From fade7ad9509914842abe3c70eee8f89a438faa83 Mon Sep 17 00:00:00 2001 From: 27823a14859af5a9e21b47f306da5648 <27823a14859af5a9e21b47f306da5648@app-learninglab.inria.fr> Date: Tue, 21 Apr 2020 18:59:36 +0000 Subject: [PATCH] Premiers jets sur l'exercice --- module3/exo3/data_playfairs_wage_wheat.csv | 54 ++ module3/exo3/exercice.ipynb | 25 - .../exo3/pouvoir_achat_ouvrier_XVI_XX.ipynb | 720 ++++++++++++++++++ 3 files changed, 774 insertions(+), 25 deletions(-) create mode 100644 module3/exo3/data_playfairs_wage_wheat.csv delete mode 100644 module3/exo3/exercice.ipynb create mode 100644 module3/exo3/pouvoir_achat_ouvrier_XVI_XX.ipynb diff --git a/module3/exo3/data_playfairs_wage_wheat.csv b/module3/exo3/data_playfairs_wage_wheat.csv new file mode 100644 index 0000000..1a201c3 --- /dev/null +++ b/module3/exo3/data_playfairs_wage_wheat.csv @@ -0,0 +1,54 @@ +"","Year","Wheat","Wages" +"1",1565,41,5 +"2",1570,45,5.05 +"3",1575,42,5.08 +"4",1580,49,5.12 +"5",1585,41.5,5.15 +"6",1590,47,5.25 +"7",1595,64,5.54 +"8",1600,27,5.61 +"9",1605,33,5.69 +"10",1610,32,5.78 +"11",1615,33,5.94 +"12",1620,35,6.01 +"13",1625,33,6.12 +"14",1630,45,6.22 +"15",1635,33,6.3 +"16",1640,39,6.37 +"17",1645,53,6.45 +"18",1650,42,6.5 +"19",1655,40.5,6.6 +"20",1660,46.5,6.75 +"21",1665,32,6.8 +"22",1670,37,6.9 +"23",1675,43,7 +"24",1680,35,7.3 +"25",1685,27,7.6 +"26",1690,40,8 +"27",1695,50,8.5 +"28",1700,30,9 +"29",1705,32,10 +"30",1710,44,11 +"31",1715,33,11.75 +"32",1720,29,12.5 +"33",1725,39,13 +"34",1730,26,13.3 +"35",1735,32,13.6 +"36",1740,27,14 +"37",1745,27.5,14.5 +"38",1750,31,15 +"39",1755,35.5,15.7 +"40",1760,31,16.5 +"41",1765,43,17.6 +"42",1770,47,18.5 +"43",1775,44,19.5 +"44",1780,46,21 +"45",1785,42,23 +"46",1790,47.5,25.5 +"47",1795,76,27.5 +"48",1800,79,28.5 +"49",1805,81,29.5 +"50",1810,99,30 +"51",1815,78,NA +"52",1820,54,NA +"53",1821,54,NA diff --git a/module3/exo3/exercice.ipynb b/module3/exo3/exercice.ipynb deleted file mode 100644 index 0bbbe37..0000000 --- a/module3/exo3/exercice.ipynb +++ /dev/null @@ -1,25 +0,0 @@ -{ - "cells": [], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} - diff --git a/module3/exo3/pouvoir_achat_ouvrier_XVI_XX.ipynb b/module3/exo3/pouvoir_achat_ouvrier_XVI_XX.ipynb new file mode 100644 index 0000000..42e0d95 --- /dev/null +++ b/module3/exo3/pouvoir_achat_ouvrier_XVI_XX.ipynb @@ -0,0 +1,720 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Le pouvoir d'achat des ouvriers anglais du XVIe au XIXe siècle" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Nous nous proposons ici de reproduire le [graphique](https://fr.wikipedia.org/wiki/William_Playfair#/media/Fichier:Chart_Showing_at_One_View_the_Price_of_the_Quarter_of_Wheat,_and_Wages_of_Labour_by_the_Week,_from_1565_to_1821.png) initialement proposé par William Playfair, avant d'en améliorer certain point, comme la précision sur les unités de prix et une autre approche de la visualisation de ces données.\n", + "\n", + "![graphiqueWiliamFair](https://upload.wikimedia.org/wikipedia/commons/3/3a/Chart_Showing_at_One_View_the_Price_of_the_Quarter_of_Wheat%2C_and_Wages_of_Labour_by_the_Week%2C_from_1565_to_1821.png)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import urllib.request " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Source des données" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Les données sont prises à cette adresse [données](https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/master/csv/HistData/Wheat.csv), sur recommendation du sujet du mooc sur la recherche reproductible. Nous vérifions la présence des données dans le répertoire, et ne les téléchargons que si nécessaire." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "data_url = \"https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/master/csv/HistData/Wheat.csv\"\n", + "data_file = \"data_playfairs_wage_wheat.csv\"" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Using local data file\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0YearWheatWages
01156541.05.00
12157045.05.05
23157542.05.08
34158049.05.12
45158541.55.15
56159047.05.25
67159564.05.54
78160027.05.61
89160533.05.69
910161032.05.78
1011161533.05.94
1112162035.06.01
1213162533.06.12
1314163045.06.22
1415163533.06.30
1516164039.06.37
1617164553.06.45
1718165042.06.50
1819165540.56.60
1920166046.56.75
2021166532.06.80
2122167037.06.90
2223167543.07.00
2324168035.07.30
2425168527.07.60
2526169040.08.00
2627169550.08.50
2728170030.09.00
2829170532.010.00
2930171044.011.00
3031171533.011.75
3132172029.012.50
3233172539.013.00
3334173026.013.30
3435173532.013.60
3536174027.014.00
3637174527.514.50
3738175031.015.00
3839175535.515.70
3940176031.016.50
4041176543.017.60
4142177047.018.50
4243177544.019.50
4344178046.021.00
4445178542.023.00
4546179047.525.50
4647179576.027.50
4748180079.028.50
4849180581.029.50
4950181099.030.00
5051181578.0NaN
5152182054.0NaN
5253182154.0NaN
\n", + "
" + ], + "text/plain": [ + " Unnamed: 0 Year Wheat Wages\n", + "0 1 1565 41.0 5.00\n", + "1 2 1570 45.0 5.05\n", + "2 3 1575 42.0 5.08\n", + "3 4 1580 49.0 5.12\n", + "4 5 1585 41.5 5.15\n", + "5 6 1590 47.0 5.25\n", + "6 7 1595 64.0 5.54\n", + "7 8 1600 27.0 5.61\n", + "8 9 1605 33.0 5.69\n", + "9 10 1610 32.0 5.78\n", + "10 11 1615 33.0 5.94\n", + "11 12 1620 35.0 6.01\n", + "12 13 1625 33.0 6.12\n", + "13 14 1630 45.0 6.22\n", + "14 15 1635 33.0 6.30\n", + "15 16 1640 39.0 6.37\n", + "16 17 1645 53.0 6.45\n", + "17 18 1650 42.0 6.50\n", + "18 19 1655 40.5 6.60\n", + "19 20 1660 46.5 6.75\n", + "20 21 1665 32.0 6.80\n", + "21 22 1670 37.0 6.90\n", + "22 23 1675 43.0 7.00\n", + "23 24 1680 35.0 7.30\n", + "24 25 1685 27.0 7.60\n", + "25 26 1690 40.0 8.00\n", + "26 27 1695 50.0 8.50\n", + "27 28 1700 30.0 9.00\n", + "28 29 1705 32.0 10.00\n", + "29 30 1710 44.0 11.00\n", + "30 31 1715 33.0 11.75\n", + "31 32 1720 29.0 12.50\n", + "32 33 1725 39.0 13.00\n", + "33 34 1730 26.0 13.30\n", + "34 35 1735 32.0 13.60\n", + "35 36 1740 27.0 14.00\n", + "36 37 1745 27.5 14.50\n", + "37 38 1750 31.0 15.00\n", + "38 39 1755 35.5 15.70\n", + "39 40 1760 31.0 16.50\n", + "40 41 1765 43.0 17.60\n", + "41 42 1770 47.0 18.50\n", + "42 43 1775 44.0 19.50\n", + "43 44 1780 46.0 21.00\n", + "44 45 1785 42.0 23.00\n", + "45 46 1790 47.5 25.50\n", + "46 47 1795 76.0 27.50\n", + "47 48 1800 79.0 28.50\n", + "48 49 1805 81.0 29.50\n", + "49 50 1810 99.0 30.00\n", + "50 51 1815 78.0 NaN\n", + "51 52 1820 54.0 NaN\n", + "52 53 1821 54.0 NaN" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "try :\n", + " with open(data_file):\n", + " print(\"Using local data file\")\n", + "except IOError :\n", + " print(\"Missing data, downloading from {}\".format(data_url))\n", + " urllib.request.urlretrieve(data_url, data_file)\n", + "\n", + "raw_data = pd.read_csv(data_file)\n", + "raw_data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Les trois colonnes intéréssantes pour notre étude sont les trois dernières : YEARR, WHEAT, WAGES.\n", + "\n", + "Le tableau suivant montre les unités de chaque colonnes :\n", + "\n", + " | |YEAR |WHEAT|WAGES|\n", + " |:-------:|:-------:|:-------:|:-------:|\n", + " |Traduction| année | blé | salaire|\n", + " |Unité | - | shillings/quart de boisseau | shilling/semaine | \n", + " \n", + "Les conversions se font de la façon suivante :\n", + "\n", + "| Unité ancienne | Unité SI |\n", + "|:-------:|:--------:|\n", + "|1 quart de boisseau | 6.8 kg |" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Remarquons que pour les trois dernières lignes, l'information de salaire est manquante." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0YearWheatWages
5051181578.0NaN
5152182054.0NaN
5253182154.0NaN
\n", + "
" + ], + "text/plain": [ + " Unnamed: 0 Year Wheat Wages\n", + "50 51 1815 78.0 NaN\n", + "51 52 1820 54.0 NaN\n", + "52 53 1821 54.0 NaN" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "raw_data[raw_data.isnull().any(axis=1)]" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "data = raw_data.set_index('Year')" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEZCAYAAACZwO5kAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGfhJREFUeJzt3X20JHV54PHvA4PIm8rL8CKIg4oCii84IvENZDTBlSN4VhSNnDk5ZFkVjVGycTBZgWTZQ150fVmNIb7NBhUIxsAaFyXDSIwazQjIAAMOKA4DAwwKgoy8ybN//OoOPT3V93bfvne672++n3P63Oqnqn716/t0PV1dVV0VmYkkqV7bjLoDkqTZZaGXpMpZ6CWpchZ6SaqchV6SKmehl6TKWeglqXIWekmqnIVekio3b9QdANhjjz1ywYIFo+6GJM0pP/zhD+/OzPlTTTcWhX7BggWsWLFi1N2QpDklIn7Wz3TuupGkylnoJalyFnpJqtyUhT4iPhcRd0XEtR2x3SLisohY3fzdtWPc6RFxU0TcGBG/M1sdlyT1p58t+i8Ax3TFlgDLMvNAYFnznIg4BDgReG4zz6ciYtsZ660kaWBTFvrM/FfgF13h44ClzfBS4PiO+PmZ+VBm/hS4CTh8hvoqSZqG6e6j3ysz1wE0f/ds4vsCt3ZMt7aJbSYiTomIFRGxYv369dPshiRpKjN9MDZaYq33KszMczNzYWYunD9/yvP9JUnTNN0fTN0ZEftk5rqI2Ae4q4mvBZ7WMd1+wO3DdFCS5qoPv+XYTZ6fdsHXRtKP6W7RXwIsboYXAxd3xE+MiO0j4gDgQOAHw3VRkjSMKbfoI+LLwFHAHhGxFjgDOAe4MCJOBtYAJwBk5nURcSFwPfAocGpm/maW+i5J6sOUhT4z39pj1KIe058NnD1MpyRJM8dfxkpS5Sz0klQ5C70kVc5CL0mVs9BLUuUs9JJUOQu9JFXOQi9JlbPQS1LlLPSSVDkLvSRVzkIvSZWz0EtS5Sz0klQ5C70kVc5CL0mVs9BLUuUs9JJUOQu9JFXOQi9JlbPQS1LlLPSSVDkLvSRVzkIvSZWz0EtS5Sz0klQ5C70kVc5CL0mVs9BLUuUs9JJUOQu9JFXOQi9JlbPQS1Llhir0EfG+iLguIq6NiC9HxBMjYreIuCwiVjd/d52pzkqSBjdvujNGxL7AHwCHZOavI+JC4ETgEGBZZp4TEUuAJcAHZqS3kjSGPvmOyzcOn/rpo0fYk3bD7rqZB+wQEfOAHYHbgeOApc34pcDxQy5DkjSEaRf6zLwN+GtgDbAO+GVmfhPYKzPXNdOsA/Zsmz8iTomIFRGxYv369dPthiRpCtMu9M2+9+OAA4CnAjtFxNv7nT8zz83MhZm5cP78+dPthiRpCtPeRw+8BvhpZq4HiIh/BF4G3BkR+2TmuojYB7hrBvopSSO36qCDNw4ffMOqEfZkMMPso18DHBERO0ZEAIuAVcAlwOJmmsXAxcN1UZI0jGlv0Wfm9yPiIuBK4FHgKuBcYGfgwog4mfJhcMJMdFSSarJ2ybc3Du93zitndVnD7LohM88AzugKP0TZupckjQF/GStJlbPQS1Llhtp1I0m1OXTpoZs8X7l45Yh6MnPcopekylnoJalyFnpJqpyFXpIqZ6GXpMpZ6CWpchZ6SaqchV6SKmehl6TKWeglqXIWekmqnIVekipnoZekylnoJalyFnpJqpyFXpIqZ6GXpMpZ6CWpchZ6SaqchV6SKmehl6TKWeglqXIWekmqnIVekio3b9QdmAvWLvn2xuH9znnlCHsiSYNzi16SKmehl6TKWeglqXIWekmqnIVekio3VKGPiKdExEURcUNErIqI34qI3SLisohY3fzddaY6K0ka3LBb9B8DLs3Mg4AXAKuAJcCyzDwQWNY8lySNyLQLfUQ8CXgV8FmAzHw4M+8FjgOWNpMtBY4ftpOSpOkbZov+GcB64PMRcVVEfCYidgL2ysx1AM3fPdtmjohTImJFRKxYv379EN2QJE1mmEI/DzgM+JvMfBHwAAPspsnMczNzYWYunD9//hDdkCRNZphCvxZYm5nfb55fRCn8d0bEPgDN37uG66IkaRjTLvSZeQdwa0Q8pwktAq4HLgEWN7HFwMVD9VCSNJRhL2r2HuCLEfEE4CfA71E+PC6MiJOBNcAJQy5DkjSEoQp9Zl4NLGwZtWiYdiVJM8dfxkpS5Sz0klQ5C70kVc5CL0mVs9BLUuUs9JJUOW8OLklj5Mwzz2wdXnb5MzeZbtHRN/fdplv0klQ5t+g1qQ+/5diNw6dd8LUR9kTSdLlFL0mVs9BLUuUs9JJUOQu9JFXOQi9JlbPQS1LlPL1S6uGT77h84/Cpnz56hD2RhuMWvSRVrtot+lUHHbxx+OAbVo2wJ5I0Wm7RS1LlLPSSVLlqd91I0qTOfHLH8C9H148twELf6Lx4F3gBL2mUOi/JO8jleNXOQq8txpVXGg0LvaQqLFjyzxuHbznn9SPsyfjxYKwkVW5ubNFvRQdNZsKhSw/dOLxy8coR9kTSOHCLXpIqNze26KU5rtcNnzWYvZdfvXH4jle/cIQ9mVvcopekyrlFrznJMyzq4DedLcMtekmq3JzfovcMk9FYu+TbG4f3O+eVI+yJNDm//c1AoY+IbYEVwG2ZeWxE7AZcACwAbgHenJn3DLucmeLNJCRtbWZi1817gc4Lvi8BlmXmgcCy5rkkaUSG2qKPiP2A1wNnA+9vwscBRzXDS4FvAR/opz2/YknSzBt2181HgT8GdumI7ZWZ6wAyc11E7DnkMjTHeCaFNF6mXegj4ljgrsz8YUQcNY35TwFOAdh///2n2w1paN52UrUbZh/9y4E3RMQtwPnA0RFxHnBnROwD0Py9q23mzDw3Mxdm5sL58+cP0Q1J0mSmvUWfmacDpwM0W/R/lJlvj4i/AhYD5zR/L56BfmqWeTbS3OGxLA1qNn4wdQ7w2ohYDby2eS5JGpEZ+cFUZn6LcnYNmflzYNFMtCtJGp6XQJCkys35SyCobu6PlobnFr0kVc5CL0mVc9eNpBnx4bccu3H4tAu+NsKeqJuFfsx17qMG91NPyRvJS5tx140kVc5CL0mVs9BLUuXcRz8Lll3+zE2eLzr65innmdb54gPuj+68SiN4pcZxMJ33ijQot+glqXJu0W9hey+/euPwHa9+4Qh7Mj5q+p+M7U3TPRtpq+YWvSRVzi16SQMZ9N4FY/stZyviFr0kVc5CL0mVc9eNNKDOa7qA13XR+HOLXpIq5xa9NKZqOu1Uo+UWvSRVzkIvSZVz142kzXReF8lrIs19FvohnHnmma3DGk+HLj104/DKxStH2JPx4f9k6+CuG0mqnFv0UiW87aR6cYtekipnoZekylnoJalyFnpJqpyFXpIqZ6GXpMpZ6CWpchZ6SarctAt9RDwtIpZHxKqIuC4i3tvEd4uIyyJidfN315nrriRpUMNs0T8KnJaZBwNHAKdGxCHAEmBZZh4ILGueS5JGZNqFPjPXZeaVzfD9wCpgX+A4YGkz2VLg+GE7KUmavhnZRx8RC4AXAd8H9srMdVA+DIA9e8xzSkSsiIgV69evn4luSJJaDF3oI2Jn4CvAH2bmff3Ol5nnZubCzFw4f/78YbshSephqEIfEdtRivwXM/Mfm/CdEbFPM34f4K7huihJGsYwZ90E8FlgVWZ+pGPUJcDiZngxcPH0uydJGtYw16N/OXASsDIiJm5X/0HgHODCiDgZWAOcMFwXJUnDmHahz8x/A6LH6EXTbVeSNLP8ZawkVc5CL0mVs9BLUuUs9JJUOQu9JFXOQi9JlbPQS1LlLPSSVDkLvSRVzkIvSZWz0EtS5Sz0klQ5C70kVc5CL0mVs9BLUuUs9JJUOQu9JFXOQi9JlbPQS1LlLPSSVDkLvSRVzkIvSZWz0EtS5Sz0klQ5C70kVc5CL0mVs9BLUuUs9JJUOQu9JFXOQi9JlbPQS1LlLPSSVDkLvSRVbtYKfUQcExE3RsRNEbFktpYjSZrcrBT6iNgW+CTwOuAQ4K0RcchsLEuSNLnZ2qI/HLgpM3+SmQ8D5wPHzdKyJEmTiMyc+UYj3gQck5m/3zw/CXhpZr67Y5pTgFOap88BbmyG9wDu7tF0r3GDxm2rjrbmWn9ta/yWMdfbenpmzu8x/+Myc8YfwAnAZzqenwR8os95Vww6btC4bdXR1lzrr22N3zJqamuyx2ztulkLPK3j+X7A7bO0LEnSJGar0P8HcGBEHBARTwBOBC6ZpWVJkiYxbzYazcxHI+LdwDeAbYHPZeZ1fc5+7jTGDRq3rTrammv9ta3xW0ZNbfU0KwdjJUnjw1/GSlLlLPSSVDkLvSRVzkIvSZWz0EtS5Sz0klS5WTmPfhARsUdm3t3x/O2Ui6JdC/wMOB7YF0jKr2uXZ+aFPab/O+C3B5ynbRkXU35mPFP92hLLGNfXXnu/tubXbr9m/71ycWZeSouI+FBm/lnbuM0Mes2EmX4AV3YM/ynlR1aLgR8DP6X8qvYVzeNE4JfAx1qm/wfgSuDrA8zTaxlfB+6aoX5tiWWM62vfGvq1Nb92+zX775WvT8zTUjvX9F1nx6DQX9VZ9IGdmuEfAyvbpgdWt0y/HfBQr2X0mKfXMgJ4cIb6tSWWMa6vfWvo19b82u3X7L9X7gN+0/ztfNwPPNo2T9tjHPbR7xARL4qIFwPbZuYDTfxBYPuW6XcF6J4+Mx8BHouIw/udZ5JlvKSZfuh+bYlljOtr30r6tTW/dvs1WL+ms4wNwI8z80ldj12AdS3Ttxr5JRAiYnlX6G2ZuS4ijqZcCG0N5WqYUK6IuS/l2vW/6pp+d+DblE+6Xfqc59XA/21Zxn2UA9UT0/czzyiXMa6vfTr96pX3+yjXTbp/zP5fW0NO7Nfo3itPAk7PzP9Dl4j4i8z8QHe8zcgLfS8RsQ3wRMoL3ZfydWxtZt7RY/ptge0zc0NE7D3IPP0uYzrzbMlljOtrH7BfA+V9C/Zr7JZRWb+2AZ44hv0ay/fKoEZe6KNcxviRbDrSfBoeBmzIzL9pmf75mXnNJO3tD9yXmfdGxAJgIbCK8mnZHb8hM6+NiIWUT89HKfvQbuhob7NxERGUo+WdR8d/0MyyWTx7/JMj4qDOZXWPA25uvtZ1xvcAftkj/guAzHys+b8+D7gFuLctnpm/6GrjXZn5qR792WxcROwMPBv4SWbe2xanfPVsy++NwD/3m/dmmp65n07em/lacz+beW/ab839ZHnPzLsjYruWcfOBn083700brbkfJO9d424F7h4g79cDt7Xldzp5z8zreoybdJ2fJD6r6/xEvEd+e67z2XFm0WTGodD/CDgqM++JiP8GvJFypPnPKW/U/w18OTOvb6b/DeWI9pc74824JcB/BR4C/hr4I+A7wLGUU0nXd8WPbuI3Ai9uYrsCjzTLXdL0oXPczsCTKUXktmbR+wGHNsPXdMWfBbwrM7/Z8trXZOb+LfFXA5cB91AO4JySmbc08W9Qjt5vjDfz3Nz07THgHcAHgQeA51N2eTzYFT8MuIiygk34IPA/gSOBKzq7BJze/J++kpkfiYhXAF8CbqasQG/JzK93xZ/V/C9f3JLfD1DuQva+fvLevMbW3E8j70cAy5u/3fndkfK1fz2zlPemz5vlvlfem3E/bvq2PZu+J46nnLVxN/3l/dnApWyad5rx32mGJ3I/Vd6fBfwoM49t+tg57uXA2zPzwj7zfiSwiLJx0J3fQfN+RDP9c1vG9Vrne+X9Ecqpj2cBq5m9df7OZlnd+Z1snb8yMw/rbqtV9nnUdrYewLUdwyuAHfLxI9Q3AmcDNwE/ohTe6yhbJt3xBc24HYDdKVty85u2rm/Gdcd/RPn0BzgA+Goz/FrKfr75LePWAP/a8jpuotwQvTv+BcqW9se7Hp+gvAm74x8H7gR+1cz/Jsob7AjKDV1Wdceb5xuAvZu+3gc8Z+L/C1zdEv9V068PAWc0j3uavw8BF7SMux04o5l/OXBYxzJWtMSfAfy6R36vBa4ZIO8LmnFtuf/xgHnfCfh1j/zeRDnfedi8H9Aj7x9v+t2W+9a8N88fAJ7b8p64Clg5QN6fTjmLoy2/DzXz9Zv3ZwAPdLzmznE3drwn+sn7vCYnbfnttc73yvtOlA+4tnG91vleeX8tZV1ZMAPrfK+8f6LJSVt+J1vnr+peds86OwaF/rvA85rhS4FdO1b4zg+Bw4GPAA8D322J3zrxpqNsydwFbNM8v6Z5g7XGO+bpPKe/8/SsjeOaf/R1La9jdY+k398sc3HL4zHKDdK742soX3sn2nguZcX5aVcfJ+JvpOzyaPvwvKqj753x/Skr8V8AOzaxn3SMu6h7XNeyf9gxfOXEm64z3jz/VY/8fo/HTzXrJ++30hTBXu+JfvM+RX6vmcjvkHl/wiT5/XXzvug375vkt2vcT2jPb2vem+cre+R3oLw3zze0jWvyMVGg+sn7E+nYKOhznW/Ne2d+e70n+s178/whYN4MrPO98r6YrlMl6W+dv7J72b0e47Dr5vnA31M+7aB85buC8mOB38/ML3VNfxXwh5l5RVc8KF8B76F8om+g7Ge7lLJlsj1lC6c7Po/y44XjKPsI3x8RO1K2Yr4CLOsa9yHK19wzKMUHygryB83wx7rifwKcl5nvbHntvwYWZeZ3u+IrgD2z4yteROxH2YJ5LDN37op/jfI1crss+2MPz8wfdPy/tsvM53XFt23+538C/DHwv4C/zMxndLR9XOc4yjeGmyhf6RcA+2fZJbOB8rV3dVd8G8qbcgOb5/ellN0hV3TFe+U9KKeZHdjyf/wC5SvzA/SX96Obx+Vsnt+lzfN3MXXenwa8txn+WFf8RMrBuJNa8ns5cFBmPrUr3ivvE/ndNzsOznW8J36TmbsMkvcmvkl+J3I/QN63af6n17aMewHw75TdSjB13p8P7JGZC+gyyTr/BdrzPpHf79FeC9rW+V5535FyvOM24Hz6y/2f0rLO98p7M+4h4Ok98ttrnX9mltMspzTyQg8b33y/Tdl/OI9yetEumfmZlmnf1l0EOsbNA06gHBS5iPLJ/7amvTsoX+e64w/S7Guk3PLwNxGxA/BU4HeAQ1rGvYxyru7Go+OUUwKT8ibpjF9BWbE2tPR3N8qWx4au+GuA9Zn5o674ccBrMvM9XfGnUPatvz8zH+wa9wZg98z8fFd8AfCKzDyveTOfBbw0M1/VNd3GccBJXS9hXWY+HBEvbMZf2hXfA3gV5Sfp3fn9BmXrpq+8N31pzX1L3l8KvJXN8z4RXwP8LfC7bJ7fXSgr8N4Ml/dLJpbdkt9B8/5kStH9WMu4o4AjM/OsrviUeW+et+Z+irzfnpmPNPn9zzye9+5xR/H4cYGp8v4N4D/1yG+/eZ9Yr9cAnwZe3zKu1zo/Wd73pHxgvIHNc0xLvHWd75X3Ztx01vlTM/Ps7rbajEWhn+siYvfM/PmwcduaW21Jc0a/+3hm6wEc0zH8ZOCzlP1ly4G9Boh/CTixo62n9JinV3yytjrHXQcc3MRfTNmHuZpyVPwNU8QXNvGbKBc9+iLl62r3uF7zzHZbqydpa7LXMo6vsVd/J3uNky3/IeAzwDO63r9XUr6qbxLvGvfMYeK2NSttDZLHhZRacR5l18xllLO1rqMcLO0n/stJ4v9B+XbZvYyp5nlh33V2Nor3IA82PdDwGeB/UM4MWAv80wDx9wH3boG2bu+YZznwkma48yyDfuLPZtMDWbY13m3dStkVs4Zy/vT7KLv3fko5fW+TeDNP67hB47Y18rZ+ALyOstvvVuBNTfwGyum2w8YXUXZnDbKMRcD35mqhv7ozPvG8n3jzfMMWaOuGjnn+vSu+st948/xBmqP5tjX2bV3ZEX8l8ClK4b+fcm5zd3w58LOO+fuZx7bGs601HW11Dl/F42ebTTveUm/6nWdOnV65Fng/cBrla3J0xG/vN96Me3gLtPWe5k1xNHAm8FHKAcf/17TVb/wsypbCN21rTrS1Dvj7rvfutpTdOp9viR9D+bVq9/t9snlsazzbuoty8PgEmuvMN+Ovo5wVM2z8SMppyIMs40iab579PEZ+MDYizugKfSoz10fEX1F+rPDVPuN7U47+f3WW29obWErZFzdx1sCtwD9RfhF4ygDxz1GuO/1O2xr7tuYDv5WZj9IhIs7PzBNp0WvcoHHbGnlbL6CcZvoYZZfOOynnvt8N/Jzy46hh4rdRfrvwuwMs4zbgv2TXqbs99fuJMIoH8HszER/XtuZaf21r/JZhW3W0NZPLaJ223wlH8aDHHVQGjY9rW3Otv7Y1fsuwrTramslltD3mMWIR0etKlAcC27eM7xUPYL8e7Y2yrbnWX9syv7Y1O23N5DIC2Ktl+lbjsI/+TsovUO/pGrWC8qu2l/QZD8q+1RePWVtzrb+2ZX5ta3bamsllBOX6P5tdTqHNyLfoKdds2Dkzr+4MRsQllOtm/KyfeDPulnFra67117bMr23NTlszuYxm3Le6Y72MfItekjS7xuHm4JKkWWShl6TKWei11Yni3yLidR2xN0fEpZPNJ81V7qPXVikinke5KcaLKD91v5pyJdWbh2hzXnb9clYaBxZ6bbUi4i8pN8bYCbg/M/88IhYDp1JuBfhd4N1Z7tp1LuWG6jsAF2TmnzVtrKXcxOQY4KOZ+Q8ti5JGahxOr5RG5SzKVSkfBhY2W/lvBF6WmY82xf1Eyv0JlmTmL6Lc1Wh5RFyUmdc37TyQmS8fxQuQ+mGh11YrMx+IiAsoNx1/KMrt3F4CrIgIKFvvE/cCfWtEnExZZ55KuQXhRKG/YMv2XBqMhV5bu8eaB5RfG34uM/975wQRcSDlfqKHZ+a9EXEe8MSOSR7YIj2VpsmzbqTH/Qvw5ig3tiYido+I/YEnUe5BcF9E7EO5ZIc0Z7hFLzUyc2VEnAX8S0RsAzwCvINyvZHrgWspN6H5zuh6KQ3Os24kqXLuupGkylnoJalyFnpJqpyFXpIqZ6GXpMpZ6CWpchZ6Sarc/wfH5br7HcAdxgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "data['Wheat'].plot.bar()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} -- 2.18.1