{ "cells": [ { "cell_type": "markdown", "metadata": { "hideCode": true, "hidePrompt": true }, "source": [ "# Concentration de CO2 dans l'atmosphère depuis 1958" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "hideCode": true, "hidePrompt": true }, "outputs": [], "source": [ "import os\n", "import urllib.request\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": { "hideCode": true, "hideOutput": true, "hidePrompt": true }, "source": [ "Dans un premier temps, nous vérifions que le fichier de données local est présent, sinon nous le téléchargeons depuis l'URL." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "hideCode": true, "hidePrompt": true }, "outputs": [], "source": [ "data_url = \"https://scrippsco2.ucsd.edu/assets/data/atmospheric/stations/in_situ_co2/weekly/weekly_in_situ_co2_mlo.csv\"\n", "data_file = \"weekly_in_situ_co2_mlo.csv\"\n", "\n", "if not os.path.exists(data_file):\n", " urllib.request.urlretrieve(data_url, data_file)" ] }, { "cell_type": "markdown", "metadata": { "hideCode": true, "hidePrompt": true }, "source": [ "Les données sont ensuite chargées à l'aide de pandas." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "hideCode": true, "hidePrompt": true }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
CO2
Date
1958-03-29316.19
1958-04-05317.31
1958-04-12317.69
1958-04-19317.58
1958-04-26316.48
\n", "
" ], "text/plain": [ " CO2\n", "Date \n", "1958-03-29 316.19\n", "1958-04-05 317.31\n", "1958-04-12 317.69\n", "1958-04-19 317.58\n", "1958-04-26 316.48" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data = pd.read_csv(data_file, skiprows=44, names=[\"Date\", \"CO2\"])\n", "\n", "new_data = raw_data.copy()\n", "new_data.set_index(\"Date\", drop=True, inplace=True) \n", "new_data.index = pd.to_datetime(new_data.index, format=\"%Y-%m-%d\")\n", "\n", "new_data.head(5)" ] }, { "cell_type": "markdown", "metadata": { "hideCode": true, "hidePrompt": true }, "source": [ "Nous vérifions la présence de données manquantes." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "hideCode": true, "hidePrompt": true, "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "new_data[new_data.isnull().any(axis=1)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Nous vérifions à présent si il n'y a pas de semaines manquantes." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": { "hideCode": true, "hidePrompt": true }, "source": [ "Aucune donnée n'est visiblement manquante dans le fichier." ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0,0.5,'$\\\\rm CO_2$ [ppm]')" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEACAYAAACgS0HpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xd8VfX5wPHPk52QTUICBEjYG8TIcKEoiuJorba2taVaS7Vq99DaZZ2/2qnWVmuH1rraah24F4oKyN4zBAgQssjeud/fH99zz72XIQGSO5Ln/Xrl5bnnnHt5bkzy3O96vmKMQSmllDqaqFAHoJRSKjJowlBKKdUpmjCUUkp1iiYMpZRSnaIJQymlVKdowlBKKdUpmjCUUkp1iiYMpZRSnaIJQymlVKdowlBKKdUpMaEOoCtlZWWZ/Pz8UIehlFIRZfny5RXGmOyj3dejEkZ+fj7Lli0LdRhKKRVRRGRnZ+7TLimllFKdoglDKaVUpwQ9YYhItIisFJGXnMf3isgmEVkjIs+JSLrfvbeIyDYR2Swi5wc7VqWUUj6haGF8C9jo9/gNYLwxZiKwBbgFQETGAlcC44A5wIMiEh3kWJVSSjmCmjBEJA+YCzziPWeMed0Y0+48XAzkOceXAk8ZY1qMMTuAbcDUYMarlFLKJ9gtjN8DPwQ8R7h+DfCKczwQ2O13rcQ5p5RSvd6W/XV0eIK7Y2rQEoaIXASUGWOWH+H6rUA78C/vqcPcdsh3R0Tmi8gyEVlWXl7eZfEqpVS42rC3lvN+9x7DfvxyUP/dYLYwTgMuEZFi4Clglog8DiAi84CLgC8a3ybjJcAgv+fnAXsPflFjzMPGmEJjTGF29lHXnSilVMT71lMrQ/LvBi1hGGNuMcbkGWPysYPZbxtjrhKROcCPgEuMMY1+T3kBuFJE4kWkABgBLA1WvEopFa62ltW7x81tHUH7d8NhHcYDQArwhoisEpE/Axhj1gPPABuAV4EbjDHB+84opVSYWL+3hlfXlR72WmlNM/MfW8YLqw/pgOlyISkNYox5F3jXOR7+CffdCdwZnKiUUio8zb1vEQBFd11I40Etik2ldby+YT+vb9jPJZMGdGscPaqWlFJK9TRltc3ucWltM6+tD2xprC6pBuDHF47u9ljCoUtKKaXUERRVNLjHxZUNJMYGrl/eUloHQEFWcrfHoglDKaXCSGlNM/9e5luCVlbX4h7vrGzkL+8XAbDyp7NJiI3i/a0VAEzMS+v22LRLSimlwsi8vy1l8/46Th+RRW5qAt980jeFdldVI9vLbYsjLTGW5ja7BjouJop+KfHdHpu2MJRSKoxs3m+7mB5aWERdS7t7vn9aAu9u9i1OjoryrW1ubfcgcri1zl1LE4ZSSoWRgemJAKQmxrJ+T617fkB6Ihv31QbcO3dC/6DGpglDKaXCxL6aJvZUN9nj6iY2l9oE8cKNp5GbmuDel5Vsu58WrN0HwE/mjglKfJowlFIqhDxOAUGPxzDj7rfd8wca29h9oInE2GgmDExjZE6Ke+3xa23h7l9cPBaAr5yaH5RYNWEopVSILNxSztAfv8zji3fS3B64IK+mqZXdVY3kZSQiIgzN7uNeG5Ztp9B+5bQCiu+ZS0x0cP6Ua8JQSqkQmfc3Wx7vJ/9bR/tBpcqrnRbGoMwkIHDabGyQEsTBdFqtUkoFybo9NQzKTCItMfaQawcXEfQWGDwlPwOAIX37cMPZwxjTP7X7Az0CbWEopVQQrCmp5qL7F3HZgx8c9vpfF+1wj6+bOcw93lXlK+L9g/NHc9HE7q0X9Uk0YSilVBD88D9rANyFd+v21LjX4qKjeGihXcH92cI8rjzFtxXQl2cMCWKUn0wThlJKdbG65jbufnljQDfT7qrGgHtufGKFe9za4du1+o5PTSAvI9F9PKRvH8KFJgyllOpi/1y8k4feK+Kc3ywEoK3DQ0OrL3m0tnsorrQJ5Dvnjgx4blxMVMCsp6FZ4ZMwdNBbKaW6mHdQ27sIr7SmOeD6vpom93jy4HT3+OrT8t3j+z9/EtvK6oNS8qOzNGEopVQXS0+Mc4/rmtsOuf7E0l0AXDghl+H9fGXJB6T5uqIu7ubNkI6HJgyllOpiW8vq3OOdlY28eND2qd4B7smD0hmQ5iv5MSgzkXCmYxhKKdXFfv/mVve45EATi4sqAXjya9OJi/H92f1c4eCALqe8jKTgBXkcNGEopVQX8hy0YruhpZ2Wdg8zR2YzY1hfdwZUVnI8aUl2rOPrM4cCBHRPhSNNGEopdYLWltTw0hrb7bThoBLkO6sa2VRa525wlJNiu6DSEn0jArdcMIbie+aScND2q+FGxzCUUuoEtLZ7uPiBRQBcOL4/HhPYwrjvLds9FR9rP5/npNrE4S0gGEm0haGUUieg1m8W1P66ZvbXthz2vhvOHg5AfYtdj+FfrjxSaMJQSqlj4PEYFm4pxzgtiQa/bVS37q/n9pc2ADAyJ5m5E3074mU7mx4N62cX4qUkRF4HT9AThohEi8hKEXnJeZwpIm+IyFbnvxl+994iIttEZLOInB/sWJVS6mBfeGQx8/62lO/9ezUARU5tKLAFBr3FAv97/akMdkqTj85NcVdvf3f2SG65YDTzgrTpUVcKRQvjW8BGv8c3A28ZY0YAbzmPEZGxwJXAOGAO8KCIhPeIkFKqx1tcVAXgrq24+h8fu9ce+2ine5ySEMsAZ3/uDr+ZU/Ex0Xx95rCwH+A+nKAmDBHJA+YCj/idvhR41Dl+FPiU3/mnjDEtxpgdwDZgarBiVUqpg/kXE5w1ut8h18vq7PjFpybbVdo5zswo794WkS7YLYzfAz8EPH7ncowx+wCc/3r/LwwEdvvdV+KcU0qpoGjv8DDl9jf49zL7p+jdzeXutfK6Fur9xi/8NzZasasagNljczh7VDb/uW5GkCLuXkFLGCJyEVBmjFne2acc5pw55CaR+SKyTESWlZeXH+YpSil1fNbvraWqoZW7X9nknPH9Cdpf28LLa/YBdj+L8QN8CeP2T40HQET4+9VTKczPDFrM3SmYLYzTgEtEpBh4CpglIo8D+0WkP4Dz3zLn/hJgkN/z84DAgiyAMeZhY0yhMaYwOzu7O+NXSvUym0ttTaiqhlbAjksADMvuQ1ldM6+sswnj3R+cxUtO8gDcRXo9TdAShjHmFmNMnjEmHzuY/bYx5irgBWCec9s84Hnn+AXgShGJF5ECYASwNFjxKqXUD/+7xj02xrhTZicMTKOtw7hrLgakJxLl1yeSk5pATxQO6zDuAWaLyFZgtvMYY8x64BlgA/AqcIMxpuOIr6KUUieow2Pc9RUH21PdxCanxeGd/bRhXy1TnP0snv3Gae69GU6NqJ4mJAnDGPOuMeYi57jSGHOOMWaE898qv/vuNMYMM8aMMsa8EopYlVK9gzGGYT9+mTsW2Fn/r64rDbj+9qYy9/jcsTnu8eoSuzd3tl83VDhtetSVwqGFoZRSIeedAfXXRTsAeGvj/oDrjy+2ayxeuPG0gG1TrzzFDrV6d9m7buawbo81VDRhKKUUsM1vrYQxhn8vLwHgze+eCcCuqkZEoCCrD+lJvh31Th+eBUB0lFB8z1xuvmB0EKMOLk0YSqleqbSmmTUl1e7j4soGv+NG93h4vxSS4qJpbvNgjG+mlNeo3MgrIni8NGEopXql8363kEse+MB9/K8lu9zjrfvrAu7NSj7yNNmhEVim/HhFXrlEpZQ6QWV1zdQ221XaLe0dxMcE1nVavvMAAKcN7wtAbmoCu6oaGT/QtzjviWunERvTuz5z9653q5TqldbtqeHaR5fR0m5n5t/24gb32qxfL+SZZb4qRHExUTz6UTEAN549AoClxXby5pWnDHbvO3V4Fqf0kBXcnaUJQynV4110/yLe3LjfrTRb1+yrAbWnuokf/se3QG9IZhLNbbbc3VinPlSCs1teYb67+0KvpAlDKdVreDc7em+Lr+7chRNy3eObLxhNf2dRXnJ8DGnOArz1t83h3e+fxejcVHozTRhKqR7Nf+X2ngNNVNT7tlA9aXA6Bxp8W6x+5dR8N5kkxfnGNaKjhHy/tRe9lSYMpVSP9vcPit3jPdVN3PLsWvdxVnI8ZXXNAFx/lt3UaLazirvvJ8yM6q00YSilepTdVY3k37yAv7xXBMAvX/INcO+pbmKMs27iqfnT6dsnju3OFqsFfW0L4qZZwxmYnsgP54wKcuThTxOGUqpHOfPedwC48+WNh1x7Y8N+3t5sa0JNHpTO0GxfN9OQvnb/7Yl56Xxw8yzOHnXojnq9nSYMpVSPcoRis651e2oBSIiNZlBGknu+Ny3AO16aMJRSEau9w8PnHvqIl9fuO+q9v7liknt86jC7IG/SoHT3XHYP3fSoK+lKb6VUxCo50MSSHVUs2VHFjrsvpKE1cMuc97f6ps/2T/NtanT6CFswcEB6IueOyWH60N61AO94acJQSkWszz70kXtcXNnorrOIi4mitd3D6t22uOAfrpxMP79d8LwD3ACPzCsMUrSRT7uklFIRocNj+MyfPuS+t7a658rqfGsqmlo7uOj+RQB89fQCAF5eazdBmlbQl5xUX5fTyUN694rt46UJQykVEbaX17N85wF++8YWPB5De4cn4HpNk28B3pkjsgG7hSpAZp+4gLLkn1R9Vh2ZdkkppSKCf0LYUlbHS6sDB7qfWGrLkyfFRTPQKe8BMGNoX+KcqrLb7ryAdo8hKqpnbqHa3bSFoZQKS8+tLOGc37xLh8fOky33634qr2th94HGgPt3OhsgffvcEWQm+3bEG97PN102JjqKhNjAUuaq8zRhKKXC0neeXs328gY3UZTVNrvXFqzZR4azTeoZI7LISo6juc3OkCrISiY53td54p8w1InRhKGUCmsfO3tR/MJvDwtjbJkPgD9ddTIZSXFs2W/35J4y2K6tiI223U7+g93qxGjCUEqFHW9rAWBfTRMej2/59rDsPtS1tLFyVzWfmZJHcnwM0c6YxODMJLdooHfgOzk+cA9udfw0YSilQs4Yw/9W7nFnPpX4jU9U1reys8o+/syUPPomx7OkqIqK+hbGDbD7U3i7oGKifYPZt106jnkzhjBNF+V1GU0YSqmQK7jlZb799Cp3Id7N//WVIK9ubOOSB+z6ivEDU8lOjqeyoRXATRgPfGEKMVHC92b7KszmZSRx26XjiY3WP3NdJWjfSRFJEJGlIrJaRNaLyG3O+ckislhEVonIMhGZ6vecW0Rkm4hsFpHzgxWrUio0Sg40YYxh2c4D7rmnl+12t1TNTU0g0W9jI28tqNy0BLbeeQFzJ/YPbsC9zFEThohkduIr/WivA7QAs4wxk4DJwBwRmQ78CrjNGDMZ+JnzGBEZC1wJjAPmAA+KiM6HUyrCtbR3cMO/VrDfb9aTV2afOHY53U8Fh9nhbs74XBL9psX6T5EV0bUV3a0zLYy9wDJg+Sd8rTnisx3GqncexjpfxvnybpSb5vx7AJcCTxljWowxO4BtwFSUUhFt/mPLWbB2H9PueguAKqd7CWBfTTM7K23CuONT4/n2uSPca9+cNRwR4bIpA4MbsHJ1ZqX3RmPMSZ90g4is7Mw/5rQQlgPDgT8aY5aIyLeB10Tk19gEdqpz+0Bgsd/TS5xzSqkIVtfcFvB4wRr7GfHiSQN4cfVenl62G4Bh2cm0+82O8pYfnzwonUevmcrIHF1fEWydaWHM6KJ7MMZ0OF1PecBUERkPXA98xxgzCPgO8Ffn9sO1Lw/ZGkVE5jtjH8vKy8sP8xSlVDhZsas64PGBRptALp00AIAPt1WQ3zeJ3LQEcv0qzJ5SYGc7iQgzR2bTPy0RFVxHTRjGmEM7Go/jnoPurwbexY5NzAOedS79G1+3UwkwyO9pefi6q/xf62FjTKExpjA7O/tYwlBKBUHhHW/yhb8sPuS8CO4Ad3pSLCNz7F7bBxrb3PGLXL89LEY511XodHqWlIgUishzIrJCRNaIyFoROerYhd/zs72D4yKSCJwLbMImgZnObbMAb+3iF4ArRSReRAqAEcDSzv57SqnQKyqvp6K+hQ+3V2IO2jvVGJsc3ttSzuDMJHLSfCuyBzjFA1MTfL3mOqgdesdSrfZfwA+AtYDnKPceTn/gUWccIwp4xhjzkohUA38QkRigGZgPYIxZLyLPABuAduAGY0zHEV5bKRWGKv0GtJ9ftZfURPsnZ3RuCptK63hu5R4Azh+XS3xMtLvxUd8+tk6UiFB8z9zgB64O61gSRrkx5oXj/YeMMWuAQwbPjTGLgJOP8Jw7gTuP999USoWWd8c7gBdW72Wjsz9Fv9QENpXWcftLtj7U+eNyAWhtt59F++p+FWHpWBbu/VxEHhGRz4vIZd6vbotMKRVxPB5DvbNNKsAdCza6x29vKmNfjR3u/OtB26IeXCBQF+CFp2NJGFfjLLgDLna+LuqOoJRSkWnoj19m/M9fY39t8yFjFmeP8k1KiY2OCkgS3lpQpw/PAnC7pFR4OZYuqUnGmAndFolSqse46YmV/Ozise7j8QNTeWeznfb+ozmjAchIimN/bQvnjslxB7QfmVdIQ0u7DnCHqWNpYSx2ynUopRRAQCsioCR5bRNfe2wZAJ+fOogBfmsmvPtsbyqtA2BAum/qbEJstI5fhLFjSRinA6udQoDHPK1WKdWz/P7NLRTc8jIfbqsAYOv+evdafEw0HieZ3PGpCQzM8CWMWy4YHfA60bq/dsQ4loQxB1vS4zx84xcXd0dQSqnw9+eF2wE7mA1wsVOCPDpKGJCeSFJcDOeNzSE6ShjorKsQ8a2x+M65IwG4avqQYIeujtOxJIz9wGeA3wG/BS5zzimleqHmNjsF9pV1pWwqrXXPzxyZzd7qJnZWNjAq167O9taE8h8H/9a5Iyi+Zy7DsrUmVKQ4loTxGLbU+P3AA8AY4J/dEZRSKrysKakm/+YFPL/KLrR7c4Pvs2JSXDSV9b4FejmpCWwrq8djYFBmEgBfnjGE6UMzWXzLOcENXHWpY0kYo4wxXzXGvON8zQdGdldgSqnQWL7zAPk3L6DMb7+KSx74AIBvPbUKgGudAW2AmqY2iioaAFj4g7PcqrJgZ0IBJMXF8NT8GQG1oVTkOZaEsdLZ8AgAEZkGfND1ISmlQun6x5cDMNXZr+KTzD9zKBX1LazeXU1GUiyDM5MCypdPzEvrtjhV8B3LOoxpwJdFZJfzeDCwUUTWYvdHmtjl0Smlgq6srsU9bu/w4DloU4GaJpsQ4mKiGJyZhMfAkh2VjOiXgoiQmeRbdJeWGBuUmFVwHOssqQJsZdmZzvGF6GwppSLampJq7ntrq/t4+tBM9/je1zdz0i9fB+CMEXYV9iPvFwF2DYZ3v4rdVU3kZdrZT+ePz3Wf77+Fqop8nW5hGGN2dmcgSqnQ8I5PzJuRT0l1I4uLqtxr7R2Ghla7IG/60L68v7WCJ5faHfEW/WiW29oAO9gNMDInhbs+PQFdrN3zdDphiEgC8A3sAj4DLAL+dKybJymlwse2Mt9iuy1ldawtqQm47l/v6erT8rn3tc1U1Lcwol8yOakJZPrVfMr2W6H9hWmDuzFqFSo6rVapXuz9rb5tjT8urqKpreOg63YV941nDycpLsZNIN4d8WKjfX9CzhypO172dDqtVqlepL3DQ2mNr1PgpTX73ONfvbqZJTtsd9SHN88CfAnDO36Rl2HXVRRk9znktf1rQqme6VhmSa0UkenGmMWg02qVikRffGQJS3ZUse6280mOj2H5zgPutfy+SazcecAWC0xPDHjeuIF2emx7h13dXdDXlzBW/Ww21Y1tJMUdy58TFYmOpYUxDfhQRIpFpBj4CJipRQiVihzeFkRReX3A+c8VDmJXVSN1Le2MzLHlPC5yNjHKSo5396uIcbqgBjsruAHSk+LIzzq0xaF6nmP5SDCn26JQSnW5rfvrmP2793jky4WcOzYHj9+Cik376tzuJYDM5Dh3vYX3j793xXZ+X999j10zldc3lHKqs9GR6l10Wq1SPdTs370H2DIexffMpbLBV+9p7Z4aWtrtAPe1pxeQ7rfAztvd9NxKWzdqmV+3VZ/4GD59Ul63x67C01G7pERkRVfco5TqXst3HqCy3q7SPnh7VIAbnvD9mhZV1LO1rJ7YaOHWuWN4yylRDr6CgdWNdo3FaKfirFKdaWGMOcoYhQBaMEapEHptfSlf/6etAVV8z1xeWL3XvZYYG40xhqXO+MXJQzIoKm9gw95aMpLiEBHmnzHUve7d0Oj+z5/ETU+u5MWbTg/yu1HhqjMJY/TRb6Hj6LcopbqLN1l4eafDnjQ4nZW7qqnwKz9+9qhsfv36FuJjohg7wHY/ne5Mm/36mUPd+y6eNICLJw3o7tBVBDlqwtCxC6XCT0NLOwmx0Yfd3rStw0OxU2583ox8Vu5axS3PrgXsvhQFWXbDopZ2D1Pzbd2ohNho1t92PklxWvtJHdmxTKs9ISKSICJLRWS1iKwXkdv8rt3k7BW+XkR+5Xf+FhHZ5lw7P1ixKhXO2js8jPv5a8y425YfP3i8oriigSgRRuWkkBBrf8Xf3Gg3PPreeaMC9qvY67eIr098DKIFoNQnCOZKmxZgljGmXkRigUUi8gqQCFwKTDTGtIhIPwARGQtciS1HMgB4U0RGGmO0+0v1anur7R95bxnyxtbAX4nN++tYtbuaL88YwsB035TY3NQE0hJj8avmwdwJ/bs/YNVjBK2FYSzvaqFY58sA1wP3GGNanPu80zUuBZ4yxrQYY3YA24CpwYpXqXBRVF7PAr8SHi+t9Q1oVzW08obfdqkA6/fW0trhYUhWH8YPTCU+xv6aD3XKeUzKS3fvnTIkHaU665gThojMFpG/iMhk5/H8Y3hutIisAsqAN4wxS7D1qM4QkSUislBETnFuHwjs9nt6iXNOqR5jcVElTX4thJb2Dr7z9Cp2Vja45y7704fc8MQKt5T4yl3V7rU1JdU8scTuaXbv5RMRgUXOgPeoHLuhkbdQ4BBnAV6MXxPDv8KsUkdzPC2MbwA/AK4SkVnA5M4+0RjTYYyZDOQBU0VkPLZbLAOY7rzuM2I7Ug/XmXrI5HIRmS8iy0RkWXl5+WGeolR42lfTxJUPL+YH/1ntnhv1k1d5buUevvnkSvecdz3Exn21AAEtir3VzSwtttNhL540gLTEWNbuqSFKYPzAVMC3Q17/tMD6UICOWahjcjwJo9wYU22M+T5wHnDK0Z5wMGNMNfAuttxICfCs02W1FPAAWc75QX5PywP2HvRSGGMeNsYUGmMKs7O1vLKKHK+uKwUCK8Z67XBmOdX67Y+9YW9twD0xUcLuA40ApMTHkBAb7W6POjAj0S0G2MepA3XZFF8Dfemt5/DRLbO66q2oXuJ4EsYC74Ex5mbsPhlHJSLZIpLuHCcC5wKbgP8Bs5zzI4E4oAJ4AbhSROJFpAAYASw9jniVCkvvbrYtYv9Cfl5RznTZ/ywrcc/tqW7i6Y93uY9z0xJYUlQJ+DYsKnISTYbfvtp//MIUfn7xWAb6VaDtl5Jw2BaHUp+k0wnDmRY7Htjm7L4HgDHm/k6+RH/gHWfV+MfYMYyXgL8BQ0VkHfAUMM9pbawHngE2AK8CN+gMKdWTLNxiE4Z37YP/dqcTnHLif3H2zwb466Id7KiwLYqHv3QycTFRrHDGM84blxPw2h6/qbajclO4+rQC7X5SJ+yo02pFJAa4C7gG2IlNMnki8nfgVmNM2yc938sYswY46TDnW4GrjvCcO4E7O/P6SoUzYwxTbn+DKwoH8eMLxwRcKypvoK3Dw6MfFrvnvCuzS2sDd0CuaWqlb584zhuXy3y/1d3DspMD7rtEV2irbtCZFsa9QCZQYIw52RhzEjAMSAd+3Z3BKdVT7K9t4UBjGw+/Z1sM3kqxAK0dHirqW/jtG1sASE+KpbK+hSVFlXgbCp8tzCM3NYGi8gZ31tO1pxcAdvwi3emC+vDmWTz+1WnMP3NYsN6a6kU6kzAuAr5mjKnznjDG1GLXT1zYXYEpFcm+/+/VbjkOgCse+tA99ngMf3mvKOD+cmcRHtjWQVVDK/ucVdhnjMgis088lQ0tbPdLGAmxtiurrqXdfe6A9ES3LpRSXa0zCcOYw9RKdsYTDq2hrFQv19ru4T/LS3hy6S7K6uwf/d1VTe71F9fsdccTzh1jxx52Vja61wekJ9LuMXy03Q5o//GLUxiYnkBbh6GivsXdT3vO+Fx7f5rupa2CozMJY4OIfPngkyLyJewsJ6V6Pf8upv1+4w7/WrwrYGosQHFFI/e+thmAG2cNB+D9rXYA/OEvnUyp07J4etluspLjSE2IZWCGb0bTUKeFMSInmXPH9OPhLxd2wztS6lCdqSV1A/CsiFwDLMe2Kk7B1oD6dDfGplREuPuVjTy0sIin509n2tC+blcSwB/e2soFE3ID7v/dm1vc4/EDUomJEl5bbxfjjR2QyrShffmHMwCe7+x+N8hvO1XvFqrxMdE8Mu+Yl0Epddw608JIBL4H/BIoBnY5x98HtC2ser2HFtrxiPecVsIH2yrca+ePy2FbmS2h9td5h7YEYqKjSE+KdafUDkxPJM1vu9S91bYrq69fCY9ROboDngqNziSM3wO1xpi3jTH3G2PuM8a8BTQ615Tqtdo7PO7xvupmGlvb+cNbWwH7x//1DftZsbOahNgoZo7Mdst1APzvhtMAAjY3OnitxHfPGwVAcnzMEe9RKlg6kzDynTUUAYwxy4D8Lo9IqTBmjOHDbRXuHhTe5ACw+0Ajv33d193UNzmOPnExrNtTw9j+qcRERzGyn20dREcJ4wekBrz2d2ePPOTf+4xTziMuJop/XTuNVT+b3eXvSanO6kzC+KRuJ60toHqVx5fs4guPLOG6x+2iufvf3uZe21vdTKrTnfTnq6Zw1qh+1Le0s7S4inED7MrtjD52vUR2crxbNfZTk+0iu1y/2U43XzCay0/OC2hNnDY8y11voVQodCZhfCwiXzv4pIh8FTsIrlSvsX5PDYA7LuE1tSCT0tpmd/HdOWNy6Oe3s12H0yJpbLVrJlr9urKuKBxESkIMUwZnuOeumzmMX18xqXvehFLHqTOzpL4NPCcf437CAAAgAElEQVQiX8SXIAqxRQJ1lpTq0f65eCdnjcxmkFMg8KmP7RYtbR2BS5A+NXkgS3dUuY9jo6PISfW1GK45LR+ATaV2/av/tdOGZ7H2F7oDsQp/R00Yxpj9wKkicjYw3jm9wBjzdrdGplSILS6q5Kf/WwdA8T1zA67tqmqkuc2uvfje7JFuCwLgi07l2JxUXwujIMvWevr7V07hrpc3cuenJ3Rr7Ep1h05XqzXGvOPMkrpfk4Xqie5csIHvPrPKffzHd3zjEx0ew+bSuoD7H1+8E4BBmUkBxf68ayf6pfhaEdFOufL0pDh+dfkkYqODtjuyUl1Gf2qVcvzl/R08u2IPbc74wvtbfespyuta3A2PvO5YsBGwC+lSE3yN9eH9bGsiOyWejKRYbnJWcysV6TRhqF6prK6ZZcW+MYfnV+1xj72lObx/+MFuXuRdof3oNVMDXmvcgNSA2UzThmYCtlWx8mfn8T1nLYVSkU4ThuqVPv3HD7n8zx/R4bFjDyudjYgAd9vTyvoWUpwFcyUHfMUBZwzt686AGp2b4nYv3Xj2cC6dPMDdGlWpnkZ/slWvtMcpufHa+lIunNCfumZfifCdlY0MzmzkQKMt1yECL6yy28l/c9Zw4mKiGJyZRFldC5Py0t3nff98bUmonk1bGKpXaPNb9+BtVQBs2FsLwKJt5Zw8JIOkuGg2l9Zx+v+9496TkRTHW5vKABjvbJ2a7IxZDMk6dD9upXoqTRiqx1tSVMmIW19hwZp9ABRXNrjXiirqqWpoZX9tC8t3HmBAeqI7hgGw8qezSYjx/ZpMG9oXwJ1Sq4UAVW+iCUP1eP9dUQLAUx/vAmC906pIT4ql5ECTu3/FGSOyGJieyJYy3/TZjD5x7HUSSFx0lDsb6mtnDAVgQl5acN6EUmFAE4bqUZrbOrjun8upbvRVgPXuZuf97zefXAnAWSOzWVNSw6PO3hO3XzqegRmJFJXbFsjXZ9qkcMXJeYAt5+GdDXXOmByK75kbsNZCqZ5OE4bqUW57cT2vri9l8i/fAOx2qUuckh17qpuorPftne0dyfCW+8jP6sOaEt9sqcun2ERx4cT+QYhcqfCnCUNFtG1l9dQ0+rZA9a6o9mpo8c1+6vAYrn1sGQCn5Gcwa3Q/91pCrP1V+PzUwe65Amdnu7NGZjMqJ4Unrp3W9W9AqQiiCUNFrN1VjZz724VM+uXr7v4Ujy+24xTxMVF0eAw3Od1PXt71Fk98bTr903zV+W+7ZBwAc8b5tlP1lh8XEV77zpmcOjyr+96MUhFAE4aKGB6PoarBNzbhHcQGqGxo5YDftZZ2D6W1zSxytks9d0yOey07JZ7Y6ChSE33LkAak2+Thvz2qUipQ0BKGiCSIyFIRWS0i60XktoOuf19EjIhk+Z27RUS2ichmEdH6z73c0B+/zJTb32B3lR28bmjpcK+V1jTzzadsa6Kvs0nRTr/psz+ZO8Y99q7STk2I9TtnB69joqP43uyRPPuNU7vpXSgVuYLZwmgBZhljJgGTgTkiMh1ARAYBswH3I6OIjAWuBMYBc4AHRSQ6iPGqMLK93Ldh0fq9dhOjfzizm8B2T1U6e2N/9pRBAGza55sem++MRwCM7W+3Rk31a02MyvWtp7jpnBEBmxkppaygJQxjeX/rY50v70SV3wE/9HsMcCnwlDGmxRizA9gGBFZ9Uz1aVUOrOzbx3ApfccBX1pUGLK4DeGnNPneL0+/NHklstPDsSrv+4u9XnxJw70hnsV2fOPv5Y1h2H5RSRxfUWlJOC2E5MBz4ozFmiYhcAuwxxqz2r/gJDAQW+z0ucc4d/JrzgfkAgwcPPviyilDfeXoVz63cww1nD+MH548m22+70+a2Dmqa7Myovn3iqGxoZcHafWQlx/GZKXnEREeRl5HEuj12gd6Y3NSA1z4537YeROSQjZGUUkcW1EFvY0yHMWYykAdMFZGJwK3Azw5zuxzmnDnkhDEPG2MKjTGF2dnZXRuwCgljDM+ttC2KhxYWAVBa20yUQOGQDKob29hTbccxHvjCFMC2FirqWxk/0CaHljbf+Ia35fHbz05ixtC+TPYrGKiU6ryQzJIyxlQD72K7nQqA1SJSjE0kK0QkF9uiGOT3tDxgb3AjVcFyzyubeHvTfoCAmVAGOzvqT+9ux2PsH/+yuhaW7jhAbLQweVA6Z43KpqHVJogxzvjE3oO6rAAum5LHk/OnExV1uM8iSqmjCeYsqWwRSXeOE4FzgZXGmH7GmHxjTD42SUwxxpQCLwBXiki8iBQAI4ClwYpXBc8NT6zgzwu3c80/7KK6Wr9S43kZiW4pcoCc1AR2VDTw4fYKxg9MIzEuOqD6rBYDVKr7BLOF0R94R0TWAB8DbxhjXjrSzcaY9cAzwAbgVeAGY0zHke5XkctbRRZsa+JRv9lPOysbeWKpnTz3tTMKyHSmzK4pqeGUfLuz3bYyO5ciSmyxQIDzx9l1F977lVInLpizpNYYY04yxkw0xow3xvzyMPfkG2Mq/B7faYwZZowZZYx5JVixqu7T3uEh/+YFjLj15cNer2lqc6fLDnQW063cdQCA78weGVDOw5swfjJ3LAB94n1zOAqH2Gt/+uKUrn0DSvViutJbBdU2Zz1FW4fBGMO6PTUB18v9igPee/lEABYXVTEyJ5mkuBj6JvtaDIVD7GynfGcToxS/hPHV0wt48cbT3f0rlFInThOG6lbLiqt4fPFO9/EH2yrd4+LKRi66fxFg96IAvxLks4YzNDvZvddbCDAzyZcwvN1PQ7OSyctI5I5Pj3evRUWJ7lWhVBfTPb1Vt+nwGC7/80cAXDV9CADFFX673fmt3v7GWcN5f2sFzyyzpcZH5aYG1HXyrtT2FgS88hTfBLrEuGgW/WhWN70LpZSXtjBUl2lsbecv7xXR7uyf/bSzzwTAh04RwOLKBndswlsTCmD60EzSEmN5Y8N+oqOEmaOy3ZLjAAV9fauxi++Zyz2fmdit70UpdShtYajjZozBf3X+2J+9BkB8bBRfnpHPXr/psGV1dmzi/a0VXDSxP5UNLaxwSo0XDslARBiZk8zHxQcYnp1Mcnzgj2ZOmu5sp1SoaQtDHZeH39tOwS0vs6TIjkl4az4BVDjJ4YF3trnniioaeM6p7ZSTmkBeRhJvbyoD4NvnjgRwy3+M6X/oWopTh+ngtVKhpi0MdVTGGApusdNgvbWX7np5E2Arxk4b2pfyOt/spq1l9QHPH5SZSFF5Pf/4YAcA3z53BKW1ze76iWH9bHfTy2tLATsm4bXwB2fR1NZBfIwWKlYq1DRhqKNae9DU1zZnjAJs5ViAV9eXuue27K+jwpkem5EUy7DsZIrKG9wV3CkJsQHVZnNTA7ubxg/0zW4a0lcrySoVLjRhqKN6Y8N+93jr/jpSEg7dle5nz693j7eXN/DYR3Yq7SPzCnl2xR5W764mPSmWCyf0B2D5zgPu/d5xkE23z+GlNfv4zJRDihIrpcKAjmGoo3phta/m4/byBl5YvSfgurdooD/v6uwpgzNIiI3mQGMb1Y1t7myney6bAASW7kiIjebyk/M4qMy9UipMaMJQAbylO069+y33nABTnTIcu6sa3dpPF020rYUdFY3u47/OKwTgw+2V7uwn/z//o50B7XPH2lpP188c1p1vRynVhTRh9HKV9S2sLfGNUexy1kbsrWnG4zGU1TVTXNnI7LE5pCXGsqOygeyUBEbnpvDTi2wNp4ff2w7Y0uI5znhEh8eQl2HXW4zI8a3YHpRhy3hkJcez/rbzufaMgu5/k0qpLqEJoxdp6/DQ2NoecO6Khz7i4gcWccDZg8J/MLq0tpnlxbZrqTA/g5E5yTyxZBdvbtxP3+Q4+vaJIyZK2F9rB7ivnzksoABgYpw9vmSSb0wix2+Au098jHY/KRVBNGH0IiNufYWxP3uNsjpfUigqt6U6Trr9DcDOcPK6762tLNxSTkJsFOMHppGbluhea+8wxERHMSDddy4qShicmeQ+vuFs293kv2Lbf8qsUiqyaMLoocrrWsi/eQELt5Qfcm3qnXZ8wn+xXVpiLB0ewy9e3OCee+rj3XxcXMW0gr7ERkcFlPL45aW20F9qom1FfHmGrRUV7bebnbcEiIjw56umsPAHZ3XRu1NKhYImjB7q169tBmDe3+wmhRV+ZcO9fvifNe7xoMxE9tU0HXJPUUUDJw22e2AP86seOyrXDl6v21Nrn5/ha1lsun0OK346O6C7ac74/rqmQqkIpwmjh3p62e6Ax1tKfV1NQ7P60N7h4d/LS9xz6/bU8tZGW6rj3DE5XDp5AADGwLgBdiHdmSNtCfJT8jPc511xch4Alzv/BTs9Vne6U6rn0YTRQ/z2jS38+Lm1h71WVtfMI4tsWY7Thvel5EATJQdsa2Jolu9Tv7e67J+umkKuX7G/8QNTAbhwQn9uvmA0j10zzb127xWTKL5nrrs3hVKq59KEEYH+8cEOfvP6Zvdxc1sH9721lSeW7KKptSNgbAJgze4at9DfhRP609rh4UVnMd4vLhnH7ZeOA2DDvloSYqOIjY4KKE3e3xnsjo2O4rqZw3TgWqleShNGBDg4AfzixQ3c//Y26prbAHjso2L32spdByittbOgvj5zKAB7/MqMn+xsa/qbN7aQFBfNqcP6UpDlG5u4aKLtijpzRHaXvw+lVGTThBHmfvXqJgpueZmlO6oAaGrtcK9td6bE1jf71lbsqmrkkgc+AOCkQXaw2lum4/KT8xjZLwXvWPSkvHRioqPISY13n3/B+FwAd1HeOaP7dcfbUkpFIE0YYe7Bd+0q6ieX7gKgqMJXOnzL/jqMMdz3tm/fifK6FrfU+JQhGcTFRPHOZju1dv6ZQ4mKErwNFm+Zjn5+i+lOG24HtrNT4vntZyfxi0vGddM7U0pFGq1WG8ba/cqIJ8fHUNPUxtz7Frnn3tq4n2kFme7jzD5x7PDbM7tfSgKt7R5a2z0kxEYFTIsFiHKaGqkJvh+DhFjf+MRlU/JQSikvbWEEya9e3cTPn18XMB5RVtfMzkrfH/h7XtlE/s0LeH6VrQbrnckEsLm0jtf99pzo2yeOxNhoZt77LgC3XjiG/mkJLHZ2wLvz0+MD/v2UhFh3UZ13BfaNZw8HvAvrTnYHv5VS6nCCljBEJEFElorIahFZLyK3OefvFZFNIrJGRJ4TkXS/59wiIttEZLOInB+sWLtabXMbD767nUc/2sk+p1aTMYbT/+8dZt77Lh6PTSJ/Xmi7n7711CrqW9r5k9MdNSkvjU2ltcQ7n/7HD0xl0qB0Nu7zra342plDye/bh73O609wNiFKcVoP/pse/eD80YdMhZ0zPpcvzcjvjrevlOohgtnCaAFmGWMmAZOBOSIyHXgDGG+MmQhsAW4BEJGxwJXAOGAO8KCIRMR8zu8+s4r8mxfQ0GIHo72F/cDXanh7Uxmt7faP+M6qxoDuJ4B91U185LQWLpuSR21zOx9trwDgsWumMaZ/Cpuduk9fP9POhvKW6QAYkmnXVzxx7XQAbr80sMWhlFLHKmgJw1jeEdtY58sYY143xnin+SwGvB3nlwJPGWNajDE7gG3A1GDF21nPr9pD/s0L3JlIxhieXWG7lN7caDcW2lnpq8FUXteCMYbfv7nVPVdW28zqkuqA161vaae6sZUrTxnE8H527OHJpbsZlZNCZp+4gG1Npw/tC8C/l/lWbnuTx4S8NLbeeQEXTxrQZe9ZKdU7BXUMQ0SiRWQVUAa8YYxZctAt1wCvOMcDAf/6FiXOuZBpbG0n/+YF5N+8wD333EqbHF5eazcVWr+31r32a2dx3bq9vv0mSmubeWdzGWv31HDGCDsj6Y4FG3lyqX2rF06w01p3VTVS29zO8H7JASXDJ+bZrib/c97B7B/OGeWe86/jFButQ1VKqRMX1L8kxpgOY8xkbCtiqoi4/SQicivQDvzLe+pwL3HwCRGZLyLLRGRZefmhlVm70t8/KD7k3LvOlFXvnhD3veVrOXi7nDbsrSU5PoaU+Bh2VTbw/tYKkuKiefCLUwCYNCjNHay+fqYdiP7WU6sAGJSZFNBd1d+pAOut7wQw0Nmo6DPOrKY543JP8J0qpdShQjKt1hhTLSLvYscm1onIPOAi4Bzjm0ZUAgzye1oesJeDGGMeBh4GKCwsPCShnIh5f1tKbmoC/3f5RAD+4NeN1NbhweM342mN06XkrQr7+amDeHH1PjbsreWlNfu4aGJ/dlU1ssPpnhqcmURKQiz9UuIprWmm5EATk/LS3F3qvGaN7kdNU5v72LvIbqTfLnbe2U99k+Mpvmdul71/pZTyF8xZUtneGVAikgicC2wSkTnAj4BLjDGNfk95AbhSROJFpAAYASztrvhKa5rd6axgtxhduKWcp5ftdj/hd/gliP+t3BOw5qG4spHqxlZW7KomJT6GIX37UN/SzvOr7Wtee4adxbSjop51e2qYlGcng00YmMabTpXYa04vCOhqmlqQSWx0FFnJvpXY3rUTIsIfrpzME9f6CgEqpVR3CmYLoz/wqDPTKQp4xhjzkohsA+KBN5x+98XGmOuMMetF5BlgA7ar6gZjTMeRXvxEtHd4mH633VTo1GFZZKfE89dFRe71vdXN5GUk0uHxJQxjYEmRLdcRFxNFa7uHH/3X7i9R1+Ir1fHelgoGpicyeVA6/dMSeGG1nSXl3ed6WL9k3nIKA56Sn0lstK8nrqjct6q7f1oC+2qa+Wyhr9F16eSQDukopXqZoCUMY8wa4KTDnB/+Cc+5E7izO+MCqPbr8tm6v46s5DjuenmTe25nVQNLdlQGPKesrplF2ypIjI1m1ph+LFizj9fW21lRz37jVN5zdrrbuK/WHchOS4p1nz92gC0Z7p+E+qclICKcNSqbdzeX85VT891rH/xoFm0eT8COdkopFUw6fQaobvStk9i8v47mtsA1EbuqGvmBszvdH66cTFpiLJv317N0RxUXjM/l15dPCrh/cl46N80a4T6emm/Ld6zYecA9d9IgWzV2j99qbu/MplOc+88Zk+Nei4oS4mMiYhmKUqqH0oQB1Lf4erpue3ED7221rYPPTx1MXHQUu/zWUVw6eSC5qQm8vr4Uj4ErCgcdsj9EVJQEtAQmOVVjb75gtHvO+xzvSmz/a9fNHMbr3zmTMf1Tu+otKqXUCdOEAUwelM6Ouy90Hz/yvh2/GJrVh7iYKB56zz4e4Syg65caT0u7BxG7MM7fpyYfukDO+4d/eL8UspLj+PzUwe61L04fAsDcCf3dc9FRwsiclK54a0op1WU0YThEhP/7zAQAPi62XUfXnlFAvd8A9l2X2eveVdYFWX1Ijg8cBvrx3DHu8YNfnMKNZw8PqAC77Cezudt5HbDJqvieuQzKTOrid6SUUl1Ly5v7GepX/jsmShARhvRNckt7eMcWRjsthoHpvjUTf75qCiUHmuiX4ivZceGE/lzo13JQSqlIpi0MP/4J4OcX2x3nfve5yYfc97Gz+92mUl+12Dnj+3PtGUO7OUKllAodTRh+BqQncvnJtrzGSYPtLCbvAruZI317XN/qdDs9dk3Y1UJUSqluI/4b+kS6wsJCs2zZshN6DWMMFfWtZKf4VlfvrW4iOyVei/gppXokEVlujCk82n06hnEQEQlIFmBbHkop1dvpR2allFKdoglDKaVUp2jCUEop1SmaMJRSSnWKJgyllFKdoglDKaVUp/SodRgiUg7sDHUcnZQFVIQ6iBMQyfFHcuyg8YdaJMd/pNiHGGOyD3M+QI9KGJFERJZ1ZqFMuIrk+CM5dtD4Qy2S4z/R2LVLSimlVKdowlBKKdUpmjBC5+FQB3CCIjn+SI4dNP5Qi+T4Tyh2HcNQSinVKdrCUEop1SmaMJRSSnWKJoxuJiIR/T3W+EMnwmPPcv4bfbR7w00kxw7dG3/E/kCGMxGZICLfAzDGeEIdz7HS+EMnwmMXEUkSkSeB5wGMMR0hDqtTIjl2CF78mjC6x53AXSJyFkTkJxWNP3QiNnZjNToPs0TkeoiMllIkxw7Biz8ivhmRQkS8Oxi+B/wBuANspo+EHzy/GCM1/oj9/vslhoiL3UtEYkSkP7Af+CpwvYikG2M84f4enE/oERk72J+fYMQf9t+IcCcil3uzuTGmXUQEOB/4C1AmItc61zzOtbAiIpeJyO+chyYC458iIiPA/f5HESHxi0iBiHj3A/ZE4Pf+8yJym4hcDPb7b4zZBxQAxcBC4GYRGRZu3WsiMlNEpjnHUc4n9H1APmEeO4CIfEpEfiwiF4L9YBGU+I0x+nUcX0Ay8F9gMfB5QIBY59q9QAIwBdgM/BvIC3XMB8U/FngCWAl4gBy/a5EQfwGwAPgIWALMipT4nV/qV4C3nJ+hUfjWRP0mnGN3YhTgOudn52onzquBPsAQ4PfOfZcAtcAKIN77+xHi2FOAZ4Eq4G9Aht+1kcBvwzV2J65s4H/Yluh1QBnwaefa2O6OX1sYx+CgT3mDgP3GmOnGmCcBjDFtIpIE9Mf+QfsikAP0M8aUhLo/2hu/iJyJ/RS72BhzEvB7YIZzLREbfz5hGr/j+8AqY8wM7C/Qtc49Yfn9P0zsS4wx5wDvALcDI53WRj/CLPaDGfsXaQZwjzHm78ANwLnAGcABoEBEXsQm7oXATmNMizGmLVQx+2kF3gauAvYCV/hd24v9//AC4Rk7wDDgA2PMmcaYPwPfA37oXNtJN8evCePYJPgdTwTyAETkG8DPRORsIA5oAj7GtkJmAYNFZKIJ/ayLROe/G4DzjDH3iUgcMALbygD76dEASwm/+BPA/ePbAHh/CdKAjSIyxtiBv3bCL35v7N5xlvUAxpgHgKnAV7DJIhxjR0S+7HTjZDqnNgIDRSTGGPMmsAY4HfspfQ9QBJxsjLkYGCQiJ4ckcAJiTzfGtACPAG8CW4BCERnp3JqCTRphEzu48Z/lfBhaDjzmnI/G/i6vdW7t9vi1NEgniMhsbBbfBHxojHnS6Tf/PhDrfC0HzgNeBnYDa40xRc7zvwQsNMbsCnH8m4FFxpinnPMJxphmEbkLGGaM+ZzzB+18YIsxZmsYxv+eMeYZEbkE+By2GS7YqYTnA78EooGNxphtoY7/CLH/EogBnnZuuwuoBH4FDAa2G2M2h0HsAuRiuy49wHZst9P1wMXABOAfxphNIlKA7U67Dfu9b/V7nTRjTE2YxP4tY0yFc88IYB7QYoy5/XCxhiL2zsQvItHGToi4CrjEGPNZ53mpxpjabos/1H1y4f4FDMf2kV8KnAT8C9sMjMH+gizHN3YxD7gfSHUeRwFRYRb/48CPnWveuGc65/sd9NxwjP8J4PvOtVHAs373/hz4TbjEf5jYnwS+gf0k+FPgJWARUAg8BVwfRrFHO/8dCTzuHMcADwKPYj8k/Q34EpDmXH8U+KVzLKGK/xNivx/470H3ftp5T8OxLfB47/c/DL/393t/3v3ueQz4rHOc3d0/O9oldRgiEuU3FW0asNwY87wxZiW2//On2C6D54EafP2gK7HdVPVgZ7eYEMyw6ET8PxSRfsbXrxmL7dap8n+dMI3/TeAnIpKDjXe3iIxx7n0LGOIdLwhF/J2I/S4gwdhPtN80xpxujFkGvI/TxSYiEsLvfYzT4rxLRGZik3IH2FlQwI3AHHyTJqZhkyDOfUuce00IvvdHi/2bwKnONZzzzwElwKvADmCocz4cv/ffBGaIyEzj66KsB3Y4rdZ3RCSvO392NGEcRESuxv4A3e6cWgt8XkTynccx2B+sXxlj3sMOGH9PRH6E/ZT4gfM6IZkG2Yn4Y7HN2197n2NsH3QhcGrQAj2CTsZf5FyvAzKBb4rIt4CHsH+UQ6KTPzvbAe805h3O8+Zj586vAHdQOeicP1LLgQxgG/Z9tAFni8hUJzYPttvv/5yfm4eB00VkifO8d0MQemdjN9jYf+H3vCuAW7GTDyYaYzYGN3I3jmOO3xnDuAb4D5AKnG2MKenWQEPV7ArHL2yr4X/At7C/vKOd87/Hdid8gO26mYAdq8h1rp8CfB2YEUHxL/CLPxaYD+RHUPyvYPt0xwA3YbtDpkdI7AtwpjED38ZOkDgllN97J5YzgC/5PX4QO17xFWxLCeyHzFzsdN9851w6MDCCYn8GKPB73hkR9r1/Bjt9eZjz8zUlaHGG+hsVbl/AYOe/9wBPO8fR2E+ypzuPBwH/wHYthDzm44z/7zj9teH0dQzxPwrEhTreE/jZ8faVJ4U6br/4k7Bz9r39418E7naOVwE3OceFwJOhjrenxH4c8T8Vqji1S+ogxjcb5ffY+eTnG9tfWGOMWeRcuw5oxDetM2wcQ/xN2CmcYeUY4m/A6d8NF8f4s9PuPKfx0FcKDWNMo7Fz9r3f19lAuXN8NTBGRF7CtphWhCLGI4nk2OGY418OIer2DnVmDecvbDfTQr/HU7ED3W53VDh/afwa+3HGHo3t/ngFGO6cG47tejqdEHc/9dTYIyF+XYdxBGLry3hE5D/APqAFO6C61RizPbTRHZ3GHzqRHDu4n1zjsAvcnsMOrFZiu0VqP+m5oRbJsUP4xx9z9Ft6J+cXPgm7+vYs7PzyV0MbVedp/KETybGDnY0jIidh+9ELgL8bY/4a4rA6JZJjh/CPXxPGJ/sGtr9ztrElBSKNxh86kRw72OnBt2KL2UVa/JEcO4Rx/Nol9Qm8XQuhjuN4afyhE8mxK3UkmjCUUkp1ik6rVUop1SmaMJRSSnWKJgyllFKdoglDKaVUp2jCUOoEiEiHiKwSkfUislpEvutX3vxIz8kXkS8EK0aluoomDKVOTJMxZrIxZhy2/s+F2I2cPkk+oAlDRRydVqvUCRCRemNMst/jodhy5VnYEtT/xJZhB7jRGPOhiCzGlmXfga26ex+2wu1Z2IqlfzTGPBS0N6FUJ2nCUOoEHJwwnHMHgNHYDZ48xu6bPgJbVhu93BYAAAESSURBVLtQRM7CbjN7kXP/fOz2uHeISDx274wrjDE7gvpmlDoKLQ2iVNfzlp2OBR4QkcnYUuwjj3D/ecBEEbnceZwGjMDZkU+pcKEJQ6ku5HRJdQBl2LGM/cAk7Hhh85Gehq1G+lpQglTqOOmgt1JdRESygT8DDxjb15sG7HNqSn0Ju9cB2K6qFL+nvgZcLyKxzuuMFJE+KBVmtIWh1IlJFJFV2O6nduwg92+daw8C/xWRK4B3sLsEAqwB2kVkNXa71j9gZ06tcPZDKAc+Faw3oFRn6aC3UkqpTtEuKaWUUp2iCUMppVSnaMJQSinVKZowlFJKdYomDKWUUp2iCUMppVSnaMJQSinVKZowlFJKdcr/A0TjEDFQr+dtAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "new_data[\"CO2\"].plot()\n", "plt.ylabel(r\"$\\rm CO_2$ [ppm]\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "hide_code_all_hidden": true, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }