From 91b4d5164eeb3cc4f07b48ef912d3ebc1db4ff80 Mon Sep 17 00:00:00 2001 From: Adam Taheraly Date: Thu, 26 Mar 2020 18:17:31 +0100 Subject: [PATCH] =?UTF-8?q?Ma=20seconde=20r=C3=A9ponse?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- module2/exo1/toy_document_fr.Rmd | 8 +++----- 1 file changed, 3 insertions(+), 5 deletions(-) diff --git a/module2/exo1/toy_document_fr.Rmd b/module2/exo1/toy_document_fr.Rmd index bf3cbfc..da5d22f 100644 --- a/module2/exo1/toy_document_fr.Rmd +++ b/module2/exo1/toy_document_fr.Rmd @@ -12,14 +12,13 @@ knitr::opts_chunk$set(echo = TRUE) # En demandant à la lib maths -Mon ordinateur m’indique que \(\pi\) vaut *approximativement* +Mon ordinateur m’indique que $\pi$ vaut *approximativement* ```{r pi} pi ``` # En utilisant la méthode des aiguilles de Buffon - Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation* : ```{r aiguilles de Buffon} @@ -31,8 +30,7 @@ theta = pi/2*runif(N) ``` # Avec un argument “fréquentiel” de surface - -Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si \(X\sim U(0,1)\) et \(Y\sim U(0,1)\) alors \(P[X^2+Y^2\leq 1] = \pi/4\) (voir méthode de [Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait: +Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2\leq 1] = \pi/4$ (voir méthode de [Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait: ```{r} set.seed(42) @@ -43,7 +41,7 @@ library(ggplot2) ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() ``` -Il est alors aisé d’obtenir une approximation (pas terrible) de \(\pi\) en comptant combien de fois, en moyenne, \(X^2 + Y^2\) est inférieur à 1: +Il est alors aisé d’obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1: ```{r} 4*mean(df$Accept) -- 2.18.1