From d6365151477ebe2f56e0e35531d7fe6b8df2e703 Mon Sep 17 00:00:00 2001 From: 287eb2433e490772bca1c5b6aae5009d <287eb2433e490772bca1c5b6aae5009d@app-learninglab.inria.fr> Date: Fri, 27 Nov 2020 11:52:21 +0000 Subject: [PATCH] no commit message --- module2/exo1/toy_notebook_en.ipynb | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/module2/exo1/toy_notebook_en.ipynb b/module2/exo1/toy_notebook_en.ipynb index c7406a9..006d221 100644 --- a/module2/exo1/toy_notebook_en.ipynb +++ b/module2/exo1/toy_notebook_en.ipynb @@ -33,7 +33,7 @@ "metadata": {}, "source": [ "## Buffon's needle \n", - "Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the **approximation**" + "Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__" ] }, { @@ -66,7 +66,7 @@ "metadata": {}, "source": [ "## Using a surface fraction argument\n", - "A method that is easier to understand and does not make use of the sin function is based on the fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then $P[X^2+Y^2\\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:" + "A method that is easier to understand and does not make use of the $\\sin$ function is based on the fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then $P[X^2+Y^2\\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:" ] }, { -- 2.18.1