{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Evolution du prix de la baguette en métropole" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Les données sont extraites de l'INSEE disponibles [ici](https://www.insee.fr/fr/statistiques/serie/000442423#Telechargement). Dans un premier temps on charge les données à l'aide de la librairie Pandas:" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Date Price Label\n", "0 1992-01 2.12 A\n", "1 1992-02 2.12 A\n", "2 1992-03 2.13 A\n", "3 1992-04 2.14 A\n", "4 1992-05 2.14 A \n", "...\n", " Date Price Label\n", "355 2021-08 3.59 A\n", "356 2021-09 3.59 A\n", "357 2021-10 3.59 A\n", "358 2021-11 3.60 A\n", "359 2021-12 3.61 A\n" ] } ], "source": [ "import pandas as pd\n", "\n", "data = pd.read_csv(\"Data/valeurs_mensuelles.csv\", skiprows=4, delimiter=\";\", names=[\"Date\", \"Price\", \"Label\"], dtype={\"Date\": str, \"Price\": float, \"Label\": str})\n", "nRow, nCol = data.shape\n", "# On trie les données par date croissante\n", "data.sort_values(by=\"Date\", inplace=True)\n", "data.reset_index(drop=True, inplace=True)\n", "print(data.head(), \"\\n...\\n\", data.tail())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "On peut regarder sur quelle plage s'étant les données:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1992-01 2021-12\n" ] } ], "source": [ "print(data[\"Date\"].min(), data[\"Date\"].max())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "La plage s'étant donc de janvier 1992 à décembre 2021. Nous procédons maintenant à un peu de calcul pour voir différents indicateurs sur le prix de la baguette sur l'ensemble de la période." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Prix: minimum = 2.12€, maximum = 3.61€, median = 3.10€, std = 0.48€\n" ] } ], "source": [ "priceMin = data[\"Price\"].min()\n", "priceMAx = data[\"Price\"].max()\n", "priceMed = data[\"Price\"].median()\n", "priceStd = data[\"Price\"].std(ddof=1)\n", "print(\"Prix: minimum = {:.2f}€, maximum = {:.2f}€, median = {:.2f}€, std = {:.2f}€\".format(priceMin, priceMAx, priceMed, priceStd))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "On peut représenter maintenant l'évolution de ce prix en fonction du temps." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEoCAYAAAC3oe14AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXt4FdXV/z+LQIBAAkQCISSRYIxcVNRwK1Voi4UasGgBoYJttNTY+uvNvr5Wq73ZWq2vtfVShJe2WMGigEIFWrDYwksQwZSLXBQhAYQISQghAYQQsn9/rDNJiLmd5EySyezP85wnOXNmvmedM8ms2XvttZYYY7BYLBaLBaBdSxtgsVgsltaDdQoWi8ViqcA6BYvFYrFUYJ2CxWKxWCqwTsFisVgsFVinYLFYLJYKrFOwNAgRMSKS3MhjbxCRD0JtUy3vdUBEbmym95ohImtCpPVvEZnViOP6Bc5N+0Ycmy4iG4I9ztK2sU6hjRG4KH4iIqeqPJ5rZhsuciDGmP8zxlzRnDY0B8aYhcaYcS1tR1tDROaLyC+rbWs2Z+93gr67sHiCm40x/2xpI9oyItLeGFPW0nZYLKHGjhR8goh0FJEiEbmyyraYwKiiV+D5N0Vkn4gUisjfRCSuFq2LpjqqTkOIyPrA5u2BUco0EfmciByusv/AgEaRiOwSkS9XeW2+iDwvIitFpERE3hGRy+r4XHeIyEEROS4iP6722kV3nNXtqEHLiMh3RSRbRApE5EkRaVflM2aKyNMiUgj8rNrnHhU4JiHwfEjg8w2o5b2+KCLvi8jJwEhOqr1+l4jsEZETIrJaRC6tze5qx90ZOK4k8Dky6j9Eng3Y8b6IjG2oloj8t4h8LCK5IjKr6gixrr+RwPMBIvJm4G/tAxG5LbD9bmAG8N+Bv583ROQlIBF4I7DtvwP7jhSRjYHvebuIfK4h35GlbqxT8AnGmHPAa8BXq2y+DVhnjMkTkS8Avw5s6wMcBBY14n1GB34dYozpaox5perrItIBeANYA/QCvgMsFJGq00tfBX4O9AD2Ab+q6b1EZBAwG7gDiAMuAeKDtbkatwJDgeuAScBdVV4bAWQH7L7IJmPMRmAO8KKIdAZeAh42xrxfg909gaXAw0BPYD/w2Sqv3wI8BHwFiAH+D/hrA+3PAyYCUcCdwNMicl0d+zufqSfwU+A1EYmuT0tEvgTcB9wIJANjGmgfItIFeBN4Gf0uvwr8QUQGG2PmAguB3wT+fm42xtwBHEJHwF2NMb8Rkb7ASuCXQDTwX8BSEYlpqB2WmrFOoW2yLHD35Dy+Gdj+Mhc7hdsD20Dvzv5kjPlPwIE8CHxGRPqF2LaRQFfgcWNMqTHmLWBFNbteM8ZsDkzPLASuqUVrCrDCGLM+YPMjQHkT7XvCGFNojDkE/K6aXbnGmGeNMWXGmE9qOPZnQDdgM5ALPF/Le6QBu40xS4wx5wPvc7TK6xnAr40xewLfwWPANQ0ZLRhjVhpj9htlHep8b6jjkDzgd8aY8wEH/gEwoQFatwF/NsbsMsacQZ14Q5kIHDDG/DnwXf4HdZJTgtCYCawyxqwyxpQbY94E3kW/W0sTsE6hbXKLMaZ7lcf/Bra/BXQWkRGBC8w1wOuB1+LQ0QEAxphTwHGgb4htiwM+MsZUvXgfrPY+VS+QZ1AnUquW88QYcxq1uSl8VOX3g4H3qOm1TxG4wM8HrgSeMrVXm6xut6mmfSnwe8epA4Xo9FK950JEbhKRTYFpmSL0ItmzjkOOVLOz4jPXo3XRZ6Ce76YalwIjqt64oDclsUFqTK2mcT06yrU0ARto9hHGmHIReRW9+z2G3mWXBF7ORf/RgIoh/iXAkRqkTgMRVZ4H88+cCySISLsqjiER2BuEhsPHwEDniYhEoDY3xc4EYFcVu3KrvFZnSeHAlMZPgT8DT4nIsMAIpia7E6ocJ1WfoxfYXxljFjbA3qrv3xG94/4asNwYc15EllEtXlGNviIiVRxDIvC3Bmh9zMVTdVXth7q/+4/Qacsv1mJTTd9z9W0fAS8ZY75Zw76WJmBHCv7jZWAaemf2crXtd4rINYELwmPAO8aYAzVobAO+IiIRgcDiN6q9fgzoX8v7v4NeMP5bRDoEgoM304j4BbAEmCgi14tIOPALLv6b3gakiUi0iMQC32+A5v0i0iMQMP4e8Ep9B0DFhX0+8Ef0+/gYeLSW3VcCg0XkK6L5Bd/l4ovmC8CDIjI4oN1NRKY2wIxwoCOQD5SJyE1AfUtmewHfDZyLqaiTXdUArVfRv5eBAWf8k2q6df2NrABSRBcJdAg8homI4+Br+vupvm0BcLOIjBeRMBHpJLqQoKkxJd9jnULbxFml4TycKSKMMc5FOQ74e5Xta9E5+aXoBe0yYHot+k8Dpeg/6ovovH9VfoYGXIucVSVV3qcU+DJwE1AA/AH4Wk0B2fowxuwC7kUd2sfACaDq6qKXgO3AAXQ+vCEX+OVAFnpRW4le5BvCd4HewCOBu+470Yvmp+bzjTEFwFTgcXS663Igs8rrrwNPAItEpBjYiX5fdRIY9X0XvWCfQGNGf6vnsHcC71+ABs+nGGOO16dljPk78AzwL3QxwNuBl5yRUa1/IwHtcejfVy46XfgE6oRAv/NBgb+fZYFtvwYeDmz7L2PMR+hCgIdQx/URcD/2mtZkxDbZsVgUETHA5caYfS1ti9cI3OXvBDra/A1vY72qxWJpFCJyq4iEi0gP9E7/DesQvI91ChaLpbFkoFM3+4ELwLda1hxLKLDTRxaLxWKpwI4ULBaLxVKB5/IUevbsafr169eoY8+cOUNERET9O7YCXatpz5MfNd3S9bOmQ1ZWVoExpv4yIMYYTz1SU1NNY5kzZ06jj21uXasZerxiq5813dL1s6YD8K5pwDXWczGFoUOHmnfffbdRxx45coS+fUNdtcEdXatpz5MfNd3S9bOmg4hkGWOG1refr2IK+fn5ntG1mqHHK7b6WdMtXT9rBouvnMLmzZs9o2s1Q49XbPWzplu6ftYMFl85BYvFYrHUja+cQmpqqmd0rWbo8YqtftZ0S9fPmsHiK6cQH+9OAUU3dK1m6PGKrX7WdEvXy5qZmZCTc/G2nBzd7gauOYVAKdvNgd6pu0Skxs5MgXK32wL7rHPLHoDly5d7Rtdqhh6v2OpnTbd0vawZFweLF1c6hpwcfR5XYwf1puNm8to54AvGmFOBvrwbROTvxphNzg4i0h0tnfwlY8whCTSQt1gsFouOBuLiYOpUdQTDhsHq1ZCaCklJ7ryna04hkCxxKvC0Q+BRPSnidrQf76HAMXlu2QMQ55JrdUPXaoYer9jqZ023dL2kmZkJuYF+f717qzMYORJOn4Ynn4QOHSAjI+RvXYGryWsiEoY2LEkGnjfGPFDt9d+hzmIwEAn83hjzl7o0m5K8ZrFYLK2ZzEzYtg3ee0+fd+8OffvCM8/A+fP6fORIeOCB4EcKDU1ec7X2kTHmAnBNYJrodRG50hizs9r7pwJjgc7A2yKyyRhzUb9eEbkbuBsgNjaWuXPnAjB8+HBiYmJYuXIlAImJiYwbN4558+YBEB4eTnp6OsuWLSMvL4+CggIyMjLYt28f27dvB2DUqFFERkayevVqAPr378/o0aOZP38+ABEREcycOZMlS5ZQWFgIwLRp09i5cye7dmkr33PnzpGWlsbatWsBSElJYdiwYSxcqM2moqKimD59OosWLaK4uBiAGTNmsGXLFvbu1Y86duxYysrKWLdOwyqnT5/mrrvu4pVXtFlYdHQ0U6ZMYcGCBZw5cwaA9PR01q9fT3Z2NgDjx4+npKSEjRs3AjBkyBCSk5NZunQpACdPnuT+++9n/vz5lJaWAjBr1izWrFnDoUOHAJgwYQL5+fkV66VTU1OJj4+vmOuMi4tj4sSJzJs3j/LycgoKCnjooYdYsWIFuYHbm0mTJnH48GGysrLsebLnyZ6nIM7T3r3nad/+Xg4ezOH06U84ebIzR44kcO4cREWdZOjQbdx8cx/mzetLly6r6NmzpN7zBDB58mQaTENqYYTigTY0/69q234E/KzK8z8CU+vSsbWPrGZr0rWaoccrtoZKc8MGY159VR+/+tXLJjvbmIwMY6691pjYWGO6dTMmJcWYp54y5oknjMnO1seGDcG9Dw2sfeTaSEFEYoDzxpgiEekM3Ih2Z6rKcuC5QPPycGAE2tvVFdq1c2exlRu6VjP0eMVWP2u6pdsaNZ3YQe/ekJUFRUWwZ88Qzp/X6aMDB3TKKDwcUlIgLw/S0jTGMHUqfPazofkc1XEtpiAiV6MNu8PQpa+vGmN+ISL3ABhjXgjsdz/a5LwcmGeM+V1dujamYLFY2gI5OTBnjv6elgYvvwzr1unF/8IFCAuDrl1hyJDK5afdu+u+YWHBO4UWL4hnjNlhjLnWGHO1MeZKY8wvAttfcBxC4PmTxphBgX3qdAhNZcWKFZ7RtZqhxyu2+lnTLd3WqJmUVLmKaOFCOHIEiouLadcOIiNhxgx46SUYNEj3ueoqXYraGIcQDJ5rstMUnACbF3StZujxiq1+1nRLtzVpOrkHSUn6GD8eHn8cPvwQwsLO0r17FAMGQEQEJCSo43j3XT3GTWfg4KsyFxaLxeIWmZnw6KOwfn3ltpwceP55mD27cp8LFyozlHNy4OmnNaYgAmFhhl/+EgYP1hiDM73kZgyhOr5qsnPs2DF69+4dYovc0bWa9jz5UdMt3VBrZmbC7t0nuPHGHuTmasC4vBzmzdMA8cSJOv+/dSucPAmf/7xe5C+7TJPQRo7UGMK77+r+d9wBycnwzjuniYvrQloaHDum7xWqEUKLxxRaI4cPH/aMrtUMPV6x1c+abumGWjMuDjZsOMucOXrnv3at3vHHxMCll8L//i/87nd6wb/nHnUaGzfqqqKRI2HVKti8WV//1rf02HvvhSlTsiviBlOnNu8IwcFXTsFJ0vGCrtUMPV6xtbVrOlU7q2qGsmpna/j8mZk6xbN4sU4JPf+8Pu67Tx+//CXs23eCzEx48EG92B8/riuHysuhc2d1FiLw1ls6avjNb1T7qadgyxYoLNR4QWRkZbG7o0ffbhFHUBVfBZotFkvTqDonXlYWCegc+qJFcP/9LWxcE6lecygrCw4d0ocz0OjcWXMHioshLCyWpCQNEHftqkHj0lLYvRu6dYOoKNi3Ty/6P/+5Bo2NUWeQnQ3p6brfyJGVuQetAV85heHDh3tG12qGHq/Y2po1c3P1YpmWBq+9NoaXX9apkilTQle1szk/f1VHkJend/zFxXDmDPTrp3f0Z87A2bO6T3m5/h4ZCaWlEezbp47i9Gl1AKdP69TP4MHqKIqLtZbRr36lMYOSEh1RXHedOteRI2HTJv2Zm+ve334w+MopxMTEeEbXaoYer9jamjWHDlWnsGoVREVF8Ic/6B1wWlpI5IHm/fxxcfDGGxoEBr2I796tF++NG6FTJ724X3YZfPKJ3uX37q3bDxwIo0sXzTYuLlan0LMnfPWr8I9/qJN57DH4+991CunIEbjiCnjhBf3O5szR77FqMtqRI+787QeDr2IKTqEvL+hazdDjFVtbs6aTcHXwIMyda+jYUQOrDjk5uvyy6lz84sU6xbR4ceWc/OLFepeeman7PPpo5bz6iy+ur5jPb0ycwokHVO1W5mg6erNn6/uCfp7u3XUa6K23ID9fRwTh4ToK6NtXtx08qFNHBw/q9E9JyVk6dYJTp9Qp3HOP9jsIC9PVRHfcAe3aafLZnXeqw/jiF2H06MrvsXoymlt/+8Hgq5GCxWJpPE7S1Ucfwfbt0LXrGQ4d6oEx8P77eqHbtQtuvhnmztUllZ98ovPmx4/DJZfoxRV0muaGG/TOe80aiI7WEci118LKlalcd51eqIfWsoCy6rSPw9tv6/LPxERdCrpwob7nsWPw/vujufJKvShv26YOYM0aWLYMbrkFjh7VY8LDNTh8/rza3rEjfPyxbrvkEn2f8HB1Ap07n+fyy3VEMGSIHnP33Tod5IycnFhBUpLGEBxn5SSuudUopyn4yikkJiZ6Rtdqhh6v2NoaNZ0A85w56gCuuQb272/P0aOwc6c2ftmwQbf/8Y9w7pwed+6c7t+lizqESy7RTN3Dh+HFF/XCO2gQFBToxXfDBoiP78GpU1rW4d13dYqlsBDGjNHaQDt3Qp8+upwTVG/vXtUsL9c78uRkdVzHj0P79hAVFUlEhDqC7dvV3ksvVSe2e7c6k27dNF5w/rxOGQ0cqCOFoiJ1UDfcUDnNdPIkFBYWcd110URHQ69Az0hnKanjsByHAPrTea02Z+DW334w+Cp5rby83JVqiW7oWk17nlqTptMX+OxZnWK55RZYtqycvn3bkZ0NH3ygF9IOHXQ+/pJL9MKdl6dTKKdPq2MoL9cL6MGDzt22jhKio3XfiAi4cMFwxx3C0aO68ic7W+fxjx3TYz/8UC/KQ4fqe77zjr7Ws6delEtKNBBcVqa/d+8OgwaVI9KOd95R59a9uxMsVucSFaVxg4gI/bwxMboN1Dn16vXpJLLWeJ7qwiav1YDThMILulYz9HjF1pbWrKlcA+hd/T//qRfGlSshOflfTJigF+IxYzT4ev683oH37KkX+chIHQWcP68/IyMr7+j79dNjwsMr7/pLS6Go6CiLFqmD2bhRj927V/f58EO9OEdEqMPYswdOnNC7+iuu0BHCpZfqMe3a6cglKgreeaeEnTvVMQ0erPt16KCjk7591a6ICHjkEZ36uvVWGDtWH9dcU3MSWUufJ7fw1fSRxWK5mMxMvfMfM0YDoKB30qtX68Xxm9/Uu/7MTL2ADhmiq3WuuQa2bEli/35djvrXv+pxp087hd30AlxYqNNDp07pXf2OHXrhDwvTi/b585Xr+s+e1UDtxx+foqBAl7r26aPHlpZqrCA/X0cF06bpVNDu3ZVO4NAhx6moLeHhEBurF/Onnw6ntFTfJz9f7Sws1NfHjtUyFLNna+mJBx5oPTkDLYGvnEJ4eLhndK1m6PGKrc2hWbXBy5Ej8P3vq2MoLtaLa1mZXoSfflov4GFhMH06rFihd/h790JZWUf69NFyDefO6d12UpLGEMLCKhO4unaFSZO0FERsrL5/VJRe3Dt2hAEDNJDbp49uKymJoKxMNU6c0J+nT+uF/uxZdSYvvaQX9e7d1QkMGqSfw5k6io/XKamtW3V007HjeTp16owzM1Neru+bkqLPt27VchN799Y951/XdxoK3PrbDwZfxRQsFotSvcHL//yPjhjatdOL+IMP6tTNv/+t8/dxcXrBvfJKvZtPSNBVSAkJekG99lrVcgLC772nvw8YoNsLCnRKqSqB9sEVQVqA//s/HaX066d3//n56qB69FBnlZio008FBdC/P9x2mx6Tm6u2de2qiWG9eqn+/Plqd1qaxgzefFMdzPXXV/YpcGiu0tQtRUNjCs3WozlUj6b0aH799dcbfWxz61rN0OMVW93UdPoBO31+H3jAmOnTtR9wz57GREcbc801xgwZYkz//sb06aPPe/Qw5qqrjPna14x56y3VfOGF1UH3Ca6L7GxjZsww5vrrD5mxY40ZNMiY73zHmBtvNOb66415+mn9ecUVaseMGZWf5bnnjPnDHy7Wq/pZnc+fna3bQmG3V869Ay3do7k1kufcmnhA12qGHq/Y6pbm7NmVUypZWZo8FR6u0zrO3XivXpqZCzpt881v6t16cbEGenv1qryTFzkQsjtrZ+QSHw+xsVtp3z6BoiKNEVx2mU4TXXed5hNAZceyxYt1FdK9935as6ptb76p32kocwO8cu6DxbXVRyLSSUQ2i8h2EdklIj+vY99hInJBRKa4ZY/F4ncGD9bcAGeqZ9Ys+O1vdZ6+fXt9PSmpMjmrZ0+dbiku1qSvu+7S6SWn+UtBQWTIbMvN1ezejAxo186QkaEB3759NRCckaE5BRkZ+nDm/avmBFhCg2sxBRERoIsx5pSIdAA2AN8zxmyqtl8Y8CZwFviTMWZJXbpNiSkcP36cS5y0xBDihq7VtOfJDc3167X1Y3S0ZvNGRuod9ZgxmgF89qw6h5gYjSl066ariO67T1cn5eRoQhlAly4nSUvrFlI7q9pqNUNLi+cpBKaxTgWedgg8avJA3wGWAq6Pm/Y542IP6FrN0OMVW93QXLr0KDk5emG/9lpdztmzZ+Wa/dhYrdXzhS9oYtrvfgevvKJlG2bM0KkkqLw7nzoVLrnk/ZDbCd75Tr2iGSyuxhQCo4AsIBl43hjzTrXX+wK3Al8AhtWhczdwN0BsbCxz584FtMxsTExMRRGpxMRExo0bV5EAEh4eTnp6OsuWLSMvL4+CggKSk5PZt28f27dvB2DUqFFERkayevVqAPr378/o0aOZP38+ABEREcycOZMlS5ZQWFgIwLRp09i5cye7du0C4OzZs/Ts2ZO1a9cCkJKSwrBhw1i4cCEAUVFRTJ8+nUWLFlFcXAzAjBkz2LJlC3v37gVg7NixlJWVsW7dOgBOnTrFgAEDeOWVVwCIjo5mypQpLFiwgDNnzgCQnp7O+vXryc7OBmD8+PGUlJSwceNGAIYMGUJycjJLly4FoKioiBEjRjB//nxKS0sBmDVrFmvWrOHQoUMATJgwgfz8fDZv3gxAamoq8fHxLF++HIC4uDgmTpzIvHnzKC8vp6CggBEjRrBixYqKRuaTJk3i8OHDFY1N7Hlq2fO0d28MJ06cpKhoMB9+uINlyy6lc+dSzp7twbXXHmHbthNs2wbf+U44t9zSjZUrVzJ3rp6nyZP1PJ04AR9+aM+TF/+fACZPnkyDaUg0uqkPoDvwL+DKatsXAyMDv88HptSn1ZTVR3PmzGn0sc2tazVDj1dsDaXmhg3GrFtnzFe+ssk884wxCQnGjB+vK4qeecaYm24yZtGixq3IsefJG5oOtKbVR8aYIhH5N/AlYGeVl4YCizT8QE8gTUTKjDHL3LBj1KhRbsi6oms1Q49XbA2lZlycrtC5+eYYli/X2MGmTbpa5zvf0QzlXbs0casl7XRb18+aweLm6qMYEeke+L0zcCNw0SSkMSbJGNPPGNMPWAJ82y2HABAZGbrVEm7rWs3Q4xVbQ6Xp9A6YOhU++KAHgwZpotdnPqNLPZ0YQ2McQijtbA5dP2sGi5sF8foA/xKRHcAW4E1jzAoRuUdE7nHxfWvFmef0gq7VDD2t2daqjeK/+91jFzWKd35/9FF93HffxU1pnAqmjz6qPx09p9T1u+9CdvYuXnxR6xjFxVX2Ba7aiCZY/HievKgZLK5NHxljdgDX1rD9hVr2T3fLFoulNeNcwLOyNAfg44978Pzz2hu4c2etTnr2rCZ2xcVp+YbeveFvf9PjwsI0uSsmRjUWL9alpsePq/7u3fDvf19Ljx5aoiIt7eK+wK2x0Yul5fBVRnP//v09o2s1Q09rtdWZ909L04Yy7dp1o6BAL/jl5ZXF4HJyNPP4G9/QRjYHDqiz6NRJi8n16qUVRTdv1uzkHj20gmhWFoSFtecHP9DCdIsXq0Oo2gaypT57c+n6WTNYfFUQr7S01JUqhG7oWk1/nSdnCqh9e1iwoJyuXdtVNIqPjtYL/7FjlSWhz5+vrETqlIoGHVV06aJZyIMHazG7o0fhy18uQ6Q999+v++XmNr34mx/Pkxc1HVo8ea014qyV9oKu1Qw9rdHWzMzKnr3x8fDaa1BUlMfBgxc3ii8o0NfLy/VCf+GCloAQqdx+/rwmpHXsqBVEc3K0nPQtt8CGDbmMGVMZcwhFzSI/nScvawaLr6aPLJbWgtPcJiVFf7/0UnjmGe0fkJvbg/j4ytaQXbuCMeocTpyonDLq1q1yKqm4WJ1CYSFcfbXuV1SksYWsLBg5ci8HDybaOIKlXnzlFCKc/zIP6FrN0NMabK3e3MbpevajH+ld/+nTcMUVeSQlJXDddXph79ZNC9MdOACXX64X9JwcjR/84Q963MCB2ujGGN0vPFyrivbo4QSvY7njjqbHEZry2VtS18+aweKrmILF0tJUb27zwgtahygsTHsG/9d/aRe0nJzKeX9nVBEdrcc4TuHZZ2H7dk1A+8xntIT0u+/CP/6h+ufOwYgR6nwSErSFZltuImOpG9tkpwYWL17c6GObW9dqhp7WYqvT3Obuu42ZONGYvn2NiYkx5lvfMuaJJ4x57rmVTbIpO1t1srMrn8+cub3ieaho6+eprWg60MAyF74KNDsFuLygazVDT0vbWjWoPH68Nq/Ztk2njK66Cvbs0djCW29d0qSkstxczWJ24gZJSTBw4K6Q9x1oq+eprWkGi6+cgsXSUsyerb2FFy+G9eu1LPU77+gy09RU+OlP4YordDopOrqkSRfwz37204Hknj1L7NSRpUH4KqZw8uRJunULfVMQN3StZts6T05zm5tugqVLtZl8djZ87WuatQwaL3jvPTh37gz33RfagKM9T/7VdLB5CjWwc+fO+ndqJbpWM/S0pK2jR+sKo5df1pVBx4/r6OD3v9f2kqmpGmy+914YMWJri9nZ0ppu6fpZM1h85RScJh5e0LWaoaelbHViCaNHa2ezfft0imfv3soYw9SplSuDvPKdtrXz1FY1g8VXTsFiaQmc2kbPPqtTRzfdpAllAwc2vVKpxRJqfOUUxowZ4xldqxl6WsrWpCRdVfTkkzoiuPRS+PnP4e9/19+rB5W98p22tfPUVjWDxVdOoX17dxK43dC1mqGnJWx1po4KC7UPQliY1iqKj9cYQ2HhpxPKvPKdtqXz1JY1g8VXTsFpBO4FXasZelrCVmfqaPBg7XaWkgILFmhBu9q6nnnlO21L56ktawaLr5yCxdLcJCVp74LHH9fRweHDOkLYtMnGEiytEzd7NHcSkc0isl1EdonIz2vYZ4aI7Ag8NorIELfsAUhJSfGMrtUMPS1la1gYzJypq42GDdMRwtSpn44lBKMZLF7RdEvXz5rB4lrymogI0MUYc0pEOgAbgO8ZYzZV2WcUsMcYc0JEbgJ+ZowZUZduU5LXTp8+TZcuXRp1bHPrWs22c56cBjrDhsGWLReXoGhNdrYGTbd0/azp0OLJa4EaTKcCTzsEHqbaPhuNMScCTzcB8W6o8TdUAAAgAElEQVTZA7Bw4ULP6FrN0NMStjoOYepU+Pzn9Wd9y1C98p22pfPUljWDxdWYgoiEicg2IA940xjzTh27fwP4u5v2WCzNSWamlrKuPjJISqp96shiaWlcXf9kjLkAXCMi3YHXReRKY8yn8rhF5POoU7i+Jh0RuRu4GyA2Npa5c+cCMHz4cGJiYli5ciUAiYmJjBs3jnnz5gEQHh5Oeno6y5YtIy8vj8LCQo4fP86+ffvYvn07AKNGjSIyMpLVq1cD2jh79OjRFW3xIiIimDlzJkuWLKmoYDht2jR27txZkX3Yrl079u/fX7FyICUlhWHDhlV4/aioKKZPn86iRYsoLi4GYMaMGWzZsoW9e/cCMHbsWMrKyli3bh0A58+f5+TJk7zyyisAREdHM2XKFBYsWMCZM2cASE9PZ/369WRnZwMwfvx4SkpK2LhxIwBDhgwhOTmZpUuXAjo0BW35V1paCsCsWbNYs2YNhw4dAmDChAnk5+ezefNmAFJTU4mPj2f58uUAxMXFMXHiRObNm0d5eTknTuhAb8WKFeQGrnSTJk3i8OHDZGVl+fo8HToURlZWf66++lr++c/1bN6cT1ZWf37wg3i6dTvB3Ln2PLWG89TW/58AJk+eTENptoJ4IvJT4LQx5n+qbb8aeB24yRiztz4d22TH4iWCjSdYLG7R4jEFEYkJjBAQkc7AjcD71fZJBF4D7miIQ2gqixYt8oyu1Qw9LWFrUpI6hHXr9GdDHIJXvtO2dJ7asmawuDl91Ad4UUTCUOfzqjFmhYjcA2CMeQH4CXAJ8AddrERZQzxZY3GGml7QtZqhpzltzczUxDXQEcKYMbB6NRQU6GihMZpNwSuabun6WTNYXHMKxpgdwLU1bH+hyu+zgFlu2WCxtBRxcZW9mDMyKrdnZWkvZTuFZGmt+KrJjl1X7V9Nt3SramZmwltvQXS0Nsx5911YuxY6dtRWm9/8pjqE3NxP1ztqTjtbs6Zbun7WdGjxmEJrZMuWLZ7RtZqhxy1bMzM1mHzhAhw5Ai+9BA8/DLt3aye1pUvVMTgjhPraYnrlO/XaefKrZrD4yik4y9W8oGs1Q48buqtWneTCBZ0WWrUKbr8devXS359+Gj78EK69VgvitaSdXtF0S9fPmsHiK6dgsYSa7t3PsGmTThcBzJ6tjqBTJ31+xRVaMjsjwzbUsXgDXzmFsWPHekbXaoaeUOtmZmqy1tSpWvW0Vy8dMRQVQbt2cMklUFICgXypOovguWmnlzTd0vWzZrD4yimUlZV5Rtdqhp5Q6mZmagxh5coIQMtiz5mjF/3SUoiJgcce07LZ27bBE0/ocfXFE0Jtp9c03dL1s2aw+MopOCnvXtC1mqEnlLq5uRo3MOZtnngCHn0U8vKgd2/42tfUGWzdqjGGO+6Avn0bXu/IK9+pF86T1Qyelu/9ZrF4kKFDdapo8+Zkysrg3Dm4/nq4/36dSho5Eo4d014K997b0tZaLA3HV05hcDBLQFpY12qGnlDqJiVp8Pif/+zD2bO6umjwYEhI0Edubv2Zy81hp9c03dL1s2aw+Gr66Morr/SMrtUMPaHW/egjgEhSUjSDOS1NVxhBw2IHteGV79Qr58nvmsHiK6fglM31gq7VDD2h0HUS1davh7lzISJiL1Om6FTR3Lk6bdTUXgle+U5b83mymo3HV9NHFktTiYuDN96A99+H2FgYPnwfO3YMIjZWXz92rPHTRhZLa8BXTiE6OtozulYz9DRWNzOz8u5/6FCNJfzgB1rCoqRkOFdfrauPIDQd1bzynba282Q1Q4OvCuJZLMGSmal5Bu+9p8+7d9eyFc88ozGFqCh46CFdemqxtGZsQbwaWLBggWd0rWboaYiuEzNwHhcuqEPYv18f//ynjhTefx+6dIGuXXPYsSO05Su88p3a/ydvaAaLr6aPnF6sXtC1mqGnIbpOzKCoqHJbcTHk50NhIZw8CeXlmqT2yCNw4MAmiouTmDNHnUUo+iR45Tu1/0/e0AyWWkcKIlJcz6NERFq+pJ/FEiIyM/VnRoZOE508qW00t2yBzp3hk08gPFynjFJSYMeOyv1TU0MTT7BYWppaYwoistUY86nOacHuE2qaElMoLS0lPDw8xBa5o2s1m/885eTolNHUqXDgADz7LOzcqQ4hN1d/RkfDoEHqGAAiI8v49rfbh7STmle+U/v/5A1Nh1DEFCY34H1q3UdEOonIZhHZLiK7ROTnNewjIvKMiOwTkR0icl0D3rPRrF+/3jO6VjP01Kebm6t5BnPmaM5BdjacPas/w8O1DPaDD0Jiou5/1VXQqdOukI8QvPKd2v8nb2gGS60xBWNMdn0H17PPOeALxphTItIB2CAifzfGbKqyz03A5YHHCGB24KcrZGfX+5Faja7VDD316Tp9lXftgo8/1tLX58+rE0hM1NHB1q2auXzsmO6/a9c7fPazQ5rVzras6ZaunzWDpd5As4iUANXnmE4C7wI/rM0xGJ2XOhV42iHwqK4zCfhLYN9NItJdRPoYYz4O4jNYLEFTNffAoXdvDSi/9546gf374c47tepp1RnLsLDKBLVdu5rPZoulOWjI6qPfArnAy4AA04FY4APgT8DnajtQRMKALCAZeN4Y8061XfoCH1V5fjiw7SKnICJ3A3cDxMbGMnfuXACGDx9OTEwMK1euBCAxMZFx48Yxb948AMLDw0lPT2fZsmXk5eVRWlrK8ePH2bdvH9u3bwe0SUpkZCSrV68GoH///owePZr58+cDEBERwcyZM1myZAmFhYUATJs2jZ07d7IrcEUYOHAg+/fvZ+3atQCkpKQwbNgwFi5cCEBUVBTTp09n0aJFFBcXAzBjxgy2bNlS0X5v7NixlJWVVZTOjYuL4+TJkxVp79HR0UyZMoUFCxZUrFBIT09n/fr1FXcX48ePp6SkhI0bNwIwZMgQkpOTWbp0acVnAZg/fz6lpaUAzJo1izVr1nDo0CEAJkyYQH5+Pps3bwYgNTWV+Ph4li9fXmHXxIkTmTdvHuXl5Zw/fx6AFStWkBu4yk6aNInDhw+TlZXVqs5TWdkInn32KCUl/+LAgZ4cPTqIzp17sWPHUQCKiyOJiOhOly4fc/Bge7p1O01xcRybNv2HkpIdF52nuXPtebL/T944TwCTJzckGhDAGFPnA3inhm2bAj+313d8YL/uwL+AK6ttXwlcX+X5WiC1Lq3U1FTTWN57771GH9vculYzdGzYYMyrrxrz5z/vNw88YMyMGcY884wxN95oTHKyMQMGGHPppcZ06WJMQoIxQ4YYM326MQ88YMy6dXp8c9nqd023dP2s6QC8axpwvW5I8lq5iNwmIu0Cj9uq+pQGOp4i4N/Al6q9dBhIqPI8Hh2VuILj8b2gazVDR1yc9j5YtKiYtDTNM/j1rzWA3L49dO0Kp05B//7aW7l/f7j7bl1qummTHt9ctvpd0y1dP2sGS0OcwgzgDiAPOBb4faaIdAb+X20HiUiMiHQP/N4ZuBF4v9pufwO+FliFNBI4aWw8wRJCquYeACxcCEePalygfXt1AocOQUSE5iWEhUHHjhCY/WhwX2WLpa3QEKdQZIy52RjT0xgTY4y5GbhgjPnEGLOhjuP6AP8SkR3AFuBNY8wKEblHRO4J7LMKyAb2Af8LfLsJn6VehgwJ7SoRN3WtZmiIi6vscfDlL3fkwAENDsfH63LTDz/UVpnR0dCjh9Y16tZNM5rnzNHj6uqN0No/v9c03dL1s2awNCTQ/IaI3GSMKQYQkYHAYqDObhDGmB3ApxLbjDEvVPndAM3WrDA5OdkzulYzNFTNPdi6tT/vvQeRkXD6dGXuwdmzMG6cZixfdRX06nXx8XUlprX2z+81Tbd0/awZLA0ZKTyGOoauIpIKLAFmumuWOzirBrygazVDQ1wcrFqlo4OdO0sYNw6GD9dCd8OGwdNPw7e/rT2Wb78drrlGp4ycR30d1Fr75/eaplu6ftYMlnpHCsaYlYHkszVAJHCLMeZD1y2zWIKkvtyDmJhitm/vyec/D/fcowloYWFw771a4iI3t2ltNC2WtkCtTkFEnuXi1UVR6Pz/d0QEY8x33TYu1PSqOi/QynWtZvDk5kJgaTug1U23boWyMrjsMjhwoAeDBum0UUICjB5duW9SUuMqnLamz98WNN3S9bNmsNRVEO/rdR1ojHnRFYvqwTbZsdREZqZOCa1apUHikydh82YdDURH62PgQLj0Ui1TERZmRwUWfxGKgnifBYqB14wxL1Z/hMzSZsTJqvSCrtUMjrg4zSlISwNj4MgRdQxVcw8SE//RoNwDt221ms2v62fNYKnLKfwJGAKsEpG1IvKAiLT8eqkm4KSie0HXajYcJxdh6lQdKXz4IezZo6OBqrkH27fHVuwXqtyD1vD525KmW7p+1gyWWp2CMWaTMeZnxpgbgNuAQ8APRWSbiPypWmazxdIiONNGixdrz+RduzSo3K7dp3MPzpwJb1DugcXiZ2qNKdR5kC5N/ZIx5lehN6lumhJTKC8vp1270LeldkPXatav6TiETZs0F+G3v9UuaRcuaL7BDTfoiMDJPXB04+JC5xTa2nfa0ppu6fpZ06HJMQUR+bqIzKph+zeAwS3hEJrKmjVrPKNrNevHiSOMHKnTRoHClPzoR9okp1Oni3MPunVb06DcAzdstZotq+tnzWCpyyXdC/wZQET+N1C/COAvgOeWowIV5Wy9oGs16ycpSS/2mzbpiKCwENLTwZmWnTr14lVGbe3zt0VNt3T9rBksdTmFTlTmKQxFq5wS2NbRRZsslgaTlKR5B2+/DTNmaOxg5MjKekc2dmCxBEddeQo/B65By1zMRZ1BBvBjYJsx5ifNZWRVmhJTOHLkCH379g2xRe7oWs2Gaa5fDw88ANOm6Qhh5MjKKaXquQgtbavVbDldP2s6NDmmYIz5KbAMeAIYHHg8ASxrKYfQVPLz8z2jazXrJycHFi2CJ56A73+/ciqpJofQ0rZazZbV9bNmsNQZ5jbG/NkY8zm0KupiY8znjDF/ahbLXMBpiecFXatZN5mZ2jf5/vs/Xa6itmzltvT526qmW7p+1gyWBq19MsZ81Rhzu9vGWCwNwVmKmpNTuW39enjySRg61MYRLJamUFdBvP8YY66r6+CG7NOaSE1N9Yyu1ayZzEzYtk0T1dLSNKAcHg4vvgizZtVd1K4tfP62rumWrp81g6Wu0tkDA13TakOAbiG2x1Xi4+M9o2s1ayYuDt54Q4verVqlU0ULF2qCWlpa43Ubi9UMPV6x1SuawVLX9NEA4OY6HhOBUW4bGEqWL1/uGV2reTGZmZXLTDMyoHt3WLcOZs/WchaDBzdOt6lYzdDjFVu9ohksda0+OtiAx+HajheRBBH5l4jsEZFdIvK9GvbpJiJviMj2wD53huqDWdoWcXGQlVXZN7lDB9i5EyIitKWmM5VUNc5gsViCx50iG0oZ8ENjzEBgJHCviAyqts+9wG5jzBDgc8BTIhLulkFxoaqX3Ay6VrMSpwpqRob+/O534bnnICpK6xt166ZTSSNH1l391Kuf30+abun6WTNYGlUQr1FvJLIceM4Y82aVbQ8CCahz6Ae8CaQYY8pr07FNdvzD7NlQXq7xgk2bNA/hT3+CZ57R13/+c5g0SUcPRUUwdqzuY7FYPk1Dk9fq7dEsIoOMMburbfucMebfQRjTD7gWeKfaS88BfwNy0f7P02pyCCJyN3A3QGxsLHPnzgVg+PDhxMTEsHLlSgASExMZN24c8+bNAyA8PJz09HSWLVtGXl4eBQUFZGRksG/fPrZv3w7AqFGjiIyMZPXq1QD079+f0aNHVzS7iIiIYObMmSxZsoTCwkIApk2bxs6dO9m1axcA586dIy0tjbWBXpApKSkMGzaMhQsXAhAVFcX06dNZtGgRxcXFAMyYMYMtW7awd+9eAMaOHUtZWRnr1q0D4PTp09x111288sorAERHRzNlyhQWLFjAmTNnAEhPT2f9+vVkZ2cDMH78eEpKSti4cSMAQ4YMITk5uaIZ+MmTJ7n//vuZP39+Rd32WbNmsWbNmoqaKxMmTCA/P79ivXRqairx8fEVc51xcXFMnDiRefPmUV5eTkFBAQ899BArVqwgN3CbPmnSJA4fPkxWVlaTzpPIMZ55phu9e5/krrs68f3v9+LNN8MoL2/HgAElHDnSnb/+dTFRUXD6dF/i4kbb89QC58n+P7Xu8wQwefJkGowxps4HsBN4AF1t1Bl4Fni7vuOqHN8VyAK+UsNrU4CnA9rJQA4QVZdeamqqaSxz5sxp9LHNret3zQ0bjMnONmbdOmPGjDHm8583pls3Y3r0MObpp/W1Bx7QR3Z2y9pqNVu/rp81HYB3TQOu2Q2JKYxAp3g2AlvQu/oGpQeJSAdgKbDQGPNaDbvcibb7NMaYfQGnMKAh2o3BrTrlbuj6WTM7u09F45yEBPjyl2H3bq1t9NWvVlZBzciA1NSGd1Hzyuf3s6Zbun7WDJZ6YwqBwO+vgC+id/0PG2MW1SssIsCLQKEx5vu17DMbOGaM+ZmI9Ab+AwwxxhTUpmtjCm2b6o1zXn5Zg8j5+boC6Ytf1B4JToyhrmQ1i8VSSZML4lVhC/AJMAy4HviqiCxpwHGfBe4AvhBo4blNRNJE5B4RuSewz6PAKBF5D1gLPFCXQ2gqK1as8IyuXzXj4uDPf95zkUMoKIBvfAP+/Gd4/33dXt9Ko+aw1Wra/ycvaAZLvYFm4BvGGOfW/CgwSUTuqO8gY8wGNFZQ1z65wLgG2BASckPVrb0ZdP2qmZQEl1++jU2bBnLgAJw5A3feCYmJOpX0i19o0lptRe+a01araf+fvKAZLHXVPooyxhQD2SISXe3lle6aZfEjmZk6UujZs4QzZ2D/fu2TYExl45ypU+GRR1raUoul7VJXk50VxpiJIpKDNtipetdvjDH9m8PA6jQlpnDs2DF69+4dYovc0fWjZk6OXvi7dTvB/Pk9uPFGzWL++tfh4MHa+yS0hK1W0/4/eUXTIRRNdiYGgsVjjDH9jTFJVR4t4hCayuHDtVblaHW6ftRMStIL/3PPtWfaNIiMhB/9KDQOIdS2Wk37/+QVzWCpr8mOAV5vJltcx0n+8IKuXzSdQnePPqo9EcLCYNCgHWRmwpEjsGuXThk11SGEwlar6b6mW7p+1gyWhgSaN4nIMGPMFtetsfiGzExdPdS7t04RHToEK1fCwIGwcWMKKSnwn//AqFE6grBLTy2W5qEhS1I/jzqG/SKyQ0Teq6fPQqtl+PDhntFty5pOLkJWli45dfog5OToctMuXSIoL4fHHtOpo1BVPm0tn99qNr+unzWDpSEjhZtct6KZiImJ8YxuW9aMi9Mpo7Q0dQqzZ2s3tY4ddUTQrl0Hbr5ZVx7l5OiIIhQjhdby+a1m8+v6WTNYah0piEgnEfk+cD/wJeCIqdJLodksDCFOASkv6LZVTacM9tSpmpXcq5eOGE6dgr59NS/hwoV83nhDYwxJSaHrudwaPr/VbBldP2sGS13TRy8CQ4H30NHCU81ikaVNk5tb2SgnPl6zlPPytJ7RkSNw//2QlJRPnz7w05+qY7BYLM1HXdNHg4wxVwGIyB+Bzc1jknskJiZ6RrctamZmamAZ4Mc/1iJ3hYXQpQtcf72uMDpyBMaOPUe/fuosdu2C0aOb31ar2TKabun6WTNY6kpe+48x5rranrcUTUleKy8vd6UKoRu6bVHTSU679FJtkNOhA4jAgw9W5iIcOwaxseXccIM9T37UdEvXz5oOoSiIN0REigOPEuBq53cRKQ6dqc2H04TCC7ptUTMpSWMJb7wBsbHQvr0uQR0+vDIXYepU2LPHnie/arql62fNYKkroznMGBMVeEQaY9pX+T2qOY20eJ/MzMqlpRcuaAzhS19SR+DEGEIVULZYLI2n5Ts6NCPh4eGe0W1rms4y1Jdego8/hilTYOtWuPlmfb3qjKA9T/7VdEvXz5rBUm+TndaGbbLjXdavhwce0PyD0lKNITjNdEJRxsJisdROKJvstBmWLVvmGd22pOlMHYWFwXe+A0VFuhzViSFUdwj2PPlX0y1dP2sGS0MymtsMeXl5ntH1umZmJrz1FkRHw1VXVa46evVVXXW0ejU88UTNdY3sefKvplu6ftYMFtecgogkAH8BYoFyYK4x5vc17Pc54HdAB6DAGDPGLZss7uIUuQPNRzhyBJYuhZgYHRk89RR07arPf/ADnTpKSLDF7iyW1oRrMQUR6QP0Mcb8R0QigSzgFmPM7ir7dAc2Al8yxhwSkV7GmDpdZVNiCsePH+eSSy5p1LHNretFzZwcXUlUVATdu8O118Kvfw0ffQTnz6tDiIuD++6D22+vrGtUPZZgz5N/Nd3S9bOmQ4vHFIwxHxtj/hP4vQTYA/StttvtwGvGmEOB/VwdO+3bt88zul7SdHoiAGRkqEPYtQsefhjatYOoKHUIXbuqMzh8WB1CbXWN7Hnyr6Zbun7WDJZmiSmISD/gWuCdai+lAB1E5N9AJPB7Y8xfajj+buBugNjYWObOnQtomdmYmJiKIlKJiYmMGzeuIgEkPDyc9PR0li1bRl5eHgUFBSQnJ7Nv3z62b98OwKhRo4iMjGT16tUA9O/fn9GjRzN//nwAIiIimDlzJkuWLKGwsBCAadOmsXPnTnbt2gXA2bNn6dmzJ2vXrtUPlZLCsGHDWLhwIQBRUVFMnz6dRYsWUVyseX8zZsxgy5Yt7N27F4CxY8dSVlbGunXrADh16hQDBgzglVdeASA6OpopU6awYMECzpw5A0B6ejrr168nOzsbgPHjx1NSUsLGjRsBGDJkCMnJySxduhSAoqIiRowYwfz58yktLQVg1qxZrFmzhkOHDgEwYcIE8vPz2bxZq5qkpqYSHx/P8uXLAYiLi2PixInMmzeP8vJyCgoK+OpXR/D00/v44x9PMXr0HhITb2Lx4nCOH7/AiRPltG/fibKy9pSUnGTZsqPcfHMJr746jAsXXqFnzxJ7nprpPI0YMYIVK1ZUNIefNGkShw8frmjsYv+f2uZ5Apg8eTINxhjj6gPoik4dfaWG154DNgFdgJ7Ah0BKXXqpqammscyZM6fRxza3rpc0N2wwZt06Yx54wJjp040ZMsSYhARjIiONiY42JjnZmGeeMSYjw5gRI/TnunXGbNjQfHa6pWs1Q49XbPWKpgPwrmnANdvVkYKIdACWAguNMa/VsMthNLh8GjgtIuuBIcBeN+wZNWqUG7Ku6HpJs0sXnT6KjYUVK7T8dceOcNNNWvAuJkaDzrffriuRCgvrzkuw58m/mm7p+lkzWNxcfSTAH4E9xpjf1rLbcuA5EWkPhAMjgKfdsikyMtIzul7R/OCDnlx3nSagfe97EB4OJSVw2WXw+OO6j7MuICwM7r23Zex0S9dqhh6v2OoVzWBxM3nts8AdwBdEZFvgkSYi94jIPQDGmD3AP4AdaGnuecaYnW4Z5MxzekHXC5qZmfD225uZM0fbaA4YAP37w+WXq1NwahpNnaqPhmYs2/PkX023dP2sGSyujRSMMRsAacB+TwJPumWHJbTMng3l5doxrXdvyMnpTWIi/PvfurrozBntf3D77VoGO1StNC0WS/Pgq4zm/v37e0a3tWoOHgw/+YnmGyQmQmxsFEuWqKMoKdHOaZMmaYxh6tTGOQR7nvyr6ZaunzWDxVcF8UpLS12pQuiGbmvTdLKVhw7VZLSf/ATOnYO9e8uJiGhHeTmkp0O3buoMoObENLftbG5dq2nPU2vXdGjx5LXWiLNW2gu6rUHTSUpbvFh7IGRlab2i997Tmkbvvw+ffHKO8+crHcLIkZWJbI2temrPk3813dL1s2aw+Gr6yNJwZs/WC//WrZVlKzp10kJ2q1ZV9lY+c6Y9/fur06haCtvGEiwWb+KrkUJERIRndFtac/BgePFFrV/UvTts2QK/+5220Dx+XLdddRXcdttWwsPh0CF1FqHojWDPk3813dL1s2aw+CqmYKmf6rGDxx+HHj3g73/Xn598oiOI2FhITtamOR99BOvW6ZLUuDjbLMdiaY3YmEINLFmyxDO6zaVZNW7gxA7WrtXS1u+9p89ffx1EdHVRt25w/fUaaO7eHX7wg/dJSIBHHgkuFyFYO0OBl8+TXzTd0vWzZrD4KqbgFODygm5zaebmqhOovm3PHti8GQoK9OIvAhMmaMYy6FRRWhoUFn5Ebu6AkMYP7Hnyr6Zbun7WDBZfOQXLpxk6VFcVFRXByZOwbZv+7N5dt112Gdx2GwwapDGGr39dy2GDxg6GDs2x00UWSxvCVzGFkydP0q1btxBb5I6um5pVO6QNDcwwPvQQ7N4NeXnqEE6e1PaZV1+tsYSMDI0d7NoF3/pW89gZarxiq5813dL1s6aDjSnUwM6d7pRVckPXDc2XXz54Uc7B2rWad/D738Pbb+tF//RpdQzdusGQITBjhh47Z462zqzqENyy0+/nyc+abun6WTNYfOUUnCYeXtB1Q3Pr1mOsXVsZDwD9ffZsnSrq0UPrGQ0cqEtRndfT0iA1tXJ04badfj9PftZ0S9fPmsFiYwo+ol+/AoqL1QEsXAgffgjFxZqElpys/Q/GjlVHkJCgRe9AYwdO6QqLxdK28ZVTGDNmjGd0g9WsGidwyMuD/fsrn3ft+nkSErS/wZEjuv8ll2gP5csu01pGCQkaP2ho3aLW8NlbUtdqhh6v2OoVzWDxlVNo396dj+uGbjCamZmVcYKiIjh6FE6dgoMHNQMZ4Px5KCuL5uqrYe9eyM+HDh3UITz4YGU5izlz1Ck0dEVRS3/2lta1mqHHK7Z6RTNYfBVTWFt9QX4r1q2umZkJOTkX77N4McyaBYcPa80hJ06wZw9s2KB3/gClpTpNVFx8lsxMTUIbNAhGjNCfW7fqsWPH1h47aKidocDL58lqtk5dP1xLCGIAAB0wSURBVGsGi6+cgpeJi1Mn4DiGnBwdGZw5Ay+8oMtHV62C7dt1aigpSQvYde2qMYEBA6Bz53OEh8Pw4fA//wNz52pPhISEyrhBqLKSLRaLN2n5sUozkpKS4hndqppOvGDkSHjySYiJ0Yv/tdfCrbdqGYqHH9Ypovx8uOIKbXpz4gQcOACdO+v2Cxe60KOH1i5avVqniYKJH9RnZ6jw6nmymq1X18+aweJa8pqIJAB/AWKBcmCuMeb3tew7DNgETDPG1Fn8oynJa6dPn6ZLly6NOra5dR1NJ16wapVOEyUlwbJlWro6IUHzCJYvVydRVKQjhp49dYSwe7fGDT75RGMHXbqUMXhwe6Ki9D26d1en0JQSFW5+9lDjFVv9rOmWrp81HVpD8loZ8ENjzEBgJHCviAyqvpOIhAFPAK53rF64cKFndBcuXFjhEJx4QXm5BoLz8sAYnfL59a/14n/6NPTrBx07apygsBCmTYPJk+Hmm6FPH0hI+A+33qqxg8bED2qzM9R47TxZzdav62fNYHFt+sgY8zHwceD3EhHZA/QFdlfb9TvAUmCYW7Z4FSeOMHKkjhSOHlXHcMklWp7in//U5xcuwA9/CHfdpRnKmzfDnXfCdddVTgvl5MDs2R/bfAOLxVInzRJTEJF+wLXAO9W29wVuBb5AHU5BRO4G7gaIjY1l7ty5AAwfPpyYmBhWrlwJQGJiIuPGjWPevHkAhIeHk56ezrJly8jLy6OwsJDjx4+zb98+tm/fDsCoUaOIjIxk9WodqPTv35/Ro0dXtMWLiIhg5syZLFmypKKC4bRp09i5c2dF9mG7du3Yv39/xcqBlJQUhg0bVuH1o6KimD59OosWLaK4uBiAGTNmsGXLFvbu3QvA2LFjKSsr449/fJ8PPuhDx44pjBhRTFnZSh57bCD798dz7FhPoqMLEDnHypXdiInpTF5eGX365LNlSwHjx8dwyy2nKCrK4+23YfjwcI4fT2bp0qUA9OlzGtCWf6WlpQDMmjWLNWvWcOjQIQAmTJhAfn4+mzdvBiA1NZX4+HiWL18OQFxcHBMnTmTevHmUl5dz4sQJAFasWEFuYNgxadIkDh8+TFZWVps9T+vWrQPg/PnznDx5kldeeQWA6OhopkyZwoIFCzhz5gwA6enprF+/nuzsbADGjx9PSUkJGzduBGDIkCEkJ1eep9On7Xmy5yl05wlg8uTJNBTXC+KJSFdgHfArY8xr1V5bDDxljNkkIvOBFW7GFFobmZk6GkhKqgwml5fDX/+qo4LLLoOUFB0tfPhh5Qjh0CFdVnr+PNx/v642clpmNjVGYLFY2iatIaaAiHRAp4YWVncIAYYCi0TkADAF+IOI3OKWPYsWLWo1upmZWqb6kUfg+ecrm9n84hcaGzhx4hirVsFTT2lW8uWXw+c+p2Wr+/XTEtbf+IbmJDQ0x8CNz+8VTbd0rWbo8YqtXtEMFtemj0REgD8Ce4wxv61pH2NMUpX956MjhWVu2eQMNVuDblwcvPGGjgxeekmXmX70kT5fvRoKCzvRqZOOCK68En7zG214k5WlTsDpg5yTo46gIbECNz6/VzTd0rWaoccrtnpFM1jcHCl8FrgD+IKIbAs80kTkHhG5x8X39QRJSTrVk5gIEREaHC4p0VVCFy7o6qJ27bRq6fnz8MorOnWUkVHpEBwdm2xmsVhCha+a7LSGddVO7GDoUL2gv/wyPPaY5hKcOaOJZmVl8Mkn5fTt244HH4R//Uunmq65Bh54oPExA6+sq24N58lqtoymW7p+1nRoFTGF1saWLVtaVLdq4bo5c/Tu/ze/0czjoiI4e1Z/794dxow5zMiRWpfo9tvhjjugb9+m5RW48fm9oumWrtUMPV6x1SuaweIrp+AsV2sp3bi4ykS0oiK96//oI802Tk3V0cMNN0D//nDqVCG3367bw8Lg3ns1KN2UqSI3Pr9XNN3StZqhxyu2ekUzWHxV+6ilmD1bA8hpaRoQXrxYs5JPnoTYWLjtNkhP132dmbE338y3zW0sFkuz4yunMHbsWNd1HQfgdC0DOHYMXnxRaxbdcgu8846uMOrZU+METonrpKTKeMF11/Xnssvcs9Nvmm7pWs3Q4xVbvaIZLL5yCmVlZa7qZmZqBdLZs3WqKCoK9u2D997Tdpe7dsGOHRo3iIuDL31J4wWrVlU2t3Gcghu2+lnTLV2rGXq8YqtXNIPFVzEFJ+U9FGRm6jTQ4sXw298eYvFirWL6xht6979tG7z1FmzcqCuKTp/WAHJxsVY3fewxjSk4MYbqiWehtNVquqdrNUOPV2z1imaw+GqkEEqc5LOiItizpy8lJZCdrdNG+/bpPrm56gD69dOqpQcParOb8HBYvx4+8xmNGTQ0+cxisVjcxlcjhcGDB4dEJzNTA8JpaXr3Hx4ew9atupJozx6NERw+rIlpJSU6fbRnj9YuGjEC7rsP3n9fK5pCzSuKQmWr1XRX12qGHq/Y6hXNYPGVU7jyyitDohMXp7kGq1bB1VdD587dOHtWRwDt22vxuuRkjSkMGqSJaUlJ2gYTNPfgW9+qO+8gVLZaTXd1rWbo8YqtXtEMFl85BadsbmOoGkMADQofOgQPPQTr1p3nxAlNTMvN1emixEQdScTGapG7226josFNairEx9edd9AUW2vDz5pu6VrN0OMVW72iGSw2ptBAqsYQsrK0P/LWrbqSqKwsjGuu0byDa67RfUHLVtx998W1iiwWi6U14yunEB0d3ajjnL4HGRm6dPTgQe154Kwo6tSphF69OvG972kRu6o01iE01lar2by6VjP0eMVWr2gGi68K4jWWxYt1dJCRAQcOwOOP61LSqCgNFn/mM+oswDa5sVgsrRNbEK8GFixY0OB9q8YQevfWbT/+MTz8sDqICxe0K9qOHfD666+TkVF/kxu3bLWaLadrNUOPV2z1imaw+Gr6yOnF2hCqxhC6d9eVQn/6ky437dgRfv3ryjaY27Ylceutoc01CMZWq9lyulYz9HjFVq9oBouvRgoNwRkhgE4Fde+u5Sl+9SttdhMVpbkGEyfq62PHQmJifshGCBaLxdKS+CqmUFpaSnh4eK2vO/0OVq3S5xkZsHy59kkuLtblpRkZWuHUeT0pqX5dN2y1mq1D12ra89TaNR1aPKYgIgki8i8R2SMiu0TkezXsM0NEdgQeG0VkiFv2AKxfv77O13Nz1SGkpenz735XaxSdOqVTRikp6hCc1x3fVJ+uG7ZazdahazVDj1ds9YpmsLg5fVQG/NAYMxAYCdwrIoOq7ZMDjDHGXM3/b+/Mo6wq7jz++YLgBi4gSgTBhRjQUZRWYqISdzJuxGUUjzpBZdQ42RyPY4bMOO4x6qjRiRoO8TCOOOAWcB1BnMGgaUGUVdQoGARcOo0LSXQE+c0fdd/j2XY3fbfurnvre06dvl113+f+6tZ9r25tv4KrgfE52sOyZctaTT8gqkOfeMJNJa2vd11Ge+0Ft98Oe+/txhAqFUdlPcKmuHnYGpidgxuY2csXW31hxlVuA81m9g7wTnS8VtJSoB/wSs05z9d8pB7on5c9m1LtWoRx49yeB126uJXH++zjXFQMH76xdRAWpAUFBRVR7TL7SNKuwP7AC62cdh7wZAufPx84H6Bv376MH+8aFMOHD6dPnz48/vjjAAwYMIBjjjmGCRMmANC9e3fGjBnD1KlTef/99/nss89obGzkjTfeYMGCBQBsueVRrF3bk2XLfsfy5TsxePAWzJ+/D42Nf6F79/WMGLGQnj1HcPHFrzJ8+MvssMNaTj/9dBYvXsz48UsAGDJkCG+++SYzZ84EYM899+TAAw9k0qRJAGyzzTaMHj2ayZMn8/HHHwNw5plnMnfu3Or2e0ceeSTr16+vus7deeed+eijj6rL3nv16sWpp57KvffeW52hMGbMGJ599tnq28XIkSNZu3Ytzz/v6tqhQ4cyaNAgHnroIQC22morACZOnMhnn30GwNixY5k+fTorVqwA4LjjjqOhoYE5c+YAUFdXR//+/Zk2bVrVruOPP54JEyawYcMG1q1bB8Bjjz3G6mi0fdSoUaxcuZJ58+ZlVk7f/OY36dmzJ0899RQAu+++OyNGjGDixInVvJ111lk8+OCDrFmzBqBaTkuWhHIK5VTecgI45ZRTaLPMLNcA9ADmASe3cs7hwFKg96Z4dXV1llSLFi2qHs+ebXb//WazZplddpkLt91m1q+fWe/eZoMHm51xhoufNcudO3v2prlZKTCzly+2lpmZF7fMzIqAF60Nv9m5TkmV1A14CJhkZg+3cM6+wARglJk15mlPpcaHL3o6PfZYN1Zw001uUPkrX3HO6q691p373ntuDUJL3UW13DxsDczOyw3M7OWLrb4w4yrP2UcCfg0sNbObWzhnAPAwcLaZvZ6XLc1p9eqNs4gmTXIL0datg5494Zxz3H4I4MYYKgPKQUFBQUVXni2Fg4GzgSMkzY/CsZIulHRhdM7lQG/gjig9V6dGQ4e6Ga+V9Qj19W4/hIYGt33mJ584L6fvvw8HHbRxEdumBpQr3DxsDczOzQ3M7OWLrb4w4yrP2UezAW3inLHA2LxsaKrGxsFVX0b19TBw4EZ3FWvXwiGHwKWXui6lSrfS6tWbdnA3aNCgzG0NzOzli61lZubFLTMzrkrl5mL+/Ceq4wgDB8Itt8C778L69TB2rFunUKkM6uraPu20MhshSwVm9vLF1jIz8+KWmRlXpXGI99xz7m9lT4T77oPGRteNdNFFsO22rsvovfdcZZClc7ugoKAgX1T4lkLFwd3nn8Nrr+0DuHGE1193XUOnnbaxQqivd62FuIvSdtxxx8ztDszs5YutZWbmxS0zM64K7xBv+fKNG+Ace6xrIcyYAe+84waVR4xw8fX1rmIIK5WDgoKKqA53iNdZtNturssI4NJLlzFjhvN4esklbioquHGENBVCZbVmlgrM7OWLrWVm5sUtMzOuCl8pgKsYRo6ENWs2xwzOP9+tRwCqO6alaSFUlrhnqcDMXr7YWmZmXtwyM+OqFJXC8uUwZQqsX78ZX/+6G1+oXYfQ2mrloKCgoDKpNGMKK1fC2LEbGDiwyxfGGLIYQ9iwYQNdumRbvwZm9u8rvthaZmZe3DIzKwpjCpFWr3bdQ1dfDZ9+Or06xpC2y6hW06dPTw8JzFyZeXEDM3v5YqsvzLgq/DqF2h/9GTOcO9vddtv0KuU4qrjJzVKBmb18sbXMzLy4ZWbGVeFbCkFBQUFBbVfhxxRqtWrVKvr165exRflwAzOUUxmZeXHLzKwojCk0o4aGBm+4gZm9fLG1zMy8uGVmxlWpKoXKlng+cAMze/lia5mZeXHLzIyrUlUKQUFBQUGty7sxBUkNwB8SfnwH4I8ZmpMnNzCzly+2lpmZF7fMzIoGmlmfTZ3kXaWQRpJebMtAS2fgBmYopzIy8+KWmRlXofsoKCgoKKiqUCkEBQUFBVVVtkphvEfcwPSDG5h+cMvMjKVSjSkEBQUFBbWusrUUgoKCgoJaUagUgoKCgoKqCpVCUFBQUFBVoVIICgoKCqoqVApBnUqStpFUJ2n7jralLZK0Q4as7SX1zIoXMXv5ci+DOodCpVAiSRqW8vPn1hz3lzRT0oeSnpe0Z0LmvZUfVkkjgSXAz4H5kv4mIXONpAmSjpSkJIwWuH8tabmk2ZL2l7QEeEHSSklHJmTuLOkeSR/h3BsskbRC0hWSuiVkDpA0OXIJ8wIwV9L7UdyuSZibuN6ihJ/bJbLpt5LG1eZX0tTsLPzCNTuNrZIGS3pS0uOS9pA0Mfo+zZE0JAkzE5lZKQOwKOHndgEmA78FxgHdatKmJmQOBp4EHgf2ACYCHwJzgCEJmcOahDpgJbA/MCwh86Wa4/uBC3AvFicBM9OWA/A8sGt0vAOwICHzNeD7wHPAKuAXwEEZPDPzgSHAN4DGCjOKeykh8xngsOj4ZOAWYGvgGmB8QubvgNOBrjVxXYHRQH1C5skthFOAhoTMGcCFwH7A7VH5947SXk5RTl7YCjwLnACcgfPnNhpQFJfo+5RFKPQ6BUknt5QE3GVtcA7VDHMG8BBQD5yH+7E9wcwaJb1sZvsnYD4L3Aj0AK4HLgOmAMcDPzaz2G+hkjZENv5fTfRBUZyZ2REJmC+Z2bDoeL6Z7VeTljTvS4BvmNnHkmYDI8xsQyXNzPZOaecA3JdtNLAdMNnMxsVlNsN928x2qUn7wv2IwVxgZkNr/p9nZnXR8atmNjgB8/dm9tW4aZtgrgMmAc39YJxqZrG7vZp5hs4C/gk4EXigcq+Lamvtd0bSG2Y2qCbtpaT5T6ui79E8hZYfji0SMvuY2V3R8Q+ih+NZSSe2cJ22qKeZPQog6WozmxzFPyrpyoTM04AfADea2RMRe7mZHZ6QB9Bf0m24SrWPpG5mti5KS9TVAVwJ/I+kX+Le7B+QNA04AvjvhMxql5GZrQBuAG6Q9DVc5ZBUH0q6ANgG+EDSxbgW01HAnxIyG6Jn6Bncm+xbAFG3V9Lu3XmS7gD+A3g7itsF+C7wckLmQuAmM1vcNEHSUQmZ3SRtYWafApjZvZLeBZ7CtZaSyhdbu9Yc39wkrXtCZnp1VBOlPQIwD/irFtLeTshcAmzRJO4o4A3gnYTMhTXHFzVJW5wi/z1w3REPAAOAZSnv53ebhO2j+L7AdSm4g3DjCL8BHgXuBEam4N2c0/O0C/Ar4K4ozxcDi3Hdfkm7+QbgKpbFwL3AV6L43sApCZndge/hKtVFEftJ4CJg84TMQ4EBLaQdkJB5MfCtZuL3B2akKCcvbMV1v/ZoJn4QcGvS/KcNRe8+OhT4g7m3xaZpB5hZ7M2eo7fDl8xsVpP4/YEbzOzoBMwLgElm9qcm8YOA75vZj+Mym7HtZlwFGbvLLCgoqDwqdKUQtFFRd0RPM/s4JWck8B2gH667bDUwzcySdvV4w2yFO9XMnupstrZwrcvN7KqiM315ptqz7NtsU9ErBV8K0gempFuBPYF7cDOZAPoDfwv83sx+VFSmb7a2cr0VZjagyExfyqm9y77NdhW5UvClID1ivm5mX1qPELVCXrdks1q8YPpkq6SWWoMCtjSz2BNMfGFGXF/KKZfnNLU6ajCjPUJ0Y5uLF+6HMTDjMRcCw5uJH07ydR9eMH2yFVgB7NRCWtIJFl4wPSunXJ7TtKHoU1I/lTTczOY0iT8Q+DQwY2sMcKecK4ZK62MX4OMorcjMvLh5MO8BBgLvNZN2X8GZ4E855cFMraJ3Hw3DTW9s7qZfZGbzAjO+JPXFjVMIWGlm7yZl+cbMi5uXrWWWL+XU6cq+o5oo7Rlwc8rrgAOAvoGZ6b29oqxMn2wtM9MnW/PKf5xQCod4Zvaumc0zty7hwsDMVCeWmJkXNzD94PrCjKVSVApN5EtB+sLMzAuph8y8uIHpB9cXZjwDoiZLaaSEjtsCs0VmF4sc2JWNGXFlGX+JfMm/L8y8uL4w46qMLYU6T5h5eEhMbaekkZLulPRI5Ljul5K+nQHzPEW+/m2jl9RzW/tcTD2dFiDpJEm9ouM+ku4BFkqaIql/QmYvSZdLGiunnwKPSLpRKTbHKXk53Szp4Nq4LH5oJR0u6d8lTZP0EHCdnCuazFRzTy/PkhtHhW8pRKt6++P8k79VE3+umd2d0TWesQSuqGs+fxIwy8zWSOoD/BvO0dYrwCVmtrJVQPPMXrg9BVYDv8bt/fANYCnOed0HCZh5LIi7DjgEeAnnR/5WM7s9SkvkPljSwqZRkd2vAZjZvnGZEfcVM9srOp6Cc0P+AM4h4pmWzO/VEzinddvg9mVYhHOQdzQw1MxGJWCWvZwacPsT9MF5Sv4vM0vqHbbCvB7YCZiJ8xKwHHgd52TwOjN7IA2/metlvkq8zeroke48A3AdbiOLW4E3gR/UpCXdFGVhk7AIt2fBQmq8ncZkvlJzPAXnkbE/bq5yUg+MT+A8j94J/C9uY5BDgatwri6SMPNYELcI2Cw63i6y+5bo/6SblzyC8zg6GDcPflecC+mBwMAUz9NrNcfzmqTNT8icX3MPV2XELHs5vRz9/SrwLzjPxq8C/wrsmTT/NcebAc9Fx9uT0JMxbnp4c2EtsD5p/tOGDrlou2XOkwfZox+bPFZ1Lm3yf1dcy+YBYEmKsj8J90JwYvR/KrfhEeNXuEp1S1xr7jtR/OG4ll7Se7o9zoX2R2zcea43NS8LoZxiMb/0wgfsC/wMeCMhcwHQKzoeQM0OdknzT04rulPfv466cLtkzpMH2aMfm2G4PX9fAaZHYWkUV5eQ+RjN+6m/BtiQ8r5ujXMZ/ghuUVDa56kbcEX0ZV4BbMC91d1HC/7728A8A7ei9z3cJjtP47Z+XAWcH8opES/xVp6tME/HdUlNj8r+uCi+D3BfQuY1NFN5R2k/zzoPbQ2FHlOQ9Bhu57Gmex9cA4wzs8QD7ZK2Bq7GbYgxzMwSDTRGrG7AT4HKgF1/4M+4DWd+Ys3sB9EG5hm4bjNw/Z7fw3lK3Qu40szGp7A3sxWYkrYEMLNPmknrZ2arkrJrOENxW37etcmT287cFtcKbcyA1RU3vrde0ma4fYBXmdk7KbmlLCdJPazJ3iRZKBqn2x3X2vgwa35nUdErBW8e5Bpep/6xkSRcN0StO+45luJB8oXpm60tXGuwmb1aRmZe3LRMfXFb20rcDmb2x/TWJbCnyJVCRZIOwPn9WY8baEv9UJSRKekY4A7g97juDXCtmkE4f0rTi8r0zdZWrtep9j5oT2Ze3KRMSYcD/wlsjts7+3yLZkgmndGVhQrtJVXSt3B99B/i5ug/B2wvaR1wtpm93drnA/NL+gVwlNVM7Y2utRtuEH9IgZl5cTNnSrqtpSTchIvY8oWZFzcnW2/A7UW+RNKpwAxJZ5tZfcTtEBW6UsD1qR9jZg3Rl+xmMztY0tG4AedjAjOWNmPjvPdarcINwiaRL8y8uHkwzwEuwU2VbqozCs7Mi5sHs7uZLQEwswclLQUelvQTXDdih6jolUJXM2uIjlfgpo1iZjOiBT6BGU93A3MlTcZNwwXXNTUaV9EUmemTrXNxc+efb5og6YqCM/Pi5sFcJ6lvZQJA1GI4EjfTa4+EzNQq9JiCpLtxNe5MYBRukPUfJG2Fm8s8ODBjc/fCOdarzmoBHjGzV5LwfGL6Yms0S+ZTM/tLUpt8ZebFzYl5FNBgZguaxG8H/L2ZXZvVtWLZVfBKoRvwd7hpmAuAu83s82hW0o5m9ofADAoKCqqR5bQAIoTiBWBb4Hqcy4DGKCyN4rYrMtMnW8vM9MnWvPKfNhTaS6qkHpKukrRY0keSGiTVSxoTmIl0P/ABcJiZ9Taz3rhV1x/iVokXmemTrS0xPygB0ydb88p/KhW9+2ga8Buc64DTcMvpJwP/jOtjHxeYsZivmdnX4qYVgZkXNzBDOWXJzEQd1URpjwAsaPL/3OhvF+DVwIzNnA78IzVOvHDuhC8Dni4y0ydby8z0yda88p82FLr7CPizpEMAJJ0ArIHqRhZJF4eUmXk6zqHeLEkfSFqDc8vdC9caKTLTJ1vLzPTJ1rzyn04dVRu1R8C5y52D65+dTeRLHefZ8IeBmYg7GLepTI8m8d8uOtMnW8vM9MnWvPKf6t511IU7OgDnBGbsz/0QtyvWVOAtYFRNWtJNi7xg+mRrmZk+2ZpX/tOGDrloZwjAisCM/blFlTca3OZCLwI/iv5PummRF0yfbC0z0ydb88p/2lBoNxf68h6w1STcgE5gxlNXi/zUm9lbkg4DHpQ0kOTjFL4wfbK1zEyfbM0r/+nUUbVRewTcblb7EW2VWRN2BVYHZmzmM8B+TeI2w20Q/3mRmT7ZWmamT7bmlf+0oUMu2m6Zcw7FDmkhLekWemVm9gf6tpB2cJGZPtlaZqZPtuaV/7Sh0IvXgoKCgoLiqejrFIKCgoKCYihUCkFBQUFBVYVKISgoKCioqlApBAUFBQVV9f+aon09y5rNUQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "%matplotlib inline\n", "fig, ax = plt.subplots(1,1)\n", "ax.plot(data[\"Price\"], linestyle=\"\", marker=\"x\", color=\"blue\", alpha=0.5)\n", "\n", "ax.set_xticks(data[\"Date\"][0:nRow-1:25].index)\n", "ax.set_xticklabels(data[\"Date\"][0:nRow-1:25], rotation=90)\n", "\n", "ax.set_title(\"Evolution du prix de la baguette\")\n", "#ax.set_xlabel(\"Date [yyyy-mm]\")\n", "ax.set_ylabel(\"Prix [€/kg]\")\n", "\n", "ax.grid(linestyle=\"--\", linewidth=0.8, color=\"gray\")\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Nous constatons une évolution croissante du prix de vente de la baguette en métropole. Une analyse plus poussée pourrait être conduite afin de faire le lien avec d'autre facteurs tel l'inflation par exemple. " ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }