From f1140e2592e06da1b13f8f259fb57fcf870e3713 Mon Sep 17 00:00:00 2001 From: 29b56e5e7dc0e38f035da79740a0812b <29b56e5e7dc0e38f035da79740a0812b@app-learninglab.inria.fr> Date: Tue, 15 Sep 2020 13:26:36 +0000 Subject: [PATCH] espace et apostrophe --- module2/exo1/toy_document_fr.Rmd | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/module2/exo1/toy_document_fr.Rmd b/module2/exo1/toy_document_fr.Rmd index ef2f9a1..54e8bde 100644 --- a/module2/exo1/toy_document_fr.Rmd +++ b/module2/exo1/toy_document_fr.Rmd @@ -9,15 +9,15 @@ output: html_document knitr::opts_chunk$set(echo = TRUE) ``` -##En demandant à la lib maths +## En demandant à la lib maths -Mon ordinateur m’indique que $\pi$ vaut *approximativement* +Mon ordinateur m'indique que $\pi$ vaut *approximativement* ```{r cars} pi ``` -##En utilisant la méthode des aiguilles de Buffon +## En utilisant la méthode des aiguilles de Buffon Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ : @@ -29,9 +29,9 @@ theta = pi/2*runif(N) 2/(mean(x+sin(theta)>1)) ``` -##Avec un argument "fréquentiel" de surface +## Avec un argument "fréquentiel" de surface -Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2\leq 1] = \pi/4$(voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait: +Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2\leq 1] = \pi/4$(voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait: ```{r} set.seed(42) @@ -42,7 +42,7 @@ library(ggplot2) ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() ``` -Il est alors aisé d’obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 : +Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 : ```{r} 4*mean(df$Accept) ``` \ No newline at end of file -- 2.18.1