--- title: "À propos du calcul de pi" author: "Arnaud Legrand" date: "25 juin 2018" output: html_document --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE) ``` # En demandant à la lib maths Mon ordinateur m'indique que *$\pi$* vaut *approximativement* ```{r} pi ``` # En utilisant la méthode des aiguilles de Buffon Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximativement**: ```{r} set.seed(42) N = 100000 x = runif(N) theta = pi/2*runif(N) 2/(mean(x+sin(theta)>1)) ``` # Avec un argument "fréquentiel" de surface Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus de base sur le fait que si *X*~*U*(0,1) rt *Y*~*U*(0,1) alors *P*[*X*2+*Y*2≤1]=*π*/4 (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/Méthode_de_Monte-Carlo#Détermination_de_la_valeur_de_π)). Le code suivant illustre ce fait: ```{r} set.seed(42) N = 1000 df = data.frame(X = runif(N), Y = runif(N)) df$Accept = (df$X**2 + df$Y**2 <=1) library(ggplot2) ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() ``` Il est alors aisé d'obtenir une approximation (pas terrible) de *$\pi$* en comptant combien de fois, en moyenne *X*2+*Y*2 est inférieur à 1 : ```{R} 4*mean(df$Accept) ```