brouillon

parent 90ea3b2c
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"March 28, 2019"
]
},
{
"cell_type": "markdown",
"metadata": {},
......@@ -7,6 +14,13 @@
"# Premier test jupyter"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# À propos du calcul de π $\\pi$"
]
},
{
"cell_type": "code",
"execution_count": 1,
......@@ -24,6 +38,128 @@
"import os\n",
"print('hello world')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## En demandant à la lib maths\n",
"Mon ordinateur m’indique que π vaut approximativement"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.141592653589793\n"
]
}
],
"source": [
"from math import *\n",
"print(pi)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# En utilisant la méthode des aiguilles de Buffon\n",
"Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** :\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3.128911138923655"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
"np.random.seed(seed=42)\n",
"N = 10000\n",
"x = np.random.uniform(size=N, low=0, high=1)\n",
"theta = np.random.uniform(size=N, low=0, high=pi/2)\n",
"2/(sum((x+np.sin(theta))>1)/N)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ut[2]: 3.1289111389236548\n",
"1.3 Avec un argument \"fréquentiel\" de surface\n",
"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction\n",
"sinus se base sur le fait que si X ∼ U(0, 1) et Y ∼ U(0, 1) alors P[X\n",
"2 + Y\n",
"2 ≤ 1] = π/4 (voir\n",
"méthode de Monte Carlo sur Wikipedia). Le code suivant illustre ce fait :\n",
"In [3]: %matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"np.random.seed(seed=42)\n",
"N = 1000\n",
"x = np.random.uniform(size=N, low=0, high=1)\n",
"y = np.random.uniform(size=N, low=0, high=1)\n",
"1\n",
"accept = (x*x+y*y) <= 1\n",
"reject = np.logical_not(accept)\n",
"fig, ax = plt.subplots(1)\n",
"ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n",
"ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n",
"ax.set_aspect('equal')\n",
"Il est alors aisé d’obtenir une approximation (pas terrible) de π en comptant combien de fois,\n",
"en moyenne, X\n",
"2 + Y\n",
"2\n",
"est inférieur à 1 :\n",
"In [4]: 4*np.mean(accept)\n",
"Out[4]: 3.1120000000000001\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment