXL4488sg9gyjuuusujjrqKHr27MlJJ51Er169Gv4FG2P2Ki2FESPQOXOYff1E5NRTiI2NdFCNS9hq6zWEqmrrVYyEa8x27txJy5YtKSgo4KSTTmLChAn07du3TsdsCu+LMY2CKowaBc89x9dX/Y3tI24gIWH/zW6++Wbatm1LWVk8IuW0b78YgOzsbGbPnh3WEBtDbb2mfc2pkRo1ahRLly6lqKiIK664os6JyRjTgMaOheeeY+n597HlwhtIriIxmepVm5xEJAbohasWXggsUdUGuUusuXrttdciHYIxpjaefhrGjWP16dew8soHaJkc6YAar6DJSUS6AXfjxrcvBzYDSUB3ESkA/gG8rKrlDRGoMcZEtbffRm+8kU3Hnct3//MMaak2+qEuQrWc/gg8DfxGK12YEpG2wCXAr9lbBNAYY5qnzz5DL7mEvCMGMOeWN8jIsismdRX0HQxR4QFV3QRE7iYiY4yJFt9/jw4dSmH7bnx6+/tkHNgi0hE1CaG69UKWGlDVd+o/HGOMaURWr0aHDKEkMZWP75xORrfMSEfUZIRqe54bYp0ClpyCuO222zjooIMYPXo04KbM6NSpE8899xzgpsw48MADmTFjBu+//36dz/fee+/RvXt3evToUedjGWN82rIFBg+mbGch0+/9nFZHdqp+H+Nb0JtwVfWqEI+rGzLIxsbPlBklJSX1dr733nuPpUuX1tvxjDE+XH455WvW8smt02hx7JFW/aGeVVshQkTaicjzIvKht9zDm/7CBOFnyow+ffqwc+dOhg8fzuGHH86ll166p67eggULOPnkkznmmGMYPHgwGza4ub2effZZjj32WHr16sUFF1xAQUEBc+bMYerUqdx111307t2bFStWROx1G9NsLFwIH37I978aS+zJJ1r1hzDwM6TkJeBF4Hfe8n+BN4HnwxRTvRk9enSVhVLronfv3vvMclsVP1NmJCQk8O2337JkyRI6dOjAwIED+eKLL+jfvz8333wzU6ZMoU2bNrz55pv87ne/44UXXuD888/nuuuuA+C+++7j+eef5+abb2bo0KGcc845DTWDpjHm0Ucpa9GSVb+4ngwbmBcWft7W1qo6SUTuAVDVUhFptBMBNpTqpswAOO644+jYsSPgkt7q1atJT09n8eLFnHnmmQCUlZXRvr2b22vx4sXcd9995ObmsnPnTgYPHhyZF2dMc7ZuHfrGG/x05k206pwe6WiaLD/JaZeIZOEGQSAiA4C8sEZVT6pr4YRTdVNmACQmJu7ZPjY2ltLSUlSVI488krlz5+53zCuvvJL33nuPXr168dJLLzFz5syGejnGmApPPgnl5fz3rFtJte68sPFTlfx23OyH3UTkC+AV4OawRtUEVDdlRjCHHXYYmzdv3pOcSkpK9gymyM/Pp3379pSUlDBx4sQ9+6SmppKfnx/eF2SMgfx89B//YP2A4SQe1iXS0TRp1SYnVf0GOBk4AfgNcKS6iahMCNVNmRFMQkICkydP5u6776ZXr1707t17z+CKcePG0b9/f84888w9U2wAjBgxgj//+c/06dPHBkQYE07PP4/k5bHkrDurrDRu6o+vKTNE5ASgCwHdgKr6SvjC8qepTpkRDva+GFNHpaXoIYewvWVnvnx4Fi3qWAjCpswIzU9V8leBbsBCoGIghOK694wxpnl4+21kzRq+v+2vdU5Mpnp+BkT0A3pULv5qjDHNhio88ggFnbqTN+gc0iIdTzPgZ0DEYuCAcAdSnyyP7sveD2PqaPZsmD+fxWfeTqt0Px+bpq5CFX6dhuu+SwWWishXQHHFelUdGv7wai4pKYmtW7eSlZWFWD0RVJWtW7eSlJQU6VCMabweeYSS9NasO+1yMu1jpUGE6tZ7pMGiqEcdO3Zk3bp1bN68OdKhRI2kpKQ9N/saY2roxx9h2jR+OH8saQfY1LYNJdR8Tp8BiEgKUKiq5SLSHTgc+LCB4qux+Ph4unbtGukwjDFNxeOPU56QyIrBN5BuN902GD+dp7OAJBE5EPgEuApXb88YY5q2oiL09dfJHnARKV3bRjqahiPSCZFPEVmGyBJEbvWevx+R9Ygs9B5nhysEP6P1RFULvErkT6rqwyJSv9VUjTEmGr3/PpKXx08DLyc+PtLBNKhS4A5Uv0EkFViAyMfeur+gGvbLPn5aTiIixwOXAh94z1nj1hjT9P3znxRntSf/mFMjHUnDUt2Aqw4EqvnAMuDAhgzBT3IaDdwDvKuqS0TkYODT8IZljDERtnUr+q9/sXLAJbTKaHLfx+NEZH7AY1TQLUW6AH2Aed4zNyHyPSIvIJIRtgCr28AbGPFZwPJK4JZwBWSMMVFh0iSkpITVJ/6a5KZ3a1OpqvardiuRlsDbwGhUdyDyNDAOd5vROOBRICwzo/spX/SpF8g+VPW02p5URG4DrvWOuwg3yKIFbhLDLsBq4CJV3V7bcxhjTJ28+ir5XXpSduTRkY4kMkTicYlpIqrvAKCaE7D+WeD9cJ3ez4CIOwN+TwIuwF0sqxVv1N8tuJJIhSIyCRgB9AA+UdXxIjIGGAPcXdvzGGNMra1YAXPnsmLkn0hpWbe7bseOHcu2bdv2e3737t11Om5YuQoGzwPLUH0s4Pn2qG7wln6FqyAUFn669RZUeuoLEfmsyo1rdt5kESnBtZh+xl3XOsVb/zIwE0tOxphImDgRFWHtwJG0qmNFiG3bttG2baMbhj4Q+DWwiL2js+8FRiLSG9frtRo3jVLVRPoBg4AOQCEukf0H1f0zdRX8dOtlBizGAMdQh1p7qrpeRB4B1uIC/khVPxKRduplZFXdICJV/jW9C3ejwM19ZIwx9UoVffVVtvY8hYRunSIdTWSofg5UlZb/Ve2+IlfiesdWAQuAH3G9bicCdyOyGPg9qmtDHcZPt94CXJYUXHfeKuAaH/sFiVsygGFAVyAXeEtELvO7v6pOACaAm8+ptnEYY0yVvvoK+eknfhp1L1aSslZSgIGoFla51rW8DsU1UILy061X37WAzgBWqepmABF5BzfLbo6ItPdaTe2BTfV8XmOMqd6rr1KemMSGEy6gJuOkG+W1pXBQ/RsAIpn7deGJdEXVVxEHP916ScANuCaZAp8DT6tqUQ1DrrAWGCAiLXDdeqcD84FdwBXAeO/nlFoe3xhjaqekBH3jDdYfM4yWHVrVaNdGem0pnKYhchaqOwAQ6QFMAnr62dlPt94rQD7wpLc8EngVuLDGoQKqOk9EJgPf4LoJv8V107UEJnllktbW9vjGGFNr06cjW7ey4vjLIlauqLCwkEGDBu33fLt27Zg8eXIEIqq1h3AJ6pfAYbhccqnfnf0kp8NUtVfA8qci8l3NYtyXqo4FxlZ6uhjXijLGmMh49VVK0luz/bjBNerSq0/du3ev8vns7OwGjqSOVD/w7pX6CDcv4HmoLve7u5/k9K2IDFDVLwFEpD/wRa2CNcaYaJWXh06dyuqTr6VVVvOq8lqvRJ5k38INrYCVwM2IgKqvCkOhZsJd5J0gHrhcRNZ6ywcBS2sbtzHGRKW330aKilg18DISmlwpvQY1v9Jy5XtlfQnVcjqnNgc0xphGRxUmTKCgY3eKex1HqDsobVReNVRf3vO7SDLQGdUfa3qYUDPhrqldZMYY08jMmQPz5rHkyr/RMjV0SQgbleeTyLnAI0AC0NW7v+kBVIf62b3p1do1xpiaeuQRStMyyT79SqSO5YrMHvcDx+GKLeDd3+T7vllLTsaY5m35cnTKFH449QbS2reIdDRNSSmqeZWe813Vp0bJSUT61mR7Y4yJen/5CxoXz4ohNxJrAyHq02JELgFiETnUG8U3x+/OoUbrVU5EAkwR148oWjGFrzHGNFZbtqAvvcSaEy+jxcG1rmdtqnYz8DvcPayvAdOBP/rdOdRovfnAl96BK2QBj+GaZrWebNAYY6LC008jhYUsPet2UuzWpvqlWgD8DpGHUN1V091DdetdBJQAf1bVU1X1VGCj97slJmNM41ZUhD71FDnHnEVMzyMjHU3TI3ICIkuBZd5yL0T+7nf3oMlJVScDvwTOFJG3RKQzNbiYZYwxUW3iRGTTJhb94k6SkyMdTJP0F2AwsBUA1e+Ak/zuHLJ8karuBG4TkT642Wlb1jpMY4yJFuXl6KOPkt+tN4UDTiU10vE0VarZlcbml/ndNWjLSURGikiWO75+i7vGdEhtYzTGmKjx738jy5ax6Bd3klrXedhNMNmInAAoIgmI3ElFF58PoVpOB+FmqY0HPgE+BL6qU6jGGBMNHnmE4rYd2XTKRRGrPt4MXA88ARwIrMNVJ7/R786hyheNB8aLSCpu9tqrgWdEZBnwb2C6qubUIXBjjGl433wDn37K0kv+THobG6IXRjtR9T1/U2V+pmnPB971HoibzfAs3MRRg2t7YmOMiYg//IGylFRW/+I6MqxHL5wWI5IDzAZmAV9UUTEiqBqXL1LVpcAHqmqJyRjTuHzwAUydyqKh99GqY1qko2naVA/BzZy+CDfLxXeILPS7e21r631Uy/2MMSYyiorQW25hV+fDWTVstJUqCjeRjsBAYBDQB1gCvOl391Dli/4abBWQXoMQjTEm8h5+GFm5krlj/kNGu1AzNpl6shb4GngI1etrunOoltNVwGLcLIaBj/mAzapljGk8Vq5E/+//WHfixZScdHqko4l+Ip0Q+RSRZYgsQeRW7/lMRD5GZLn3M9Rgxz64sQmXIDIXkVcQucZvCKEGRHwNLFbV/arIisj9fk9gjDERN3o05RLLgpGPkmbVIPwoBe5A9RvciO0FiHwMXAl8gup4RMYAY4C7qzyC6neIrABW4Lr2LsNViHjeTwChktNwoKjqc6rvCaOMMSaipk2DadP4/pI/0/KwAyMdTeOgugHY4P2ej7uF6EBgGHCKt9XLwEyCJSeR+UAibpqMz4GTqMEM66Huc9rm9yDGGBOVCgvRW2+loEsPVg+7lQwbBFEhTlzyqDBBVSdUuaVIF1wX3TygnZe4XAITCTVf/Vmobq51gLXd0Rhjot6f/oSsWsXce2eQ0dZuuA1Qqqr9qt1KpCXwNjAa1R01msO+DokJbJp2Y0xTtWIFOn482YNGUnLiqZGOpvFxpeveBiai+o73bA4i7b317YFN4Tp9yOQkIrEi8udwndwYY8Jixw4YPpzyuAQWjHjEpsSoKRHBDVxYhupjAWumAld4v18BTAmyf4xX9LXWqpsyo0xEjhERUVWby6meDR8+nJyc/csTtmvXjsmTJ0cgImOagOJi+NWv0MWL+ez290k9rEOkI2qMBgK/BhYFVHW4FxgPTPKGhK8FLqxyb9VyRB4Fjq9tAH6uOX0LTBGRt4A9U+3q3maeqaWcnBw6deq03/PZ2dkRiMaYJqC8HC6/HGbMYO71r1B6+mASbBBEzal+jiu4UBW/N4p9hMgFwDvUonHjJzll4mYyDJyaXQFLTsaY6KEKo0fDpEl8O/Jhdgz7NUlWCCKSbgdSgDJECnHJTlFt5WdnP1XJr6pbfMYY0wDGj4cnn+S/v7yNny+5k5SkSAfUzKnWaYLhakfriUh3EflERBZ7y0eLyH11OakxxtSrF1+Ee+8l+6RL+OHaR0hpaXNhRJyIIHIZIr/3ljshcpzf3f0MJX8WuAcoAVDV74ERtQh1DxFJF5HJIvKDiCwTkeNFJFNEPhaR5d5Pm6DSGFO9qVPR665jS58zmX/Di7RKtztkosTfcQMiLvGWdwJ/87uzn79iC1WtPD17qd8TBPEE8G9VPRypaglsAAAgAElEQVTohZtXfgzwiaoeipsWfkwdz2GMaeqmTkWHD2fHIX2ZPfptqzYeXfqjeiMVZfBUtwO+/0B+ktMWEemGGwSBiAynouZSLYhIKwKK/6nqblXNxdVsetnb7GXgvNqewxjTDEyZ4hLTwb355LcfkdG5Tpc4TP0rQSQWL3cg0gYo97uzn9F6NwITgMNFZD2wCqj1vPDAwcBm4EUR6YWbhuNWoJ16NZtUdYMEqdkkIqOAUQAJCfYtyZhmacoU9MIL2dGtD5/cNZ3Mg22KuSj0V+BdoB0iD+KKifser+BntN5K4AwRSQFiVDW/tpEGnLMvcLOqzhORJ6hBF55XnHACQEpKit0YbExzE5iYfvsRmV1tuvWopDoRkQXsvS/qPFSX+d3dz2i9LG9W3NnATBF5QkSyahctAOuAdao6z1uejEtWOeLVbJIw12wyxjRSFV153foy425LTI1ACyAWl2tqVETKzzWnN3DdcBfgmmWbqcE88JWp6kYgW0QO8546HViK35pNxpjm6cMPvcEPxzDj7ulkdLHEFNVE/hc3fiATaA28SA1uQ/JVIUJVxwUs/1FE6jpY4WZgoogkACtxU8LHAJOkuppNxpjmZ9kydMQIdnbpaYmp8RgJ9EHVjdYTGQ98A/zRz85+ktOnIjICmOQtDwc+qHmce6nqQqCquUT81mwyxjQX27ejQ4dSGpfEjFumWGJqPFYDSeydUT0RN2W7L36S029wNZJe9ZZjgV0icjug6rNOkjHG1FhpKVx8MaxZw6f3fErqkZ0jHZHxrxhYgsjHuOHkZwKf48YwgOotoXb2M1rPbh4wxkTGXXfBxx8z77rnkRMHEmPFHxqTd71HhZk12dmmaTfGRKcXXoDHH2f52bey/VdXk2yzrDcuqi9Xv1Fw9j3EGBN9vvgCvf56tvQ+g6VX20y2zZElJ2NMdFm1Cj3/fIraHcTsm94kLcs6eJqjav/qIpJZxdP5qloShniMMc3Zt9+iZ59NWVEJ/7ljKukHV/XxY5oDP19JvgE6AdtxMxmmAxtEZBNwnaouCGN8xpjmYvp0dPhwdrfM5KPffUKLY45AbFqmPQoLCxk0aNCe5Xbt2jF58uQIRlQNkWlUFH3dKw+YD/xjz/1PQfhJTv8G3lXV6e588gtgCO6+p78D/WsaszHG7OOll9DrrmNX5x78544PSTuigyWmSrp3777PcnZ2doQi8W0l0AZ43Vu+GMgBuuPmCfx1qJ39JKd+qnp9xYKqfiQiD6nq7SKSWLuYTXM0fPhwcnJy9ns+6r8BmvBRhYcegvvuY2vv05l16ztkdrFbJ5uIPqieFLA8DZFZqJ6EyJLqdvaTnLaJyN24Gnvgst92cfN0+J6bw5icnBw6deq03/ON4BugCYfSUrjpJvjHP8g++VLm/88LZNpkgU1JG0Q6o7oWAJHOuBp7ALur29lPcroEGAu8h7vm9Ln3XCxwUS0CNsY0dzk5MGIEzJzJsmFjWH7lg2TY9OpNzR24ihArcLmjK3ADbvqlau+B8lMhYguuUGtVfqpBoMYYA3PmoBdeiG7dxpejXiLvvCtoZfcxNT2q/0LkUOBwXHL6IWAQxOPV7e5nKHl34E6gS+D2qnpabeI1xjRTqvDkk+gdd1DU7iBm/O+XJB7Xi2S7jSn6iLwAnANsQrWn99z9wHW4aZMA7kX1X9Uc6Rj25o6jEQHVV/yE4OefxVvAM8BzQJmfgxpjzD527oTrroM33iCn/1Dm/uZl0ruk24i86PUS8BRQOZH8BdVHfB1B5FWgG7CQvblDqzhmlfwkp1JVfdpXMMYYwEYm7uOLL2DUKPSHH/h+xP+x5uLf2vWlaKc6C5EudTxKP6AHqpXvdfLFT3KaJiI34KrLFlc8qarbanNCY5oDG5kILF8OY8bAO++wu3UHZv32I8pPPZ1WNiAvGsSJyPyA5QmqOsHHfjchcjnuRto7UN0eYtvFwAHAhloF6GObiqnT7wp4ToGDa3PCpsC+FRsTwpYtMG4c+ve/Ux6fyJILx7Fi2O2kd2hBnHXjRYtSVa1qwtdQngbG4T7/xwGPAleH2L41sBSRrwho2KA61M/J/IzW6+rnQM2JfSs2pgpFRfDXv6IPPQT5+aw6/ToWXXA/LQ85gIzYSAdn6kx17zdykWeB96vZ4/66nC5ochKR01R1hoicX9V6VX2nLic2xjQR5eXwxhvoPfcga9eyqd8vmX/Rw8T36kGadeE1HSLtUa3oovsVrtsuONXP6nK6UC2nk4EZwLlVnRaw5GRMc/fZZ3DnnTB/Pju79WbemBfYPeh0UlpEOrC6Gzt2LNu27X9pfffuaosbNH4irwOnAK0RWYcrxHAKIr1xn/+rgd8E2fdzVE9EJJ99C78KoKj6qk8VNDmp6ljv51V+DmSCC3aNqrCwMALRGFMPfvwR7r4bpkyhuG1HFvzmZTYPvoy0jJgGm147WPLIzMzkD3/4Q52Pv23bNtq2bVvn4zRKqiOrePZ5n/ue6P1MrUsIobr1bg99fn2sLiduToJdozK1U1Wyt8EoDWTuXHjsMfSddyhPTmHxxQ+xcuho0tsnk9bAgx2CJY9NmzY1bCBmX1XPAbiXz5Heob7k1CnrGRMuVSV7G4wSRqWl8O678Nhj8OWXlLZMY/kv7+DHc+4ktVvbRjPYIdwtLbPHAlx3XlVfV3yP9A7VrWd/LWOas3Xr3ECHp55C1qyhsEM3llzxJGtPv5K0Di1JbyRJqYK1tBpIPY3wDtWt99fQ59db6iOAaGFdRcHZfV3NyLp1MHkyvPUWzJkDwLaeJ7H4tifIPfEcWmXEkmn3KplQRPqGXK/6jZ/DhOrWa1bTr1tXUXB2X1cTl529NyHNnQvAjoN7seqiP7JuwIXIYd1p0QLSIhymaTQeDbFOAV9Fw0N161U734YxJrzC1mpdu3ZvQvrySwB2dOvNqoseJHvAhUj3Q0lJgZTanyFidu/ezc037z/LT7MYAh4NVE+tj8OE6tZ7XFVHi8g09h2r7p3fXwkKY0zt1WurtagInnsOJk7cNyFd/BDZ/YfvSUgt6xp0hHXs2DHSITRvIqehOoMgBRzwWcAhVLfeq95Pf+XRjWlEmtV1NFV4801XwWH16r0JacCFyKGHRH1CatY3wzZO9VLAIVS33gLvZ51KUBgTjZrNdbTZs10Fh6++Yme3Xnx190cUnngmLVtGd0IK1Kxvhm2MvAIO1LGAg5+ZcAfiCvgd5G0vgKpqk69KXlhYyKBBg6p83tSfYO9zk2zFNJTly10Fh3ffpbjNgSwY9ZKr4JAZ22iSUkOxa1RhIpIIXEClWdRRfcDP7n4qjTwP3IYbvVdvM+GKSCxuTpD1qnqOuLuK38S9kNXARRp6rpCw6969e422t2RWO8He5ybXimkokyejl19OucSy+KI/snLobaR3aNHgFRwaC7tGFTZTgDxc7iiuZtv9+ElOear6YU0P7MOtwDKgogjgGOATVR0vImO85bvDcN49Aq871EcCqWkyM6ZeqcK4cTB2LHlHHM+nN71Nq8PaN5oKDqbJ6YjqkNruHGq0XsWNVJ+KyJ9xF7ECZ8L1dSNVkGN3BH4JPAhU1PAbhquCC/AyMJMwJyereRfdrCVaAwUFcNVVMGkSa0+5nG+un0BGu8RIR2WatzmIHIXqotrsHKrlVPlGqsBZE33fSBXE48Bv2bd+Xzv15gpR1Q0iUuUVUBEZBYwCSEiwyWKassbQEo2KivPr18N556ELFrBw5MOsH3kn6anWh2ciRGQRLkfEAVchshLXsKmYMuNoP4cJNVqvXm6kqkxEzgE2qeoCETmlpvt789xPAEhJSdnv/itjGlLEW9/z56NDh1Kel8/s26ZQ/ItzaWkNJhNZ59THQfyM1rsVeBHIB54F+gJjVPWjWp5zIDBURM4GkoBWIvJPIEdE2nutpvaAVWNspKKiNdEcvPkmeuWVFGccwCe/n07SsUeRGOT6klXkNg1GdQ0AIt2AdagW4xoiRwOv+D2MnwERV6vqEyIyGGgLXIVLVrVKTqp6D3APgNdyulNVL/Oua10BjPd+TqnN8U3kRbw10cSJKtesWQMjRpB75InMvOUd0g9tg4ToybOK3CYC3gb6IXIIbtT3VOA14Gw/O/tJThX/5M8GXlTV70RC/TeotfHAJBG5BlgLXBiGcxjTqCWWlnL9l1/SPzub1addxbejniGjnV17NVGpHNVSr4zR46g+ici3fnf2k5wWiMhHQFfgHhFJBcprGew+VHUmblQeqroVOL0+jmtMU5RZUMAds2Zx0PbtjG99Jj1HP0+GDXww0asEkZHA5ewtZRTvd2c/yekaoDewUlULRCQL17VnTNRrKte/um3dyu2zZpFYUs6dh/0P02MT+ZslJhPdrgKuBx5EdRUiXYF/+t051H1OXVR1taqWA3vuafJaOFu9rr0DVXVd7WM3JryawvWvg7Zt454ZM8iLb8mNR97AxqxkYjbvn3CNiSqqS4FbApZX4S7f+BKq5fRnEYnBDUxYAGzGja47BDgV1wU3FrDkZEyYtC8q4u7589kZ14Lrj7iN/DRBxO6gMFHMTbM0Afg3qiWV1h0MXAmsRvWFUIcJdZ/ThSLSA7gUuBpoDxTgSg79C3hQVYvq8BKMMaFs2sSjixcTUwa39rjZS0yRDqrubFh7k3cdrvLP44hsY2/DpguwAngK1WpHY4e85qSuWfa7OodqokqzmsuohqKmQnp+Ppx9Nm2KS7i5x63kZCY2icQENqy9yVPdiKsA9FtEuuAaNoXAf1Et8HsYPwMiTBPTbOYyqoWoqJC+ezdccAG6cCG3tr+Yn9pkEGNdeaYhibyAq/SwCdWe3nP7zRxBdTNHqK72tq2xmNrsZIwJk/JyV8D144+Zd82zfJ7elpgYS0ymwb0EVK4oPgb4BNVDgU+85bCx5GRMNLnrLnjtNb6/+EFyf3UVMTGlkY7INEeqs4DKFwaH4WaMwPt5XjhD8FNbT3CDIg5W1QdEpDNwgKp+Fc7AzP5qeq2opvf41HSKCpvSop49+ig89hg/nXUTay+9h5ZJwTcNNnurDSowPsWJyPyA5QleUe1Q2uHNHIHqBoLMHFElkQygE6rf+w7QxzZ/x1WEOA14AFcA9m3gWN+BmXpR02tFNb3Hp6ZTVDSGKS0ajX/+E+68k/UDL2TJtY+TVs0NtsFmb7VBBcanUlXtV/1mdSAyExiKyzMLgc2IfIbq7SH38/hJTv1Vta94NZFUdbuIWDGvKGItmEb+HkyfTunll7OgRSeu29wVHTt6z6rdu3dHJCQb7m2qkINIe6/V5GfmiDRUdyByLfAiqmMRqdeWU4mIxOImj0JE2lBPtfVM/bAWTCN+D77+Gr3gAn5KzOL3PW+gTcsSoGWko7Lh3qYqU6nZzBFxXhK7iFrckuQnOf0VeBdoKyIPAsOB+2p6ImNMJcuXo2efTXGrNlyb/CsSW5ZUv08jU1ULLFhrMNh1tEi1Hps1kdeBU4DWiKzDVQMaD0zC/8wRDwDTgS9Q/dqrDrHcbwjVJidVnSgiC3DligQ4T1WX+T2BMaYKGzeigwdTWgof3T2d3JeepF2kYwqDYC2wqgS7jmYiQHVkkDX+Z45QfQt4K2B5JXCB392rHUouIgOA9ar6N1V9ClgnIv19B2iM2aO4oIDxhx7Kls4HUbRmLSNTf8W9Lz1FSYm1DkwTI9IdkU8QWewtH42I7143P/c5PQ3sDFje5T1njKmBozdsYPKKFYz56Sc2Jh/ADT1uZ2u3zrRr18ZaDaYpehY367nrr3bDyEf43dnXTLiquucWdVUtFxEre2SMT523b+eShQs5euNG1idncG/3a/i8bXfiE4qJoX6rP9h1GxNFWqD6VaWikL7vKveTZFaKyC3sbS3dAKz0H58xzVNGQQEXfv89J61axc74JB7vcj7vte9PTFIx8VIclnNaC8xEkS2IdMMb6Y3IcGCD3539JKfrcSP27vNO8gkwqsZhGtNMJJWUcM6yZfzyhx+IUXizw6m83PFMdqeUERumpGRMFLoRN6/T4YisB1YBl/nd2c9ovU3UoJ/QmOYqprycU1auZPiiRaQXFfGf1r15utMwtqXFExNTShOZ8aJKwW7ate7EZsyNzjsDkRQgBtX8muweapr236rqwyLyJOzfMa6qt1Sxm6kHjbraQRMV6m8SU15Ov3XrGL5oER137OD7Vl24o9sFrGjdmtjYEmKa0D3roa5pWZei2YfI7ZWWAfKABagurG73UC2ninuZ5ofYxoRBo6120IRV9TdJLinhlBUrGDLtfdoU7GJdchZjul/DnLaHEp+wm1ia3k21loBMDfTzHtO85V8CXwPXI/IWqg+H2jnUNO3TvLJFPVX1rvqK1pjGrvXOnQz57385ZcUKWpSW8l1aFx49bCRzW3cnNqGIeGk8XVk2us+EURbQF1V3K5LIWGAycBKwAKhdcgJQ1TIROaZ+4jSm8UopLqbfunX0z87m6A0bKRdhRlYv3mh/BisysoiL200cRZEOs8asJWTCqDMQ+C2nBDgI1UKk+pFBfkbrfSsiU3FlKHZVPKmq79Q0UmMak5YVCWntWo7MySFOlZ+TMnj1wDN494CB5KXGExNTRhzWyjCmCq8BXyJSUSD2XOB1b4DE0up29pOcMoGtuPmcKihgyck0ORUJacDatfQISEivtz+NGVl9WJHWhrj4YkQghrJIh2tM9FIdh8iHwEBcXdbrUa0Yw3Bpdbv7SU53qeqWOoRoTFRLLS6mX3Y2/bOzOTInh1hV1idn8lr705mR1YeVaa33JKR47D4lY3xTnY/IWsDN6yzSGdW1fnYNNZT8XOAF3HxO5cBFqjqnHsI1psGIKmlFRWQWFJBVUECm98gqKCCzsJCsXe73GFxCmtj+dGa07sPKVpaQjKkTkaHAo0AH3MSEnYEfgCP97B6q5fQgMEhVf/CqkD8MnFy3aI2pu9jyctrl53NAfj4pJSUkBzxalJSQsnu3l4QKySgsIE73vU1vd0wsmxPSyEnIYHXKQazPzGJ25tGWkIypX+OAAcB/UO2DyKlAsKk49hMqOZWq6g8AqjpPRFLrFqcx/kl5OWlFRWQVFNC6oIAD8/I4cMcOOubl0X5HPnG6/42tu2Pi2BWbyM64ZDbHp7EqpQubMtLZlJBOTkIGmxPT2ZyUSn5CIjGx5YiUEhOzN3FZQjKmXpWguhWRGERiUP0UkT/53TlUcmor+97hu8+yqj5Wm2hNM6RKi5ISWhUVkVZURKviYlrs3r2npZNcUkJyaSkpu3eTXlhIVkEBGYWFxAa0eMqBDUmZrEruyMwOB7Aq+QDWJrdjR0IyBXEJFMYlUBITg0g5IkpMTBkiVVf8tiRkTIPIRaQlMAuYiMgm6qkq+bNAaojlWhGRTsArwAG4z5wJqvqEiGQCbwJdgNW4a1zb63o+EwZeskkrKtqTcFKLi6t47KZVsdsmoTx4CZ/C2AR2xSayKzaJLQnprEzp6lo8ienkJKSzOSGd9SmZlMRDbGxJpQr8FUqID9sLNsbUwjCgCLgNNzovDTd1uy+hKkT8oc6hVa0UuENVv/G6CheIyMfAlcAnqjpeRMYAY4C7wxSDCSKmvNwNFKg8eMC7hpNeVBgy2eyKTSQvvgW5cS3Jicvgh5RUtqe3ZFt8KtviU9mekMq2uFR2JSRSEJdAUVwc5V6LB8qJiSkP0uIp8TW01BgTYSKjgS+Ab1GtuN/i5ZoepsH/v6vqBrw5PVQ1X0SWAQfisuwp3mYvAzOx5FRvYsvLaVlF6yazsJDWu3Z5jwIyCwv26U4Dl3A2JaaxOaE1/01JY1t6S7YHJJvt8S3JTUhhR3wi5XExiJR53WvlQVo5FZQYSnxNx2yMaTQ6Ak/gpsr4HpiDS1ZzUd2/dH0QEf0yKiJdgD7APKCdl7hQ1Q0i0jbIPqPw5pNKSEhomEAbkfiyMjrk5dE5L49Oubl0zs2lY24emUVVVzQvQ9icmMbGxEwWtDiIjRmZbEzMICcxg02J6WxJSqUwPo6YmDI37UOIZGOJxhiD6p0AiCTgCr+eAFwNPItILqo9/Bym2uQkIl1VdVV1z9WUuAtlbwOjVXWHhP6KvYeqTsBNYEVKSkr9znEdxWLLy0n1ru+kFRWRXlREemEh6UVFZBQWkl5YSIbXHVfR8tkdE8vqFu2Ym3oUP7fOIje+JXnxLcmNS2FHfAvy4pPJS0hG45SYmH1Hru1VRrxVQjDG1Fwy0Ap3rSkN+BlY5HdnPy2nt4G+lZ6bDNS6IKyIxHvHnRhQoy9HRNp7rab2uJu2moUDduzgkK1bgwwqKHYDDoJUid4Zl8TW+FQ2J2SwqkUXNmZksqJFB35q0Z4NKWkQVx6yxRNrdeGMMfVJZALuRtt8XK/YHOAxajjALVSFiMO9E6SJyPkBq1pRUYqiFsQ1kZ4HllUajj4VuAIY7/2cUsXuTYMqB+Xmcmx2NseuW0envLw9q8pEyItPIS8uhdy4VmyMS2F7RuD1nVRvcEEK25JaUhIfi0hZlUOnLfEYYyKgM5AILAfWA+uA3JoeJFTL6TDgHCAdV022Qj5wXU1PFGAg8GtgkYhUzIZ4Ly4pTRKRa4C1wIV1OEfUiC0rI7OwcM/It67bt3Ns9jra7dpJGcL3aV15q8sZfJ1+GLlJLdgVF4/EqJdwgo1cq1BKnP/bBowxxj+R1bjP+zKgFNV+vvZTHYJrhByJu950B9ATkW24QRFj/Rwm1FDyKcAUETleVef6CsoHVf0cV6G2KqfX13lqSsrLSSotJbmkhISyMuLLykgoL3c/vUdiaSmJpaUkeT8rfq/YJvBnckkpmYUFpBftO8dPicSwIP1QXmzXh8+zerCzRRyxsRUJptxuEDXGRJNTqU3hb1UFFiOSi5uaPQ/X2DkOqFtyCvCtiNyIy4J7uvNU9eoaBxwtFi+Ga6/lle8XkbZgwZ4KBTW1OyaOoph4ir3H7j2/tyAvJpHFrdLY1CaNnIR0tiRmsCkhjU3JrShJUGJj3SCDWGv5GGOaEpFbcC2mgbgJBt0wcldIvF4HRLyKqyQ7GHd376XAshqGG12SkihKSuPH2IMoadGKgtgkdsYmsSsumYLYJJdgJM4lnNh4iiWe3bFxFMUmUBgTR3FcPMVxcZRJDCLq3UCqXheces8FO3kpsQ33So0xpipxIjI/YHmCNxI6kAIfeR9s/2D/9cF0wQ2auw3v9qDaENXQo7FF5FtV7SMi36vq0d5Iu+mqelrIHRtASkqK7tq1q/oNq5CdDWecMZaOHa3ugDEmcsrK4hEpp337xTXaLzs7m9mzZ9fqnCJSoKop1WzUAdWfcfecfgzcjOqsWp2wFvzcM1ni/cwVkZ648epdwhaRMcaYyFP92fu5CXgXd72owfhJThNEJAP4PW6491Lc3E7GGGOaIpEUKqZJEkkBfgHUrGlXR9X2aanqc96vnwEHhzccY4wxUaAd8K538TwOeA3VfzdkAH7KF7UDHgI6qOpZItIDOF5Vnw97dMYYYxqe6kqgVyRD8NOt9xIwHTcPPMB/gdHhCsgYY4zxk5xaq+ok3MSAqGopWCVQY4wx4eMnOe0SkSzcmHdEZADubl9jjDEmLPzc5HM7bpReNxH5AmgDDA9rVMYYY5o1P6P1vhGRk3GFYAX4UVVLqtnNGGOMqTW/5RGOw914Gwf0FRFU9ZWwRWWMMaZZ8zOU/FWgG7CQvQMhFLDkZIwxJiz8tJz6AT20uiJ8xhhjTD3xM1pvMXBAuAMxxhhjKoSapn0arvsuFVgqIl/B3pnwVHVo+MMzxhjTHIXq1nukwaIwxhhjAoRKTn1wMxh+61WFMMYYYxpEqOTUEXgCOFxEvgfm4E23q6rbGiI4Y4wxzVPQ5KSqdwKISAJuxN4JwNXAsyKSq6o9GiZEY4wxzY2foeTJQCvcDLhpwM/AonAGZYwxpnkLNVpvAnAkkA/Mw3XrPaaq2xsoNmOMMc1UqPucOgOJwEZgPbAOyG2IoIwxxjRvoa45DRERwbWeTgDuAHqKyDbcoIixDRSjMcaYZibkNSevZNFiEcnFzeGUB5yDKwRryckYY0xYhLrmdAuuxTQQKMEbRg68gA2IMMYYE0ahWk5dgMnAbaq6oWHCMcYYY0Jfc7q9IQMxxhhjKvipSm6MMcY0KEtOxhhjok7UJScRGSIiP4rITyIyJtLxGGNMsyQyBJEfEfmJCHwWR1VyEpFY4G/AWUAPYKSIWA0/Y4xpSFV8FtPAn8V+aus1pOOAn1R1JYCIvAEMA5bW94nuHzKE3cuzWPfTlvo+tDHG+FZOEjGym10xn9Rov9YJCWGKCPA+i/E+iwnjZ3Ew0ZacDgSyA5bXAf0DNxCRUcAogIQ6/HFiZTexUkipptT6GMYYUx/idCvllNdon/i4On18x4nI/IDlCao6IWC52s/icIu25CRVPKf7LLg3cAJASkqKVrG9LxMWz6jtrsYY09iVqmq/EOur/SwOt6i65oTLzp0CljvipugwxhjTcCL+WRxtyelr4FAR6epNcjgCmBrhmIwxprn5GjgUka5E6LM4qrr1VLVURG4CpgOxwAuquiTCYRljTPOiWkqlz2Ia+LNYXOHxxiklJUV37doV6TCMMaZREZEC1egeDRZt3XrGGGOMJSdjjDHRx5KTMcaYqGPJyRhjTNRp1AMiRKQcKIx0HGEWB5RGOogG1Jxer73WpivaX2+yqkZ146RRJ6fmQETmV3Mnd5PSnF6vvdamq7m93nCI6sxpjDGmebLkZIwxJupYcop+E6rfpElpTq/XXmvT1dxeb72za07GGGOijrWcjDHGRB1LTsYYY6KOJacIEJEXRGSTiCyu9PzNIvKjiCwRkYcDnr9HRH7y1g0OeP4YEVnkrfuriFQ1QVhE1eS1ikgXESkUkYXe45mA7RvlaxWRNwNez2oRWRiwrtH+XaFmr7eJ/m17i8iX3uuZLyLHBaxr1H/bqFnyteYAAARHSURBVKCq9mjgB3AS0BdYHPDcqcB/gERvua33swfwHZAIdAVWALHeuq+A43GzVn4InBXp11bH19olcLtKx2mUr7XS+keB/20Kf9davN4m97cFPqqIFTgbmNlU/rbR8LCWUwSo6ixgW6Wn/wcYr6rF3jabvOeHAW/o/7d3PyFWVmEcx7+/HCoJjMgWZQkKuqlNjIqUQzAI2SLoDwy6yYUbo6DaJdFCW9aiRZukIkKKyQpr1UKIoD8oakEWRY0tHBqiP0jTLCzxcXHOxbfbnfBt5N5zXn8feOH14eVyHh5nnvsezpwTcTYifgR+ADZJuhlYERGfR/pf/wbwwHAyuHQtcx2o8lwByN+Qp4C3cqjqukLrfAeqJd9Fcg1gRb6/nosnxVZf2xK4OZVjPTAh6YikjyVtzPFVwOnGc7M5tirf98drsFiuAGskfZHjEzlWc649E8DPEfF9/ncX69rUny90r7ZPAs9LOg28AOzJ8a7XdiiKOgn3CjcG3ABsBjYCb0taS3r97xf/Ea/BYrnOAasj4jdJ48AhSbdTd649O/jnW0QX69rUn28Xa/so8FREvCtpCngV2Er3azsUbk7lmAXey6/7R5U2tV2Z47c1nruVNH0wm+/74zUYmGtE/AL0pvqOS5ohvWXVnCuSxoCHgPFGuIt1BQbnm6dwu1bbncAT+f4g8Eq+72xth8nTeuU4BEwCSFoPXA38CnwAbJd0jaQ1wDrgaETMAfOSNuf5/UeA90cz9NYG5irpJknLcnwtKddTlecK6dv0txHRnNLpYl17/pVvR2v7E3BPvp8EelOYXa7t8Ix6RcaVeJGmO+aAv0nfpnaRfkEfAE4CJ4DJxvPPkFb8fEdjdQ+wIT8/A7xE3vGjpKtNrsDDwNeklU4ngPtrzzXHXwd2D3i+2rq2zbeLtQW2AMdzTkeA8a7UtoTL2xeZmVlxPK1nZmbFcXMyM7PiuDmZmVlx3JzMzKw4bk5mZlYcNyezS6TkE0n3NWJTkj4c5bjMushLyc1akHQHaTeAO4FlwJfAtoiYWcJnjkXEucs0RLNOcHMya0np/KkF4DpgPiKek7QTeIz0B8afAY9HxHlJ+0lHLSwHpiNiX/6MWeBlYBvwYkQcHEEqZsXy3npm7e0l7XLwF7Ahv009CNwVEedyQ9oOvAk8HRG/5/3mPpL0TkR8kz9nISLuHkUCZqVzczJrKSIWJE0Df0bEWUlbSburH8sHmy7n4pEJOyTtIv2s3UI6iK7XnKaHO3Kzerg5mf0/5/MF6SiE1yLi2eYDktaRdq3eFBFnJB0Arm08sjCUkZpVyKv1zJbuMDAlaSWApBslrSadkjoP/JFPQb13hGM0q4rfnMyWKCK+krQXOCzpKtLO1buBY6QpvJPAKeDT0Y3SrC5erWdmZsXxtJ6ZmRXHzcnMzIrj5mRmZsVxczIzs+K4OZmZWXHcnMzMrDhuTmZmVpwL6QKQSQPF/B4AAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"graphique3 = plt.figure()\n",
"ax3 = graphique3.add_subplot(111)\n",
"ax3.set(xbound=[1550,1850],ybound=[0,100],ylabel=\"Wheat Price (shilling per 1/4 bushel)\",xlabel=\"Year\",Title=\"Evolution of wheat prices and wages\")\n",
"ax3.xaxis.set_major_locator(plt.MultipleLocator(50))\n",
"\n",
"ax3.plot(x,zero,color=\"red\",label=\"Wages\")\n",
"ax3.plot(x,zero,color=\"black\",label=\"Wheat\")\n",
" \n",
"ax3.fill_between(x,y_wheat,0,color=\"black\",step=\"mid\",alpha=0.65)#alpha permet d'avoir un remplissage semi-transparent\n",
"\n",
"ax4=ax3.twinx()\n",
"ax4.plot(x,y_wages,color=\"red\",label=\"Wages\")\n",
"ax4.fill_between(x,y_wages,0,color=\"blue\",alpha=0.25)\n",
"ax4.set_ylabel(\"Wages (shilling per week)\", color=\"red\")\n",
"ax4.tick_params(axis='y', labelcolor=\"red\")\n",
"ax3.legend(loc='upper left')\n"
]
},
{
"cell_type": "code",
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment