{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "March 28, 2019" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Premier test jupyter" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# À propos du calcul de π $\\pi$" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "hello world\n" ] } ], "source": [ "import os\n", "print('hello world')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## En demandant à la lib maths\n", "Mon ordinateur m’indique que π vaut approximativement" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "3.141592653589793\n" ] } ], "source": [ "from math import *\n", "print(pi)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# En utilisant la méthode des aiguilles de Buffon\n", "Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** :\n" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "3.128911138923655" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import numpy as np\n", "np.random.seed(seed=42)\n", "N = 10000\n", "x = np.random.uniform(size=N, low=0, high=1)\n", "theta = np.random.uniform(size=N, low=0, high=pi/2)\n", "2/(sum((x+np.sin(theta))>1)/N)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ut[2]: 3.1289111389236548\n", "1.3 Avec un argument \"fréquentiel\" de surface\n", "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction\n", "sinus se base sur le fait que si X ∼ U(0, 1) et Y ∼ U(0, 1) alors P[X\n", "2 + Y\n", "2 ≤ 1] = π/4 (voir\n", "méthode de Monte Carlo sur Wikipedia). Le code suivant illustre ce fait :\n", "In [3]: %matplotlib inline\n", "import matplotlib.pyplot as plt\n", "np.random.seed(seed=42)\n", "N = 1000\n", "x = np.random.uniform(size=N, low=0, high=1)\n", "y = np.random.uniform(size=N, low=0, high=1)\n", "1\n", "accept = (x*x+y*y) <= 1\n", "reject = np.logical_not(accept)\n", "fig, ax = plt.subplots(1)\n", "ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n", "ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n", "ax.set_aspect('equal')\n", "Il est alors aisé d’obtenir une approximation (pas terrible) de π en comptant combien de fois,\n", "en moyenne, X\n", "2 + Y\n", "2\n", "est inférieur à 1 :\n", "In [4]: 4*np.mean(accept)\n", "Out[4]: 3.1120000000000001\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }