From 5e5d016cca7aacd953e32967fd9603148bf3b1ed Mon Sep 17 00:00:00 2001 From: 28e1f4de90ce29a7aec6f2ae83fdfffc <28e1f4de90ce29a7aec6f2ae83fdfffc@app-learninglab.inria.fr> Date: Wed, 13 Aug 2025 12:10:03 +0000 Subject: [PATCH] +++1 --- module2/exo1/toy_notebook_fr.ipynb | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/module2/exo1/toy_notebook_fr.ipynb b/module2/exo1/toy_notebook_fr.ipynb index cd5d5d5..9974719 100644 --- a/module2/exo1/toy_notebook_fr.ipynb +++ b/module2/exo1/toy_notebook_fr.ipynb @@ -30,7 +30,7 @@ "metadata": {}, "source": [ "## En demandant à la lib maths\n", - "Mon ordinateur m’indique que $\\pi$ vaut *approximativement*" + "Mon ordinateur m'indique que $\\pi$ vaut *approximativement*" ] }, { @@ -89,7 +89,7 @@ "metadata": {}, "source": [ "## Avec un argument \"fréquentiel\" de surface\n", - "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X\\sim U(0,1)$ et $Y\\sim U(0,1)$ alors $P[X^2 + Y^2\\leq 1] = \\pi/4$ (voir méthode de [Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :" + "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X\\sim U(0,1)$ et $Y\\sim U(0,1)$ alors $P[X^2+Y^2\\leq 1] = \\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :" ] }, { -- 2.18.1