no commit message

parent 81a36560
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Efficacité aux quizz durant ce module\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Graphique des quizz en fonction des notes obtenus durant ce module "
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"La note maximum est 1.0\n",
"La note minimum est 0.6666666666666666\n",
"L'écart type des notes est 0.14433756729740646\n",
"La moyenne des notes est 0.9166666666666665\n"
]
}
],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
"\n",
"numQuizz = [\n",
"\"1\",\n",
"\"2\",\n",
"\"3\",\n",
"\"4\",\n",
"\"5\",\n",
"\"6\",\n",
"\"7\",\n",
"\"8\",\n",
"\"9\",\n",
"\"10\",\n",
"\"11\",\n",
"\"P1\"\n",
"]\n",
"notesQuizz = [\n",
"4/4,\n",
"3/3,\n",
"3/3,\n",
"3/3,\n",
"4/4,\n",
"5/5,\n",
"3/3,\n",
"2/3,\n",
"2/2,\n",
"2/3,\n",
"2/3,\n",
"3/3\n",
"]\n",
"maxN = np.max(notesQuizz)\n",
"print(\"La note maximum est \",maxN)\n",
"minN = np.min(notesQuizz)\n",
"print(\"La note minimum est \",minN)\n",
"etN = np.std(notesQuizz)\n",
"print(\"L'écart type des notes est \",etN)\n",
"avgN = np.average(notesQuizz)\n",
"print(\"La moyenne des notes est \",avgN)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAD8CAYAAABw1c+bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XtwY/d12PHvAUCQAJbLJUHuSvsgIDWy460brdWt4sapbEetskqTqPZMZ6ROxxlNUlUzUup0MmmUdKaZNH80GbedJmMlGk2sKmkba/KwEiXZkeSqjZWmca1VvJJWkmWvVwCXoqQlwX0CfAE4/QO4JMTl4xLEfeJ8ZjhLAPfi98Pd3XN/+N1zf0dUFWOMMf0jEXQHjDHG+MsCvzHG9BkL/MYY02cs8BtjTJ+xwG+MMX3GAr8xxvQZC/zGGNNnLPAbY0yfscBvjDF9JhV0BzYyPj6uxWIx6G4YY0xkvPzyy3OqOuFm21AG/mKxyKlTp4LuhjHGRIaIlN1ua1M9xhjTZyzwG2NMn7HAb4wxfcYCvzHG9BkL/MYY02e2Dfwi8oSIXBCRM5u8LiLyGyJyVkReFZHbOl47ISJvtV97pJcdN8YY0x03I/4ngRNbvH43cEv75wHgtwBEJAk82n79KHCfiBzdTWeNMcbs3rZ5/Kr6oogUt9jkHuB3tVXD8esisk9EbgSKwFlVPQcgIk+1t31jt53ezG+88B3qjaZXb29Md0T4zMcOcdN4Luie9Ny52WtMX1zgjg+5um/IbOF/vvE+3529xgN33IyIeNpWL27gOgSc73g83X5uo+e/f7M3EZEHaH1jYHJysquOPPa177Kw0uhqX2O8ogqzV5f4D5/9O0F3ped+44Xv8MK3LvDqL93lebCKuz9/7V2+8fY8//KTf8vztnoR+Df629Ytnt+Qqj4OPA5w/PjxrirAv/Hvt5qRMiYYn/3Nv6JcqQbdDU+8XalxdbHOxdoKY7l00N2JtFKlSiGf9aWtXmT1TANHOh4fBma2eN6YvlLI5yhXakF3wxPOCa0U0xObn8qVGoW8P9OBvQj8zwCfa2f3fBy4rKrvAi8Bt4jITSKSBu5tb2tMXynks8xcXmAxZtOQl2rLXKqtAMT2G41friyuMF9dpujTiH/bqR4R+TLwKWBcRKaBXwIGAFT1MeAk8CPAWaAG3N9+rS4iDwPPAUngCVV93YPPYEyoFfM5VGH6Yo3v2T8cdHd6pvNbTGkunt9o/DLVPpZ+jfjdZPXct83rCjy0yWsnaZ0YjOlbzrxtaS5egd+Z3kkmxEb8u+Qcy+J4dOb4jTFbKLZHceX5eI2KnVHqsSP7YvfZ/OZ8e5ocs8BvTCzsyw6wdygVu1FxqVLjxpEhPnzDcGwvXvulNFdl//Ag2bQ/JVIs8BvjMRGhkM9RillwLFeqTI5lKYxlma8uc3lhJeguRVa5Ulv9ZugHC/zG+KCQz8ZyxF/M51YvSE7F7MTmJz9z+MECvzG+KOZzTF9cYCUmS4pcW6ozd22Jwnh29YKk5fJ3p7Zc58LVJYo+Lulhgd8YHxTyWRpN5Z2LC0F3pSecby/FfG71gmTcvtH4ZWreSeW0Eb8xseKM5uIyKl7LO8+STac4sHfQLvB2ybkHojBmI35jYsUZzU3FJO2xtO6GozgvS+E155vSpI34jYmXiT2DZNPJ2NzhWq5UGd+TZs9gK/2wMJaNzbcZv5UqNcZyaUYyA761aYHfGB+ICJNj8cnsaWWhrE1NFMdzXLi6RG25HmCvoqnsc0YPWOA3xjfFfC42o+LWSpJrwcr53aZ7ds7vHH6wwG+MbwrjWc7PL9BodlVuIjQWVxq8e3nxA8FqdVmKmJzY/LJUbzBzecFG/MbEVTGfY7nR5N3L0U7pPL9B+uGkjfi7cn5+AVV/UznBAr8xvlnN7Il4cHQyejpH/HuHBsjn0rFblsJrzjckv5ZjdljgN8YnTqCMenBcC1YfHKVOxnBZCq9tdBL1gwV+Y3xyw94h0qlE5INjqVJlJDPAvuwHa+wWLZd/x8qVKsNDKUaz/qVyggV+Y3yTSLRSOqOe2dPKQrl+TjquJSa95GT0iIiv7VrgN8ZHxXw28qPi9Tn8js4Sk8adIHL4wQK/Mb5yljZoVSyNnuV6k3cuLmw64gfL7HFrpdFk+qL/qZxggd8YXxXzWRZWGsxeXQq6K11559ICTd04CyUuF6/9MnNpgXpTfc/oAZeBX0ROiMhbInJWRB7Z4PVREXlaRF4VkW+IyEc7XiuJyGsiclpETvWy88ZETSHiwbG0SUYPtEpMDsewxKRXgsroAReBX0SSwKPA3cBR4D4RObpus18ETqvq9wGfA3593eufVtVjqnq8B302JrKcgBnVC7zluc3zzkWkvSxFNE9qfluraRDOqZ7bgbOqek5Vl4GngHvWbXMUeAFAVb8FFEXkQE97akwMHNqXIZWQyI6KS5UauXSS8T3pDV+PY4lJr5QrNTIDSSaGB31v203gPwSc73g83X6u0yvAZwFE5HagABxuv6bA8yLysog8sLvuGhNtqWSCw6OZyI6Ky+2Mns3SD+NWYtJLTkaP36mc4C7wb9Sr9SkJvwqMishp4KeBbwLO+qyfUNXbaE0VPSQid2zYiMgDInJKRE7Nzs66670xEdTK7InmqLg8X1utsbsRp8TkzKVor0fkh9K6FU795CbwTwNHOh4fBmY6N1DVK6p6v6oeozXHPwG83X5tpv3nBeBpWlNH11HVx1X1uKoen5iY2PEHMSYqnFz+qKV0NprK+fnallkoayUmo/mNxi+NpjIVwHLMDjeB/yXgFhG5SUTSwL3AM50biMi+9msAPwW8qKpXRCQnIsPtbXLAXcCZ3nXfmOgp5HNcXaxzsbYSdFd2ZObSAisNpTC2xYjfCq+78t6VRZYbzUBSOQFS222gqnUReRh4DkgCT6jq6yLyYPv1x4CPAL8rIg3gDeAn27sfAJ5uz2GlgN9T1Wd7/zGMiY7OzJ6x3MYXScOovK7O7kYmhgfJDMSnxKRXnOyoIDJ6wEXgB1DVk8DJdc891vH7XwO3bLDfOeDWXfbRmFgpdBQtuW1yNODeuOekoG41xy8iltnjQtmpaTAe3qkeY0wPHRnLIELkRsXlSpXBVIIDw0NbbhenEpNeKVWqpFMJbty79bH0igV+Y3w2mEpycCQTuVGxU2c3kdg6/TAuJSa9VJ6rMTm2/bH0igV+YwJQHM+uft2Pilbg335qwikx+d6VRR96FU2lSnXLi+Res8BvTAAKESta0mwq5Xl3wWo1s2cuWt9o/KKqrk+iXrHAb0wACmNZ5qvLXF6IRkrnhatLLK40XV2MLFgu/5Zmry6xsNLY8iK51yzwGxMAZ7QXlcLrpR0sKHZjTEpMemU1o8dG/Mb0F2e0F5Xsl7WVJLcPVnEpMemVUsA5/GCB35hATEbsDtdypcZAUrhxxF36YRxKTHqlXKmRSgiH9mUC64MFfmMCkE2nOLB3MDLBsVypcWQ0SyrpLmREvcSkl0qVKodGM66PpRcs8BsTkChl9pQqVSZ3MDVRiHiJSS8FndEDFviNCUwhIvPgTvrhTlaSjHqJSa+oKqVKNdD5fbDAb0xgiuM5LlxdorZc337jAFWqy1xbqu9o7fhixEtMeuVSbYWri3Ub8RvTr5xAGvbpnp1k9DiiXmLSKztJi/WSBX5jAlLsWKUzzNaWY3YfrJwSk2E/qfnNzdLWfrDAb0xAJlenQ8IdHEuVGgmBw6M7G6VG6eK1X0qVKiKtFVqDZIHfmIDsHRogn0uHPjiWK1UO7suQTu0sXBTyrYvXltK5plypcXAkw2AqGWg/LPAbE6AoFC0pdVkbNqolJr1UqlQDK7DeyQK/MQGKwnRIuctgZZk915sKQQ4/WOA3JlCFfJaZywssrjSC7sqGLtdWuFRb6XrED+G/eO2XK4srVKrLgWf0gAV+YwJVzOdQhemL4Rz1l+dbQbubEb9TYjLs32j8MhWSjB6wwG9MoJyAGtb6u07GUbGLouBrJSbD+dn85kx5RWaOX0ROiMhbInJWRB7Z4PVREXlaRF4VkW+IyEfd7mtMP1vN5Q9pGUanitZkl2UCncwe0939EF7ZNvCLSBJ4FLgbOArcJyJH1232i8BpVf0+4HPAr+9gX2P61r7sAHuHUqGdBy9Vatywd4ihge7SD6Nw8dovpbkq+4cHyaZTQXfF1Yj/duCsqp5T1WXgKeCeddscBV4AUNVvAUUROeByX2P6lohQyOdCexNXtxk9jmI+WiUmvVSe7y4t1gtuAv8h4HzH4+n2c51eAT4LICK3AwXgsMt9jelrYc7l7zaH3xG1EpNe2u1JtJfcBH7Z4Ln1t+L9KjAqIqeBnwa+CdRd7ttqROQBETklIqdmZ2dddMuYeCjmc0xfXGCl0Qy6Kx9QXaozd22Jwi6KgjslJp3soH5VW67z/pWlri6Se8HNZNM0cKTj8WFgpnMDVb0C3A8gIgK83f7Jbrdvx3s8DjwOcPz4cbvH2/SNQj5Lo6m8c3EhNIEB1i5G7mbEv1Zisr9H/FPti/fdXiTvNTcj/peAW0TkJhFJA/cCz3RuICL72q8B/BTwYvtksO2+xvQ7J9iHLbPHmX7aTbDKplPsHx5cLTDer5x03bDM8W874lfVuog8DDwHJIEnVPV1EXmw/fpjwEeA3xWRBvAG8JNb7evNRzEmmtbW5a8CE8F2pkOpR+mHRcvsWTuJhmSO31VekaqeBE6ue+6xjt//GrjF7b7GmDUTewbJppOhu4mrXKkyvifN8NDArt6nkM/ytW/393W78nyNsVyakczujmWv2J27xgRMRJgcC19mT2slyd1PTUSlxKSXwpTRAxb4jQmFYj4XujtcWytJ7j5YOe8xFbJrGH4qzYUnhx8s8BsTCoXxLOfnF2g0w5HQtrjSYObyYk+ClfMeYZvK8stSvcHM5YXQZPSABX5jQqGYz7HcaPLelcWguwLA+fnerSsz+YGL1/3n/PwCqmv3NISBBX5jQmA1syckaY+lHi4hvHdogLFcOrTLUnitvLoqp031GGM6OEEhLMHRCVa9KhoS5mUpvNaLG+F6zQK/MSFw494h0qlEaIJjqVJlJDPAvmx6+41d6Odc/nKlyvBQitFsOFI5wQK/MaGQSLRSOsOS2VOu1HpaItApMblUD2eJSS85C921VrMJBwv8xoREMZ8Nzai43OOi4E6JyfPzCz17z6goV6qhuWPXYYHfmJBwipaoBpvSuVxvMn2xNzn8jn7N7FlpNJm+uBCKAuudLPAbExLFfJaFlQazV5cC7cc7lxZoam+zUIohu3jtl5lLC9SbGqqMHrDAb0xoTIYkOJZ6nNEDMJodYDjEJSa9EsaMHrDAb0xoOIE26Au8zr0EvRylikh7WYr+GvH3Oi22VyzwGxMSh/ZlSCUk8FFxeb5GLp1kfE9vUjkdhXyWqT4b8ZcqNTIDSSaGB4PuygdY4DcmJFLJBIdHM4GPip2Mnl6nH4a1xKSXnFU5w5TKCRb4jQmVQj4XeGHykkdLCE/ms9Sbysyl/knpLPVohdNes8BvTIgU862buIJK6Ww0lfPzvc3hd/RbZk+zqUzNh2s5ZocFfmNCZDKf4+pinYu1lUDan7m0wEpDPbkYWeyzXP73riyyXG+GLpUTLPAbEypBZ/aUe7gq53oTw4NkBsJXYtIrXqTF9ooFfmNCxAm4QY2Ky/PtYOXB2vEi0srsme+PEf/qSXTcRvzGmC0cGcsgEly1qnKlxmAqwYHhIU/ev59y+UuVKulkghv2enMsd8NV4BeREyLyloicFZFHNnh9RET+VEReEZHXReT+jtdKIvKaiJwWkVO97LwxcTOYSnJwJBPYiL80V2VyLEsi4U36YSuXvxaaEpNeKs/VODKWIenRsdyNbQO/iCSBR4G7gaPAfSJydN1mDwFvqOqtwKeA/yQinXd/fFpVj6nq8d5025j4Ko5nKQdUmLzXq3KuVwhZiUkvlSrVUGb0gLsR/+3AWVU9p6rLwFPAPeu2UWBYWncp7AHmgXpPe2pMn5gcC6ZoSbOplOernl6MLIasxKRXVFupnGHM6AF3gf8QcL7j8XT7uU5fBD4CzACvAZ9XVef2PAWeF5GXReSBzRoRkQdE5JSInJqdnXX9AYyJm2I+y3x1mcsL/qZ0Xri6xOJK09OLkc57x32ef/baErXlRqgKrHdyE/g3mqBaP0H3w8Bp4CBwDPiiiOxtv/YJVb2N1lTRQyJyx0aNqOrjqnpcVY9PTEy4670xMeSMEv2+g9ePBcVWS0zGPLPHy7TYXnAT+KeBIx2PD9Ma2Xe6H/iKtpwF3ga+F0BVZ9p/XgCepjV1ZIzZhDNK9DuX348lhJ0Sk+WY5/KXnBVOx6I74n8JuEVEbmpfsL0XeGbdNlPAnQAicgD4MHBORHIiMtx+PgfcBZzpVeeNiaPJsWDucC1VqqQSwo0j3qYfFkJUW9gr5UqNZEI4NJoJuisbSm23garWReRh4DkgCTyhqq+LyIPt1x8DfgV4UkReozU19POqOiciNwNPt1emSwG/p6rPevRZjImFbDrFgb2Dvl/gLVdqHBnLkkp6e3tPIZ/j/363gqqGbtXKXilVqhwezTDg8bHs1raBH0BVTwIn1z33WMfvM7RG8+v3Owfcuss+GtN3nPq7fvJqVc71iuNrJSb3h/Dmpl7wOi12t8J5OjKmz/k9HaKqlCv+rCRZiPkqnarazuEP5/w+WOA3JpSK4zkuXF2ituzP7TDz1WWuLdX9GfHHfJXOS7UVri7WbcRvjNmZwmpw9GdUXPKxKPhaicl4jvidb2phzegBC/zGhFLR51U6nXYmfRjxp5IJDo1mYpvZs5oWG9Kbt8ACvzGhNBnAiD8hcNin9MMgLl77pVSpIgKHRy3wG2N2YO/QAPlc2rcLoOVKlYP7Mgymkr60F3SJSS+VKzUOjmQYGvDnWHbDAr8xITWZz/o21VPyKaPHUQi4xKSXyj6lxe6GBX5jQqro43TIlM/BKs6ZPWHP4QcL/MaEViGfZebyAosrDU/buVxb4WJtxfcRP/h3DcMvVxZXqFSXbcRvjOlOMZ9DFaYvehscnZUy/cjocayWmIzZiH9qNS3WAr8xpgt+5fL7mcPvWCsxGa8R/2oOv031GGO6UfRpaQOnGtakzzccFfLxW6VzbR1+G/EbY7qwLzvA8FDK8wugpUqNG/YOkUn7m34Yx1z+cqXK/uFBsmlX618GxgK/MSElIhTzOc9H/FPzwaQfOiUmryzGJ6XT77TYblngNybECj7k8gcVrIIqMemlcqXq60XyblngNybEivkc0xcXWGk0PXn/6lKd2atLgQQr51tGXOb5a8t13r+yFPqMHrDAb0yoFfJZGk1l5tKCJ+/vR53dzfi9AqnXpubDXWC9kwV+Y0KsOO5tZk95Nf3Q/1FqNp1i//DgamHyqCvNBXcS3SkL/MaEWMHjwuulgNMP/VyWwmtTAdwI1y0L/MaE2MTwIJmB5Opostem5quM70kzPDTgyftvp5DPrt45HHWlSo2xXJqRTDDHcidcBX4ROSEib4nIWRF5ZIPXR0TkT0XkFRF5XUTud7uvMWZzIuJpZk9pLtgFxYrjOd6/4l+JSS+VK1Xfb4Lr1raBX0SSwKPA3cBR4D4RObpus4eAN1T1VuBTwH8SkbTLfY0xW2jl8nsT+MuVaqAlAp1A6VwYjbLSXC0SGT3gbsR/O3BWVc+p6jLwFHDPum0UGBYRAfYA80Dd5b7GmC0UxrOcn1+g0ext0ZLFlQYzlxeDHfE7y1J4NJXll6V6g5nLC5HI6AF3gf8QcL7j8XT7uU5fBD4CzACvAZ9X1abLfY0xWyjmcyw3mrx3ZbGn73t+PvjasJMxWZf//PwCquGus9vJTeCXDZ5bP/T4YeA0cBA4BnxRRPa63LfViMgDInJKRE7Nzs666JYx/WE1s6fHaY9rGT3BjVJHMgOM+Vhi0itORk+cRvzTwJGOx4dpjew73Q98RVvOAm8D3+tyXwBU9XFVPa6qxycmJtz235jYK3iUy++MsoOely7ks6uBM6qilMMP7gL/S8AtInKTiKSBe4Fn1m0zBdwJICIHgA8D51zua4zZwo17h0inEj2fDilXaoxkBtiXTff0fXeqmM9Ffo6/XKkyPJhiNBv+VE5wEfhVtQ48DDwHvAn8vqq+LiIPisiD7c1+BfgBEXkNeAH4eVWd22xfLz6IMXGVSAiTY71fu74UkqLgk2OtEpNLdW9LTHqpVKlRGM/Sym8JP1eLRqvqSeDkuuce6/h9BrjL7b7GmJ0p5rM9v8O1XKlx65F9PX3PbhTHs6i2LpB+z/49QXenK+VKlb99aCTobrhmd+4aEwFO0RLV3qR0LtebTF8MR975WuH1aM7z1xtNpi8uhOJYumWB35gIKOSzLKw0mL261JP3e+fSAk0NRxaKXyUmvTJzaZF6U0NxLN2ywG9MBBR6HBzDktEDMNouMTkV0RF/afVYWuA3xvRQscdFS8ohyOF3+FVi0itBLm3dLQv8xkTAoX0ZUgnp2Tx4qVIlm04yvifYVE7HpA8lJr1SqtQYGkiwf3gw6K64ZoHfmAhIJRMcHs30cKqntSpnWNIPi/mspyUmvVSuVCmG6Fi6YYHfmIgo5HM9K0xeqlRDMb/vKORz1D0sMemlUqUWqWkesMBvTGQU862buHab0tloKufng12Hf72oZvY0m8rUfC1SF3bBAr8xkTGZz3F1sc7F2squ3ufdywusNDRUI36nL1HL7HnvyiLL9WaoTqJuWOA3JiJ6ldkTpowex2qJyYiN+EsRzOgBC/zGREav7nANY7DyusSkV8oBF6vvlgV+YyLiyFgGkd1XqypXaqRTCW7YO9SjnvVGIZ+N5Ig/nUxw40gm6K7siAV+YyJiMJXk4Ehm1/VpS3OtOruJRLjSD4vtrKVel5j0UnmuxpGxDMmQHcvtWOA3JkKK47tfntnJ4Q+bgkclJr1UjmBGD1jgNyZSJsdyu1qeWVUpz4crh99RjFj9XVWlXKmG8iS6HQv8xkRIMZ9lvrrM5YXuUjovXF1icaW5Ws4xTJw+9brugFdmry1RW25E7sIuWOA3JlKc0WW3d/CW2gXbnQLuYXLD3iHSyUTPK415JaoZPWCB35hIKY7vLpffCVZhnJdOJoQjYxnKEam/65xEw3gst2OB35gImWyP1LvN7ClVqqQSwsF94UrldLSWZ47OiD+ZEA6NRiuVEyzwGxMp2XSKA3sHV0ebO1Wu1DgyliWVDOd//UI+x9R870pMeqk8X+PwaIaBkB7LrUSvx8b0ucIuMnvK89VQz0kXx7PUlhvMXutNiUkvRTWjB1wGfhE5ISJvichZEXlkg9d/TkROt3/OiEhDRMbar5VE5LX2a6d6/QGM6TeFfHe5/KpKeS7ceedry1KEe55fVXm7fSNcFG0b+EUkCTwK3A0cBe4TkaOd26jqF1T1mKoeA34B+Jqqznds8un268d72Hdj+lJxPMeFq0vUlus72m++uszVpfrqdYIwcgJpt1NZfrlUW+HqYj3U35624mbEfztwVlXPqeoy8BRwzxbb3wd8uRedM8Zcr7B6o9PORsXOOjhOZlAYHRptLX8Q9hF/FAusd3IT+A8B5zseT7efu46IZIETwB91PK3A8yLysog8sFkjIvKAiJwSkVOzs7MuumVMfyp2OR2yVhQ8vMFqYLXEZLhH/OUInES34ibwb7T60GaX3H8M+Kt10zyfUNXbaE0VPSQid2y0o6o+rqrHVfX4xMSEi24Z058mu1zaoFSpkRA4HPL0w0J+d8tS+KFcqSECh0fjG/ingSMdjw8DM5tsey/rpnlUdab95wXgaVpTR8aYLu0dGmAsl97xEsZTlSoH92UYTCU96llv9KrEpJfKlSoHRzIMDYT7WG7GTeB/CbhFRG4SkTSt4P7M+o1EZAT4JPAnHc/lRGTY+R24CzjTi44b08+6KVpSqoQ7o8dRaJeYvLTLEpNeKlWqob5Ivp1tA7+q1oGHgeeAN4HfV9XXReRBEXmwY9PPAM+raue/xgPA/xGRV4BvAH+uqs/2rvvG9KdiF9Mh5Up1dZoozFYze0I8z1+u1CI7vw+QcrORqp4ETq577rF1j58Enlz33Dng1l310BhznUI+yx+ffoelesPV1M3l2goXayuhXI55PSeglis1PjY5GnBvrndlcYVKdTnUF8m3Y3fuGhNBxXwOVTg/v+Bq+/J8+DN6HIdHs60SkyEd8U+tLnQX/pPoZizwGxNBhR1m9pRCvCrnekMDrRKTYc3sWVuOOfzHcjMW+I2JICfouM3smWqfIKJyQbKbi9d+Ka3eDxGNY7kRC/zGRNBodoDhodSORvwH9g6SSUcj/bAV+MM64q8yMTxINu3qEmkoWeA3JoJEpL12vbvgGLWVJAv5HJXqMlcWw5fS2UqLje5oHyzwGxNZO5kOiVqwcvrabYlJL0XtJLoRC/zGRFQxn+OdiwusNJpbblddqjN7dSlSwWrtGka45vkXlhu8f2UpUifRjVjgNyaiCvks9aYyc2nrlE6nTGMUMnoc3a5A6jXnWEbpJLoRC/zGRJTbzJ5yBLNQsukU+4cHQ5fZE/XlmB0W+I2JqKLLXP7Sat55dAI/OJXGwjXid451FJa+2IoFfmMiamJ4kMxAktLc9iP+fC7N8NCATz3rjdbyzGEb8dcYzQ4wkonWsVzPAr8xESUirjJ7SnO1yI32ofWN5v0rOy8x6aU4ZPSABX5jIq2Vy7914C9XqpGck3YCrHNBNQxKc9FKi92MBX5jIqwwnuX8/AKN5sZFSxZXGrx7ZTGSo1TnZLXdVJZfluoN3r28EMljuZ4FfmMirJjPsdxo8t6VxQ1fn75YQzWatWGdC6hT8+GY55++uEAzosdyPQv8xkSYU7SkPLdxcHRGy1FZnK3TSGaA0exAaDJ7VjN6xmzEb4wJUGF861z+qOedhymzxzmJ2hy/MSZQN+4dIp1KbBocy5Uae4dS7MtGM/2wmM+GZo6/XKkyPJhiLJcOuiu7ZoHfmAhLJITJseymmT2lSpXieA4R8blnvVHI55i5vMBSvRF0VyhVahTGs5E9lp0s8BsTccUt1q6fmq9FOgulOJ4nyd1dAAAKzklEQVRFtXVhNWhRP5adXAV+ETkhIm+JyFkReWSD139ORE63f86ISENExtzsa4zZndY8eA3VD6Z0rjSaTF9ciPSctBNog57nrzeanJ+PRw4/uAj8IpIEHgXuBo4C94nI0c5tVPULqnpMVY8BvwB8TVXn3exrjNmdQj7LwkqD2atLH3j+nYut/P4oZvQ4nKyloOf5Zy4tUm8qhRhk9IC7Ef/twFlVPaeqy8BTwD1bbH8f8OUu9zXG7NBmq3SuZvSMRzdYjeXSDA+6LzHplTjU2e3kJvAfAs53PJ5uP3cdEckCJ4A/2um+xpjuONMP6y/wliO6KmcnEaEwHvwqneUYnEQ7uQn8G13C3vj+cPgx4K9UdX6n+4rIAyJySkROzc7OuuiWMQbg0L4MqYRcNyouVapk00km9gwG1LPeCEMuf6lSY2ggwf7haB9Lh5vAPw0c6Xh8GJjZZNt7WZvm2dG+qvq4qh5X1eMTExMuumWMAUglExwezVyX2TNVaWWhRD39sJjPMn1xgfo2JSa9VK7UKMbgWDrcBP6XgFtE5CYRSdMK7s+s30hERoBPAn+y032NMbvjZPZ0KlWqschCKeRz7RKTG69H5IfWcszRP5aObQO/qtaBh4HngDeB31fV10XkQRF5sGPTzwDPq2p1u317+QGMMU61qupqSmejqZyfX4h8pSjoyOwJaLqn2VTKMcrhB0i52UhVTwIn1z332LrHTwJPutnXGNNbhXyOq4t1LtZWGMuleffyAsuNZmTX6OnkXFBtzfP7Pw383pVFluvN/hrxG2PCb31mTxwyehz7hwcZGkgEltkT9YXuNmKB35gYWH+Ha5yClYhQDDCzJ04nUYcFfmNi4MhYBpG1IDVVqZFOJbhh71DAPeuNwhbrEXmtXKmRTia4cSQTSPtesMBvTAwMppIcHFlL6SxVqhTGsiQS8Ug/LOZzlOdrNDcpMemlcqXKkbEMyZgcS7DAb0xsOJk90BqlxmlqYjKfZbm+eYlJL5Uq8croAQv8xsRG5yqdpUo1VsFqtfC6z/P8qhq7HH6wwG9MbBTzWeary5y9cI3FlWYsbt5yOIHX73n+2WtL1JYbsbhI3skCvzEx4YzwX/zO3Acex8GNIxnSyYTvI/44ZvSABX5jYqM43gpOL367tchhnEapyYRwZCzDlM8jfifwx+lYggV+Y2LDKbjy9XMVUgnh4L54pHI6ivmc7zdxlStVkgnh0Gh8UjnBAr8xsZFNp9g/PMhSvcnh0QypZLz+e0/ms5Q71iPyQ6lS49C+DAMxO5bx+jTG9DlnSiJO8/uOYj5HbbnB7LWl7TfukThm9IAFfmNixQlSccrocfid2aOqvD1Xjd38PljgNyZWnJUs4zriByjN+ZPZc6m2wtXFeixH/K6WZTbGRMPqiH88fsHq0Ghr2YRfe/ZbPP7iOc/bW25X/IrjiN8CvzEx8skPTfBTP3gTH785H3RXem4gmeBn7/oQZ9657Fubf684xvffPOZbe34RP6+Qu3X8+HE9depU0N0wxpjIEJGXVfW4m21tjt8YY/qMBX5jjOkzFviNMabPWOA3xpg+4yrwi8gJEXlLRM6KyCObbPMpETktIq+LyNc6ni+JyGvt1+yKrTHGBGzbdE4RSQKPAv8ImAZeEpFnVPWNjm32Ab8JnFDVKRHZv+5tPq2qcz3stzHGmC65GfHfDpxV1XOqugw8Bdyzbpt/BnxFVacAVPVCb7tpjDGmV9wE/kPA+Y7H0+3nOn0IGBWRvxCRl0Xkcx2vKfB8+/kHdtddY4wxu+Xmzt2NSsuvv+srBfxd4E4gA/y1iHxdVb8NfEJVZ9rTP18VkW+p6ovXNdI6KTgnhmsi8pbrT/FB44Bf00p+thX39uL82fxuL86fze/2ovTZCm43dBP4p4EjHY8PAzMbbDOnqlWgKiIvArcC31bVGWhN/4jI07Smjq4L/Kr6OPC4245vRkROub17LUptxb29OH82v9uL82fzu724fjY3Uz0vAbeIyE0ikgbuBZ5Zt82fAP9ARFIikgW+H3hTRHIiMgwgIjngLuBM77pvjDFmp7Yd8atqXUQeBp4DksATqvq6iDzYfv0xVX1TRJ4FXgWawG+r6hkRuRl4WkSctn5PVZ/16sMYY4zZnqvVOVX1JHBy3XOPrXv8BeAL6547R2vKx0+7ni4KaVtxby/On83v9uL82fxuL5afLZSrcxpjjPGOLdlgjDF9JjaBX0SeEJELIuL5xWMROSIi/1tE3mwvUfF5j9sbEpFviMgr7fZ+2cv22m0mReSbIvJnPrTl67IeIrJPRP5QRL7V/jv8+x618+H2Z3J+rojIz3jRVkeb/7r9b+SMiHxZRIY8bu/z7bZe9+KzbfT/WkTGROSrIvKd9p+jHrb1T9ufrSkiPc22EZFG+9/FGRH5g3ZijC+xLDaBH3gSOOFTW3XgZ1X1I8DHgYdE5KiH7S0BP6SqtwLHgBMi8nEP2wP4PPCmx210+rSqHvMpde7XgWdV9XtpXYPy5HOq6lvtz3SM1n0uNeBpL9oCEJFDwL8CjqvqR2klY9zrYXsfBf4FrRTtW4EfFZFbetzMk1z///oR4AVVvQV4of3Yq7bOAJ9lgxT0Hlho//v4KLAMPLhFP3oqNoG/fVPYvE9tvauqf9P+/SqtwLH+buZetqeqeq39cKD949nFGRE5DPxj4Le9aiMoIrIXuAP4EoCqLqvqJR+avhP4rqqWPW4nBWREJAVkuf6em176CPB1Va2pah34GvCZXjawyf/re4Dfaf/+O8A/8aotVX1TVbu9mXQn/hL4ns360WuxCfxBEZEi8DHg/3ncTlJETgMXgK+qqpft/Rfg39BKzfWDn8t63AzMAv+1PZX12+17TLx2L/BlLxtQ1XeA/whMAe8Cl1X1eQ+bPAPcISL59jTFj/DBmz29ckBV34XWIAxYvyhkpLRP0ncDr/nVpgX+XRCRPcAfAT+jqle8bEtVG+0pg8PA7e2v2T0nIj8KXFDVl714/018QlVvo/WP/yERucPDtlLAbcBvqerHgCq9myrYUPvGxx8H/sDjdkZpjYZvAg4CORH55161p6pvAr8GfBV4FniF1jSocSfTHsydonWy/pJfDVvg75KIDNAK+v9DVb/iV7vtaYm/wLs5wE8APy4iJVorsf6QiPx3j9oCoHNZD1pz4Ld72Nw0MN3xjekPaZ0IvHQ38Deq+r7H7fxD4G1VnVXVFeArwA942aCqfklVb1PVO2hNT3zHy/ba3heRGwHaf0Z1NWBnjv+Yqv50e/VjX1jg74K0bkX+EvCmqv5nH9qbkFbNA0QkQ+s/+Le8aEtVf0FVD6tqkdb0xP9SVc9GjX4v66Gq7wHnReTD7afuBN7YYpdeuA+Pp3napoCPi0i2/W/0Tjy+QC/t2hsiMknrIqgfn/MZ4Cfav/8ErSVjzE6oaix+aP2DexdYoTWq+0kP2/pBWvPSrwKn2z8/4mF73wd8s93eGeDf+XRMPwX8mcdt3ExriuAV4HXg3/rwuY7R+nr9KvDHwKiHbWWBCjDi09/ZL9MaFJwB/hsw6HF7f0nrxPkKcKcH73/d/2sgTyub5zvtP8c8bOsz7d+XgPeB53r42a657Uevj6vduWuMMX3GpnqMMabPWOA3xpg+Y4HfGGP6jAV+Y4zpMxb4jTGmz1jgN8aYPmOB3xhj+owFfmOM6TP/HwWsDg6XEPd9AAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.plot(numQuizz,notesQuizz)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment