{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Analyse du risque de défaillance des joints toriques de la navette Challenger"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Le 27 Janvier 1986, veille du décollage de la navette *Challenger*, eu\n",
"lieu une télé-conférence de trois heures entre les ingénieurs de la\n",
"Morton Thiokol (constructeur d'un des moteurs) et de la NASA. La\n",
"discussion portait principalement sur les conséquences de la\n",
"température prévue au moment du décollage de 31°F (juste en dessous de\n",
"0°C) sur le succès du vol et en particulier sur la performance des\n",
"joints toriques utilisés dans les moteurs. En effet, aucun test\n",
"n'avait été effectué à cette température.\n",
"\n",
"L'étude qui suit reprend donc une partie des analyses effectuées cette\n",
"nuit là et dont l'objectif était d'évaluer l'influence potentielle de\n",
"la température et de la pression à laquelle sont soumis les joints\n",
"toriques sur leur probabilité de dysfonctionnement. Pour cela, nous\n",
"disposons des résultats des expériences réalisées par les ingénieurs\n",
"de la NASA durant les 6 années précédant le lancement de la navette\n",
"Challenger.\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Chargement des données\n",
"Nous commençons donc par charger ces données:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Date
\n",
"
Count
\n",
"
Temperature
\n",
"
Pressure
\n",
"
Malfunction
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
4/12/81
\n",
"
6
\n",
"
66
\n",
"
50
\n",
"
0
\n",
"
\n",
"
\n",
"
1
\n",
"
11/12/81
\n",
"
6
\n",
"
70
\n",
"
50
\n",
"
1
\n",
"
\n",
"
\n",
"
2
\n",
"
3/22/82
\n",
"
6
\n",
"
69
\n",
"
50
\n",
"
0
\n",
"
\n",
"
\n",
"
3
\n",
"
11/11/82
\n",
"
6
\n",
"
68
\n",
"
50
\n",
"
0
\n",
"
\n",
"
\n",
"
4
\n",
"
4/04/83
\n",
"
6
\n",
"
67
\n",
"
50
\n",
"
0
\n",
"
\n",
"
\n",
"
5
\n",
"
6/18/82
\n",
"
6
\n",
"
72
\n",
"
50
\n",
"
0
\n",
"
\n",
"
\n",
"
6
\n",
"
8/30/83
\n",
"
6
\n",
"
73
\n",
"
100
\n",
"
0
\n",
"
\n",
"
\n",
"
7
\n",
"
11/28/83
\n",
"
6
\n",
"
70
\n",
"
100
\n",
"
0
\n",
"
\n",
"
\n",
"
8
\n",
"
2/03/84
\n",
"
6
\n",
"
57
\n",
"
200
\n",
"
1
\n",
"
\n",
"
\n",
"
9
\n",
"
4/06/84
\n",
"
6
\n",
"
63
\n",
"
200
\n",
"
1
\n",
"
\n",
"
\n",
"
10
\n",
"
8/30/84
\n",
"
6
\n",
"
70
\n",
"
200
\n",
"
1
\n",
"
\n",
"
\n",
"
11
\n",
"
10/05/84
\n",
"
6
\n",
"
78
\n",
"
200
\n",
"
0
\n",
"
\n",
"
\n",
"
12
\n",
"
11/08/84
\n",
"
6
\n",
"
67
\n",
"
200
\n",
"
0
\n",
"
\n",
"
\n",
"
13
\n",
"
1/24/85
\n",
"
6
\n",
"
53
\n",
"
200
\n",
"
2
\n",
"
\n",
"
\n",
"
14
\n",
"
4/12/85
\n",
"
6
\n",
"
67
\n",
"
200
\n",
"
0
\n",
"
\n",
"
\n",
"
15
\n",
"
4/29/85
\n",
"
6
\n",
"
75
\n",
"
200
\n",
"
0
\n",
"
\n",
"
\n",
"
16
\n",
"
6/17/85
\n",
"
6
\n",
"
70
\n",
"
200
\n",
"
0
\n",
"
\n",
"
\n",
"
17
\n",
"
7/29/85
\n",
"
6
\n",
"
81
\n",
"
200
\n",
"
0
\n",
"
\n",
"
\n",
"
18
\n",
"
8/27/85
\n",
"
6
\n",
"
76
\n",
"
200
\n",
"
0
\n",
"
\n",
"
\n",
"
19
\n",
"
10/03/85
\n",
"
6
\n",
"
79
\n",
"
200
\n",
"
0
\n",
"
\n",
"
\n",
"
20
\n",
"
10/30/85
\n",
"
6
\n",
"
75
\n",
"
200
\n",
"
2
\n",
"
\n",
"
\n",
"
21
\n",
"
11/26/85
\n",
"
6
\n",
"
76
\n",
"
200
\n",
"
0
\n",
"
\n",
"
\n",
"
22
\n",
"
1/12/86
\n",
"
6
\n",
"
58
\n",
"
200
\n",
"
1
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Date Count Temperature Pressure Malfunction\n",
"0 4/12/81 6 66 50 0\n",
"1 11/12/81 6 70 50 1\n",
"2 3/22/82 6 69 50 0\n",
"3 11/11/82 6 68 50 0\n",
"4 4/04/83 6 67 50 0\n",
"5 6/18/82 6 72 50 0\n",
"6 8/30/83 6 73 100 0\n",
"7 11/28/83 6 70 100 0\n",
"8 2/03/84 6 57 200 1\n",
"9 4/06/84 6 63 200 1\n",
"10 8/30/84 6 70 200 1\n",
"11 10/05/84 6 78 200 0\n",
"12 11/08/84 6 67 200 0\n",
"13 1/24/85 6 53 200 2\n",
"14 4/12/85 6 67 200 0\n",
"15 4/29/85 6 75 200 0\n",
"16 6/17/85 6 70 200 0\n",
"17 7/29/85 6 81 200 0\n",
"18 8/27/85 6 76 200 0\n",
"19 10/03/85 6 79 200 0\n",
"20 10/30/85 6 75 200 2\n",
"21 11/26/85 6 76 200 0\n",
"22 1/12/86 6 58 200 1"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"data = pd.read_csv(\"shuttle.csv\")\n",
"data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Le jeu de données nous indique la date de l'essai, le nombre de joints\n",
"toriques mesurés (il y en a 6 sur le lançeur principal), la\n",
"température (en Farenheit) et la pression (en psi), et enfin le\n",
"nombre de dysfonctionnements relevés. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Inspection graphique des données\n",
"Les vols où aucun incident n'est relevé n'apportant aucun information\n",
"sur l'influence de la température ou de la pression sur les\n",
"dysfonctionnements, nous nous concentrons sur les expériences où au\n",
"moins un joint a été défectueux.\n",
"\n",
"* secon test avec uniquement les tempéraures <65"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Date
\n",
"
Count
\n",
"
Temperature
\n",
"
Pressure
\n",
"
Malfunction
\n",
"
\n",
" \n",
" \n",
"
\n",
"
8
\n",
"
2/03/84
\n",
"
6
\n",
"
57
\n",
"
200
\n",
"
1
\n",
"
\n",
"
\n",
"
9
\n",
"
4/06/84
\n",
"
6
\n",
"
63
\n",
"
200
\n",
"
1
\n",
"
\n",
"
\n",
"
13
\n",
"
1/24/85
\n",
"
6
\n",
"
53
\n",
"
200
\n",
"
2
\n",
"
\n",
"
\n",
"
22
\n",
"
1/12/86
\n",
"
6
\n",
"
58
\n",
"
200
\n",
"
1
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Date Count Temperature Pressure Malfunction\n",
"8 2/03/84 6 57 200 1\n",
"9 4/06/84 6 63 200 1\n",
"13 1/24/85 6 53 200 2\n",
"22 1/12/86 6 58 200 1"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#data = data[data.Malfunction>0] data.Temperature <= 65\n",
"data2 = data[data.Temperature <= 65]\n",
"data2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Très bien, nous avons une variabilité de température importante mais\n",
"la pression est quasiment toujours égale à 200, ce qui devrait\n",
"simplifier l'analyse.\n",
"\n",
"Comment la fréquence d'échecs varie-t-elle avec la température ?\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFZRJREFUeJzt3X2QZXV95/H3p2cGGASFwDq6MxjRjBjKBcRhcKNuxoe4YFaIhQ9oKmExZpZVTJmtRIgxidm4VRHNg5aaccLiUx5IFESyOwaGpFpjIjKE4AAqOIXGacYsAfGhdZgH+rt/3DMnTdPdcxv69J2+/X5Vdc095/zuOd/fcJlPn98593dSVUiSBDAy6AIkSYcOQ0GS1DIUJEktQ0GS1DIUJEktQ0GS1OosFJJckeTeJLfPsD1J3pdkR5LtSU7vqhZJUn+6PFP4CHDWLNvPBtY2PxuBP+qwFklSHzoLhar6HPDtWZqcC3ysem4Ejkny5K7qkSQd3PIBHns1sHPS8liz7ltTGybZSO9sgpUrVz7nhBNOWJAC59PExAQjI0vrEo59Hn5Lrb+wePt811133VdV/+5g7QYZCplm3bRzblTVZmAzwLp16+rmm2/usq5OjI6OsmHDhkGXsaDs8/Bbav2FxdvnJP/cT7tBxt0YMPlX/jXArgHVIklisKFwLfDzzV1IzwW+W1WPGDqSJC2czoaPkvw5sAE4PskY8FvACoCq2gRsAV4G7AB+CFzYVS2SpP50FgpV9dqDbC/gTV0dX5I0d4vvErokqTOGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqdhkKSs5LcmWRHkkun2f6EJH+V5EtJ7khyYZf1SJJm11koJFkGfAA4GzgZeG2Sk6c0exPw5ao6FdgA/F6Sw7qqSZI0uy7PFNYDO6rq7qraC1wJnDulTQFHJwlwFPBtYH+HNUmSZrG8w32vBnZOWh4DzpzS5v3AtcAu4GjgNVU1MXVHSTYCGwFWrVrF6OhoF/V2anx8fFHW/VjY5+G31PoLw9/nLkMh06yrKcv/GbgVeBHwdGBrkr+rqu897E1Vm4HNAOvWrasNGzbMf7UdGx0dZTHW/VjY5+G31PoLw9/nLoePxoATJi2voXdGMNmFwNXVswP4OvDMDmuSJM2iy1DYBqxNcmJz8fh8ekNFk30TeDFAklXAScDdHdYkSZpFZ8NHVbU/ycXAdcAy4IqquiPJRc32TcDvAB9Jchu94aZLquq+rmqSJM2uy2sKVNUWYMuUdZsmvd4FvLTLGiRJ/fMbzZKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWp1GgpJzkpyZ5IdSS6doc2GJLcmuSPJZ7usR5I0u+X9NEryrKq6fS47TrIM+ADwU8AYsC3JtVX15UltjgE+CJxVVd9M8sS5HEOSNL/6PVPYlOSmJG9s/iHvx3pgR1XdXVV7gSuBc6e0eR1wdVV9E6Cq7u1z35KkDvR1plBVz0+yFng9cHOSm4APV9XWWd62Gtg5aXkMOHNKm2cAK5KMAkcD762qj03dUZKNwEaAVatWMTo62k/Zh5Tx8fFFWfdjYZ+H31LrLwx/n/sKBYCq+lqStwM3A+8Dnp0kwNuq6upp3pLpdjPN8Z8DvBhYCXwhyY1VddeUY28GNgOsW7euNmzY0G/Zh4zR0VEWY92PhX0efkutvzD8fe73msIpwIXATwNbgZdX1S1J/j3wBWC6UBgDTpi0vAbYNU2b+6rqB8APknwOOBW4C0nSguv3msL7gVuAU6vqTVV1C0BV7QLePsN7tgFrk5yY5DDgfODaKW0+DbwgyfIkR9IbXvrKXDshSZof/Q4fvQzYXVUPASQZAY6oqh9W1cene0NV7U9yMXAdsAy4oqruSHJRs31TVX0lyV8D24EJ4PK53uUkSZo//YbCDcBLgPFm+UjgeuAnZntTVW0BtkxZt2nK8ruBd/dZhySpQ/0OHx1RVQcCgeb1kd2UJEkalH5D4QdJTj+wkOQ5wO5uSpIkDUq/w0dvAT6R5MDdQ08GXtNNSZKkQen3y2vbkjwTOIne9w++WlX7Oq1MkrTg+v7yGnAG8NTmPc9OwnTfPpYkLV79fnnt48DTgVuBh5rVBRgKkjRE+j1TWAecXFVTp6mQJA2Rfu8+uh14UpeFSJIGr98zheOBLzezo+45sLKqzumkKknSQPQbCu/osghJ0qGh31tSP5vkR4G1VXVDM3ndsm5LkyQttL6uKST5ReCTwIeaVauBa7oqSpI0GP1eaH4T8Dzge9B74A7g85Qlacj0Gwp7mucsA5BkOY98ipokaZHrNxQ+m+RtwMokPwV8Avir7sqSJA1Cv6FwKfCvwG3Af6P3jISZnrgmSVqk+r37aAL44+ZHkjSk+p376OtMcw2hqp427xVJkgZmLnMfHXAE8CrgR+a/HEnSIPV1TaGq7p/0c09V/SHwoo5rkyQtsH6Hj06ftDhC78zh6E4qkiQNTL/DR7836fV+4BvAq+e9GknSQPV799ELuy5EkjR4/Q4f/Y/ZtlfV789POZKkQZrL3UdnANc2yy8HPgfs7KIoSdJgzOUhO6dX1fcBkrwD+ERVvaGrwiRJC6/faS6eAuydtLwXeOq8VyNJGqh+zxQ+DtyU5FP0vtn8CuBjnVUlSRqIfu8++l9JPgO8oFl1YVX9U3dlSZIGod/hI4Ajge9V1XuBsSQndlSTJGlA+n0c528BlwC/1qxaAfxJV0VJkgaj3zOFVwDnAD8AqKpdOM2FJA2dfkNhb1UVzfTZSR7XXUmSpEHpNxT+MsmHgGOS/CJwAz5wR5KGTr93H72neTbz94CTgN+sqq2dViZJWnAHPVNIsizJDVW1tap+tap+pd9ASHJWkjuT7Ehy6SztzkjyUJJXzqV4SdL8OmgoVNVDwA+TPGEuO06yDPgAcDZwMvDaJCfP0O5dwHVz2b8kaf71+43mB4HbkmyluQMJoKp+aZb3rAd2VNXdAEmuBM4Fvjyl3ZuBq+hNuCdJGqB+Q+H/Nj9zsZqHz6I6Bpw5uUGS1fRud30Rs4RCko3ARoBVq1YxOjo6x1IGb3x8fFHW/VjY5+G31PoLw9/nWUMhyVOq6ptV9dFHse9Ms66mLP8hcElVPZRM17x5U9VmYDPAunXrasOGDY+inMEaHR1lMdb9WNjn4bfU+gvD3+eDXVO45sCLJFfNcd9jwAmTltcAu6a0WQdcmeQbwCuBDyb5mTkeR5I0Tw42fDT51/enzXHf24C1zRxJ9wDnA6+b3KCq2vmTknwE+D9VdQ2SpIE4WCjUDK8Pqqr2J7mY3l1Fy4ArquqOJBc12zfNqVJJUucOFgqnJvkevTOGlc1rmuWqqsfP9uaq2gJsmbJu2jCoqv/aV8WSpM7MGgpVtWyhCpEkDd5cnqcgSRpyhoIkqWUoSJJahoIkqbWkQuH+8T18aed3uH98z6BLkaRDUr9zHy16n771Hi65ajsrRkbYNzHBZeedwjmnrR50WZJ0SFkSZwr3j+/hkqu28+C+Cb6/Zz8P7pvgrVdt94xBkqZYEqEw9sBuVow8vKsrRkYYe2D3gCqSpEPTkgiFNceuZN/ExMPW7ZuYYM2xKwdUkSQdmpZEKBx31OFcdt4pHLFihKMPX84RK0a47LxTOO6owwddmiQdUpbMheZzTlvN837seMYe2M2aY1caCJI0jSUTCtA7YzAMJGlmS2L4SJLUH0NBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJrU5DIclZSe5MsiPJpdNs/9kk25uff0hyapf1SJJm11koJFkGfAA4GzgZeG2Sk6c0+zrwk1V1CvA7wOau6pEkHVyXZwrrgR1VdXdV7QWuBM6d3KCq/qGqHmgWbwTWdFiPJOkglne479XAzknLY8CZs7T/BeAz021IshHYCLBq1SpGR0fnqcSFMz4+vijrfizs8/Bbav2F4e9zl6GQadbVtA2TF9ILhedPt72qNtMMLa1bt642bNgwTyUunNHRURZj3Y+FfR5+S62/MPx97jIUxoATJi2vAXZNbZTkFOBy4Oyqur/DeiRJB9HlNYVtwNokJyY5DDgfuHZygyRPAa4Gfq6q7uqwFklSHzo7U6iq/UkuBq4DlgFXVNUdSS5qtm8CfhM4DvhgEoD9VbWuq5okSbPrcviIqtoCbJmybtOk128A3tBlDVpa7h/fw9gDu1lz7EqOO+rwBT/27n0Pcf/4ngU/tobfQn22Ow0FaSF9+tZ7uOSq7awYGWHfxASXnXcK55y2ekGP/Us/vo9fftffLuixNfwW8rPtNBcaCveP7+GSq7bz4L4Jvr9nPw/um+CtV23n/vE9C3rsh6oW9Ngafgv92TYUNBTGHtjNipGHf5xXjIww9sDuoT62ht9Cf74MBQ2FNceuZN/ExMPW7ZuYYM2xK4f62Bp+C/35MhQ0FI476nAuO+8UjlgxwtGHL+eIFSNcdt4pC3LBd/KxlyULemwNv4X+bHuhWUPjnNNW87wfO34gdx8dOPZNX/g8f3/O8w0EzauF/GwbChoqxx11+MD+QT7uqMNZuWKZgaBOLNRn2+EjSVLLUJAktQwFSVLLUJAktQwFSVLLUJAktQwFSVLLUJAktQwFSVLLUJAktQwFSVLLUJAktQwFSVLLUJAktQwFSVLLUJAktQwFSVLLUJAktQwFSVLLUJAktQwFSVLLUJAktQwFSVLLUJAktQwFSVLLUJAktQwFSVLLUJAktToNhSRnJbkzyY4kl06zPUne12zfnuT0LuuRJM2us1BIsgz4AHA2cDLw2iQnT2l2NrC2+dkI/FFX9UiSDq7LM4X1wI6quruq9gJXAudOaXMu8LHquRE4JsmTO6xJkjSL5R3uezWwc9LyGHBmH21WA9+a3CjJRnpnEgDjSe6c31IXxPHAfYMuYoHZ5+G31PoLi7fPP9pPoy5DIdOsq0fRhqraDGyej6IGJcnNVbVu0HUsJPs8/JZaf2H4+9zl8NEYcMKk5TXArkfRRpK0QLoMhW3A2iQnJjkMOB+4dkqba4Gfb+5Cei7w3ar61tQdSZIWRmfDR1W1P8nFwHXAMuCKqrojyUXN9k3AFuBlwA7gh8CFXdVzCFjUw1+Pkn0efkutvzDkfU7VI4bwJUlLlN9oliS1DAVJUstQ6ECSbyS5LcmtSW6esu1XklSS4wdVXxdm6nOSNzdTndyR5LJB1jjfputzktOS3HhgXZL1g65zPiU5Jsknk3w1yVeS/MckP5Jka5KvNX8eO+g659MMfX53s7w9yaeSHDPoOueL1xQ6kOQbwLqqum/K+hOAy4FnAs+Zun0xm67PSV4I/Drw01W1J8kTq+reQdU432bo8/XAH1TVZ5K8DHhrVW0YUInzLslHgb+rqsubuwqPBN4GfLuqfreZ4+zYqrpkoIXOoxn6vB742+aGmncBDEufPVNYWH8AvJVpvqA3pP478LtVtQdgmAJhFgU8vnn9BIboezdJHg/8J+B/A1TV3qr6Dr3paj7aNPso8DODqXD+zdTnqrq+qvY3zW6k9x2roWAodKOA65P8YzNFB0nOAe6pqi8NtrTOPKLPwDOAFyT5YpLPJjljgPV1Ybo+vwV4d5KdwHuAXxtYdfPvacC/Ah9O8k9JLk/yOGDVge8XNX8+cZBFzrOZ+jzZ64HPLHxp3ehymoul7HlVtSvJE4GtSb5KbxjlpQOuq0vT9Xk5cCzwXOAM4C+TPK2GZ8xyuj6/Evjlqroqyavp/Yb5koFWOX+WA6cDb66qLyZ5L/CIKfGHzEx9/g2AJL8O7Af+dHAlzi/PFDpQVbuaP+8FPgX8JHAi8KVmHHoNcEuSJw2syHk2TZ/X05vG5OpmFtybgAl6k4kNhRn6fAFwddPkE826YTEGjFXVF5vlT9L7B/P/HZjduPlzmIYJZ+ozSS4A/gvws0P0i46hMN+SPC7J0Qde0zs72FZVT6yqp1bVU+l90E6vqn8ZYKnzZoY+3w5cA7yoWf8M4DAW5+ySjzBLn3fR+yUAen3/2mAqnH/N53VnkpOaVS8GvkxvupoLmnUXAJ8eQHmdmKnPSc4CLgHOqaofDqzADjh8NP9WAZ9KAr2/3z+rqr8ebEmdm7bPzZ0aVyS5HdgLXDBEv1HN1Odx4L1JlgMP8m9Tvg+LNwN/2vy3vZve1DQj9IYGfwH4JvCqAdbXhen6vA04nN6wIcCNVXXR4EqcP96SKklqOXwkSWoZCpKklqEgSWoZCpKklqEgSWp5S6qGRpLjgL9pFp8EPERvigKA9VW1dyCFzSLJ64Etw/KdFS1+3pKqoZTkHcB4Vb3nEKhlWVU9NMO2zwMXV9Wtc9jf8kmTsUnzyuEjLQlJLkhyU/Ocgw8mGUmyPMl3mrnxb0lyXZIzm8n77m6mvibJG5o5869L79kQb+9zv+9MchOwPslvJ9mW5PYkm9LzGuA04C+a9x+WZOzA3PxJnpvkhub1O5N8KMlWepOzLU/y+82xtyd5w8L/rWoYGQoaekmeBbwC+ImqOo3esOn5zeYnANdX1en0vnX9DnpTGbwK+J+TdrO+ec/pwOvSe5jOwfZ7S1Wtr6ovAO+tqjOA/9BsO6uq/gK4FXhNVZ3Wx/DWs4GXV9XP0fum9L1VtZ7eZINvSvKUR/P3I03mNQUtBS+h9w/nzc2UBCuBnc223VW1tXl9G/Dd5sEptwFPnbSP66rqAYAk1wDPp/f/z0z73UtvkrwDXpzkV4Ej6E0K+I/MfbrlT1fVg83rlwI/nmRyCK2lN82E9KgZCloKAlxRVb/xsJW9+Ykm/3Y+AeyZ9Hry/x9TL77VQfa7+8A8T0mOBN5PbxLEe5K8k144TGc//3YGP7XND6b06Y1V9TdI88jhIy0FNwCvTvNc7CTHPYqhlpem96zeI+k9aezv57DflfRC5r5mZtXzJm37PnD0pOVvAM9pXk9uN9V1wBubACLJSUlWzrFP0iN4pqChV1W3Jflt4IYkI8A+4CLm9qjMzwN/Bjwd+PiBu4X62W9V3Z/ec35vB/4Z+OKkzR8GLk+ym951i3cAf5zkX4CbZqnnQ8BTgFuboat76YWV9Jh4S6p0EM2dPc+qqrcMuhapaw4fSZJanilIklqeKUiSWoaCJKllKEiSWoaCJKllKEiSWv8filAd6+9ylUMAAAAASUVORK5CYII=\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"pd.set_option('mode.chained_assignment',None) # this removes a useless warning from pandas\n",
"import matplotlib.pyplot as plt\n",
"\n",
"data2[\"Frequency\"]=data2.Malfunction/data2.Count\n",
"data2.plot(x=\"Temperature\",y=\"Frequency\",kind=\"scatter\",ylim=[0,1])\n",
"plt.grid(True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"À première vue, ce n'est pas flagrant mais bon, essayons quand même\n",
"d'estimer l'impact de la température $t$ sur la probabilité de\n",
"dysfonctionnements d'un joint. \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Estimation de l'influence de la température\n",
"\n",
"Supposons que chacun des 6 joints toriques est endommagé avec la même\n",
"probabilité et indépendamment des autres et que cette probabilité ne\n",
"dépend que de la température. Si on note $p(t)$ cette probabilité, le\n",
"nombre de joints $D$ dysfonctionnant lorsque l'on effectue le vol à\n",
"température $t$ suit une loi binomiale de paramètre $n=6$ et\n",
"$p=p(t)$. Pour relier $p(t)$ à $t$, on va donc effectuer une\n",
"régression logistique."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"
Generalized Linear Model Regression Results
\n",
"
\n",
"
Dep. Variable:
Frequency
No. Observations:
4
\n",
"
\n",
"
\n",
"
Model:
GLM
Df Residuals:
2
\n",
"
\n",
"
\n",
"
Model Family:
Binomial
Df Model:
1
\n",
"
\n",
"
\n",
"
Link Function:
logit
Scale:
1.0000
\n",
"
\n",
"
\n",
"
Method:
IRLS
Log-Likelihood:
-1.3845
\n",
"
\n",
"
\n",
"
Date:
Mon, 18 Aug 2025
Deviance:
0.040847
\n",
"
\n",
"
\n",
"
Time:
15:47:24
Pearson chi2:
0.0407
\n",
"
\n",
"
\n",
"
No. Iterations:
4
Covariance Type:
nonrobust
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
coef
std err
z
P>|z|
[0.025
0.975]
\n",
"
\n",
"
\n",
"
Intercept
4.3201
20.789
0.208
0.835
-36.425
45.066
\n",
"
\n",
"
\n",
"
Temperature
-0.0985
0.364
-0.271
0.787
-0.812
0.615
\n",
"
\n",
"
"
],
"text/plain": [
"\n",
"\"\"\"\n",
" Generalized Linear Model Regression Results \n",
"==============================================================================\n",
"Dep. Variable: Frequency No. Observations: 4\n",
"Model: GLM Df Residuals: 2\n",
"Model Family: Binomial Df Model: 1\n",
"Link Function: logit Scale: 1.0000\n",
"Method: IRLS Log-Likelihood: -1.3845\n",
"Date: Mon, 18 Aug 2025 Deviance: 0.040847\n",
"Time: 15:47:24 Pearson chi2: 0.0407\n",
"No. Iterations: 4 Covariance Type: nonrobust\n",
"===============================================================================\n",
" coef std err z P>|z| [0.025 0.975]\n",
"-------------------------------------------------------------------------------\n",
"Intercept 4.3201 20.789 0.208 0.835 -36.425 45.066\n",
"Temperature -0.0985 0.364 -0.271 0.787 -0.812 0.615\n",
"===============================================================================\n",
"\"\"\""
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import statsmodels.api as sm\n",
"\n",
"data2[\"Success\"]=data2.Count-data2.Malfunction\n",
"data2[\"Intercept\"]=1\n",
"\n",
"logmodel=sm.GLM(data2['Frequency'], data2[['Intercept','Temperature']], family=sm.families.Binomial(sm.families.links.logit)).fit()\n",
"\n",
"logmodel.summary()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"L'estimateur le plus probable du paramètre de température est 0.0014\n",
"et l'erreur standard de cet estimateur est de 0.122, autrement dit on\n",
"ne peut pas distinguer d'impact particulier et il faut prendre nos\n",
"estimations avec des pincettes.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Estimation de la probabilité de dysfonctionnant des joints toriques\n",
"La température prévue le jour du décollage est de 31°F. Essayons\n",
"d'estimer la probabilité de dysfonctionnement des joints toriques à\n",
"cette température à partir du modèle que nous venons de construire:\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"