# On the computation of $\pi$ ## Asking the maths library My computer tells me that $\pi$ is _approximatively_ ```python from math import * print(pi) ``` 3.141592653589793 ## Buffon’s needle Applying the method of [Buffon’s needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__ ```python import numpy as np np.random.seed(seed=42) N = 10000 x = np.random.uniform(size=N, low=0, high=1) theta = np.random.uniform(size=N, low=0, high=pi/2) 2/(sum((x+np.sin(theta))>1)/N) ``` 3.128911138923655 ## Using a surface fraction argument A method that is easier to understand and does not make use of the sin function is based on the fact that if $X\sim U(0, 1)$ and $Y\sim U(0, 1)$, then $P[X^2 + Y^2\le 1] = \pi/4$ (see ["Monte Carlo method" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach: ```python %matplotlib inline import matplotlib.pyplot as plt np.random.seed(seed=42) N = 1000 x = np.random.uniform(size=N, low=0, high=1) y = np.random.uniform(size=N, low=0, high=1) accept = (x*x+y*y) <= 1 reject = np.logical_not(accept) fig, ax = plt.subplots(1) ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None) ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None) ax.set_aspect('equal') ``` ![png](output_6_0.png) It is then straightforward to obtain a (not really good) approximation to $\pi$ by counting how many times, on average, $X^2 + Y^2$ is smaller than 1: ```python 4*np.mean(accept) ``` 3.112