From fade7ad9509914842abe3c70eee8f89a438faa83 Mon Sep 17 00:00:00 2001
From: 27823a14859af5a9e21b47f306da5648
<27823a14859af5a9e21b47f306da5648@app-learninglab.inria.fr>
Date: Tue, 21 Apr 2020 18:59:36 +0000
Subject: [PATCH] Premiers jets sur l'exercice
---
module3/exo3/data_playfairs_wage_wheat.csv | 54 ++
module3/exo3/exercice.ipynb | 25 -
.../exo3/pouvoir_achat_ouvrier_XVI_XX.ipynb | 720 ++++++++++++++++++
3 files changed, 774 insertions(+), 25 deletions(-)
create mode 100644 module3/exo3/data_playfairs_wage_wheat.csv
delete mode 100644 module3/exo3/exercice.ipynb
create mode 100644 module3/exo3/pouvoir_achat_ouvrier_XVI_XX.ipynb
diff --git a/module3/exo3/data_playfairs_wage_wheat.csv b/module3/exo3/data_playfairs_wage_wheat.csv
new file mode 100644
index 0000000..1a201c3
--- /dev/null
+++ b/module3/exo3/data_playfairs_wage_wheat.csv
@@ -0,0 +1,54 @@
+"","Year","Wheat","Wages"
+"1",1565,41,5
+"2",1570,45,5.05
+"3",1575,42,5.08
+"4",1580,49,5.12
+"5",1585,41.5,5.15
+"6",1590,47,5.25
+"7",1595,64,5.54
+"8",1600,27,5.61
+"9",1605,33,5.69
+"10",1610,32,5.78
+"11",1615,33,5.94
+"12",1620,35,6.01
+"13",1625,33,6.12
+"14",1630,45,6.22
+"15",1635,33,6.3
+"16",1640,39,6.37
+"17",1645,53,6.45
+"18",1650,42,6.5
+"19",1655,40.5,6.6
+"20",1660,46.5,6.75
+"21",1665,32,6.8
+"22",1670,37,6.9
+"23",1675,43,7
+"24",1680,35,7.3
+"25",1685,27,7.6
+"26",1690,40,8
+"27",1695,50,8.5
+"28",1700,30,9
+"29",1705,32,10
+"30",1710,44,11
+"31",1715,33,11.75
+"32",1720,29,12.5
+"33",1725,39,13
+"34",1730,26,13.3
+"35",1735,32,13.6
+"36",1740,27,14
+"37",1745,27.5,14.5
+"38",1750,31,15
+"39",1755,35.5,15.7
+"40",1760,31,16.5
+"41",1765,43,17.6
+"42",1770,47,18.5
+"43",1775,44,19.5
+"44",1780,46,21
+"45",1785,42,23
+"46",1790,47.5,25.5
+"47",1795,76,27.5
+"48",1800,79,28.5
+"49",1805,81,29.5
+"50",1810,99,30
+"51",1815,78,NA
+"52",1820,54,NA
+"53",1821,54,NA
diff --git a/module3/exo3/exercice.ipynb b/module3/exo3/exercice.ipynb
deleted file mode 100644
index 0bbbe37..0000000
--- a/module3/exo3/exercice.ipynb
+++ /dev/null
@@ -1,25 +0,0 @@
-{
- "cells": [],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.6.3"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
-
diff --git a/module3/exo3/pouvoir_achat_ouvrier_XVI_XX.ipynb b/module3/exo3/pouvoir_achat_ouvrier_XVI_XX.ipynb
new file mode 100644
index 0000000..42e0d95
--- /dev/null
+++ b/module3/exo3/pouvoir_achat_ouvrier_XVI_XX.ipynb
@@ -0,0 +1,720 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Le pouvoir d'achat des ouvriers anglais du XVIe au XIXe siècle"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nous nous proposons ici de reproduire le [graphique](https://fr.wikipedia.org/wiki/William_Playfair#/media/Fichier:Chart_Showing_at_One_View_the_Price_of_the_Quarter_of_Wheat,_and_Wages_of_Labour_by_the_Week,_from_1565_to_1821.png) initialement proposé par William Playfair, avant d'en améliorer certain point, comme la précision sur les unités de prix et une autre approche de la visualisation de ces données.\n",
+ "\n",
+ ""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "import pandas as pd\n",
+ "import urllib.request "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Source des données"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Les données sont prises à cette adresse [données](https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/master/csv/HistData/Wheat.csv), sur recommendation du sujet du mooc sur la recherche reproductible. Nous vérifions la présence des données dans le répertoire, et ne les téléchargons que si nécessaire."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data_url = \"https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/master/csv/HistData/Wheat.csv\"\n",
+ "data_file = \"data_playfairs_wage_wheat.csv\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Using local data file\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Unnamed: 0 | \n",
+ " Year | \n",
+ " Wheat | \n",
+ " Wages | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 1565 | \n",
+ " 41.0 | \n",
+ " 5.00 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 1570 | \n",
+ " 45.0 | \n",
+ " 5.05 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 1575 | \n",
+ " 42.0 | \n",
+ " 5.08 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 1580 | \n",
+ " 49.0 | \n",
+ " 5.12 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 1585 | \n",
+ " 41.5 | \n",
+ " 5.15 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 6 | \n",
+ " 1590 | \n",
+ " 47.0 | \n",
+ " 5.25 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 7 | \n",
+ " 1595 | \n",
+ " 64.0 | \n",
+ " 5.54 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 8 | \n",
+ " 1600 | \n",
+ " 27.0 | \n",
+ " 5.61 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 9 | \n",
+ " 1605 | \n",
+ " 33.0 | \n",
+ " 5.69 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 10 | \n",
+ " 1610 | \n",
+ " 32.0 | \n",
+ " 5.78 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " 11 | \n",
+ " 1615 | \n",
+ " 33.0 | \n",
+ " 5.94 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " 12 | \n",
+ " 1620 | \n",
+ " 35.0 | \n",
+ " 6.01 | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " 13 | \n",
+ " 1625 | \n",
+ " 33.0 | \n",
+ " 6.12 | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " 14 | \n",
+ " 1630 | \n",
+ " 45.0 | \n",
+ " 6.22 | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " 15 | \n",
+ " 1635 | \n",
+ " 33.0 | \n",
+ " 6.30 | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " 16 | \n",
+ " 1640 | \n",
+ " 39.0 | \n",
+ " 6.37 | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " 17 | \n",
+ " 1645 | \n",
+ " 53.0 | \n",
+ " 6.45 | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " 18 | \n",
+ " 1650 | \n",
+ " 42.0 | \n",
+ " 6.50 | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " 19 | \n",
+ " 1655 | \n",
+ " 40.5 | \n",
+ " 6.60 | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " 20 | \n",
+ " 1660 | \n",
+ " 46.5 | \n",
+ " 6.75 | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " 21 | \n",
+ " 1665 | \n",
+ " 32.0 | \n",
+ " 6.80 | \n",
+ "
\n",
+ " \n",
+ " 21 | \n",
+ " 22 | \n",
+ " 1670 | \n",
+ " 37.0 | \n",
+ " 6.90 | \n",
+ "
\n",
+ " \n",
+ " 22 | \n",
+ " 23 | \n",
+ " 1675 | \n",
+ " 43.0 | \n",
+ " 7.00 | \n",
+ "
\n",
+ " \n",
+ " 23 | \n",
+ " 24 | \n",
+ " 1680 | \n",
+ " 35.0 | \n",
+ " 7.30 | \n",
+ "
\n",
+ " \n",
+ " 24 | \n",
+ " 25 | \n",
+ " 1685 | \n",
+ " 27.0 | \n",
+ " 7.60 | \n",
+ "
\n",
+ " \n",
+ " 25 | \n",
+ " 26 | \n",
+ " 1690 | \n",
+ " 40.0 | \n",
+ " 8.00 | \n",
+ "
\n",
+ " \n",
+ " 26 | \n",
+ " 27 | \n",
+ " 1695 | \n",
+ " 50.0 | \n",
+ " 8.50 | \n",
+ "
\n",
+ " \n",
+ " 27 | \n",
+ " 28 | \n",
+ " 1700 | \n",
+ " 30.0 | \n",
+ " 9.00 | \n",
+ "
\n",
+ " \n",
+ " 28 | \n",
+ " 29 | \n",
+ " 1705 | \n",
+ " 32.0 | \n",
+ " 10.00 | \n",
+ "
\n",
+ " \n",
+ " 29 | \n",
+ " 30 | \n",
+ " 1710 | \n",
+ " 44.0 | \n",
+ " 11.00 | \n",
+ "
\n",
+ " \n",
+ " 30 | \n",
+ " 31 | \n",
+ " 1715 | \n",
+ " 33.0 | \n",
+ " 11.75 | \n",
+ "
\n",
+ " \n",
+ " 31 | \n",
+ " 32 | \n",
+ " 1720 | \n",
+ " 29.0 | \n",
+ " 12.50 | \n",
+ "
\n",
+ " \n",
+ " 32 | \n",
+ " 33 | \n",
+ " 1725 | \n",
+ " 39.0 | \n",
+ " 13.00 | \n",
+ "
\n",
+ " \n",
+ " 33 | \n",
+ " 34 | \n",
+ " 1730 | \n",
+ " 26.0 | \n",
+ " 13.30 | \n",
+ "
\n",
+ " \n",
+ " 34 | \n",
+ " 35 | \n",
+ " 1735 | \n",
+ " 32.0 | \n",
+ " 13.60 | \n",
+ "
\n",
+ " \n",
+ " 35 | \n",
+ " 36 | \n",
+ " 1740 | \n",
+ " 27.0 | \n",
+ " 14.00 | \n",
+ "
\n",
+ " \n",
+ " 36 | \n",
+ " 37 | \n",
+ " 1745 | \n",
+ " 27.5 | \n",
+ " 14.50 | \n",
+ "
\n",
+ " \n",
+ " 37 | \n",
+ " 38 | \n",
+ " 1750 | \n",
+ " 31.0 | \n",
+ " 15.00 | \n",
+ "
\n",
+ " \n",
+ " 38 | \n",
+ " 39 | \n",
+ " 1755 | \n",
+ " 35.5 | \n",
+ " 15.70 | \n",
+ "
\n",
+ " \n",
+ " 39 | \n",
+ " 40 | \n",
+ " 1760 | \n",
+ " 31.0 | \n",
+ " 16.50 | \n",
+ "
\n",
+ " \n",
+ " 40 | \n",
+ " 41 | \n",
+ " 1765 | \n",
+ " 43.0 | \n",
+ " 17.60 | \n",
+ "
\n",
+ " \n",
+ " 41 | \n",
+ " 42 | \n",
+ " 1770 | \n",
+ " 47.0 | \n",
+ " 18.50 | \n",
+ "
\n",
+ " \n",
+ " 42 | \n",
+ " 43 | \n",
+ " 1775 | \n",
+ " 44.0 | \n",
+ " 19.50 | \n",
+ "
\n",
+ " \n",
+ " 43 | \n",
+ " 44 | \n",
+ " 1780 | \n",
+ " 46.0 | \n",
+ " 21.00 | \n",
+ "
\n",
+ " \n",
+ " 44 | \n",
+ " 45 | \n",
+ " 1785 | \n",
+ " 42.0 | \n",
+ " 23.00 | \n",
+ "
\n",
+ " \n",
+ " 45 | \n",
+ " 46 | \n",
+ " 1790 | \n",
+ " 47.5 | \n",
+ " 25.50 | \n",
+ "
\n",
+ " \n",
+ " 46 | \n",
+ " 47 | \n",
+ " 1795 | \n",
+ " 76.0 | \n",
+ " 27.50 | \n",
+ "
\n",
+ " \n",
+ " 47 | \n",
+ " 48 | \n",
+ " 1800 | \n",
+ " 79.0 | \n",
+ " 28.50 | \n",
+ "
\n",
+ " \n",
+ " 48 | \n",
+ " 49 | \n",
+ " 1805 | \n",
+ " 81.0 | \n",
+ " 29.50 | \n",
+ "
\n",
+ " \n",
+ " 49 | \n",
+ " 50 | \n",
+ " 1810 | \n",
+ " 99.0 | \n",
+ " 30.00 | \n",
+ "
\n",
+ " \n",
+ " 50 | \n",
+ " 51 | \n",
+ " 1815 | \n",
+ " 78.0 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 51 | \n",
+ " 52 | \n",
+ " 1820 | \n",
+ " 54.0 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 52 | \n",
+ " 53 | \n",
+ " 1821 | \n",
+ " 54.0 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Unnamed: 0 Year Wheat Wages\n",
+ "0 1 1565 41.0 5.00\n",
+ "1 2 1570 45.0 5.05\n",
+ "2 3 1575 42.0 5.08\n",
+ "3 4 1580 49.0 5.12\n",
+ "4 5 1585 41.5 5.15\n",
+ "5 6 1590 47.0 5.25\n",
+ "6 7 1595 64.0 5.54\n",
+ "7 8 1600 27.0 5.61\n",
+ "8 9 1605 33.0 5.69\n",
+ "9 10 1610 32.0 5.78\n",
+ "10 11 1615 33.0 5.94\n",
+ "11 12 1620 35.0 6.01\n",
+ "12 13 1625 33.0 6.12\n",
+ "13 14 1630 45.0 6.22\n",
+ "14 15 1635 33.0 6.30\n",
+ "15 16 1640 39.0 6.37\n",
+ "16 17 1645 53.0 6.45\n",
+ "17 18 1650 42.0 6.50\n",
+ "18 19 1655 40.5 6.60\n",
+ "19 20 1660 46.5 6.75\n",
+ "20 21 1665 32.0 6.80\n",
+ "21 22 1670 37.0 6.90\n",
+ "22 23 1675 43.0 7.00\n",
+ "23 24 1680 35.0 7.30\n",
+ "24 25 1685 27.0 7.60\n",
+ "25 26 1690 40.0 8.00\n",
+ "26 27 1695 50.0 8.50\n",
+ "27 28 1700 30.0 9.00\n",
+ "28 29 1705 32.0 10.00\n",
+ "29 30 1710 44.0 11.00\n",
+ "30 31 1715 33.0 11.75\n",
+ "31 32 1720 29.0 12.50\n",
+ "32 33 1725 39.0 13.00\n",
+ "33 34 1730 26.0 13.30\n",
+ "34 35 1735 32.0 13.60\n",
+ "35 36 1740 27.0 14.00\n",
+ "36 37 1745 27.5 14.50\n",
+ "37 38 1750 31.0 15.00\n",
+ "38 39 1755 35.5 15.70\n",
+ "39 40 1760 31.0 16.50\n",
+ "40 41 1765 43.0 17.60\n",
+ "41 42 1770 47.0 18.50\n",
+ "42 43 1775 44.0 19.50\n",
+ "43 44 1780 46.0 21.00\n",
+ "44 45 1785 42.0 23.00\n",
+ "45 46 1790 47.5 25.50\n",
+ "46 47 1795 76.0 27.50\n",
+ "47 48 1800 79.0 28.50\n",
+ "48 49 1805 81.0 29.50\n",
+ "49 50 1810 99.0 30.00\n",
+ "50 51 1815 78.0 NaN\n",
+ "51 52 1820 54.0 NaN\n",
+ "52 53 1821 54.0 NaN"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "try :\n",
+ " with open(data_file):\n",
+ " print(\"Using local data file\")\n",
+ "except IOError :\n",
+ " print(\"Missing data, downloading from {}\".format(data_url))\n",
+ " urllib.request.urlretrieve(data_url, data_file)\n",
+ "\n",
+ "raw_data = pd.read_csv(data_file)\n",
+ "raw_data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Les trois colonnes intéréssantes pour notre étude sont les trois dernières : YEARR, WHEAT, WAGES.\n",
+ "\n",
+ "Le tableau suivant montre les unités de chaque colonnes :\n",
+ "\n",
+ " | |YEAR |WHEAT|WAGES|\n",
+ " |:-------:|:-------:|:-------:|:-------:|\n",
+ " |Traduction| année | blé | salaire|\n",
+ " |Unité | - | shillings/quart de boisseau | shilling/semaine | \n",
+ " \n",
+ "Les conversions se font de la façon suivante :\n",
+ "\n",
+ "| Unité ancienne | Unité SI |\n",
+ "|:-------:|:--------:|\n",
+ "|1 quart de boisseau | 6.8 kg |"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Remarquons que pour les trois dernières lignes, l'information de salaire est manquante."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Unnamed: 0 | \n",
+ " Year | \n",
+ " Wheat | \n",
+ " Wages | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 50 | \n",
+ " 51 | \n",
+ " 1815 | \n",
+ " 78.0 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 51 | \n",
+ " 52 | \n",
+ " 1820 | \n",
+ " 54.0 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 52 | \n",
+ " 53 | \n",
+ " 1821 | \n",
+ " 54.0 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Unnamed: 0 Year Wheat Wages\n",
+ "50 51 1815 78.0 NaN\n",
+ "51 52 1820 54.0 NaN\n",
+ "52 53 1821 54.0 NaN"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data[raw_data.isnull().any(axis=1)]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data = raw_data.set_index('Year')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEZCAYAAACZwO5kAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGfhJREFUeJzt3X20JHV54PHvA4PIm8rL8CKIg4oCii84IvENZDTBlSN4VhSNnDk5ZFkVjVGycTBZgWTZQ150fVmNIb7NBhUIxsAaFyXDSIwazQjIAAMOKA4DAwwKgoy8ybN//OoOPT3V93bfvne672++n3P63Oqnqn716/t0PV1dVV0VmYkkqV7bjLoDkqTZZaGXpMpZ6CWpchZ6SaqchV6SKmehl6TKWeglqXIWekmqnIVekio3b9QdANhjjz1ywYIFo+6GJM0pP/zhD+/OzPlTTTcWhX7BggWsWLFi1N2QpDklIn7Wz3TuupGkylnoJalyFnpJqtyUhT4iPhcRd0XEtR2x3SLisohY3fzdtWPc6RFxU0TcGBG/M1sdlyT1p58t+i8Ax3TFlgDLMvNAYFnznIg4BDgReG4zz6ciYtsZ660kaWBTFvrM/FfgF13h44ClzfBS4PiO+PmZ+VBm/hS4CTh8hvoqSZqG6e6j3ysz1wE0f/ds4vsCt3ZMt7aJbSYiTomIFRGxYv369dPshiRpKjN9MDZaYq33KszMczNzYWYunD9/yvP9JUnTNN0fTN0ZEftk5rqI2Ae4q4mvBZ7WMd1+wO3DdFCS5qoPv+XYTZ6fdsHXRtKP6W7RXwIsboYXAxd3xE+MiO0j4gDgQOAHw3VRkjSMKbfoI+LLwFHAHhGxFjgDOAe4MCJOBtYAJwBk5nURcSFwPfAocGpm/maW+i5J6sOUhT4z39pj1KIe058NnD1MpyRJM8dfxkpS5Sz0klQ5C70kVc5CL0mVs9BLUuUs9JJUOQu9JFXOQi9JlbPQS1LlLPSSVDkLvSRVzkIvSZWz0EtS5Sz0klQ5C70kVc5CL0mVs9BLUuUs9JJUOQu9JFXOQi9JlbPQS1LlLPSSVDkLvSRVzkIvSZWz0EtS5Sz0klQ5C70kVc5CL0mVs9BLUuUs9JJUOQu9JFXOQi9JlbPQS1Llhir0EfG+iLguIq6NiC9HxBMjYreIuCwiVjd/d52pzkqSBjdvujNGxL7AHwCHZOavI+JC4ETgEGBZZp4TEUuAJcAHZqS3kjSGPvmOyzcOn/rpo0fYk3bD7rqZB+wQEfOAHYHbgeOApc34pcDxQy5DkjSEaRf6zLwN+GtgDbAO+GVmfhPYKzPXNdOsA/Zsmz8iTomIFRGxYv369dPthiRpCtMu9M2+9+OAA4CnAjtFxNv7nT8zz83MhZm5cP78+dPthiRpCtPeRw+8BvhpZq4HiIh/BF4G3BkR+2TmuojYB7hrBvopSSO36qCDNw4ffMOqEfZkMMPso18DHBERO0ZEAIuAVcAlwOJmmsXAxcN1UZI0jGlv0Wfm9yPiIuBK4FHgKuBcYGfgwog4mfJhcMJMdFSSarJ2ybc3Du93zitndVnD7LohM88AzugKP0TZupckjQF/GStJlbPQS1Llhtp1I0m1OXTpoZs8X7l45Yh6MnPcopekylnoJalyFnpJqpyFXpIqZ6GXpMpZ6CWpchZ6SaqchV6SKmehl6TKWeglqXIWekmqnIVekipnoZekylnoJalyFnpJqpyFXpIqZ6GXpMpZ6CWpchZ6SaqchV6SKmehl6TKWeglqXIWekmqnIVekio3b9QdmAvWLvn2xuH9znnlCHsiSYNzi16SKmehl6TKWeglqXIWekmqnIVekio3VKGPiKdExEURcUNErIqI34qI3SLisohY3fzddaY6K0ka3LBb9B8DLs3Mg4AXAKuAJcCyzDwQWNY8lySNyLQLfUQ8CXgV8FmAzHw4M+8FjgOWNpMtBY4ftpOSpOkbZov+GcB64PMRcVVEfCYidgL2ysx1AM3fPdtmjohTImJFRKxYv379EN2QJE1mmEI/DzgM+JvMfBHwAAPspsnMczNzYWYunD9//hDdkCRNZphCvxZYm5nfb55fRCn8d0bEPgDN37uG66IkaRjTLvSZeQdwa0Q8pwktAq4HLgEWN7HFwMVD9VCSNJRhL2r2HuCLEfEE4CfA71E+PC6MiJOBNcAJQy5DkjSEoQp9Zl4NLGwZtWiYdiVJM8dfxkpS5Sz0klQ5C70kVc5CL0mVs9BLUuUs9JJUOW8OLklj5Mwzz2wdXnb5MzeZbtHRN/fdplv0klQ5t+g1qQ+/5diNw6dd8LUR9kTSdLlFL0mVs9BLUuUs9JJUOQu9JFXOQi9JlbPQS1LlPL1S6uGT77h84/Cpnz56hD2RhuMWvSRVrtot+lUHHbxx+OAbVo2wJ5I0Wm7RS1LlLPSSVLlqd91I0qTOfHLH8C9H148twELf6Lx4F3gBL2mUOi/JO8jleNXOQq8txpVXGg0LvaQqLFjyzxuHbznn9SPsyfjxYKwkVW5ubNFvRQdNZsKhSw/dOLxy8coR9kTSOHCLXpIqNze26KU5rtcNnzWYvZdfvXH4jle/cIQ9mVvcopekyrlFrznJMyzq4DedLcMtekmq3JzfovcMk9FYu+TbG4f3O+eVI+yJNDm//c1AoY+IbYEVwG2ZeWxE7AZcACwAbgHenJn3DLucmeLNJCRtbWZi1817gc4Lvi8BlmXmgcCy5rkkaUSG2qKPiP2A1wNnA+9vwscBRzXDS4FvAR/opz2/YknSzBt2181HgT8GdumI7ZWZ6wAyc11E7DnkMjTHeCaFNF6mXegj4ljgrsz8YUQcNY35TwFOAdh///2n2w1paN52UrUbZh/9y4E3RMQtwPnA0RFxHnBnROwD0Py9q23mzDw3Mxdm5sL58+cP0Q1J0mSmvUWfmacDpwM0W/R/lJlvj4i/AhYD5zR/L56BfmqWeTbS3OGxLA1qNn4wdQ7w2ohYDby2eS5JGpEZ+cFUZn6LcnYNmflzYNFMtCtJGp6XQJCkys35SyCobu6PlobnFr0kVc5CL0mVc9eNpBnx4bccu3H4tAu+NsKeqJuFfsx17qMG91NPyRvJS5tx140kVc5CL0mVs9BLUuXcRz8Lll3+zE2eLzr65innmdb54gPuj+68SiN4pcZxMJ33ijQot+glqXJu0W9hey+/euPwHa9+4Qh7Mj5q+p+M7U3TPRtpq+YWvSRVzi16SQMZ9N4FY/stZyviFr0kVc5CL0mVc9eNNKDOa7qA13XR+HOLXpIq5xa9NKZqOu1Uo+UWvSRVzkIvSZVz142kzXReF8lrIs19FvohnHnmma3DGk+HLj104/DKxStH2JPx4f9k6+CuG0mqnFv0UiW87aR6cYtekipnoZekylnoJalyFnpJqpyFXpIqZ6GXpMpZ6CWpchZ6SarctAt9RDwtIpZHxKqIuC4i3tvEd4uIyyJidfN315nrriRpUMNs0T8KnJaZBwNHAKdGxCHAEmBZZh4ILGueS5JGZNqFPjPXZeaVzfD9wCpgX+A4YGkz2VLg+GE7KUmavhnZRx8RC4AXAd8H9srMdVA+DIA9e8xzSkSsiIgV69evn4luSJJaDF3oI2Jn4CvAH2bmff3Ol5nnZubCzFw4f/78YbshSephqEIfEdtRivwXM/Mfm/CdEbFPM34f4K7huihJGsYwZ90E8FlgVWZ+pGPUJcDiZngxcPH0uydJGtYw16N/OXASsDIiJm5X/0HgHODCiDgZWAOcMFwXJUnDmHahz8x/A6LH6EXTbVeSNLP8ZawkVc5CL0mVs9BLUuUs9JJUOQu9JFXOQi9JlbPQS1LlLPSSVDkLvSRVzkIvSZWz0EtS5Sz0klQ5C70kVc5CL0mVs9BLUuUs9JJUOQu9JFXOQi9JlbPQS1LlLPSSVDkLvSRVzkIvSZWz0EtS5Sz0klQ5C70kVc5CL0mVs9BLUuUs9JJUOQu9JFXOQi9JlbPQS1LlLPSSVDkLvSRVbtYKfUQcExE3RsRNEbFktpYjSZrcrBT6iNgW+CTwOuAQ4K0RcchsLEuSNLnZ2qI/HLgpM3+SmQ8D5wPHzdKyJEmTiMyc+UYj3gQck5m/3zw/CXhpZr67Y5pTgFOap88BbmyG9wDu7tF0r3GDxm2rjrbmWn9ta/yWMdfbenpmzu8x/+Myc8YfwAnAZzqenwR8os95Vww6btC4bdXR1lzrr22N3zJqamuyx2ztulkLPK3j+X7A7bO0LEnSJGar0P8HcGBEHBARTwBOBC6ZpWVJkiYxbzYazcxHI+LdwDeAbYHPZeZ1fc5+7jTGDRq3rTrammv9ta3xW0ZNbfU0KwdjJUnjw1/GSlLlLPSSVDkLvSRVzkIvSZWz0EtS5Sz0klS5WTmPfhARsUdm3t3x/O2Ui6JdC/wMOB7YF0jKr2uXZ+aFPab/O+C3B5ynbRkXU35mPFP92hLLGNfXXnu/tubXbr9m/71ycWZeSouI+FBm/lnbuM0Mes2EmX4AV3YM/ynlR1aLgR8DP6X8qvYVzeNE4JfAx1qm/wfgSuDrA8zTaxlfB+6aoX5tiWWM62vfGvq1Nb92+zX775WvT8zTUjvX9F1nx6DQX9VZ9IGdmuEfAyvbpgdWt0y/HfBQr2X0mKfXMgJ4cIb6tSWWMa6vfWvo19b82u3X7L9X7gN+0/ztfNwPPNo2T9tjHPbR7xARL4qIFwPbZuYDTfxBYPuW6XcF6J4+Mx8BHouIw/udZ5JlvKSZfuh+bYlljOtr30r6tTW/dvs1WL+ms4wNwI8z80ldj12AdS3Ttxr5JRAiYnlX6G2ZuS4ijqZcCG0N5WqYUK6IuS/l2vW/6pp+d+DblE+6Xfqc59XA/21Zxn2UA9UT0/czzyiXMa6vfTr96pX3+yjXTbp/zP5fW0NO7Nfo3itPAk7PzP9Dl4j4i8z8QHe8zcgLfS8RsQ3wRMoL3ZfydWxtZt7RY/ptge0zc0NE7D3IPP0uYzrzbMlljOtrH7BfA+V9C/Zr7JZRWb+2AZ44hv0ay/fKoEZe6KNcxviRbDrSfBoeBmzIzL9pmf75mXnNJO3tD9yXmfdGxAJgIbCK8mnZHb8hM6+NiIWUT89HKfvQbuhob7NxERGUo+WdR8d/0MyyWTx7/JMj4qDOZXWPA25uvtZ1xvcAftkj/guAzHys+b8+D7gFuLctnpm/6GrjXZn5qR792WxcROwMPBv4SWbe2xanfPVsy++NwD/3m/dmmp65n07em/lacz+beW/ab839ZHnPzLsjYruWcfOBn083700brbkfJO9d424F7h4g79cDt7Xldzp5z8zreoybdJ2fJD6r6/xEvEd+e67z2XFm0WTGodD/CDgqM++JiP8GvJFypPnPKW/U/w18OTOvb6b/DeWI9pc74824JcB/BR4C/hr4I+A7wLGUU0nXd8WPbuI3Ai9uYrsCjzTLXdL0oXPczsCTKUXktmbR+wGHNsPXdMWfBbwrM7/Z8trXZOb+LfFXA5cB91AO4JySmbc08W9Qjt5vjDfz3Nz07THgHcAHgQeA51N2eTzYFT8MuIiygk34IPA/gSOBKzq7BJze/J++kpkfiYhXAF8CbqasQG/JzK93xZ/V/C9f3JLfD1DuQva+fvLevMbW3E8j70cAy5u/3fndkfK1fz2zlPemz5vlvlfem3E/bvq2PZu+J46nnLVxN/3l/dnApWyad5rx32mGJ3I/Vd6fBfwoM49t+tg57uXA2zPzwj7zfiSwiLJx0J3fQfN+RDP9c1vG9Vrne+X9Ecqpj2cBq5m9df7OZlnd+Z1snb8yMw/rbqtV9nnUdrYewLUdwyuAHfLxI9Q3AmcDNwE/ohTe6yhbJt3xBc24HYDdKVty85u2rm/Gdcd/RPn0BzgA+Goz/FrKfr75LePWAP/a8jpuotwQvTv+BcqW9se7Hp+gvAm74x8H7gR+1cz/Jsob7AjKDV1Wdceb5xuAvZu+3gc8Z+L/C1zdEv9V068PAWc0j3uavw8BF7SMux04o5l/OXBYxzJWtMSfAfy6R36vBa4ZIO8LmnFtuf/xgHnfCfh1j/zeRDnfedi8H9Aj7x9v+t2W+9a8N88fAJ7b8p64Clg5QN6fTjmLoy2/DzXz9Zv3ZwAPdLzmznE3drwn+sn7vCYnbfnttc73yvtOlA+4tnG91vleeX8tZV1ZMAPrfK+8f6LJSVt+J1vnr+peds86OwaF/rvA85rhS4FdO1b4zg+Bw4GPAA8D322J3zrxpqNsydwFbNM8v6Z5g7XGO+bpPKe/8/SsjeOaf/R1La9jdY+k398sc3HL4zHKDdK742soX3sn2nguZcX5aVcfJ+JvpOzyaPvwvKqj753x/Skr8V8AOzaxn3SMu6h7XNeyf9gxfOXEm64z3jz/VY/8fo/HTzXrJ++30hTBXu+JfvM+RX6vmcjvkHl/wiT5/XXzvug375vkt2vcT2jPb2vem+cre+R3oLw3zze0jWvyMVGg+sn7E+nYKOhznW/Ne2d+e70n+s178/whYN4MrPO98r6YrlMl6W+dv7J72b0e47Dr5vnA31M+7aB85buC8mOB38/ML3VNfxXwh5l5RVc8KF8B76F8om+g7Ge7lLJlsj1lC6c7Po/y44XjKPsI3x8RO1K2Yr4CLOsa9yHK19wzKMUHygryB83wx7rifwKcl5nvbHntvwYWZeZ3u+IrgD2z4yteROxH2YJ5LDN37op/jfI1crss+2MPz8wfdPy/tsvM53XFt23+538C/DHwv4C/zMxndLR9XOc4yjeGmyhf6RcA+2fZJbOB8rV3dVd8G8qbcgOb5/ellN0hV3TFe+U9KKeZHdjyf/wC5SvzA/SX96Obx+Vsnt+lzfN3MXXenwa8txn+WFf8RMrBuJNa8ns5cFBmPrUr3ivvE/ndNzsOznW8J36TmbsMkvcmvkl+J3I/QN63af6n17aMewHw75TdSjB13p8P7JGZC+gyyTr/BdrzPpHf79FeC9rW+V5535FyvOM24Hz6y/2f0rLO98p7M+4h4Ok98ttrnX9mltMspzTyQg8b33y/Tdl/OI9yetEumfmZlmnf1l0EOsbNA06gHBS5iPLJ/7amvTsoX+e64w/S7Guk3PLwNxGxA/BU4HeAQ1rGvYxyru7Go+OUUwKT8ibpjF9BWbE2tPR3N8qWx4au+GuA9Zn5o674ccBrMvM9XfGnUPatvz8zH+wa9wZg98z8fFd8AfCKzDyveTOfBbw0M1/VNd3GccBJXS9hXWY+HBEvbMZf2hXfA3gV5Sfp3fn9BmXrpq+8N31pzX1L3l8KvJXN8z4RXwP8LfC7bJ7fXSgr8N4Ml/dLJpbdkt9B8/5kStH9WMu4o4AjM/OsrviUeW+et+Z+irzfnpmPNPn9zzye9+5xR/H4cYGp8v4N4D/1yG+/eZ9Yr9cAnwZe3zKu1zo/Wd73pHxgvIHNc0xLvHWd75X3Ztx01vlTM/Ps7rbajEWhn+siYvfM/PmwcduaW21Jc0a/+3hm6wEc0zH8ZOCzlP1ly4G9Boh/CTixo62n9JinV3yytjrHXQcc3MRfTNmHuZpyVPwNU8QXNvGbKBc9+iLl62r3uF7zzHZbqydpa7LXMo6vsVd/J3uNky3/IeAzwDO63r9XUr6qbxLvGvfMYeK2NSttDZLHhZRacR5l18xllLO1rqMcLO0n/stJ4v9B+XbZvYyp5nlh33V2Nor3IA82PdDwGeB/UM4MWAv80wDx9wH3boG2bu+YZznwkma48yyDfuLPZtMDWbY13m3dStkVs4Zy/vT7KLv3fko5fW+TeDNP67hB47Y18rZ+ALyOstvvVuBNTfwGyum2w8YXUXZnDbKMRcD35mqhv7ozPvG8n3jzfMMWaOuGjnn+vSu+st948/xBmqP5tjX2bV3ZEX8l8ClK4b+fcm5zd3w58LOO+fuZx7bGs601HW11Dl/F42ebTTveUm/6nWdOnV65Fng/cBrla3J0xG/vN96Me3gLtPWe5k1xNHAm8FHKAcf/17TVb/wsypbCN21rTrS1Dvj7rvfutpTdOp9viR9D+bVq9/t9snlsazzbuoty8PgEmuvMN+Ovo5wVM2z8SMppyIMs40iab579PEZ+MDYizugKfSoz10fEX1F+rPDVPuN7U47+f3WW29obWErZFzdx1sCtwD9RfhF4ygDxz1GuO/1O2xr7tuYDv5WZj9IhIs7PzBNp0WvcoHHbGnlbL6CcZvoYZZfOOynnvt8N/Jzy46hh4rdRfrvwuwMs4zbgv2TXqbs99fuJMIoH8HszER/XtuZaf21r/JZhW3W0NZPLaJ223wlH8aDHHVQGjY9rW3Otv7Y1fsuwrTramslltD3mMWIR0etKlAcC27eM7xUPYL8e7Y2yrbnWX9syv7Y1O23N5DIC2Ktl+lbjsI/+TsovUO/pGrWC8qu2l/QZD8q+1RePWVtzrb+2ZX5ta3bamsllBOX6P5tdTqHNyLfoKdds2Dkzr+4MRsQllOtm/KyfeDPulnFra67117bMr23NTlszuYxm3Le6Y72MfItekjS7xuHm4JKkWWShl6TKWei11Yni3yLidR2xN0fEpZPNJ81V7qPXVikinke5KcaLKD91v5pyJdWbh2hzXnb9clYaBxZ6bbUi4i8pN8bYCbg/M/88IhYDp1JuBfhd4N1Z7tp1LuWG6jsAF2TmnzVtrKXcxOQY4KOZ+Q8ti5JGahxOr5RG5SzKVSkfBhY2W/lvBF6WmY82xf1Eyv0JlmTmL6Lc1Wh5RFyUmdc37TyQmS8fxQuQ+mGh11YrMx+IiAsoNx1/KMrt3F4CrIgIKFvvE/cCfWtEnExZZ55KuQXhRKG/YMv2XBqMhV5bu8eaB5RfG34uM/975wQRcSDlfqKHZ+a9EXEe8MSOSR7YIj2VpsmzbqTH/Qvw5ig3tiYido+I/YEnUe5BcF9E7EO5ZIc0Z7hFLzUyc2VEnAX8S0RsAzwCvINyvZHrgWspN6H5zuh6KQ3Os24kqXLuupGkylnoJalyFnpJqpyFXpIqZ6GXpMpZ6CWpchZ6Sarc/wfH5br7HcAdxgAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "data['Wheat'].plot.bar()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.4"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
--
2.18.1