{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Incidence du syndrome grippal" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import isoweek\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Les données de l'incidence du syndrome grippal sont disponibles du site Web du [Réseau Sentinelles](http://www.sentiweb.fr/). Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période demandée. Nous téléchargeons toujours le jeu de données complet, qui commence en 1984 et se termine avec une semaine récente." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\"\n", "data_path = \"data.csv\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Voici l'explication des colonnes données [sur le site d'origine](https://ns.sentiweb.fr/incidence/csv-schema-v1.json):\n", "\n", "| Nom de colonne | Libellé de colonne |\n", "|----------------|-----------------------------------------------------------------------------------------------------------------------------------|\n", "| week | Semaine calendaire (ISO 8601) |\n", "| indicator | Code de l'indicateur de surveillance |\n", "| inc | Estimation de l'incidence de consultations en nombre de cas |\n", "| inc_low | Estimation de la borne inférieure de l'IC95% du nombre de cas de consultation |\n", "| inc_up | Estimation de la borne supérieure de l'IC95% du nombre de cas de consultation |\n", "| inc100 | Estimation du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n", "| inc100_low | Estimation de la borne inférieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n", "| inc100_up | Estimation de la borne supérieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n", "| geo_insee | Code de la zone géographique concernée (Code INSEE) http://www.insee.fr/fr/methodes/nomenclatures/cog/ |\n", "| geo_name | Libellé de la zone géographique (ce libellé peut être modifié sans préavis) |\n", "\n", "La première ligne du fichier CSV est un commentaire, que nous ignorons en précisant `skiprows=1`." ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Downloading data from : http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
020204732119116469.025913.03225.039.0FRFrance
0120204632510320716.029490.03831.045.0FRFrance
1220204534251636857.048175.06556.074.0FRFrance
2320204434456738521.050613.06859.077.0FRFrance
3420204334373737523.049951.06657.075.0FRFrance
4520204233514529812.040478.05345.061.0FRFrance
5620204132787723206.032548.04235.049.0FRFrance
6720204032044316381.024505.03125.037.0FRFrance
7820203931981015900.023720.03024.036.0FRFrance
8920203832556221142.029982.03932.046.0FRFrance
91020203731848514649.022321.02822.034.0FRFrance
10112020363103907646.013134.01612.020.0FRFrance
1112202035399186842.012994.01510.020.0FRFrance
1213202034360843090.09078.094.014.0FRFrance
1314202033361063411.08801.095.013.0FRFrance
1415202032359183330.08506.095.013.0FRFrance
1516202031343512269.06433.074.010.0FRFrance
1617202030381795442.010916.0128.016.0FRFrance
1718202029386875860.011514.0139.017.0FRFrance
1819202028383405701.010979.0139.017.0FRFrance
1920202027340662406.05726.063.09.0FRFrance
2021202026340392389.05689.063.09.0FRFrance
2122202025328531488.04218.042.06.0FRFrance
2223202024330581690.04426.053.07.0FRFrance
2324202023341682468.05868.063.09.0FRFrance
2425202022335801947.05213.053.07.0FRFrance
2526202021361144026.08202.096.012.0FRFrance
2627202020393156775.011855.01410.018.0FRFrance
27282020193116798722.014636.01814.022.0FRFrance
282920201831639812851.019945.02520.030.0FRFrance
293020201731808214454.021710.02721.033.0FRFrance
....................................
1851185219852132609619621.032571.04735.059.0FRFrance
1852185319852032789620885.034907.05138.064.0FRFrance
1853185419851934315432821.053487.07859.097.0FRFrance
1854185519851834055529935.051175.07455.093.0FRFrance
1855185619851733405324366.043740.06244.080.0FRFrance
1856185719851635036236451.064273.09166.0116.0FRFrance
1857185819851536388145538.082224.011683.0149.0FRFrance
185818591985143134545114400.0154690.0244207.0281.0FRFrance
185918601985133197206176080.0218332.0357319.0395.0FRFrance
186018611985123245240223304.0267176.0445405.0485.0FRFrance
186118621985113276205252399.0300011.0501458.0544.0FRFrance
186218631985103353231326279.0380183.0640591.0689.0FRFrance
186318641985093369895341109.0398681.0670618.0722.0FRFrance
186418651985083389886359529.0420243.0707652.0762.0FRFrance
186518661985073471852432599.0511105.0855784.0926.0FRFrance
186618671985063565825518011.0613639.01026939.01113.0FRFrance
186718681985053637302592795.0681809.011551074.01236.0FRFrance
186818691985043424937390794.0459080.0770708.0832.0FRFrance
186918701985033213901174689.0253113.0388317.0459.0FRFrance
1870187119850239758680949.0114223.0177147.0207.0FRFrance
1871187219850138548965918.0105060.0155120.0190.0FRFrance
1872187319845238483060602.0109058.0154110.0198.0FRFrance
18731874198451310172680242.0123210.0185146.0224.0FRFrance
187418751984503123680101401.0145959.0225184.0266.0FRFrance
18751876198449310107381684.0120462.0184149.0219.0FRFrance
1876187719844837862060634.096606.0143110.0176.0FRFrance
1877187819844737202954274.089784.013199.0163.0FRFrance
1878187919844638733067686.0106974.0159123.0195.0FRFrance
187918801984453135223101414.0169032.0246184.0308.0FRFrance
1880188119844436842220056.0116788.012537.0213.0FRFrance
\n", "

1881 rows × 11 columns

\n", "
" ], "text/plain": [ " 0 202047 3 21191 16469.0 25913.0 32 25.0 39.0 FR \\\n", "0 1 202046 3 25103 20716.0 29490.0 38 31.0 45.0 FR \n", "1 2 202045 3 42516 36857.0 48175.0 65 56.0 74.0 FR \n", "2 3 202044 3 44567 38521.0 50613.0 68 59.0 77.0 FR \n", "3 4 202043 3 43737 37523.0 49951.0 66 57.0 75.0 FR \n", "4 5 202042 3 35145 29812.0 40478.0 53 45.0 61.0 FR \n", "5 6 202041 3 27877 23206.0 32548.0 42 35.0 49.0 FR \n", "6 7 202040 3 20443 16381.0 24505.0 31 25.0 37.0 FR \n", "7 8 202039 3 19810 15900.0 23720.0 30 24.0 36.0 FR \n", "8 9 202038 3 25562 21142.0 29982.0 39 32.0 46.0 FR \n", "9 10 202037 3 18485 14649.0 22321.0 28 22.0 34.0 FR \n", "10 11 202036 3 10390 7646.0 13134.0 16 12.0 20.0 FR \n", "11 12 202035 3 9918 6842.0 12994.0 15 10.0 20.0 FR \n", "12 13 202034 3 6084 3090.0 9078.0 9 4.0 14.0 FR \n", "13 14 202033 3 6106 3411.0 8801.0 9 5.0 13.0 FR \n", "14 15 202032 3 5918 3330.0 8506.0 9 5.0 13.0 FR \n", "15 16 202031 3 4351 2269.0 6433.0 7 4.0 10.0 FR \n", "16 17 202030 3 8179 5442.0 10916.0 12 8.0 16.0 FR \n", "17 18 202029 3 8687 5860.0 11514.0 13 9.0 17.0 FR \n", "18 19 202028 3 8340 5701.0 10979.0 13 9.0 17.0 FR \n", "19 20 202027 3 4066 2406.0 5726.0 6 3.0 9.0 FR \n", "20 21 202026 3 4039 2389.0 5689.0 6 3.0 9.0 FR \n", "21 22 202025 3 2853 1488.0 4218.0 4 2.0 6.0 FR \n", "22 23 202024 3 3058 1690.0 4426.0 5 3.0 7.0 FR \n", "23 24 202023 3 4168 2468.0 5868.0 6 3.0 9.0 FR \n", "24 25 202022 3 3580 1947.0 5213.0 5 3.0 7.0 FR \n", "25 26 202021 3 6114 4026.0 8202.0 9 6.0 12.0 FR \n", "26 27 202020 3 9315 6775.0 11855.0 14 10.0 18.0 FR \n", "27 28 202019 3 11679 8722.0 14636.0 18 14.0 22.0 FR \n", "28 29 202018 3 16398 12851.0 19945.0 25 20.0 30.0 FR \n", "29 30 202017 3 18082 14454.0 21710.0 27 21.0 33.0 FR \n", "... ... ... .. ... ... ... ... ... ... .. \n", "1851 1852 198521 3 26096 19621.0 32571.0 47 35.0 59.0 FR \n", "1852 1853 198520 3 27896 20885.0 34907.0 51 38.0 64.0 FR \n", "1853 1854 198519 3 43154 32821.0 53487.0 78 59.0 97.0 FR \n", "1854 1855 198518 3 40555 29935.0 51175.0 74 55.0 93.0 FR \n", "1855 1856 198517 3 34053 24366.0 43740.0 62 44.0 80.0 FR \n", "1856 1857 198516 3 50362 36451.0 64273.0 91 66.0 116.0 FR \n", "1857 1858 198515 3 63881 45538.0 82224.0 116 83.0 149.0 FR \n", "1858 1859 198514 3 134545 114400.0 154690.0 244 207.0 281.0 FR \n", "1859 1860 198513 3 197206 176080.0 218332.0 357 319.0 395.0 FR \n", "1860 1861 198512 3 245240 223304.0 267176.0 445 405.0 485.0 FR \n", "1861 1862 198511 3 276205 252399.0 300011.0 501 458.0 544.0 FR \n", "1862 1863 198510 3 353231 326279.0 380183.0 640 591.0 689.0 FR \n", "1863 1864 198509 3 369895 341109.0 398681.0 670 618.0 722.0 FR \n", "1864 1865 198508 3 389886 359529.0 420243.0 707 652.0 762.0 FR \n", "1865 1866 198507 3 471852 432599.0 511105.0 855 784.0 926.0 FR \n", "1866 1867 198506 3 565825 518011.0 613639.0 1026 939.0 1113.0 FR \n", "1867 1868 198505 3 637302 592795.0 681809.0 1155 1074.0 1236.0 FR \n", "1868 1869 198504 3 424937 390794.0 459080.0 770 708.0 832.0 FR \n", "1869 1870 198503 3 213901 174689.0 253113.0 388 317.0 459.0 FR \n", "1870 1871 198502 3 97586 80949.0 114223.0 177 147.0 207.0 FR \n", "1871 1872 198501 3 85489 65918.0 105060.0 155 120.0 190.0 FR \n", "1872 1873 198452 3 84830 60602.0 109058.0 154 110.0 198.0 FR \n", "1873 1874 198451 3 101726 80242.0 123210.0 185 146.0 224.0 FR \n", "1874 1875 198450 3 123680 101401.0 145959.0 225 184.0 266.0 FR \n", "1875 1876 198449 3 101073 81684.0 120462.0 184 149.0 219.0 FR \n", "1876 1877 198448 3 78620 60634.0 96606.0 143 110.0 176.0 FR \n", "1877 1878 198447 3 72029 54274.0 89784.0 131 99.0 163.0 FR \n", "1878 1879 198446 3 87330 67686.0 106974.0 159 123.0 195.0 FR \n", "1879 1880 198445 3 135223 101414.0 169032.0 246 184.0 308.0 FR \n", "1880 1881 198444 3 68422 20056.0 116788.0 125 37.0 213.0 FR \n", "\n", " France \n", "0 France \n", "1 France \n", "2 France \n", "3 France \n", "4 France \n", "5 France \n", "6 France \n", "7 France \n", "8 France \n", "9 France \n", "10 France \n", "11 France \n", "12 France \n", "13 France \n", "14 France \n", "15 France \n", "16 France \n", "17 France \n", "18 France \n", "19 France \n", "20 France \n", "21 France \n", "22 France \n", "23 France \n", "24 France \n", "25 France \n", "26 France \n", "27 France \n", "28 France \n", "29 France \n", "... ... \n", "1851 France \n", "1852 France \n", "1853 France \n", "1854 France \n", "1855 France \n", "1856 France \n", "1857 France \n", "1858 France \n", "1859 France \n", "1860 France \n", "1861 France \n", "1862 France \n", "1863 France \n", "1864 France \n", "1865 France \n", "1866 France \n", "1867 France \n", "1868 France \n", "1869 France \n", "1870 France \n", "1871 France \n", "1872 France \n", "1873 France \n", "1874 France \n", "1875 France \n", "1876 France \n", "1877 France \n", "1878 France \n", "1879 France \n", "1880 France \n", "\n", "[1881 rows x 11 columns]" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "try :\n", " open(data_path)\n", "except IOError:\n", " print(\"Downloading data from : \" + data_url)\n", " pd.read_csv(data_url, skiprows=1).to_csv(data_path)\n", " \n", " \n", "raw_data = pd.read_csv(data_path, skiprows=1)\n", "raw_data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Si le fichier `data.csv` n'existe pas alors on télécharge le csv depuis l'url `data_url`" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "\n", "Y a-t-il des points manquants dans ce jeux de données ? Oui, la semaine 19 de l'année 1989 n'a pas de valeurs associées." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "raw_data[raw_data.isnull().any(axis=1)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Nous éliminons ce point, ce qui n'a pas d'impact fort sur notre analyse qui est assez simple." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data = raw_data.dropna().copy()\n", "data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Nos données utilisent une convention inhabituelle: le numéro de\n", "semaine est collé à l'année, donnant l'impression qu'il s'agit\n", "de nombre entier. C'est comme ça que Pandas les interprète.\n", " \n", "Un deuxième problème est que Pandas ne comprend pas les numéros de\n", "semaine. Il faut lui fournir les dates de début et de fin de\n", "semaine. Nous utilisons pour cela la bibliothèque `isoweek`.\n", "\n", "Comme la conversion des semaines est devenu assez complexe, nous\n", "écrivons une petite fonction Python pour cela. Ensuite, nous\n", "l'appliquons à tous les points de nos donnés. Les résultats vont\n", "dans une nouvelle colonne 'period'." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def convert_week(year_and_week_int):\n", " year_and_week_str = str(year_and_week_int)\n", " year = int(year_and_week_str[:4])\n", " week = int(year_and_week_str[4:])\n", " w = isoweek.Week(year, week)\n", " return pd.Period(w.day(0), 'W')\n", "\n", "data['period'] = [convert_week(yw) for yw in data['week']]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Il restent deux petites modifications à faire.\n", "\n", "Premièrement, nous définissons les périodes d'observation\n", "comme nouvel index de notre jeux de données. Ceci en fait\n", "une suite chronologique, ce qui sera pratique par la suite.\n", "\n", "Deuxièmement, nous trions les points par période, dans\n", "le sens chronologique." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "sorted_data = data.set_index('period').sort_index()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Nous vérifions la cohérence des données. Entre la fin d'une période et\n", "le début de la période qui suit, la différence temporelle doit être\n", "zéro, ou au moins très faible. Nous laissons une \"marge d'erreur\"\n", "d'une seconde.\n", "\n", "Ceci s'avère tout à fait juste sauf pour deux périodes consécutives\n", "entre lesquelles il manque une semaine.\n", "\n", "Nous reconnaissons ces dates: c'est la semaine sans observations\n", "que nous avions supprimées !" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "periods = sorted_data.index\n", "for p1, p2 in zip(periods[:-1], periods[1:]):\n", " delta = p2.to_timestamp() - p1.end_time\n", " if delta > pd.Timedelta('1s'):\n", " print(p1, p2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Un premier regard sur les données !" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "sorted_data['inc'].plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Un zoom sur les dernières années montre mieux la situation des pics en hiver. Le creux des incidences se trouve en été." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "sorted_data['inc'][-200:].plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Etude de l'incidence annuelle" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Etant donné que le pic de l'épidémie se situe en hiver, à cheval\n", "entre deux années civiles, nous définissons la période de référence\n", "entre deux minima de l'incidence, du 1er août de l'année $N$ au\n", "1er août de l'année $N+1$.\n", "\n", "Notre tâche est un peu compliquée par le fait que l'année ne comporte\n", "pas un nombre entier de semaines. Nous modifions donc un peu nos périodes\n", "de référence: à la place du 1er août de chaque année, nous utilisons le\n", "premier jour de la semaine qui contient le 1er août.\n", "\n", "Comme l'incidence de syndrome grippal est très faible en été, cette\n", "modification ne risque pas de fausser nos conclusions.\n", "\n", "Encore un petit détail: les données commencent an octobre 1984, ce qui\n", "rend la première année incomplète. Nous commençons donc l'analyse en 1985." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n", " for y in range(1985,\n", " sorted_data.index[-1].year)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "En partant de cette liste des semaines qui contiennent un 1er août, nous obtenons nos intervalles d'environ un an comme les périodes entre deux semaines adjacentes dans cette liste. Nous calculons les sommes des incidences hebdomadaires pour toutes ces périodes.\n", "\n", "Nous vérifions également que ces périodes contiennent entre 51 et 52 semaines, pour nous protéger contre des éventuelles erreurs dans notre code." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "year = []\n", "yearly_incidence = []\n", "for week1, week2 in zip(first_august_week[:-1],\n", " first_august_week[1:]):\n", " one_year = sorted_data['inc'][week1:week2-1]\n", " assert abs(len(one_year)-52) < 2\n", " yearly_incidence.append(one_year.sum())\n", " year.append(week2.year)\n", "yearly_incidence = pd.Series(data=yearly_incidence, index=year)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Voici les incidences annuelles." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "yearly_incidence.plot(style='*')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Une liste triée permet de plus facilement répérer les valeurs les plus élevées (à la fin)." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "yearly_incidence.sort_values()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Enfin, un histogramme montre bien que les épidémies fortes, qui touchent environ 10% de la population\n", " française, sont assez rares: il y en eu trois au cours des 35 dernières années." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "yearly_incidence.hist(xrot=20)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 1 }