À propros du calcul de π

Adam Taheraly*

Lundi 30 Mars

Table des matières

1	En demandant à la lib maths	1
2	En utilisant la méthode des aiguilles de Buffon	1
3	Avec un argument "fréquentiel" de surface	2
1	En demandant à la lib maths	

Mon ordinateur m'indique que π vaut approximativement

рi

[1] 3.141593

2 En utilisant la méthode des aiguilles de Buffon

Mais calculé avec la $\mathbf{m\acute{e}thode}$ des aiguilles de Buffon, on obtiendrait comme $\mathbf{approximation}$:

```
set.seed(42)
N = 100000
x = runif(N)
theta = pi/2*runif(N)
2/(mean(x+sin(theta)>1))
```

^{*}taheraly.adam@gmail.com

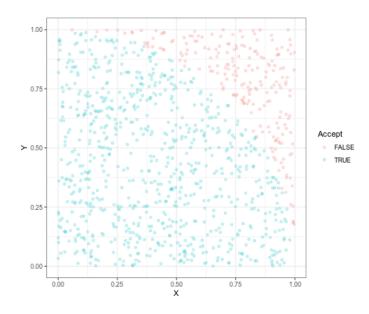
[1] 3.14327

[1] 3.14327

3 Avec un argument "fréquentiel" de surface

Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X \sim U(0,1)$ et $Y \sim U(0,1)$ alors $P[X^2 + Y^2 \leq 1] = \pi/4$ (voir méthode de Monte Carlo sur Wikipédia). Le code suivant illustre ce fait :

```
set.seed(42)
N = 1000
df = data.frame(X = runif(N), Y = runif(N))
df$Accept = (df$X**2 + df$Y**2 <=1)
library(ggplot2)
ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_branch</pre>
```



Il est alors aisé d'obtenir une approximation (pas terrible) de π en comptant combien de fois, en moyenne, X^2+Y^2 est inférieur à 1 :

```
4*mean(df$Accept)
```

[1] 3.156

Emacs 26.3 (Org mode 9.1.9)