no commit message

parent 2a36a205
...@@ -590,16 +590,16 @@ ...@@ -590,16 +590,16 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 60, "execution_count": 62,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"data": { "data": {
"text/plain": [ "text/plain": [
"<matplotlib.collections.PolyCollection at 0x7fa2ee212ba8>" "<matplotlib.collections.PolyCollection at 0x7fa2ee159128>"
] ]
}, },
"execution_count": 60, "execution_count": 62,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
}, },
...@@ -627,10 +627,72 @@ ...@@ -627,10 +627,72 @@
"ax.bar(x,y_wheat,width=5, color=\"black\",label=\"Wheat Price\")\n", "ax.bar(x,y_wheat,width=5, color=\"black\",label=\"Wheat Price\")\n",
"ax.plot(x,y_wages,color=\"red\",label=\"Wages\")\n", "ax.plot(x,y_wages,color=\"red\",label=\"Wages\")\n",
"ax.fill_between(x,y_wages,0,color=\"blue\")\n", "ax.fill_between(x,y_wages,0,color=\"blue\")\n",
" \n", " \n"
"#sorted_data['Wheat'].plot(kind='bar',ax=ax,legend=True,color='black')\n", ]
"#sorted_data['Wages'].plot(title= \"Evolution des salaires et du prix du blé\",ax=ax,legend=True,linewidth=5.0)" },
{
"cell_type": "code",
"execution_count": 64,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.collections.PolyCollection at 0x7fa2edf94c50>"
] ]
},
"execution_count": 64,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEWCAYAAAB8LwAVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XmYFNW5x/HvCyMzgIKoaACRUYMLibjhkriLSVyDJldDFCReo9fc4BKjBr03RpN4o0mMJprFJaJxQ+ISjUmMioKaGMyorC5BlGERgSAIwjBs7/3jnIZiqIGeYaaru+f3eZ5+pmvp6vdU9dRb51TVKXN3REREGmqXdQAiIlKclCBERCSVEoSIiKRSghARkVRKECIikkoJQkREUilBtGFm5mb2yWZ+9ggze7ulY8rje/c0s9fNbKmZXbQFy5lhZse1ZGytxcx2MbOPzax91rE0lZkdbWazs45DmkcJogTEnVld3EnkXrcWOIYNkom7v+juexYyhugKYKy7b+Puv8jg+zfJzL5mZi+15DLdfaa7b+3ua1pyuSKbU5F1AJK3U9z92ayDKAJ9gFFZB1EoZlbh7quzjkPaJtUgSpiZVZrZYjP7dGJc91jb2DEOn2dm75jZh2b2hJn1bGRZY83s64nhdUfCZvZCHD0x1l6+0rDpwMz2jstYbGZTzeyLiWl3m9kvzexPsWlovJntvolyfTEuY3Fc5t5x/HPAMcCtMY49GnzuGDObnBh+1sxeSQy/ZGanJj6yn5lNMrOPzOwhM6tKzHuymU2IMfzdzPonpo0ws+mxLG+Y2Wm5dQD8BvhMjG/xJtb1j8zslfjdj5vZdnFadaytnWtmM4HnEuMq4jzbmdlIM3vfzBaZ2R/yjPs7ZjYnxv22mQ1sJL6TYjPeEjObZWbXJKblYhlmZjPN7N9m9j+J6R3j9l5kZm8AB6V9R5z3WjO7Jb7fysyWmdmPE8tZYWbd4vDvzeyDuL5eMLNPJZazvZn9Mcb7TzP7YbIWZ2Z7mdkz8X/gbTM7IzHtxLgNl8Z1c1lj8bZJ7q5Xkb+AGcBxjUy7C7guMfxN4Kn4/ljg38ABQCVwC/BCYl4HPhnfjwW+npj2NeCltHnj8NHA7Ph+K+Ad4CqgQ/zepcCecfrdwIfAwYRa6/3AqEbKswewDPhcXO4Vcdkd0uJs8NkqoA7YIX7PB8D7wDZAxzht+8Q6fQXoCWwHvAlcEKcdAMwHDgHaA8Pi/JVx+unxc+2Ar8R4e6Stt0biHAvMAT4NdAYeAe6L06rjuv5dnNYxMa4izvMn4CGgW1xHR20ubmBPYBbQM/E9uzcS39HAPrF8/YF5wKkN4rsjxrYvUA/sHadfD7wY12lvYArxd5LyPccCk+P7zwLTgfGJaRMT8/5n3I6VwM3AhMS0UfHVCegXy/lSnNY5Dp8TfxMHEP4nPhWnzwWOiO+7AQdk/f9eTK/MA9Arj40U/sk/BhYnXufFaccB7ybm/Rtwdnz/W+DHiWlbA6uA6jjcUgniCMLOuF1i+oPANfH93cCdiWknAm81UtbvAqMTw+0IO9Oj0+JM+fyLwJeAQ4GngdHA8YSax6QG63RIYvjHwG/i+18DP2iw3LeJO+KU75wADEpbb43MPxa4PjHcD1hJ2KlXx3W9W2J6blwF0ANYC3RLWW6jcQOfJCSP44Ctmvj7uxm4qUEsOyemvwIMju/fBY5PTDufxhNER2AFsD0wgnCAMZvwO70W+EUjn9s2xtA1rrNVxIOROP2HrE8QXwFebPD524Dvxfczgf8CuhTq/7mUXmpiKh2nuvu2idcdcfxzQEczO8TM+gD7AY/FaT2B2twC3P1jYCHQq4Vj6wnMcve1iXG1Db7ng8T75YSdQGPLSsa8lnAEmG/M4wjJ68j4fixhB3lUHE5qLKY+wLdjM83i2FTUO8aGmZ2daMZZTKgJ7JBnfDmzEu9rCTWBHRqZntQb+NDdF6VMazRud38HuAS4BphvZqOs8ebGQ8zseTNbYGYfARewcfkaW3c9U8qWyt3rgBrCtsltr78Dh5HYXmbW3syuj816SwjJnRhTd0LiTH5n8n0f4JAG6+Qs4BNx+pcJByy1ZjbOzD7TWLxtkRJEiYs70NHAV4EzgSfdfWmc/D7hHwQAM+tMOFqbk7KoZYQqes4nUuZpzPtAbzNL/p52aeR78llWMmYj7OTyXVbDBDGOxhNEY2YRmu2SCbmTuz8Yk/AdwHBCc9W2hGYUi5/Nt3vk3on3uxCOgv+dGNfYcmYB25nZtk2JG8DdH3D3wwnr14EbGvmOB4AngN7u3pVwXsUambehuSll25RxhOak/YF/xuEvEJojc+e+zgQGEWo/XQm1GGJMC4DVwM6JZSa/fxYwrsE62drdvwHg7v9090HAjsAfCP9LEilBlIcHCFXps+L75PhzzGw/M6sE/o/QxjsjZRkTgC+ZWScLl7Oe22D6PGC3Rr5/PCHBXBFPNh4NnELzrjYaDZxkZgPNbCvg24Q27r/n+fm/E9rbDwZecfepxKNI1u9wNucO4IJ4JG1m1jmeuN2G0KbthB0TZnYOoQaRMw/Y2cw6bOY7hphZPzPrBHwfeNjzuIzV3ecCfwF+ZWbd4vo+cnNxW7h/5Nj4O1hBOB/T2PdtQ6ilrDCzgwk76HyNBq6Mse0MXLiZ+ccBZwNvuPtKYhMi8J67L0jEU0+o/XYi/I5z62MN8ChwTfzt7hWXl/MksIeZDY3raiszO8jCRRUdzOwsM+vq7quAJTS+TtokJYjS8Ufb8D6IXDMS7p7bQfck7Dxy48cQ2vQfIRzZ7Q4MbmT5NxHawecB9xBOJCddA9wTq+lnJCfEf+wvAicQjoJ/RTgP8lZTC+nubwNDCCfU/01INKfE78jn88uA14Cpic+8DNS6+/w8l1EDnAfcCiwinCT/Wpz2BnBjXOY8wsncvyU+/hwwFfjAzJI1gobuJZyb+YBwcr0pN/0NJdQ43iKcV7hkc3ETTu5eT1inHxCOmK9qZPn/DXzfzJYCV9O0o+prCc1K7xHOAd27mfn/TjgXkUvebxASWDKZ/y4uc06c/o8GyxhOqFl8EL/vQUJCIdamP0/43b8f57mBsD4grMsZsenqAsJvTyKLJ2pEpEDMbCzhqqU7s46lHJnZDcAn3H1Y1rGUOtUgRKSkxfsc+sdmtYMJzaOPbe5zsnm6k1pESt02hGalnoQmtxuBxzONqEyoiUlERFKpiUlERFKVdBPTDjvs4NXV1VmHISJSUl599dV/u3v3zc1X0gmiurqampqarMMQESkpZtboHe5JamISEZFUShAiIpJKCUJERFK1WoIws7vMbL6ZTUmM2y4+uGNa/NstMe1KCw+2edvMvtBacYmISH5aswZxN6Ef/qQRwBh37wuMicOYWT9CXymfip/5lZXgA9pFRMpJqyUId3+B8BSxpEGEjuCIf09NjB/l7vXu/h6hk7GDWys2ERHZvEKfg9gpdlec67Z4xzi+Fxs+5GM2Lf9QGxERaYJiOUmd9jCS1D5AzOx8M6sxs5oFCxakzSIiIi2g0Alinpn1AIh/c/3zz2bDp0DtTOi7fSPufru7D3D3Ad27b/ZGQBERaaZCJ4gngFwf7cNY3+PiE8BgM6s0s12BvoQHoYuIlI3q6mrMbKNXsXYZ1GpdbZjZg4RnA+9gZrOB7xGeaDXazM4FZgKnA7j7VDMbTXha1Grgm/k8flFEpJTU1taS1oN2ePR68Wm1BOHuX21k0sBG5r8OuK614hERkaYplpPUIiJSZJQgREQklRKEiIikUoIQEZFUShAiIpJKCUJERFIpQYiISColCBERSaUEISIiqZQgREQklRKEiIikUoIQEZFUShAiIpJKCUJERFIpQYiISColCBERSaUEISIiqZQgREQklRKEiIikUoIQEZFUShAiIpJKCUJERFIpQYiISColCBERSaUEISIiqZQgREQklRKEiIikUoIQEZFUShAiIpJKCUJERFIpQYiISColCBERSaUEISIiqTJJEGb2LTObamZTzOxBM6sys+3M7Bkzmxb/dssiNhERCQqeIMysF3ARMMDdPw20BwYDI4Ax7t4XGBOHRURKTnV1NWa20avUZNXEVAF0NLMKoBPwPjAIuCdOvwc4NaPYRES2SG1tLe6+0avUFDxBuPsc4KfATGAu8JG7Pw3s5O5z4zxzgR3TPm9m55tZjZnVLFiwoFBhi4i0OVk0MXUj1BZ2BXoCnc1sSL6fd/fb3X2Auw/o3r17a4UpItLmZdHEdBzwnrsvcPdVwKPAZ4F5ZtYDIP6dn0FsIiISZZEgZgKHmlknC2dtBgJvAk8Aw+I8w4DHM4hNRKRJ0k5Il4uKQn+hu483s4eB14DVwOvA7cDWwGgzO5eQRE4vdGwiIk2VOyGdVC5JouAJAsDdvwd8r8HoekJtQkSkTamsrExNKn369GHGjBmFDyjKJEGIiMh69fX1qZfBZl0TUVcbIiKSSglCRERSKUGIiOShXLrPaAqdgxARyUPa1UqQ/XmC1qQahIiIpFKCEBGRVEoQIiKSSglCRERSKUGIiEgqJQgREUmlBCEiIqmUIEREJJUShIiIpFKCEBGRVEoQIiKSSglCRERSKUGIiEgqJQgREUmlBCEiIqmUIEREJJUShIiIpFKCEBGRVEoQIiKSSglCRERSKUGIiEgqJQgREUmlBCEiIqmUIIpEdXU1ZrbBq7q6OuuwRKQNq8g6AAlqa2tx9w3GmVlG0YiIqAYhIiKNUIIQEZFUShAiIpIqkwRhZtua2cNm9paZvWlmnzGz7czsGTObFv92yyI2EREJsqpB/Bx4yt33AvYF3gRGAGPcvS8wJg6LiEhGCp4gzKwLcCTwWwB3X+nui4FBwD1xtnuAUwsdm4iIrJdFDWI3YAEw0sxeN7M7zawzsJO7zwWIf3dM+7CZnW9mNWZWs2DBgsJFLSLSxmSRICqAA4Bfu/v+wDKa0Jzk7re7+wB3H9C9e/fWilFEpM3LK0GY2cVm1sWC35rZa2b2+WZ+52xgtruPj8MPExLGPDPrEb+vBzC/mcsXEZEWkG8N4j/dfQnweaA7cA5wfXO+0N0/AGaZ2Z5x1EDgDeAJYFgcNwx4vDnLFxGRlpFvVxu5Ph9OBEa6+0Tbsn4gLgTuN7MOwLuEhNMOGG1m5wIzgdO3YPkiIrKF8k0Qr5rZ08CuwJVmtg2wtrlf6u4TgAEpkwY2d5kiItKy8k0Q5wL7Ae+6+3Iz255w1C8iImVqkwnCzA5oMGo39TAqItI2bK4GcWP8WwUcCEwinI/oD4wHDm+90EREJEubvIrJ3Y9x92OAWuDAeP/BgcD+wDuFCFBERLKR72Wue7n75NyAu08hnJMQEZEyle9J6jfN7E7gPsCBIYQO9kREpEzlmyDOAb4BXByHXwB+3SoRiYhIUcgrQbj7CuCm+BIRkQKorKykqqqK+vr6jab16dOHGTNmtOr355UgzOww4BqgT/Iz7r5b64QlIiK5xODuG00rxC0H+Z6k/i3wM8JlrQclXiJNUl1djZlt9Kqurs46NBFpIN9zEB+5+19aNRJpE2prazM7GhKRpsk3QTxvZj8BHgXWNYa5+2utEpWIiGQu3wRxSPyb7GDPgWNbNhwRESkW+V7FdExrByIiIsUl36uYrk4b7+7fb9lwRESkWOR7FdOyxGsNcAJQ3UoxiZQ8Xa0l5SDfJqYbk8Nm9lPCI0JFJIWu1pJykG8NoqFOgG6SQ0eKIlK+8j0HMZlw1RJAe6A7oPMP6EhRRMpXvpe5npx4vxqY5+6rWyEeEREpEnk1Mbl7LbAtcApwGtCvNYMSEclKY83GbVFeCcLMLgbuB3aMr/vN7MLWDKxc6ccnsuXS/o9a6rxfrtm44astyreJ6VzgEHdfBmBmNwAvA7e0VmDlSucsRLZc2v+R/odaXr5XMRnh/oecNXGcSMHpyjGRwsi3BjESGG9mj8XhUwldgIsUnGph0hTV1dXU1tZuNL4QD9wpdfneKPczMxtLeB6EAee4++utGZiISEvQAUXzbbKJycyqzOwSM7uV8ICgX7n7z8s5Oaj5Ip3Wi0jbs7kaxD3AKuBFQv9LewOXtHZQWdLRRjqtF5G2Z3Mnqfu5+xB3vw34D+DIAsQkIlFrXs5ZbiorK3UJeQvbXA1iVe6Nu6/WyhYpLF3Omb/6+nrVclvY5moQ+5rZkvhaCvTPvTezJYUIUKS16LxK8dONpdnaZA3C3dsXKhCRQtN5leKnbZSt5nb33eaofbN1pa1fHclLa9L/9Oble6NcizOz9kANMMfdTzaz7YCHCE+qmwGc4e6Lsoqvoaa2b+Z+fJKftPWr9SetSecsNi/LGsTFwJuJ4RHAGHfvC4yJw60qrX2zpeR+fOrwS0RKVSYJwsx2Bk4C7kyMHkS474L499TWjiOt10YpHmoCEMlWVjWIm4ErgLWJcTu5+1yA+HfHtA+a2flmVmNmNQsWLGj9SCUzpVAL01U2Us4KniDM7GRgvru/2pzPu/vt7j7A3Qd07969haMTaRo9O0DKWRY1iMOAL5rZDGAUcKyZ3QfMM7MeAPHv/AxikxaiI+viofs9pLkKniDc/Up339ndq4HBwHPuPgR4AhgWZxsGPF7o2KTl6Mi6eDS2LdK6wBZJKqb7IK4HPmdm04DPxWEREclIZvdBALj7WGBsfL8QGJhlPCIisl4x1SBEWoXOh4g0T6Y1CJFCUH8+Is2jGoSIiKRSghARkVRKECJSMLono7QoQbRh+mdNp67HW4/uySgtOkndhunkbTp1PS4SqAYhIiKplCBERCSVEkQJauq5g6beKJbWBt+UedUc07oaW+c6TyItTecgSlBTzx00df6mtMHrsY2Fp3UuhaIaRBlp60fzpVz+YuoORFe3SY5qEGWkrR9ZlnL5i+mKsmKKRbKlGoSItLiWOO+lhJQ91SBEpMW1xHmvTc1fkhYv5nCAX/4SJk2Cjz+G++/POqpNUoIQKaDckbK0AQsXwujR8Oc/h4QwcyYvAgwfDt26wYAB4A5F/HtQghApoDZxpNyW1dXBk0/yB4AePWDVKujbFw4/HPr354QRI/jL7NnQs2dRJ4YcJQiRMqHaSTbaATz3HNx3HzzyCCxZwgCAiy+Gs86CffddlwyeGjECevXKMNqmUYIQKROqnRTYpElw333UAgwcCNtsA1/+MgwZwi7HHcean/wk6wi3mBKEiEi+Vq2CW2+FkSNh8mSoqOA1YOeHHoJTToGOHQFYm22ULUaXuYpIsxXTDX6tbXeAww6DSy+Fzp3D1Uhz5zII4Iwz1iWHcqIaRBFTm3Lx0LZofB2UfbOWO9xzDxMA3nkHHn44NCW1AUoQRUxtysVD26KNPidj8WL4r/+C0aP5J3DMxInQu3fWURWMmphE2ijdvbwZL70UrkB65BH4v//jOGhTyQGUIETarFyNoOFLCHc4H3MMVFTA3/4GV15ZNieem0JNTCIiCZcCDBkCRx8Njz0G226bcUTZUQ1CRARg7Vq49FJuBDj9dHjqqTadHEAJQkQE6uvDXc833cTPAUaNgsrKrKPKnBKEiLRtS5bAiSeGpHDDDVwC0E67RlCCEJG2bOJEOPRQeOEF+N3v4Iorso6oqOgktYi0PWvXcjHAwQfD9tvDX/8Kxx6bdVRFRzUIEWlb5s2Dk07iZoAvfCHUIpQcUilBiEjb8ec/wz77wNixfAPg8cehe/esoypaBU8QZtbbzJ43szfNbKqZXRzHb2dmz5jZtPi3W6FjE5EyNWsWnHMOnHRSeJBPTQ2/gZJ4aE+WsqhBrAa+7e57A4cC3zSzfsAIYIy79wXGxGERkeb78ENugPBUtwceCCehx4+HT30q68hKQsEThLvPdffX4vulwJtAL2AQcE+c7R7g1ELHJiJloq4ObrgBdt+dywAGD4Z//SuMq6rKOrqSkek5CDOrBvYHxgM7uftcCEkE2LGRz5xvZjVmVrNgwYJChSoipeC99+CHPww1hhEj4LDD2Bfg7ruhT5+Mgys9mV3mamZbA48Al7j7knx7kXT324HbAQYMGKCexUTauoULYfRoXgTYbbcw7phjQod7Rx3FFJ1naLZMEoSZbUVIDve7+6Nx9Dwz6+Huc82sBzA/i9hEpPh1Bbj3Xvj970OfSatW0Q3gRz+CM8+EXXbJNsAykcVVTAb8FnjT3X+WmPQEMCy+HwY8XujYRKSILVgAd9wBxx/PAoCzz4bXXoOLLoLXX+fTEJqVlBxaTBY1iMOAocBkM5sQx10FXA+MNrNzgZnA6RnEJiJFpArgvvvgrrtg3LjQ4+quu3IzcPnLL4c7odVvUqspeIJw95eAxhoFBxYyFhEpUpMnwx13MAdg6NBwbuGqq8KzoPfdlyvatePyQw/NOsqyp76YRKQ4zJ4Nf/oTjBwZ7lXo0IG/Al8dMyY8vEc1hYLTGheRbKxaBWPHwne+wyQIz3u+4AL46CO48UaYM4czIfSTpOSQCdUgRKQw1q6lP8DPfw7PPx9eS5ZARUU46fyTn8AJJ0C/fuoCo0goQYhI61i2DKZMgVdeCclg3DgmAlxySTincMYZ4UE9AwcysGtX/LLLso5YGlCCEJEts3YtvPsuTJq07vUvgG22AY/3su66KwwaxNCRI7m3tlaXopYIJQgRyd/cuaFPo8mTYdIkXoaQCJYvD9PNYI89mAD0vfZa6N8f9t9/XUK4b+RI7lVyKBlKECISuMOSJfQDePrp0EX29OkwbRpMm8ZSgJ4918+//fYsBzjvvJAI9tkn9JLaqRNnmOHf/W4WpZAWpAQh0lYsXhx2+LNnw5w5XAcwbNi6YWbPhmXLmArhSWsAFRWheahvX+6cOJFLbr0VPvnJkAx69GBgu3b4zTdnVyZpVUoQIuVmzZrQDBTPB/wRQhPPrFkbzHY5hJPHvXqFHf4JJ0CvXgy+/HJGvfhiGL/zzrDVVgB8y4xLvvnNQpdGMqQEIVIO3nuP8wBOPx2eew4+/DCMr6igD8ARR4RmoD32CPcb9OpFVc+erJk5c6NFPXT55Yw6/PACBi/FSglCpBQtWhQSwTPPwLPPwvTpoQ/8l1+GL34x3Hm8336w1170r6rC779/o0WsLXTMUnKUIERKwcqVYef/zDP8A2CHHcLlpVtvHZ59cPHF7H3RRbw5a5ZuMpMWowQhUqxWr+ZzELq1fuwx+PhjaN+eNQD/+7/wuc/BIYesO0fw1kUXKTlIi1IHJyLFxB1efRW+9S3o3ZunAZ54Ar7ylZAkFi7kMIBrr4XDD1+XHERag2oQIkWgGuC668KzD956K+z4Tz6ZLz32GI9+8AFUVWUcobRFqkGIZGXhQvjNb+Dww3kPQrNR9+5w223wwQfw6KM8BkoOkhnVIEQKob4e3nqLIQCXXw4TJoQnpK1aBXvvzZXAj2bMgD59so1TJEE1CJGW5A5z5nA8wA03wFlnhZvQtt4a9tuPewFuuSXcp3DhheGZylOncj0oOUjRUQ1CpDnq6+HddzkFwsNtpk0L5w4mTYJFi/gLwIgR4Q7mffYJ9yb078/egwfz5scfhy4sRIqcfqUiDbSH0C1Frn+iOXP4McCZZ4bhWbNg5kxYu5YnAC67DLbbLtylfPrp0L8/RwwfzouLFsG2226w7LcGD1ZykJKhX6qUJndYsSI8lGb1ali1KlwJ9K9/heH6eqirg7o6TgYYPXrdMMuXQ10dPwD49rfD8Lx565JBPWz0vIILITz4plcv+Oxnw70JfftyyNChjF+4MCSIhJeGD98oOYiUGiUIaR53qK+nC8D8+WFnvXJl2DGvXMnBAC+8sH7cihVQX8/XAH796zBu1ap1r+9DaJJZtSrMu3w5DwIMGrR+p750KSxZwr8BOnQIiSDhPYA999wo1D9CuI+ggSshXDHUsSPstNO6Tuuuu+surr7ttvWd1fXqRcfu3fF33tloGa8MHbpRchApF0oQ5cY97JTjzpSPPuIogMcfD8N1dWH6ypWMgHDDVe5oe/lyWL6chyH07Lls2bqj7ukAPXqsPwpfuRKAjyDsXBsYD3DUURuNHwnw3/+90fj/AbjppnD9f1UVdOrE/gC1tWEH3qlTuAS0SxcenDGD4ZdfDl26QOfO4TNbbcWwr3+de+6/PzThVFaGz3XsyIAjj6RmypR1w3TqBB07UlFZiX/88UaxfO+uu7j6/PObvOpFyo157pGAJWjAgAFeU1PT7M+bGQ3Lnzau1cbX1cH778OcOQw+6ihG/fSnoakjHo3fddtt/OeZZ64/Co+vf4wbx6H77bfuqJwVK6CujrrFi+nYnBVRURF2mp06QefOTJo+nf6HHLLBzvTeRx5h6HnnhXFVVetel151FT+79dYw3KFD2DF36MAJp53GX559dv24qiqorKR6r72YMXfuuvmoqICttsLat892W2xmvGJRLFnFAjTpM/kws1fdfcDm5lMNorYW/vzndU0dVwD88Ieh+WL16tC3/po1/BRC9wdxODd9JMCQIRvMy5o1oVnjxBPDcNyBU1fHNAhNF8uWwUcfrQtjFISTnR06hJ1yhw6hH57x48O4Dh3W7WQ/gtBlcxzO7bR/ccstfOfqq8P4rbeGrl2hSxeOOe00nq+pCUfccdlUVlLVtSsr1qyBdhte7byvGf6Pf2ww7mwzht5++0ar76arruJnKc8IeApg4MCNVzfAJz6Rz5YRkYypBvHkk3DyyekztGsXjnDbtePjFSvYuksXaN8+vCoqoKKCGbNnU7377uvHtWsH7dvz6sSJHHjQQWG4qmpd88b9jz3GWeeeG3bUuXbvXr341Oc/z9RFi8JOPR41lOsRUTF/p2JRLMUWC2RXg1CCqKsLR/KxqaNT164sX7kyDCd6xiz1H1kpxtLWy69YFEvWCUJNTLn29KgO1EOmiAjqakNERBqhBCEiIqmUIEREJJUShIiIpFKCEBGRVEWXIMzseDN728zeMbMRWccjItJWFVWCMLP2wC+BE4B+wFfNrF+2UYmItE1FlSCAg4F33P1dd19J6IFiUMYxiYi0SUV1J7WZ/QdwvLt/PQ4PBQ5x9+GJec4Hcl1t7gkshNADdPPtuD3s1GPLltHaPmwP263JOorCaCtlVTnLT1PK6mvh7X/BqtWbn7fF9XH37ptzCxKvAAAFSUlEQVSbqdjupLaUcRtkMHe/HVjXa5yZ1eRzy3ipC+WcXfblhLZTVpWz/JRbWYutiWk20DsxvDPwfkaxiIi0acWWIP4J9DWzXc2sAzAYwmN/RUSksIqqicndV5vZcOCvhGfH3+XuUzfzsY0fUlCe2ko5oe2UVeUsP2VV1qI6SS0iIsWj2JqYRESkSChBiIhIqqJLEGZ2l5nNN7MpiXHXmNkcM5sQXyfG8dVmVpcY/5vEZw40s8mxy45fWO7RTEUkraxx/IWxu5GpZvbjxPgrY3neNrMvJMYXdVmbUs5S3qaN/HYfSpRlhplNSEwrye0JTStrGW7T/czsH7EsNWZ2cGJayW7TVO5eVC/gSOAAYEpi3DXAZSnzVifnazDtFeAzhHsr/gKckHXZ8izrMcCzQGUc3jH+7QdMBCqBXYHpQPtSKGsTy1my2zStnA2m3whcXerbsxllLattCjydixM4ERhbDts07VV0NQh3fwH4cEuWYWY9gC7u/rKHrfM74NSWiK8lNVLWbwDXu3t9nGd+HD8IGOXu9e7+HvAOcHAplLWJ5UxVwuUEIB4xngE8GEeV7PaEJpc1VSmUtZFyOtAlvu/K+nu1Snqbpim6BLEJw81sUqzydUuM39XMXjezcWZ2RBzXi3DTXc7sOK4U7AEcYWbjY5kOiuN7AbMS8+XKVKplbaycUH7bFOAIYJ67T4vD5bY9kxqWFcprm14C/MTMZgE/Ba6M48tum5ZKgvg1sDuwHzCXUH0lvt/F3fcHLgUeMLMu5NFlRxGrALoBhwKXA6PjEVljZSrVsjZWznLcpgBfZcMj6nLbnkkNy1pu2/QbwLfcvTfwLeC3cXzZbdOiulGuMe4+L/fezO4Anozj64FcE8WrZjadcGQ6m9BNR04pddkxG3g0VkVfMbO1wA403g1JqZY1tZzuvoAy26ZmVgF8CTgwMbrctieQXtYy/D8dBlwc3/8euDO+L7ttWhI1iNiGl3MaMCWO727hGRKY2W5AX+Bdd58LLDWzQ+NR6dnA4wUOu7n+ABwLYGZ7AB0IvdU+AQw2s0oz25VQ1ldKuKyp5SzTbXoc8Ja7J5sZym175mxU1jLcpu8DR8X3xwK5prTy26ZZnyVv+CJUTecCqwiZ91zgXmAyMImwEXrEeb8MTCVcOfAacEpiOQMIiWQ6cCvxrvFiejVS1g7AfTH214BjE/P/TyzP2ySugij2sjalnKW8TdPKGcffDVyQMn9Jbs+mlrXctilwOPBqLM944MBy2KZpL3W1ISIiqUqiiUlERApPCUJERFIpQYiISColCBERSaUEISIiqZQgRPJkwUtmdkJi3Blm9lSWcYm0Fl3mKtIEZvZpwt2z+xMeizsBON7dp2/BMivcfXULhSjSYpQgRJrIwrMrlgGdgaXu/gMzGwZ8k3AD4N+B4e6+1sxuJ3QX3RF4yN2/H5cxG7gNOB642d1/n0FRRDapJPpiEiky1xLuCF4JDIi1itOAz7r76pgUBgMPACPc/cPYR9HzZvawu78Rl7PM3Q/LogAi+VCCEGkid19mZg8BH7t7vZkdBxwE1MQHhXVkfbfPXzWzcwn/az0JD5XJJYiHChu5SNMoQYg0z9r4gtCd813u/t3kDGbWl9Dr58HuvtjM7gOqErMsK0ikIs2kq5hEttyzwBlmtgOAmW1vZrsQnjq2FFgSeyT+wiaWIVJ0VIMQ2ULuPtnMrgWeNbN2hJ4/LwBqCM1JU4B3gb9lF6VI0+kqJhERSaUmJhERSaUEISIiqZQgREQklRKEiIikUoIQEZFUShAiIpJKCUJERFL9P+SJfyrvp3okAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"x=list(raw_data[\"Year\"])\n",
"y_wages=list(raw_data[\"Wages\"])\n",
"y_wheat=list(raw_data[\"Wheat\"])\n",
"graphique1 = plt.figure()\n",
"ax = graphique1.add_subplot(111)\n",
"ax.set(xbound=[1550,1850],ybound=[0,100],ylabel=\"Pounds\",xlabel=\"Year\",Title=\"Evolution of wheat prices and wages\")\n",
"ax.xaxis.set_major_locator(plt.MultipleLocator(50))\n",
"ax.bar(x,y_wheat,width=5, edgecolor=\"black\",color=\"white\",label=\"Wheat Price\")\n",
"ax.plot(x,y_wages,color=\"red\",label=\"Wages\")\n",
"ax.fill_between(x,y_wages,0,color=\"blue\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Le bleu du remplissage entre la ligne rouge des salaires et l'axe est masqué par le noir de l'histogramme !!\n",
"J'ai trouvé une méthode dans la doc en ligne de matplotlib pour faire un diagramme en barre avec un gradient de couleur (ce qui pourrait permettre de se rapprocher de la version originale) mais ca me parait bien compliqué à implanter\n",
"[doc matplotlib](https://matplotlib.org/gallery/lines_bars_and_markers/gradient_bar.html#sphx-glr-gallery-lines-bars-and-markers-gradient-bar-py)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
} }
], ],
"metadata": { "metadata": {
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment