diff --git a/module3/exercice/Exercice_syndromes_grippaux.ipynb b/module3/exercice/Exercice_syndromes_grippaux.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..2053dfe53e9d2a8dbaacd90ce9e40b94d74af2ab
--- /dev/null
+++ b/module3/exercice/Exercice_syndromes_grippaux.ipynb
@@ -0,0 +1,2466 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "import pandas as pd\n",
+ "import isoweek"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Les données de l'incidence du syndrome grippal sont disponibles du site Web du [Réseau Sentinelles](https://www.sentiweb.fr/france/fr/?page=table). Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période demandée. Nous téléchargeons toujours le jeu de données complet, qui commence en 1984 et se termine avec une semaine récente.(Donées téléchargées le 28/11/2021)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data_url = \"incidence-PAY-3.csv\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Voici l'explication des colonnes données [sur le site d'origine](https://ns.sentiweb.fr/incidence/csv-schema-v1.json):\n",
+ "\n",
+ "| Nom de colonne | Libellé de colonne |\n",
+ "|----------------|-----------------------------------------------------------------------------------------------------------------------------------|\n",
+ "| week | Semaine calendaire (ISO 8601) |\n",
+ "| indicator | Code de l'indicateur de surveillance |\n",
+ "| inc | Estimation de l'incidence de consultations en nombre de cas |\n",
+ "| inc_low | Estimation de la borne inférieure de l'IC95% du nombre de cas de consultation |\n",
+ "| inc_up | Estimation de la borne supérieure de l'IC95% du nombre de cas de consultation |\n",
+ "| inc100 | Estimation du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
+ "| inc100_low | Estimation de la borne inférieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
+ "| inc100_up | Estimation de la borne supérieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
+ "| geo_insee | Code de la zone géographique concernée (Code INSEE) http://www.insee.fr/fr/methodes/nomenclatures/cog/ |\n",
+ "| geo_name | Libellé de la zone géographique (ce libellé peut être modifié sans préavis) |\n",
+ "\n",
+ "La première ligne du fichier CSV est un commentaire, que nous ignorons en précisant `skiprows=1`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n",
+ "1697 198919 3 0 NaN NaN 0 NaN NaN \n",
+ "\n",
+ " geo_insee geo_name \n",
+ "1697 FR France "
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data[raw_data.isnull().any(axis=1)]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nous éliminons ce point, ce qui n'a pas d'impact fort sur notre analyse qui est assez simple."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
week
\n",
+ "
indicator
\n",
+ "
inc
\n",
+ "
inc_low
\n",
+ "
inc_up
\n",
+ "
inc100
\n",
+ "
inc100_low
\n",
+ "
inc100_up
\n",
+ "
geo_insee
\n",
+ "
geo_name
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
0
\n",
+ "
202146
\n",
+ "
3
\n",
+ "
39877
\n",
+ "
33319.0
\n",
+ "
46435.0
\n",
+ "
60
\n",
+ "
50.0
\n",
+ "
70.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
1
\n",
+ "
202145
\n",
+ "
3
\n",
+ "
20687
\n",
+ "
16810.0
\n",
+ "
24564.0
\n",
+ "
31
\n",
+ "
25.0
\n",
+ "
37.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
2
\n",
+ "
202144
\n",
+ "
3
\n",
+ "
19017
\n",
+ "
15056.0
\n",
+ "
22978.0
\n",
+ "
29
\n",
+ "
23.0
\n",
+ "
35.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
3
\n",
+ "
202143
\n",
+ "
3
\n",
+ "
27040
\n",
+ "
21935.0
\n",
+ "
32145.0
\n",
+ "
41
\n",
+ "
33.0
\n",
+ "
49.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
4
\n",
+ "
202142
\n",
+ "
3
\n",
+ "
28343
\n",
+ "
23382.0
\n",
+ "
33304.0
\n",
+ "
43
\n",
+ "
35.0
\n",
+ "
51.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
5
\n",
+ "
202141
\n",
+ "
3
\n",
+ "
25043
\n",
+ "
20586.0
\n",
+ "
29500.0
\n",
+ "
38
\n",
+ "
31.0
\n",
+ "
45.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
6
\n",
+ "
202140
\n",
+ "
3
\n",
+ "
26286
\n",
+ "
21842.0
\n",
+ "
30730.0
\n",
+ "
40
\n",
+ "
33.0
\n",
+ "
47.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
7
\n",
+ "
202139
\n",
+ "
3
\n",
+ "
22155
\n",
+ "
18014.0
\n",
+ "
26296.0
\n",
+ "
34
\n",
+ "
28.0
\n",
+ "
40.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
8
\n",
+ "
202138
\n",
+ "
3
\n",
+ "
15614
\n",
+ "
12310.0
\n",
+ "
18918.0
\n",
+ "
24
\n",
+ "
19.0
\n",
+ "
29.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
9
\n",
+ "
202137
\n",
+ "
3
\n",
+ "
13673
\n",
+ "
10404.0
\n",
+ "
16942.0
\n",
+ "
21
\n",
+ "
16.0
\n",
+ "
26.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
10
\n",
+ "
202136
\n",
+ "
3
\n",
+ "
10289
\n",
+ "
7505.0
\n",
+ "
13073.0
\n",
+ "
16
\n",
+ "
12.0
\n",
+ "
20.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
11
\n",
+ "
202135
\n",
+ "
3
\n",
+ "
12609
\n",
+ "
9282.0
\n",
+ "
15936.0
\n",
+ "
19
\n",
+ "
14.0
\n",
+ "
24.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
12
\n",
+ "
202134
\n",
+ "
3
\n",
+ "
13015
\n",
+ "
9485.0
\n",
+ "
16545.0
\n",
+ "
20
\n",
+ "
15.0
\n",
+ "
25.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
13
\n",
+ "
202133
\n",
+ "
3
\n",
+ "
10392
\n",
+ "
7042.0
\n",
+ "
13742.0
\n",
+ "
16
\n",
+ "
11.0
\n",
+ "
21.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
14
\n",
+ "
202132
\n",
+ "
3
\n",
+ "
15586
\n",
+ "
11009.0
\n",
+ "
20163.0
\n",
+ "
24
\n",
+ "
17.0
\n",
+ "
31.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
15
\n",
+ "
202131
\n",
+ "
3
\n",
+ "
18855
\n",
+ "
13664.0
\n",
+ "
24046.0
\n",
+ "
29
\n",
+ "
21.0
\n",
+ "
37.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
16
\n",
+ "
202130
\n",
+ "
3
\n",
+ "
13991
\n",
+ "
9695.0
\n",
+ "
18287.0
\n",
+ "
21
\n",
+ "
14.0
\n",
+ "
28.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
17
\n",
+ "
202129
\n",
+ "
3
\n",
+ "
13626
\n",
+ "
9618.0
\n",
+ "
17634.0
\n",
+ "
21
\n",
+ "
15.0
\n",
+ "
27.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
18
\n",
+ "
202128
\n",
+ "
3
\n",
+ "
8636
\n",
+ "
5430.0
\n",
+ "
11842.0
\n",
+ "
13
\n",
+ "
8.0
\n",
+ "
18.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
19
\n",
+ "
202127
\n",
+ "
3
\n",
+ "
10693
\n",
+ "
6838.0
\n",
+ "
14548.0
\n",
+ "
16
\n",
+ "
10.0
\n",
+ "
22.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
20
\n",
+ "
202126
\n",
+ "
3
\n",
+ "
7086
\n",
+ "
4109.0
\n",
+ "
10063.0
\n",
+ "
11
\n",
+ "
6.0
\n",
+ "
16.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
21
\n",
+ "
202125
\n",
+ "
3
\n",
+ "
7942
\n",
+ "
5540.0
\n",
+ "
10344.0
\n",
+ "
12
\n",
+ "
8.0
\n",
+ "
16.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
22
\n",
+ "
202124
\n",
+ "
3
\n",
+ "
4855
\n",
+ "
3011.0
\n",
+ "
6699.0
\n",
+ "
7
\n",
+ "
4.0
\n",
+ "
10.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
23
\n",
+ "
202123
\n",
+ "
3
\n",
+ "
6710
\n",
+ "
4455.0
\n",
+ "
8965.0
\n",
+ "
10
\n",
+ "
7.0
\n",
+ "
13.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
24
\n",
+ "
202122
\n",
+ "
3
\n",
+ "
7879
\n",
+ "
5495.0
\n",
+ "
10263.0
\n",
+ "
12
\n",
+ "
8.0
\n",
+ "
16.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
25
\n",
+ "
202121
\n",
+ "
3
\n",
+ "
7827
\n",
+ "
5403.0
\n",
+ "
10251.0
\n",
+ "
12
\n",
+ "
8.0
\n",
+ "
16.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
26
\n",
+ "
202120
\n",
+ "
3
\n",
+ "
10278
\n",
+ "
7540.0
\n",
+ "
13016.0
\n",
+ "
16
\n",
+ "
12.0
\n",
+ "
20.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
27
\n",
+ "
202119
\n",
+ "
3
\n",
+ "
9539
\n",
+ "
6860.0
\n",
+ "
12218.0
\n",
+ "
14
\n",
+ "
10.0
\n",
+ "
18.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
28
\n",
+ "
202118
\n",
+ "
3
\n",
+ "
12135
\n",
+ "
9165.0
\n",
+ "
15105.0
\n",
+ "
18
\n",
+ "
14.0
\n",
+ "
22.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
29
\n",
+ "
202117
\n",
+ "
3
\n",
+ "
12058
\n",
+ "
8891.0
\n",
+ "
15225.0
\n",
+ "
18
\n",
+ "
13.0
\n",
+ "
23.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
\n",
+ "
\n",
+ "
1904
\n",
+ "
198521
\n",
+ "
3
\n",
+ "
26096
\n",
+ "
19621.0
\n",
+ "
32571.0
\n",
+ "
47
\n",
+ "
35.0
\n",
+ "
59.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
1905
\n",
+ "
198520
\n",
+ "
3
\n",
+ "
27896
\n",
+ "
20885.0
\n",
+ "
34907.0
\n",
+ "
51
\n",
+ "
38.0
\n",
+ "
64.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
1906
\n",
+ "
198519
\n",
+ "
3
\n",
+ "
43154
\n",
+ "
32821.0
\n",
+ "
53487.0
\n",
+ "
78
\n",
+ "
59.0
\n",
+ "
97.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
1907
\n",
+ "
198518
\n",
+ "
3
\n",
+ "
40555
\n",
+ "
29935.0
\n",
+ "
51175.0
\n",
+ "
74
\n",
+ "
55.0
\n",
+ "
93.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
1908
\n",
+ "
198517
\n",
+ "
3
\n",
+ "
34053
\n",
+ "
24366.0
\n",
+ "
43740.0
\n",
+ "
62
\n",
+ "
44.0
\n",
+ "
80.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
1909
\n",
+ "
198516
\n",
+ "
3
\n",
+ "
50362
\n",
+ "
36451.0
\n",
+ "
64273.0
\n",
+ "
91
\n",
+ "
66.0
\n",
+ "
116.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
1910
\n",
+ "
198515
\n",
+ "
3
\n",
+ "
63881
\n",
+ "
45538.0
\n",
+ "
82224.0
\n",
+ "
116
\n",
+ "
83.0
\n",
+ "
149.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
1911
\n",
+ "
198514
\n",
+ "
3
\n",
+ "
134545
\n",
+ "
114400.0
\n",
+ "
154690.0
\n",
+ "
244
\n",
+ "
207.0
\n",
+ "
281.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
1912
\n",
+ "
198513
\n",
+ "
3
\n",
+ "
197206
\n",
+ "
176080.0
\n",
+ "
218332.0
\n",
+ "
357
\n",
+ "
319.0
\n",
+ "
395.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
1913
\n",
+ "
198512
\n",
+ "
3
\n",
+ "
245240
\n",
+ "
223304.0
\n",
+ "
267176.0
\n",
+ "
445
\n",
+ "
405.0
\n",
+ "
485.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
1914
\n",
+ "
198511
\n",
+ "
3
\n",
+ "
276205
\n",
+ "
252399.0
\n",
+ "
300011.0
\n",
+ "
501
\n",
+ "
458.0
\n",
+ "
544.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
1915
\n",
+ "
198510
\n",
+ "
3
\n",
+ "
353231
\n",
+ "
326279.0
\n",
+ "
380183.0
\n",
+ "
640
\n",
+ "
591.0
\n",
+ "
689.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
1916
\n",
+ "
198509
\n",
+ "
3
\n",
+ "
369895
\n",
+ "
341109.0
\n",
+ "
398681.0
\n",
+ "
670
\n",
+ "
618.0
\n",
+ "
722.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
1917
\n",
+ "
198508
\n",
+ "
3
\n",
+ "
389886
\n",
+ "
359529.0
\n",
+ "
420243.0
\n",
+ "
707
\n",
+ "
652.0
\n",
+ "
762.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
1918
\n",
+ "
198507
\n",
+ "
3
\n",
+ "
471852
\n",
+ "
432599.0
\n",
+ "
511105.0
\n",
+ "
855
\n",
+ "
784.0
\n",
+ "
926.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
1919
\n",
+ "
198506
\n",
+ "
3
\n",
+ "
565825
\n",
+ "
518011.0
\n",
+ "
613639.0
\n",
+ "
1026
\n",
+ "
939.0
\n",
+ "
1113.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
1920
\n",
+ "
198505
\n",
+ "
3
\n",
+ "
637302
\n",
+ "
592795.0
\n",
+ "
681809.0
\n",
+ "
1155
\n",
+ "
1074.0
\n",
+ "
1236.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
1921
\n",
+ "
198504
\n",
+ "
3
\n",
+ "
424937
\n",
+ "
390794.0
\n",
+ "
459080.0
\n",
+ "
770
\n",
+ "
708.0
\n",
+ "
832.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
1922
\n",
+ "
198503
\n",
+ "
3
\n",
+ "
213901
\n",
+ "
174689.0
\n",
+ "
253113.0
\n",
+ "
388
\n",
+ "
317.0
\n",
+ "
459.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
1923
\n",
+ "
198502
\n",
+ "
3
\n",
+ "
97586
\n",
+ "
80949.0
\n",
+ "
114223.0
\n",
+ "
177
\n",
+ "
147.0
\n",
+ "
207.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
1924
\n",
+ "
198501
\n",
+ "
3
\n",
+ "
85489
\n",
+ "
65918.0
\n",
+ "
105060.0
\n",
+ "
155
\n",
+ "
120.0
\n",
+ "
190.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
1925
\n",
+ "
198452
\n",
+ "
3
\n",
+ "
84830
\n",
+ "
60602.0
\n",
+ "
109058.0
\n",
+ "
154
\n",
+ "
110.0
\n",
+ "
198.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
1926
\n",
+ "
198451
\n",
+ "
3
\n",
+ "
101726
\n",
+ "
80242.0
\n",
+ "
123210.0
\n",
+ "
185
\n",
+ "
146.0
\n",
+ "
224.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
1927
\n",
+ "
198450
\n",
+ "
3
\n",
+ "
123680
\n",
+ "
101401.0
\n",
+ "
145959.0
\n",
+ "
225
\n",
+ "
184.0
\n",
+ "
266.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
1928
\n",
+ "
198449
\n",
+ "
3
\n",
+ "
101073
\n",
+ "
81684.0
\n",
+ "
120462.0
\n",
+ "
184
\n",
+ "
149.0
\n",
+ "
219.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
1929
\n",
+ "
198448
\n",
+ "
3
\n",
+ "
78620
\n",
+ "
60634.0
\n",
+ "
96606.0
\n",
+ "
143
\n",
+ "
110.0
\n",
+ "
176.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
1930
\n",
+ "
198447
\n",
+ "
3
\n",
+ "
72029
\n",
+ "
54274.0
\n",
+ "
89784.0
\n",
+ "
131
\n",
+ "
99.0
\n",
+ "
163.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
1931
\n",
+ "
198446
\n",
+ "
3
\n",
+ "
87330
\n",
+ "
67686.0
\n",
+ "
106974.0
\n",
+ "
159
\n",
+ "
123.0
\n",
+ "
195.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
1932
\n",
+ "
198445
\n",
+ "
3
\n",
+ "
135223
\n",
+ "
101414.0
\n",
+ "
169032.0
\n",
+ "
246
\n",
+ "
184.0
\n",
+ "
308.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ "
\n",
+ "
1933
\n",
+ "
198444
\n",
+ "
3
\n",
+ "
68422
\n",
+ "
20056.0
\n",
+ "
116788.0
\n",
+ "
125
\n",
+ "
37.0
\n",
+ "
213.0
\n",
+ "
FR
\n",
+ "
France
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
1933 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202146 3 39877 33319.0 46435.0 60 50.0 \n",
+ "1 202145 3 20687 16810.0 24564.0 31 25.0 \n",
+ "2 202144 3 19017 15056.0 22978.0 29 23.0 \n",
+ "3 202143 3 27040 21935.0 32145.0 41 33.0 \n",
+ "4 202142 3 28343 23382.0 33304.0 43 35.0 \n",
+ "5 202141 3 25043 20586.0 29500.0 38 31.0 \n",
+ "6 202140 3 26286 21842.0 30730.0 40 33.0 \n",
+ "7 202139 3 22155 18014.0 26296.0 34 28.0 \n",
+ "8 202138 3 15614 12310.0 18918.0 24 19.0 \n",
+ "9 202137 3 13673 10404.0 16942.0 21 16.0 \n",
+ "10 202136 3 10289 7505.0 13073.0 16 12.0 \n",
+ "11 202135 3 12609 9282.0 15936.0 19 14.0 \n",
+ "12 202134 3 13015 9485.0 16545.0 20 15.0 \n",
+ "13 202133 3 10392 7042.0 13742.0 16 11.0 \n",
+ "14 202132 3 15586 11009.0 20163.0 24 17.0 \n",
+ "15 202131 3 18855 13664.0 24046.0 29 21.0 \n",
+ "16 202130 3 13991 9695.0 18287.0 21 14.0 \n",
+ "17 202129 3 13626 9618.0 17634.0 21 15.0 \n",
+ "18 202128 3 8636 5430.0 11842.0 13 8.0 \n",
+ "19 202127 3 10693 6838.0 14548.0 16 10.0 \n",
+ "20 202126 3 7086 4109.0 10063.0 11 6.0 \n",
+ "21 202125 3 7942 5540.0 10344.0 12 8.0 \n",
+ "22 202124 3 4855 3011.0 6699.0 7 4.0 \n",
+ "23 202123 3 6710 4455.0 8965.0 10 7.0 \n",
+ "24 202122 3 7879 5495.0 10263.0 12 8.0 \n",
+ "25 202121 3 7827 5403.0 10251.0 12 8.0 \n",
+ "26 202120 3 10278 7540.0 13016.0 16 12.0 \n",
+ "27 202119 3 9539 6860.0 12218.0 14 10.0 \n",
+ "28 202118 3 12135 9165.0 15105.0 18 14.0 \n",
+ "29 202117 3 12058 8891.0 15225.0 18 13.0 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "1904 198521 3 26096 19621.0 32571.0 47 35.0 \n",
+ "1905 198520 3 27896 20885.0 34907.0 51 38.0 \n",
+ "1906 198519 3 43154 32821.0 53487.0 78 59.0 \n",
+ "1907 198518 3 40555 29935.0 51175.0 74 55.0 \n",
+ "1908 198517 3 34053 24366.0 43740.0 62 44.0 \n",
+ "1909 198516 3 50362 36451.0 64273.0 91 66.0 \n",
+ "1910 198515 3 63881 45538.0 82224.0 116 83.0 \n",
+ "1911 198514 3 134545 114400.0 154690.0 244 207.0 \n",
+ "1912 198513 3 197206 176080.0 218332.0 357 319.0 \n",
+ "1913 198512 3 245240 223304.0 267176.0 445 405.0 \n",
+ "1914 198511 3 276205 252399.0 300011.0 501 458.0 \n",
+ "1915 198510 3 353231 326279.0 380183.0 640 591.0 \n",
+ "1916 198509 3 369895 341109.0 398681.0 670 618.0 \n",
+ "1917 198508 3 389886 359529.0 420243.0 707 652.0 \n",
+ "1918 198507 3 471852 432599.0 511105.0 855 784.0 \n",
+ "1919 198506 3 565825 518011.0 613639.0 1026 939.0 \n",
+ "1920 198505 3 637302 592795.0 681809.0 1155 1074.0 \n",
+ "1921 198504 3 424937 390794.0 459080.0 770 708.0 \n",
+ "1922 198503 3 213901 174689.0 253113.0 388 317.0 \n",
+ "1923 198502 3 97586 80949.0 114223.0 177 147.0 \n",
+ "1924 198501 3 85489 65918.0 105060.0 155 120.0 \n",
+ "1925 198452 3 84830 60602.0 109058.0 154 110.0 \n",
+ "1926 198451 3 101726 80242.0 123210.0 185 146.0 \n",
+ "1927 198450 3 123680 101401.0 145959.0 225 184.0 \n",
+ "1928 198449 3 101073 81684.0 120462.0 184 149.0 \n",
+ "1929 198448 3 78620 60634.0 96606.0 143 110.0 \n",
+ "1930 198447 3 72029 54274.0 89784.0 131 99.0 \n",
+ "1931 198446 3 87330 67686.0 106974.0 159 123.0 \n",
+ "1932 198445 3 135223 101414.0 169032.0 246 184.0 \n",
+ "1933 198444 3 68422 20056.0 116788.0 125 37.0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 70.0 FR France \n",
+ "1 37.0 FR France \n",
+ "2 35.0 FR France \n",
+ "3 49.0 FR France \n",
+ "4 51.0 FR France \n",
+ "5 45.0 FR France \n",
+ "6 47.0 FR France \n",
+ "7 40.0 FR France \n",
+ "8 29.0 FR France \n",
+ "9 26.0 FR France \n",
+ "10 20.0 FR France \n",
+ "11 24.0 FR France \n",
+ "12 25.0 FR France \n",
+ "13 21.0 FR France \n",
+ "14 31.0 FR France \n",
+ "15 37.0 FR France \n",
+ "16 28.0 FR France \n",
+ "17 27.0 FR France \n",
+ "18 18.0 FR France \n",
+ "19 22.0 FR France \n",
+ "20 16.0 FR France \n",
+ "21 16.0 FR France \n",
+ "22 10.0 FR France \n",
+ "23 13.0 FR France \n",
+ "24 16.0 FR France \n",
+ "25 16.0 FR France \n",
+ "26 20.0 FR France \n",
+ "27 18.0 FR France \n",
+ "28 22.0 FR France \n",
+ "29 23.0 FR France \n",
+ "... ... ... ... \n",
+ "1904 59.0 FR France \n",
+ "1905 64.0 FR France \n",
+ "1906 97.0 FR France \n",
+ "1907 93.0 FR France \n",
+ "1908 80.0 FR France \n",
+ "1909 116.0 FR France \n",
+ "1910 149.0 FR France \n",
+ "1911 281.0 FR France \n",
+ "1912 395.0 FR France \n",
+ "1913 485.0 FR France \n",
+ "1914 544.0 FR France \n",
+ "1915 689.0 FR France \n",
+ "1916 722.0 FR France \n",
+ "1917 762.0 FR France \n",
+ "1918 926.0 FR France \n",
+ "1919 1113.0 FR France \n",
+ "1920 1236.0 FR France \n",
+ "1921 832.0 FR France \n",
+ "1922 459.0 FR France \n",
+ "1923 207.0 FR France \n",
+ "1924 190.0 FR France \n",
+ "1925 198.0 FR France \n",
+ "1926 224.0 FR France \n",
+ "1927 266.0 FR France \n",
+ "1928 219.0 FR France \n",
+ "1929 176.0 FR France \n",
+ "1930 163.0 FR France \n",
+ "1931 195.0 FR France \n",
+ "1932 308.0 FR France \n",
+ "1933 213.0 FR France \n",
+ "\n",
+ "[1933 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data = raw_data.dropna().copy()\n",
+ "data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nos données utilisent une convention inhabituelle: le numéro de semaine est collé à l'année, donnant l'impression qu'il s'agit de nombre entier. C'est comme ça que Pandas les interprète.\n",
+ "\n",
+ "Un deuxième problème est que Pandas ne comprend pas les numéros de semaine. Il faut lui fournir les dates de début et de fin de semaine. Nous utilisons pour cela la bibliothèque isoweek.\n",
+ "\n",
+ "Comme la conversion des semaines est devenu assez complexe, nous écrivons une petite fonction Python pour cela. Ensuite, nous l'appliquons à tous les points de nos donnés. Les résultats vont dans une nouvelle colonne 'period'."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ " def convert_week(year_and_week_int):\n",
+ " year_and_week_str = str(year_and_week_int)\n",
+ " year = int(year_and_week_str[:4])\n",
+ " week = int(year_and_week_str[4:])\n",
+ " w = isoweek.Week(year, week)\n",
+ " return pd.Period(w.day(0), 'W')\n",
+ "\n",
+ "data['period'] = [convert_week(yw) for yw in data['week']]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ " Il restent deux petites modifications à faire.Premièrement, nous définissons les périodes d'observation comme nouvel index de notre jeux de données. \n",
+ "\n",
+ "Ceci en fait une suite chronologique, ce qui sera pratique par la suite.\n",
+ "\n",
+ "Deuxièmement, nous trions les points par période, dans le sens chronologique."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "sorted_data = data.set_index('period').sort_index()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ " Nous vérifions la cohérence des données. Entre la fin d'une période et le début de la période qui suit, la différence temporelle doit être zéro, ou au moins très faible. \n",
+ " \n",
+ " Nous laissons une \"marge d'erreur\" d'une seconde.Ceci s'avère tout à fait juste sauf pour deux périodes consécutives entre lesquelles il manque une semaine.\n",
+ " \n",
+ " Nous reconnaissons ces dates: c'est la semaine sans observations que nous avions supprimées !"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "1989-05-01/1989-05-07 1989-05-15/1989-05-21\n"
+ ]
+ }
+ ],
+ "source": [
+ "periods = sorted_data.index\n",
+ "for p1, p2 in zip(periods[:-1], periods[1:]):\n",
+ " delta = p2.to_timestamp() - p1.end_time\n",
+ " if delta > pd.Timedelta('1s'):\n",
+ " print(p1, p2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ " Un premier regard sur les données !"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEKCAYAAAA1qaOTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXmcHGWd/z/fPqbnyiSZXIRMDo4AhpvEAIKgooDHGhdB0RXiwsrqsq7u7s9dWN3FRRHQ9WLFgxUkoMshoqCIbAw3hFzc5CD3RUgmmUky9/Tx/P6o56muqn6equru6unuyff9es2re6rqOerpp57v8z2ep0gIAYZhGIYpl1i1K8AwDMOMDligMAzDMJHAAoVhGIaJBBYoDMMwTCSwQGEYhmEigQUKwzAMEwksUBiGYZhIYIHCMAzDRAILFIZhGCYSEtWuwEgyceJEMWvWrGpXg2EYpq5YtWrVXiHEpKDrDimBMmvWLKxcubLa1WAYhqkriGhrmOvY5MUwDMNEAgsUhmEYJhJYoDAMwzCRwAKFYRiGiQQWKAzDMEwkBAoUIrqDiPYQ0euOY+1EtJiI1svP8Y5z1xLRBiJaR0QXOI7PJaLX5LlbiIjk8RQR3SePLyOiWY40C2UZ64looeP4EfLa9TJtQ/lNwTAMw5RDGA3lTgAXeo5dA2CJEGI2gCXyfxDRHACXAjhepvkxEcVlmp8AuArAbPmn8rwSQLcQ4mgA3wdws8yrHcB1AE4HMB/AdQ7BdTOA78vyu2UeDMMwTBUJFChCiKcBdHkOLwCwSH5fBOBjjuP3CiGGhBCbAWwAMJ+IpgJoE0IsFdY7h+/ypFF5PQDgPKm9XABgsRCiSwjRDWAxgAvluffJa73lj2pe2LQPG/b0VLsaDMMwWkpd2DhFCLELAIQQu4hosjw+DcALjut2yGNp+d17XKXZLvPKENEBABOcxz1pJgDYL4TIaPIa1Vx6m9W0W276cJVrwjAMU0jUTnnSHBM+x0tJ45dXYYWIriKilUS0srOz03QZwzAMUyalCpTd0owF+blHHt8BYLrjug4Ab8njHZrjrjRElAAwFpaJzZTXXgDj5LXevAoQQtwmhJgnhJg3aVLgVjQMwzBMiZQqUB4GoKKuFgJ4yHH8Uhm5dQQs5/tyaR7rIaIzpA/kck8aldfFAB6XfpbHAJxPROOlM/58AI/Jc0/Ia73lMwzDMFUi0IdCRPcAeA+AiUS0A1bk1U0A7ieiKwFsA3AJAAgh3iCi+wGsBpABcLUQIiuz+gKsiLEmAI/KPwC4HcDdRLQBlmZyqcyri4i+AWCFvO56IYQKDvhXAPcS0TcBvCTzYBiGYaoIWRP+Q4N58+aJet5teNY1jwBgpzzDMCMLEa0SQswLuo5XytcJh5LgZximPmGBUidkcyxQGIapbVig1AksThiGqXVYoDAMwzCRwAKlTmAXCsMwtQ4LFIZhGCYSWKDUCYK9KAzD1DgsUBiGYZhIYIFSJ7APhWGYWocFCsMwDBMJLFAYhmGYSGCBUiewyYthmFqHBQrDMAwTCSxQ6gQOG2YYptZhgcJEylH/9kd87XevVbsaDMNUARYodUK9+FCyOYFfvrCt2tVgGKYKsEBhGIZhIoEFSp1QJwoKwzCHMCxQ6gR+YyPDMLUOCxSGYRgmElig1AmsnzAMU+uwQGEYhmEigQVKncAuFIZhah0WKAzDMEwksECpF1hDYRimxmGBwjAMw0QCC5Q6gTeHZBim1mGBUiewU55hmFqHBQrDMAwTCSxQ6oQwCso9y7fhzBuXVLwuDMMwOsoSKET0j0T0BhG9TkT3EFEjEbUT0WIiWi8/xzuuv5aINhDROiK6wHF8LhG9Js/dQkQkj6eI6D55fBkRzXKkWSjLWE9EC8u5j9HCtQ++hl0HBqtdDYZhDlFKFihENA3APwCYJ4Q4AUAcwKUArgGwRAgxG8AS+T+IaI48fzyACwH8mIjiMrufALgKwGz5d6E8fiWAbiHE0QC+D+BmmVc7gOsAnA5gPoDrnIJrNMKbQzIMU+uUa/JKAGgiogSAZgBvAVgAYJE8vwjAx+T3BQDuFUIMCSE2A9gAYD4RTQXQJoRYKqxR8y5PGpXXAwDOk9rLBQAWCyG6hBDdABYjL4QOeVj4MAxTDUoWKEKInQD+C8A2ALsAHBBC/B+AKUKIXfKaXQAmyyTTAGx3ZLFDHpsmv3uPu9IIITIADgCY4JPXqKUYEcHyhGGYalCOyWs8LA3iCACHA2ghos/4JdEcEz7HS03jredVRLSSiFZ2dnb6VK+2KUZI5FiiMAxTBcoxeb0fwGYhRKcQIg3gQQDvArBbmrEgP/fI63cAmO5I3wHLRLZDfvced6WRZrWxALp88ipACHGbEGKeEGLepEmTSrzV+oLFCcMw1aAcgbINwBlE1Cz9GucBWAPgYQAq6mohgIfk94cBXCojt46A5XxfLs1iPUR0hsznck8aldfFAB6XfpbHAJxPROOlpnS+PDZqKWalPCsoDMNUg0SpCYUQy4joAQAvAsgAeAnAbQBaAdxPRFfCEjqXyOvfIKL7AayW118thMjK7L4A4E4ATQAelX8AcDuAu4loAyzN5FKZVxcRfQPACnnd9UKIrlLvZbTB27QwDFMNShYoACCEuA5W+K6TIVjaiu76GwDcoDm+EsAJmuODkAJJc+4OAHcUWeX6pQgZwRoKwzDVgFfKj0JYoDAMUw1YoNQJRYUNs8mLYZgqwAJlFMIaCsMw1YAFSp1QjJBgecIwTDVggVInFBc2XL8ipbtvGJ/82VK8zZtcMkzdwQJlFJKrX3mCX6/ajmWbu/DzZzZVuyoMwxQJC5Q6oSilo44FioJ0m+swDFPTsEAZhXCUF8Mw1YAFSp3Auw0zDFPrsEAZhdSzPGFhyDD1CwuUOiFM5JbyO1Rr+/ooo8uInSgMU3ewQKkTilqHwrN8hmGqAAuUUUi1nPJRCDKWhQxTv7BAGY3U8aishBIbvBim/mCBMgqpljyJtFyWKAxTd7BAqRPCmJPUGDwanPIMw9QfLFBGESoyisd1hmGqAQuUOqGozSErWI9aLJdhmNqABcoopFqmp2iivFgsMUy9wgKlTjhU1qHko7zYK88w9QYLlDohjIxQQ3C1BAprFwxzaMMCZRQyGgZ23nmFYeoPFih1QjF+kappKPUvxxiGKQMWKKOQ0TCus4LCMPUHC5Q6IZQPRY7CvMCQYZhqwAJlFKEio6r1TvmRkmN7Dg4inc2NTGEMw4SGBUoRvLJ9Px5fu7sqZRc3WFdpHcoIlDswnMX8by3BV3/7WsXLYhimOFigFMGCW5/DFXeurFLpte+UjwJlrjNFeQ2kswCA/1tdHcHOMIwZFiijkKptvRLFSvmAhY22wCm/KIZhIoYFSp1wqKyUD0LdGr8imGFqDxYoo4lqv1N+BMticcIwtUdZAoWIxhHRA0S0lojWENGZRNRORIuJaL38HO+4/loi2kBE64joAsfxuUT0mjx3C8npJxGliOg+eXwZEc1ypFkoy1hPRAvLuY96oJjBunoLG8svOCiH0ax9MUy9U66G8kMAfxJCHAfgZABrAFwDYIkQYjaAJfJ/ENEcAJcCOB7AhQB+TERxmc9PAFwFYLb8u1AevxJAtxDiaADfB3CzzKsdwHUATgcwH8B1TsF1qGLv5TUKljaaLFrq3tjixTC1R8kChYjaAJwD4HYAEEIMCyH2A1gAYJG8bBGAj8nvCwDcK4QYEkJsBrABwHwimgqgTQixVFhT3Ls8aVReDwA4T2ovFwBYLIToEkJ0A1iMvBAaldSDD2VEirULYYnCMLVGORrKkQA6AfyCiF4iop8TUQuAKUKIXQAgPyfL66cB2O5Iv0Memya/e4+70gghMgAOAJjgkxdTRUZCkOWd8pUvi2GY4ihHoCQAnAbgJ0KIUwH0QZq3DOiGAOFzvNQ07kKJriKilUS0srOz06d6tU0YMxZV2SkfBfmw4dLOMwxTPcoRKDsA7BBCLJP/PwBLwOyWZizIzz2O66c70ncAeEse79Acd6UhogSAsQC6fPIqQAhxmxBinhBi3qRJk0q4zdqgHkxeUdi8bMFpUEFyAQsfGYapHiULFCHE2wC2E9Gx8tB5AFYDeBiAirpaCOAh+f1hAJfKyK0jYDnfl0uzWA8RnSH9I5d70qi8LgbwuPSzPAbgfCIaL53x58tjDEbHbsMmbIHCOgrD1ByJMtN/EcCviKgBwCYAfw1LSN1PRFcC2AbgEgAQQrxBRPfDEjoZAFcLIbIyny8AuBNAE4BH5R9gOfzvJqINsDSTS2VeXUT0DQAr5HXXCyG6yryXmqY4DWX07uUl/BUYhmGqSFkCRQjxMoB5mlPnGa6/AcANmuMrAZygOT4IKZA05+4AcEcx9R3tqFl7PW+9EkQ9+4cYZrTDK+VLoBoaQDFO+Xp+H0pQ1XPslLfp6hvGrGsewe9f0boPGWbEYYFSAtV630hYRsM6FJPAyDvlWaRs2NMLAFj0/JbqVoRhJCxQSiBbBYlSlA+lctXwL3cEJFk9a1/F8Mr2/di5f8D3GpapTK1RrlP+kKTW7fg1Xj1fgqqeO0Sc8gtufQ4AsOWmDwdeW8c/NzPKYA2lBKqhoRRD9aK8osjEf50Jr0PJUwtNsHVfH9bsOljtajA1AguUEshWwykfokg1wNS4vAuFaZ1JLud/PgqEEPjmH1Zj1dbuipURJdU0A577nSfxwR8+U7XymdqCBUoJ5Gp8xK7WbsMjGTZcSQ1FCODnz27Gx3/yfOUKiQDW0phagwVKCVTFKV+MkKhalNfILWyspPCq7elCIfVW31qjZzCNWdc8gruXbql2VeoeFiglUA2TVxhUKG1t1i4cgS/YivB9KNu7+vVl1OjvWwirKFHQ1TcMAPjZ05uqXJP6hwVKCSg7/khyqGwOqTA75eX5MvNfvHo33v3tJ7B49W5jGdWi1k2qo43GpPWev4HhbMCVTBAsUEqgZjUU+Tma3ykflfbwyvb9AIC1mgilar/xMl2NGQuDvuFMtatQ97BAKYFqzCCLeqd8xWpReYLkRVT3ls5ag3YiXvgIVHu+UKyPrtr1rXfUBIzlePmwQCmB6qyUD19m1dahRGnyqnAZ6ayVUTJeWFJUZTy5bg+GM8WPUmHL5yivaGCBHB0sUEqgVk1eitqunT/B5qZo7k5pKA0JjYYSQRmrtnbhs79YgW//aW3RaYstvZzavr7zAF7feaCMHOqfWt/5op7grVdKoNZNXqMhbNg0+45OQ5Emr1hlTF7dfWkAwKa9fUWnDathRqGgfOS/nwUQbouX0Yodil7XU7HagDWUEjBpKNmcwHceW4tuGYY44lT5nfIjs7AxmnyGbR9K4bAcRfvFY1a+pZhHi05yiM+wb31iAz512wslpz/Emy9SWEMpgUxW3wOfenMPbn1iI7bu68ePPn1apGUWs/XKaH5AovIPDaatENHmhnhhGRHkH5MCpSThNIp/v0rwncfWlZWeTV7RwRpKCZg6oBI0arCqFvW8DGWkorzUmoPGhEagRFBInEoXKGFNL8LzyZSG+o1YrpQPC5QSMJkxYmqlekU6Zj1EeZVfrsrB9AKtqG5twEfoR3EfUkEpyeQVtvhaHwAPDKSNuxFUglJ/txpvxrqCBUoJmGadVEEfRiiTlz0rjrz4miEqx6nSJnW5RfHz5U1exacNm0TU+Mz6gu8/jXd/+4kRK69nqLSFiXY7RlmZQxQWKCWQNSwtiNXMXlqj1ymvyij3FcC2uUhT6Uh8KEq4l6ShFGvyqn6P0/H2wcERKSchhffWvaVpQ7UqkOsRFiglYDRj2BpK9GWGyZIqWP5IEehDifjedNlFE+VlfZayZilsCt7zy0LtxVXq78bNGB0sUErA1HHzPpTq9tDRMOMyrkOBMvNEc5NaDSWCrKksDSXkdUVeP9opXaBwA0YFC5QSMDvlrc9K9M/i3tg4+k1e5edj9j9U24QUOsqLx0EA5b+plNsxOliglIDJjKFeS1utAX00vA8liKjvrVJO+bLyCB3lVdtO+ZGmVK01HzbMDVkuLFBKwGTGUIImVoFd+5yd3dTxKeB8pRmJmX3+FcDROOV1wj8agVJ65FDYmTYPf5JR4DscLbBAKQGTySsr97+u9C6wI+24DkskA7F6I6Npp6rITF7uT10dysq/rLThUrPt3w37UKoPC5QSMHVAUzhxFBQX5VXHD0iQsIxIogjPp5MoZrrlRGCNloWNI0W5vkP1U3Fzlg8LlCLIr37Wn1eaS7nmGB3OZyWo41dNQ4k0L31ukYcNa01e5ReS89GAgggdNswL8lyU+rOx7yQ6WKAUgfKNmJzytn1/xGrkpbpBAVFiuoXoBUplyihHkyp2YWOtU+kBm8rYN81KF2VtDm3KFihEFCeil4joD/L/diJaTETr5ed4x7XXEtEGIlpHRBc4js8lotfkuVtI9hAiShHRffL4MiKa5UizUJaxnogWlnsfYQha/ZyxNZToy3YOUEEPaLWejyj38jIRmbC0Z/eVcspXPm0+yqu2R8SRGrBLDxvmaLmoiEJD+RKANY7/rwGwRAgxG8AS+T+IaA6ASwEcD+BCAD8mIrXV608AXAVgtvy7UB6/EkC3EOJoAN8HcLPMqx3AdQBOBzAfwHVOwVUpyDZ5GTQUJVAqXA9Tvyd7HUy1orzqr4yKOeXraE1OpRkpjbnUcuqkGeuCsgQKEXUA+DCAnzsOLwCwSH5fBOBjjuP3CiGGhBCbAWwAMJ+IpgJoE0IsFdZIeJcnjcrrAQDnSe3lAgCLhRBdQohuAIuRF0IVI8jkVUkfSpheP5reh2ISipEpKPJTNzeIxCnvowEFEfYe68VUU8qOy8VQ7kSKt7CJjnI1lB8A+BcATjf1FCHELgCQn5Pl8WkAtjuu2yGPTZPfvcddaYQQGQAHAEzwyauiKKd88DqUytbD9NyoB+va375W8YdYR5SCzJxXRFFettO8Mk75kQgbrnVTl2KkqpkrMcqyPlqxPihZoBDRRwDsEUKsCptEc0z4HC81jbtQoquIaCURrezs7AxVURNhNZRKGL2E63uAD0UA697uibwOwURhKgq+tyjRZRdFEeWYeYrVUGpdrpSyQWYxlB82XP0GzOYEfvDnN3FwMF3tqpRFORrKWQA+SkRbANwL4H1E9EsAu6UZC/Jzj7x+B4DpjvQdAN6Sxzs0x11piCgBYCyALp+8ChBC3CaEmCeEmDdp0qTS7lQS5EPJVtIpH8rkVb34sqiwNQfDedX05d6p3yaTkWgoZeQRfoCr/kAYhpHzoZSWrgbkCR5742384M/r8a1H1gRfXMOULFCEENcKITqEELNgOdsfF0J8BsDDAFTU1UIAD8nvDwO4VEZuHQHL+b5cmsV6iOgM6R+53JNG5XWxLEMAeAzA+UQ0Xjrjz5fHKop6aZLRKT9CYcO18ADoGAmTV2QLG31m91WP8gp5XX5BXvU7hJ8ArbSPgsrc5bsWnqehjPUGUb83idYDlViHchOADxDRegAfkP9DCPEGgPsBrAbwJwBXCyFU630BlmN/A4CNAB6Vx28HMIGINgD4J8iIMSFEF4BvAFgh/66XxyqKbfKqhoYSYtBwlltqHX730k70D5f25rsoGbGFjZpj0TjlZf4l5FVLK+UH01ns7R0qqy61HjZcCyav0UIiikyEEE8CeFJ+3wfgPMN1NwC4QXN8JYATNMcHAVxiyOsOAHeUWudSiAUsoLIFSpVMT+WW+sr2/fjyfS/jolOn4XufPKXo9FE+lmYNJdqydOVEMcCUZzYLlza/S24ZRQVw+R3LsXxzF7bc9GHf6/yqUPEoL/lZzz4URb0brXmlfBGE33ol+rJdW68Yo7zKK3goY93Y9u7qvUo1KIvoXqxlfeoGkygGmHLG0NAaSulFhGb55nCKv1+bjVQ0Gq9DqT4sUIogKd/rquydXlQ0S6V3G64UibhV8eFs9R6xIKe8Ol++U95cTpTb15eUdgTKiBq/qlQ8yqvMF9vVQjvWQBUigQVKEaiO2zek9zHkKriwsZiw4VJpkAIzU+K2ydFs++7vfIj83rVRXhFkW07aGvKhhMVPOxg5H0r9OuVHCyxQikB1vL5hvYaSGaGtV8JQikxTGli6VIESYXRUkIZSfjlWRvqV8qLgumIpx79R7PtQomiSSs7SK78SXfk2S0tdSwvlK7LLxgjCAqUEBg0CRT04leif7jc26q8pty9KeYLhTAVf7BLAiC9sDPChlG5GKbVG1dFQyh1U/TWUEfKhlHgTteSUr3dYoBSBGnwyAVuvVGK2JwzfTZQSaaaqXarNO0pTUVCUV1QEhQ1XI3Io/Er56PpbUH3LEfQjtZdXPZu8aqEOUcACpQjUb27eesX6LHVPoXJRJqtSCRrMR4K8ycvgQ4k8ysu/jGqYQ8IOjH6BBcUSNOgHVamaPpR82HBp6WvBKa+ob4MXC5SisGfwhigo9U75iqjQjixND0C5m1L6rR4PlT5Cp7xRQ4nKh+Kz9Uq1NZSwRDkQBmUVpLX6na10W5StoURYl0MdFiglYDR5KQ2lTnuo3yAbKv1IOOUj3npFRxQ+FKWllpK8aB9KBE0SNBgHmsR8tPKR8lGUG0BRTapfg2hggVIEajDLGmxaUdq0TWVb303XlEc5g2BUBJUdvVO+8JhzgKnGrDf09vVllOElUKAEmHH96lz5lfKjJ8qr3mGBUgR5p7X+vHpwyp3x7Osd8o20MmbvOF5KxFeQuWkkCDK7FVO1ZZv24V8eeEW/o7D81P1WzkPlmrxKmVwU7ZQvugRNXgECI1iDMZ8bqf5UulOeJUpUsEApAtspb3j6lCmsnIXmQgjM/eaf8Y/3v+w5Hr5+pZdtfVY3WkYNkianfPicPnnbC7h/5Q6tiVL4DMZuDSV8ee4CSkxXRNJow4bLNHn5nB+5KK/S0teCPLHbr8698ixQikD95hmDxLDXoUQQMvrIq7u0x61/TGkj8i9EkUepM3slqw3JcyU8eH5V0Zu8nBeEL8edRzl9IKTJK0ITa1AOwRqM3znzydue3ojzvvtkJIsf69mHMlpggVIUyodicMqL8k1eZQ1Eju+lTHTy5qZS/QblO7MD30ZZQp5as5bPuer7UCpfhpeyNRSf2vil/dYf12JjZ19Z7wEpd7fhsMku/MHTWPT8lpLKOFRggVIEQQv/1CzLbza3fHOX79Ympomae9JcvjlIX0Z0PpSSLUVKqAVdUEKe7oN+15cvUEZkYWOEOzOUs84kKH0Y5aPU7X6KLUefLlzCtW/34LqH3yg6/817+3DhD55Gd99w0WnrDRYoRZD3oeg7YCbAKb9hTy8+8bOl+M/fmztlmM5dKQ09Sh9K6VqOf3pR8CUYPw1Fuw7FMbZVJ3IopMmrnCK8eQX8XoHrUHxOh/GhlLPdDwW8pyiIShu8fvzEBqx9uweLV++uWh1GChYoRWBvvWJa2GjbtPXp1YP1wibzOyZMD0WYAbrcNRrC82liU2cvXt95wJi+rDoI96fpfDH4v6vD//qS/RNlmT2Lu24kNMpyNJgwA/2wj4YymM7i/hXbK7bPW5jfuJzAgjALL+2dyuvcKx/JGxsPFYI0lFyAhhKXS9kHDJtLWmnD16PgeJkDS9gdct/33acAwPctfiWbvAJSluKU99teRb/bsH/aUssMS9jfMcpw16BBX9fnXRuW+uUdQvlI+4RG3vjHNVi0dCsmtaXw3mMn+5RTqnky+JpyTHJKSPi20ShRUVhDKYIgH4p66Iw+lhADgFFDKaJ+QInrUOwZb6kmL+fMvqQs7BsNFJpF5O+3DkUnwML4UHoG0/jkz5Zi2z792y3Li/QLpyFFafosRQNxChm/wTxMv1+2aZ/xXKd8p73pPUT5cgKL0RKmHcsRKLFYcDmVfgnZSMECpQjUw23UUHxmvc50foNEmFlW5RZihdNQ/FOr76XOFv3rEFae9A/nBx+9huL+dNehsD5eHntjN5Zt7sIP/vym9nw55qiwSaJ82VgpTnfn+h7veWcf9Rss1cTn8bV7gisZQCUDKPw0qGCCfTz5l/OVUUwNwAKlCFR3yAQsbDQN+GHssMYoL8dx8+zdeab07eujGKbKFUpBuw0HteVXHnjV/q411/huDhmsaanWNf4WvrXzxx3cYL7OFlpRbMoZkIWuDV3t5KmDSyj7/Fbvkyasoya3Gq+xTUYBdSw3EMSPoLeY3r9iO3Z067VVtWmrv8mLNZRDD2XyMu42rDQUfw2mtI4VQnMp8npT+mqulA9yyiuC6viGI2jAL5JLl0sk61DKMXmF2LfNKqPkImT68CbKQJOX53TY3QZyYSYIAXMjP39YGML8Vn5BA119w/iX37yKq+5apT2ff+e9uZxK7yYwUrBAKQL1kwf5SExOSNMuxbo8fOsRQosphbCDeTF5FZ0u4HzYwIG4Yy9/P6e8Lh/nMdNPFjRIlDXjDJk0TFs8s74T27tMfp7CvMxlFR7LukxenumM0F9XkIcIvsbOM6BuJZu8QpRtiuwEgK37+gAABwbS2vMxCtawVN3r3OLFUV7FEGRuCdRQwggUgzAaCY04P9MrtTCzCaTYOpjPW59BdXQLFJ25xu9csIZCAWaMqOSJ1R6lDzOX3b4cRMDmGwsj8oThu45yNBT/wIJgDYU815rqVrKGEuIaP6f8W/sHAQBjGvXDaZiV/KNEQWENpRjUb25+H0o4geNHKA3F5F8YoXUoxvRC/11HOpvDu7/9OP7vjbf1dQiIdgsWKPmu7Sc09CYvR3mGcmL2Yjp9+eX4N8IKo/zecaXlV8yOAEECpcDg6tRQQph6TH5JIL9w0URQnwkizGAetE4GAFIJ/XBKAX0FYJPXIYnqr0E+FGNYcQgTRaiw4RAmr1KeLbvsKExeAef39Q5je9cAvva717UJg2b+Qc9fwqGh+EVy6c+ZZ96F9YleuIf2ochPv8HYj1wR/UU34GV92ql4H4p/+X6Uq1mHEUR+Ji+lvcQNr0wN40PhKK9DEPsFW0aBYX2aTFthnvty/CPFmDD8Mgg7GHoHmUJTjRmTySh4c0gllMszeamSS12Homad5Zi8tuztw90vbC04Hn6lvJzdlxjS6t7MM6DdNaed5XrPO//1XaMinwnTKyEKyF2WAAAgAElEQVTCEHaSEZTeDz+T13CAQAnnQwlfl1qGfShFoH5sk8krF6ChqJlkKTuzukM0/etXKnlzUrjr09kc4rG4tvygLEwTMTv6KkCwFqOh+K2G99Ne/OoRRJhZ76f+5wXsOjCIT8zrQCrhbEfzQO0uw/osddFdMb9Xsb6msJFytlAsw+ST96GUavIKTue3DkXtQxYzqBf5sGEf01+9SxIJayhFoH7ywM0hDc93mI5ryjtcdws3EBlT24NsuMTeQaCYd7EbhaKP5uCsW1BbxgKd8mZNJ5RTPl9hLWHGx97BjOszIMsCRJmDcTFRXrp+6buw0fEM+Ed5qWfGfE3eKa8/LwLOBxFGsy5HQ6EQGkq5oc+1AguUYpA/djYnDGsbhH1eR5iJpHlhY/BgXb6GUlynTnt2iHX7cMINUAUDUYDqLxy/gR9uH4r5t9KVE8YXRQGzzjAhvY0NllbS4xEoziz9ZrXqjGmwC/oNipkAaLU8V5SX+4Kw78ZRefgJxcC2DoiuDCKMv8dXoARoKPkoL3MdwuyiUQ+wQCkCZ4fWxuUrB6PJx1LGtioixCDjmmn5DERPrtuDTZ29vmWEIe1RxYLax0m+LbwDkX/6sLNR52xRNxb4mc6KiX4y7Q4bJr4hKes4mHFvFhp6MJYn01n9BKcYLVGrxfkIDMBfCDj7um+Ul+2UD+58Qeu7oliQa8pDmbwSGi0kaLlA3t9mrp+6/Xo3fZUsUIhoOhE9QURriOgNIvqSPN5ORIuJaL38HO9Icy0RbSCidUR0geP4XCJ6TZ67heQvQEQpIrpPHl9GRLMcaRbKMtYT0cJS76MYnL+1LrImSEMJM2s1D6TFdTS/Mj77ixX2jsHuMoqjwK5chAnFvE2/+vQ/X8zg4R82rDun/14Mxbye1+tUD3tr7v5YmCj4HSb+gssVxaXL30fghNkPDcjfe5h1KEZTc1YN6MYsfAkzgVAaSkwjUDIBz30+ystch3LX0tQK5WgoGQD/LIR4B4AzAFxNRHMAXANgiRBiNoAl8n/Ic5cCOB7AhQB+TETKE/kTAFcBmC3/LpTHrwTQLYQ4GsD3Adws82oHcB2A0wHMB3CdU3BVCgEgGbd6h59NuZx1KEYfitB/d19TXm8sNr13f6Ow+zcBzn3PCmoh8/IXykECxfnCJr+FjXqnfPAAExhOrD59rlMzV685JezP4KyDziQT1N+Cgg/8Fi56z3vT5wKEkfe6MM+GSSNSmrKp/+7vH8asax7BH159y1CH/HdT2z/1ZicAIK4xa6nnwHQPtlPeLzghhJZ1z/JtWstCLVGyQBFC7BJCvCi/9wBYA2AagAUAFsnLFgH4mPy+AMC9QoghIcRmABsAzCeiqQDahBBLhdXid3nSqLweAHCe1F4uALBYCNElhOgGsBh5IVQxckIgIRfMaePybae8v0Dxe3TCDGCm9M7j5Tjlw1IwEBZh8jK9vtZW/U07Btjpw9fNT2j4CRsrreH3CBysg39rhXegDPszONs7nTFrYcb0Tg1FU2rGJVD8NSDv+SBh5C3D34eiJnF6oWlrrYY+sXmvtTXK/zyzWXs+jMnrgVU7AOgd7/ZE0hjAEWJhY0BwghAC1z74Gj76o+fMmdQAkfhQpCnqVADLAEwRQuwCLKEDQL0RZxqA7Y5kO+SxafK797grjRAiA+AAgAk+eenqdhURrSSilZ2dnaXdoEQIfw3Fnm2V5UMxHQ+e8UXllA+L1+QV5sFUBLWRcTYX0MaKE6eN9a2LOqQbyNwmEH3+9m9piH9Wp8OFpHo1FPPM331h/qtuJXd4P5ZBA8k6z5snUJ6qFFzvG+VVhP9Dl4+z7Ux5JOPWMOcNItGlC9Q8fdohyOTlJzSDTLkq796Ad8JUm7IFChG1AvgNgC8LIQ76Xao5JnyOl5rGfVCI24QQ84QQ8yZNmuRTPX9UR1KdU2uzDjJ5hXhognwL/tf4zziDKF9DyVNKGKoznamt1FFTpJ3CuV2Hfh2KLEezviCMuSbsO9b92sEeaLyC2TfnPM68yzd5BWkghen9Nod0agt+bWBvvRJicabumcsECEUASMhJoGlHgWKCMJoa4gXHMgH3oPIcyvi9qVWNHfrz5azTGUnKEihElIQlTH4lhHhQHt4tzViQn+rNOTsATHck7wDwljzeoTnuSkNECQBjAXT55FUx1O+pBIqfk7KczSHNA2nwjM95tBRtJUyfFa5BzKuhhJxZA44FjJ6BKMA5GXY2GTRI+C2oC+OUD/ot7XUFPqa5/MzVR0PxCxt2nNIJlLB1BPT36axXkFPe28R+5jBdHr4v4dKUZ9fRZdo0PXfWp2lxouu5MfxeJ08fBwAY05gsOJe1gwJM2oX1Oejz6u8gzbycN0aOJOVEeRGA2wGsEUJ8z3HqYQAL5feFAB5yHL9URm4dAcv5vlyaxXqI6AyZ5+WeNCqviwE8Lv0sjwE4n4jGS2f8+fJYxVCdJT/bMc/oytFQwoQNGx/QEALBb9ZarNnBz5kcNDvO7xqgzz+MWS/MgjkrjVlo6OzyYXbKDdRQAtI78TMd+uG8/WGNOac4s6O/wChnt2Ff30GAVg/Alii6Zy4dYJaz0vk77cMEYajXD/uFT5u0CFXuQNpPQ/Evv9TtdUaacrZeOQvAZQBeI6KX5bF/A3ATgPuJ6EoA2wBcAgBCiDeI6H4Aq2FFiF0thFAt/AUAdwJoAvCo/AMsgXU3EW2ApZlcKvPqIqJvAFghr7teCNFVxr0Eon5npaH4OuWF1Ym8u6SG2R3WPDN3lmOoozlbG7+NBEOFuDoqUmiqCW86MIVQq+qFCU4Iux24t02d96nVUEKYUezN/EzlhwjAUM5aP5OXXzO6tNYAk5W2jgGamGstic8Eyqqn+3wuIK33XBiTji6fQccgbcoi6PW9YfqU2s1AL1itThsUjHNwwOz/yG/bpD9fLyavkgWKEOJZmJ+n8wxpbgBwg+b4SgAnaI4PQgokzbk7ANwRtr7lojpS0kdD8Q5EcU/rhHrBltGcFe4BDcJfQykuvZ+GEuwQNhy3TV7+sz0gyMnp+C0817mFs26AcF7rP0gYyw9I76TQ5FWYj7aMgPtwZus3wfHmpcsz2GnvPtfnMO/4vqnQNg36Sk4A+t/bLVD8fytTCWH6bcYWGoXn0gFCUR3etNcc8uu3FZCz/FqHV8qHJIyG4uxQfhqM3zBh9KGEmEWF8WH4zdac+epMKIB7Nu0nUMJuvWI6HkYL8xWOLqHgORcglJxmMOMgFSAnwixUU+N7gckr7M5tLqFproOuDO/5oJXwQU57b52veyj/WgI/878SSr6r7m1TcmFGTjOSqcsFvQ/e/dyYBnTzRCcbsDhTpekb8vGhBEyk6sXkxQIlJHkfilmg5ISwB4mg3VlNGN0jjhOhnPKGQSmshvKjx9drr3HOlLyDVDHhl6YZWdBMzaUFhvQH+e2Eqxts3AOlIf9Ah7f6NF+n9AVvHcIKZpemFeDj0M1w/Zzq3vNB+XtPb9iTn437OuV9hIW3HJ3QGXBoQqa+rTSIMK5H08/q53gPu6DZz4eisjXew2h3yh9qqJ9Z7b9kekD9fSzB5Ri1D2c+IbQYE2F9KPv6hrXX+A1S7gfTvzL2SnlD/qZ7dDZrmFmtri7ue/D/nUp2yofQUBRpz0Vh56JBZtBgDcWRV5FOd+95f7+g+WTQYOxMrxPiQwE7Ilh5+z94QXuWuetpzt9s8rKO9w+bfShO/6vf+VqHBUpI8j4UFTbsPi+EQE4ADUqglKihmPqNy+Tl42c5enJrwfVOwkZ5NRheZ+p8aLxmsSCbvqusAHuzsR1COv797OLOeusFvzNcVp+/Smd6Pa3KNsxamUINJVhDcpZhfQ/QUDQjYVA5LoHia8INCpDwORdCoGR8zGLuLXb06Ytxypuu9AvrDdqcUh0fTOcCzWKm5yLoHmoFFighUfHpyYRa2Oh+QFVHUU57XcdQD4bvbC6gwznLKqijMEdJeOugLzv/3SRQ/Gf34Wasrnw819l7Gvnco64uXvxMXs5BKEhDMQ0SfrNNIC/4wkwsS7WPB0VSBWlzQWtFArdecWoonnPO/mP0hwkRausVv/2+1A4BDfFYoP8h6FUDgLnf2U55n3Yw+Wqcz5XJ7BW0Rx075UcZtoYS02+9oh5O9SD5hVn6zzpDDKQ+ZrFYwKtpwzy4ANDaoA8AdKb3j/LyHyRNbRHknAy7pYefOWcoQEMJ4wu69YmN2ry96XxXystP72sAwpqSgjSIoJX07iiwgPyDznsu+OQ7Zzjy9m8jXXonfkJHTQ5SSR+BEjAYB+77lhO+mnOgD8WR6a79A9pr8uHypjqyhjJq2N7Vj8fXWgv+E4a9vFSHSPqZvELZi/XHnYeNz4dwbpVt6Ny+PpT899ZGg0BxPHyFTnnn9wAzg0kTCzAflKSheG7Zue+VfjsP/9XXrtXZhvLzTnljFfML9jztGHbNgbOPBTnNS4nyCjR5OYMbHOefXLcHP33KErjNDfFAZ7U3vek63TY5SqA0Jc3lBGmAgQs4AzQYe7fhEJOgR19/W1+HgIlUvfhQ+J3yIbjwB0/bcfWmKC9bQ/Fzyvuo7vY1RlOP/+ChMNn0FWHDhk34aihF7DZsGkDy6xKC6+jXDn6OVrcPRRdc4SyvMO/+dPAai1CvKpanvKYS1wDokzxoAWZQNJtrRwBN/pmA8GmTP+3hV/K7IMWJQjmaw0wOdH1mSN5XYzIe6Dc0nS/GtOd33ugfyQk0JeMYSGfRZpioBfWXoNDnWoE1lBA4F2nZJi9v5JAcBPxMXmE0FNOsMKxT3n7/doj8C+rnOGWa1fk5eosxeZnCgwP3QytFQ/Fcpga/RIy09xkU9RMmVNW0E4AT1Ye8UV5OIee3JiVj6Cv5Y/nvpUR5+a3l8ZY5nM23SbNjA0Uin1l3yMlB3ilfOKiG0VC8JsWCegQIZtXO1r2Yz5tNXkB7SwMA91iiq4NJbnj7SK3CAqVIAjWUhD4KzJnGN6LFkdC0cMzXKR/glQ/rQzE9hK5Zqc+WIUHrNEyrl1UVzANM2Flt/sVGBRqKfGqbDOaYoBmrW6AYainM6e1y1EDpySSsvTzIn+Sy3R8otN0HRbOZ+mL+vF5DaXb43+IxMgsUx33qzFl23ZSG4mPyavTzoQS0Z+ACTpk+GY/p28HxxkiTL6sxGUOM3H3HfY25fKsM1lBGJeqd0t7Oe2AgDQBISYGiG5CDXsQDuDu/aeYUyilvVP/DrUMxPeDO9H7hroEmL5m/V/4FxeM7q+8nUIQQxlcNOGe1+t2G9ZqhwunUL8cprwZsrwApxSkfFKa+++BQwXlnubpiXPkH7GbsnFw0JfMaSowo0FmdSsRC+VB073xRW8KnknFjWwctCnTvjFB4Xv1ODfGYIWzYX/DmcgLxGKG5IYF+o0ARrs/CMlhDGZXknfLu41++9yUAwL5ea0GgNqrG4UMxO831s+MwJq+s7LgyhfYafx+K47oQDs5ytl5Rg0PMo1IF7e0UNsormxMO86O7nkqgNDfEtWaUTE4YtRtnemd9vaj79xsITKactMvkZSabc2hhPiZWAOgdShvLB0L4SDT92ayhOARKzOxDsQfqhH7mr7AFimY7oOFMDvEYybBhfXo1AdC9bREIbgfnkgA/k5fzWic5IRAjQqP0o+jwC4321nHJmt3aa2oBFihFYnoF8Opd1rvFVKfVqdlBtlrAa26B47v/bFQNYKaHRlcHL0FOXG/9/PagCtZQrPy9JrqgKK8wmpq6ztYWPfUcsgVKQv+CrZywTZu6+3C+KMk4ADgcwUHXePuKs04PvrgDJnIOLSwoyqtnsHDdjDuaTZO/QWA4y9edV3UCLIFnjuizPlOJmP/kQPmaNH1yOJNDQzwGInM7q7qZnowgp3vGFih6s5rJqpA/Zk2cmhpirs0sdXUwBw7k7/3zv1ylv6gGYIFSJCaTlxq0VLitbkYXtLeS93iYcEvvsXiAycvfhxJ8XVTrUFR7xWIGDcWQPOyuyzkhjBF3qt6WhqJvywZboPhrKGEcziaTi6qXV+A5tcN1b/do03rrGeRDGdIIBOdAqNMo0wECJWs47zxuRXmZ+lLelOSntat6agVKNoeGRAzxGBnTq2fRNAFxPqu6S7IOgSJEYVs562UyPcZjZEV6BfhQzGa7/PHTj5igvaYWYIFSJAmfgQbIz4q1DkTn+68NZl2X+m1wFuo3nrQ+YwG/qJ9zT4QaBJ0+FI+GElJ7APJmHaMPxSfwQNFt2G9MXZff1cCdl+1D8XHKK9OmbpBy7R9laM6sj2nQe9w7a3W2sf9LmYR9j7o+4RyEdAIhE2Bac9ZryMfklYiRK8pL/bZnHz0RRGRenyGztANZDF1GtZM3CASQGkoiZvlqTAJD3rvJOe+8T7/XDKcM9XT7mvQCJUaWb6nfZPIK8K+qPtGaSqCtqXZXe7BAKRL1Y5pmxw0Jy35sUs8VJg3F5Gh1mXo0SdWAokxepuE8TJSXmjFq0/sMlG6fT4BAyVjnTe/o8Fsp3yJt9Nu6+o35OzUUrxAdDtBQckI4NNHCvIccPhjjAOASzv6aZpdHMGYCBIEzfdLg0/Om1b3PvJhoNq3JS/rsGhIxt4Yi6/+Lv36nFeVl1HbzPhTn/6Z6pg0+lIa4JVBMwl3VzfQ7DKSzdiCBziTl1FCc/yvS2Vze1G3QeGMxQlND3Pga4PxeXvp7UHVvScUxlK7diC8WKCFwjnnqndLOB/DS25ba39XCpSCBYuz8Li3GaSLTay4K2+QlVRRzlJd5oLdnYsmY8eFzzs79dskN2npItU/h1vKynkZnNzBxTApEwEGNX0BhDbb6AWDY6UMxtKVKq4/ysgaFMY2JwLf0AeaNGVV7d/d7BErAQO+8Lr9ZqU5DcQqUIJNXYf5KO2ppiBs0HIE4FQoU1S8SMbJ8KAF9MSUnYcbBNKM0FE2UVzaHVCImyzH12aysr76A/uGsvU7ET6A0yomMN59MTqDRR1MUwjL9Nfk45dVPEbSwsbkhoW2HWoEFSgicv/HJHWMBuGeEL2zKv334r886AoB+NjQcYGsFgP2OwcVkh/cLEfW+JdKLXwilmlk2JuNG05jaFLE1lSicMTqqFehDkQ+laT2PKbmyR7emEjg4UBi5pMjkBJoalLbozkxtzd9kiPLKOkxefj6U5oaEj4nCoWUE+NO8rwpwtr3fBCCdzdkza1091G9NpBcoznJ196lCXMc0Jo1OeRVh5erbOWvGTkSIxcymKO/aLdOArwSU0SmfiCERJ2PfDjR5DWcxrtmaKA5qZv+qXk1JGeSRceeTyQo0JpWwMWgoZGkoJoESuFJe5tvcENf+lrUCC5QiWHDK4fZMRjcjPHJiC1pSsmN5OnffUAZPruu0/zc9PK/tPGB/N81y9avwrU/b5BVioPOStmeM5nUB6q1zY5uSmveh6E102rLkQ1m4J5r+uF2GsPwubY3JQIHSmNSHDd+yxHp5WLNhdXU2J5C0Nb3C8+qB9lud7f7tzHb5GFm+INOrjf3W5KWzOXsg09VDDaStqYRWIHzjD6vNmQMYGM6gKRlHKhnThw1n8yYv5yCXyeZNhjEyO8tVu/gFFljXSZOVyeSViKExGdcKAyAv0E0CZyCd11B0pkFVLyW8vW2RzuXy/hVDcEQsZk3UTE75oPVXeZNXggXKaGHO1DZ7wNbNurZ399thxd5O5w3/1MmTrr5hl7Zj2jpD75RXA5S/iuIX2aNmlsl4zPjwKQ1lbFOyYOYf1lQD5B9ur+AKfKc8rHejj21K2otJdWSyOduUYjLfNTXEkc4WRhdlHeG4ugdcDc7jmpPGhWrujRnNDu3JYxqRyQmXtuD8jdSsWEc6kxeafk751hCDkElDaW6IWxqIn4biMXllcnmBEvdZ2KjKTCWDBIp13OiUj8fQlIwbQ3JtDcWQf/9wFuOazSavtMPc5PwfsASIENbCSlMZQq5DafbRUOzV9oY6qnq1NeonB7UCC5QQnHvMJADA37z7SDssV9f509m8k9Q7K1UP9JETW6zzGomyeW+fOz9nRFUuZy9i8wsRDXLKD2bMES1qIEjEzINA33AWybh8OIa90UnhBUpGY/ISQgTu0puWs9+2poR2bYWdv/wt4pp7OXHaWCTjZAt/XdSOn8nrsTesHWPbWxrQN6Svg1ugaH4veeyoyVZ/WCPXMQHW76BmzIe1NRrvcdghNPUaivX7WBpK4UDW4FgvYvKhNDXECwRGvp75RYXesGEVDWmtD9HXX/W/IA1FTc5096DChv38E+rZ04Um53ICQ5kc2n1MXsMZpR0UBtyoZzRlWESryg0KG1aakem5GUxn0ZiMIZWMa9uhVmCBEoJvXXQinvrKexCPkf2g6GadZx45wZ7Zes+rmexnz5oFAPjhnwvf2f7NRywTxD9/4BgAcEVzpDMCY5usTq8bxNTMJm/y0t+Ls0N765iVg3UibnbK9w9l0JJKoLUxgc37PALQpUXpy1cMO0xe6iEPs/tsJptDMh5DW2OAhpLLIRG31id4BWcyTph/RLstNHQvS/Nb2Lhss6VFtrc0oNckUAJCsFWZM9otgeL8TTO5HMY0JjClLWU04wDWzFuZvHT1DDKTHDW5FcdOGWNMPyA1lJTHpKXI5qz+lkq4TWLpbM7WUCzzqf4eVJ9tMIR3W2UIu2yd2U2ZvJR/Qmdec2od3n6thJCfhjLso6GoiWPKNj0W3qftQ0ma6+gUejpUJFoqrjc/1gosUEIwbVwTZk6wHnw1S9GZOq776Bx7kPJGQPUNZ9CQiGHrPivU9der3CawVVu78NK2/QCAYw6zHnKnNpHO5dDckEBzQxzd/YUDqSrOb7djwD0D8846M3ImlYyTcRDoHcqiORnHUZNa0evREFzvCQmpoahynZ/W/Zidk4k4oa0piYOD/j6UZIyQjFGBP2swnUNjIm5rk7q9tPxmnIq2xiT6hjL6RYGOUFI/k5cKQ3f2J/U7pBJxrU3fWYZt8tJpKLLcMQYzyWA6i2bZn3X30D9sDWJjGpPo0bR1NpfTRnk5NbxUwhzmmvEIFF2fVQN+Y9ISat56Dmcs/4Xavl4n+JyarLdfq/zH+2ooeV+U9X+hfyzlE1gwpOoog0R0dVTH/CaCTUlLW+Sw4VFEKmHZlFUnVYPV7MmtOO6wNlt99zoQD/SnMa4piTOPtFa5njJ9nOv86l35FdFjZOixs+MMpXNIJWM4clILXnc47hX5jfbM62AA90I57yCjZuambd0BYG/vECaOSaFFMyMsxYeiygXcM9CBdBaf+fkyXPiDpwvSJWOxYKd8Vhg1lMFMFo0NcTTJGWe/R8sYymTtwcNv7zO1nfnrOw8WnOsdzGC8nPXq8lChwm0yDN25rXnfUMZXM1AMDOfr6RflZfKh9A9n0CLbQPdzLdu8Dw2JmNFfpTSURo//wjJLWs9BKhkzCkWVZkzKvLuE8tlNaElpBYZl8orbDnPdYOvUIgs0FNnurY1JJOPkmsTl00gNRWPyynhMXrr5x3Amh1QyjuakeTI6lPY3eQ2ks2hMxgu0wVqDBUoJJOKEFzbtAwC8vN3SKtbv6QWQV4u9s+d9fcNob2nA++dMwXGHjcEEaSMHgFe278e//+51+39lxlAP4lNvduKR13Zh894+zJnahk0eXwsAPPraLgD5jq3rdEvW7LbfpGfl79VQrFl1ImZ2yu8+OIjJYxq1sy33okd/gaKixaxypUCRebW3NKBnMINnN+zFWs/WI5agsHwofcNZY3hzOptDMm4FGHhnjUNSQ1EDmddsNZTJoSVlXk+kWCMnAX/xo2ddxwfTWWza24f2lqQxjyvvXAkAmDq2EQ3xGHY4Fml29gxh8phGORjry39y3R70DGXyQSKGKK+EHPB1GsrAcNaevHh3x16/uweD6RxWbOlG71AGW/b1FwiVgXQGTQ1xtKYSBVqAqldD3HwPKs1k6SfS+Rde3NoNAMZ1Ir1DGTRKk5dVp8I8XHUzmKKbknE0JvSOfa+G4hYoVrvnw4bNGorqU16TdS4n7BX0Oi0MUD6UQn+WEAK3PrEBG+T4U21YoJRA/3AWL2/fj4ODaXzhVy8CAK5fcDwAS32fOrYRq9/Kz1qFEFi8ere9C+vE1hS6HOtNFtz6nCt/JRSU+r3wjuUyH2B8c0PBzHzn/gF885E1VtqkeeuXB1/a6frfO9D1DVk280Rc75TvHcpg675+HDY2Zc8I3e8Gyefn5zAHgLVv59tHOahVfSaPSRnTpbOWb0T5k0zlDKazSCXiWqf8gHRw5h9w9yAylM6hOWml9bbjz5/ZZH//7idOBgAcOanFdY0Kx1UP/r6+wq3jd8p3i1tbaSRdizT39AxhUmsKLQ3mtTZfeeBVAPnXJnjrmcsJ/PjJjchI851OSxhM5zCh1RqovYO506yqXn+tghEUfUNZtDTE0daYRHd/PvRZ+V4Aqz+anOVq0jVFChTdYP73/2vt4q1C0p0mqf7hDDp7hjBrYov9W3onckII9A5lbJOWV1vd1GkNxNPGNyFlCD3esq8PMQKmjm0CgAJ/EeDclkXnH8miIRGzhbe3z+7pGYIQ+Z0bdHVwBkg4BfSaXT34zmPrcO2DrxakUSzf3IUr71xh97lKwgKlDF7c2o3OHmuweOesdvv4aTPHY93u/Mz6G3+wBvsXpY9kfEuD7z5UymylBoFZE5oBABfP7bDNF85Zyp6Dg/Z3ZULRzYrVQ6XwajHd/cMY19xQ0GkVSzfuw0A6i/OOm5IXKE5ThyNc1M9h/uuV213v5+hPWw+YWpsyyVegWL4RdZ86P8qtT2zAwcEMWlJxGQLtMXnJ2Z7yhxVqKFmkkpbpz9uOSnCfffREjJUmTKe2CeQjtiaNSaEhHsPaXeYNHhuTcTQ4FuVlcwL7eocwuS2FSWNS2NtbKIwA2P1uTGMCjclYwfb0bzv6hO73zGRzGM7m0N5itbXXDKMGxi6YWvwAABrcSURBVGOmtOJjpxwOIN+3FP3DGTQ3JHDU5Bbs7R1Gp6xr71DGHjyntzdje1e/VljYGor8vXWC58yjLBPxX50+s+Aa1YcOa2vEtHGWUHrLM2gOpLPI5oTD/OhuBzXIzprQbPlpNHXY359Gaypha0nOZ08N/sp0qJvIDaYtDaU1ZbWft789s95an6bat8fzWw6ms3hug2URSSWstU9qkvT2Qav+Xk3eyfaufixZu2dEXtLFAqUElCPU+RCqDgsAM9ubsbN7AJlsDplsDnc8txkA7NW47c3Jgv2bdPmrQWDmhBbMmdqGb3/8JPtBdXZK5+CsZu46k9f2LvfD9rOn8rPtF7d145n1ezG+OYn2lgbs8wxk27v68bm7LDPNSR1jtSaGtIy4aWs0z6w3dfbas2tFd1/aVefJY8yhsmkV5SXv8+BApuD8dx5bByDvwPf6awbS1gy61WPyEkLgoZd3WmaUZLxgBbgTZdtvScULNBz1G0wf34wZE5oLwsGdNCRiSCbyJsaVW7qQE5apyBIo5n4CAGcfPQljGpOu/pDNCWzqzJeZ0oT9Djj8Fw3xGPqG3e2ozDLfvvhkfP49RwEodNx396cxrjlpz9z396fx+s4DeH7jPtsEdOK0sUhnBd54q9DPdHAgjUSM7IHaK9RUnwScTvP8NUqoTm5L2VFa3onMm7stDaSj3ZqUeQf8zp4h20/UmIxrfSiLlm7BwcFM3j/qyGPA3k1Av8dfNmdpSG2NSccEJl1wDQBcdqYlNL0azB9etczZq7Z22wEM6vdUz75q758/swnf9CxYXbLWen+K88VnlYIFSgncvvCdAIBXduy3j41zzP5ntDcjkxPYdWAQuw7kZ4oPXX0WAEtDOTiYwR9f26WdudkaijzXM5jG+JYkYjFCq5rFOGbme3ryZah66DQgtZniaTOsgID1e/Kzmot+/DwA6yFXA5lzAPnKA6/Y39tbGuxNHZ3rJ/qGs2hJJTC22RzS+6n/ecH+/sNLT7HqKs1/qi0OG+vWUJzmmgMDaYxtStp7pnk1FOegtLdnGOOakrb5ZjCdxfW/fwNCABNaGgps2k++2Ykv3fsy0lnLTOQc6L0obbNvKIvVuw7aWuKNj67BE3JHhK8vOB6zJrRgiye8Wt1nx/gmzJ053rWQdIM0wRw3tQ1TxzaidyiD9Q5t9+BgGu//3lP2/x8+aSrGpBIuk9kVd67AZ25fBgB48O/eZS/6c85Q7eiphjgmtjbYg7NCCagxjQl79u2dWe8+OIgpbY04bKw1AXhzdw/+8b6XAeQHxUbZl69ctKKgDXsGLU1GTU68z8IWhyBOaTRi1e8njUnZA7p3f7f7V24HAJwlNR2nj2NPzyBW7zqIyWNS9mLZ/Z4ISmsXA+t7MmH1eadwdi70BQr9kmpiNbYp6ZgMuu9TLWo9Qq5R8woUZUp+z7GTbKGmnolrH3wNgLVv2lk3PY5vPrIGP392sy2kXt6+H398zTJVqnauJCxQSuD0IyzzlnOG3+iQ/jPkbGh7Vz+2y0H8e5842Q49VjOyv/vVi/jqby1n/PT2Jju9sj+r2UfvUAZjpLqsOqWz4+92mDdO7rCExY2PrrX9FJlsDgtufQ6b9/bhi+87Gg/+3VloSsZxwuFjC+6tIRHDpNYUhrM51+z/8LH5+hGR/fA/+KLll8nlBO5Zvg2dPUOY0JLC2w5B6kTd07RxTZgztQ1AfrfdXy3bBgCYNcHtk1BtKITA/v40xrUkbQ3FGfGWywn8wz0v2f9fdc6RmNiawnMb9uLN3T1Y9PwWLFq6FQDQ3poq0FCcq0GTcvW1V/vwcvTkVgDA0+v3YtHzW1x9oq0xiTlTx2DDnl4ccPxev3huCwDg/51/LJLxGJLxmB2KqgTx2UdPxCnTxwMAPvD9fKTb02922g7Yj5w0FYDVJ9QgdHAwjafezG/xc+r0cZg5oQU5AWyRIetdfcOYf8MSANb2Mx3jm7GjO6+9prM5fOleSzCMSSXs/ugU1gPDWfQMZjBpTAond4xDjIA33+7BdNn3/1qut1LmS+9AvWprF+5+YStaG/P5O/04/cMZ/NP91iTmU/NnFPjsVmzpsv0rU8c25c1FjglGOpvD/8o+dcI0q69vdGhuV9y5As+s32v7cCa0NLgsB/t6h/D1379h/6+EhnOypCZDU6RQ9WpZBxwCRdVxv2cz0Je2daO5IY4pbSnt+dVvHUQyTvify+fZ/X5/f9o10dp1YNDlI9nY2YtVW7tx86Nr7WOsoQRARBcS0Toi2kBE14xUuYl4DBedNs3+/47PznOdnylnGl///Ru2VuD0saiZCAAs32LZRq9695H2sZZUAqcf0Y5HZORWz2DGfnGXstcvuPU5/On1Xchkc3j7wBCmtKWw6mvvtx9oAPbAs7WrH6/IaLR3z7ZW/be3NODeFdsLVg//24feYQ8Cux2az+6eQYxJJbDqa+8HAHz4RGswmy+FqzLrAZaZY+XWLpf28Mz6Tsy65hEAlkB+9l/fiwmtVjl3v7AVm/f24Z7l1sM/c0ILTpw21l50t2Wv1YYHBzMYzuYwrqnBvs8bH11rP7S3P7vZHkx/eOkpOPawMZjQ2oBsTuD87z9tR+IBwMSWBlugKA3F+YC+vvMAJrel8MS6PfjvJevRO5RxDXgfP60DAPAffzEHqUQMD764A9c9nB98FKfNHI+cAE6+/v/w+s4D+OtfLMfNf7IecjXIOX0oT67txJiUNWvvGJ8X4mpy4BzMpsnzznUi+zwmMiLCUVLoKdPb8xv32uentDVi2vgm7HQIFOcg1NaUzGtyDrPYzv39dnorEKUJW7v6bQf+glOs5+Pk6eMwrjmJ+Y7+DwAf/4m1Q/f2rgF7oHOGTn/oh8/Y37903my73yuf0g3SlwVYg3UqYfm8vv2ndbZp9mu/zUdOnn5EO1KJGFZuyW9tpMK9VdtPaHWbGG/+01o89PJbAICvfugdmCD9TaoOBwbS+PwvraCcuTMt4e+M4NrU2YvzZdj72KYkJrZaPrW39rsnWxs7+zBzQgs6xlt92vtahpd3HMBpMyxNVk1gXtzWjT0H9f41wIoC/PhPnsdSGY364ZOm2ot1K0ndChQiigO4FcAHAcwB8CkimjNS5X/vE6fY32d6ZtSH2yaAXlwjVdKpY/N+geMdmoHyaxw5yeooykF5+hHt2Ly3D7OueQS7Dgza0TjqOgD4/C9fxBfveQkPvrQDh41tsgfon35mLgDrgXl2/V5sdszK3jnL6vhzDre0g6/+9jXbLPf1v5iDkzrG2dt9fE2GMmeyOby8bT8+eOJhdhlNyTiIgN++uBPPbdiLlVu6ZbucjA/MmYJ0VuDxNXswLAMIlm7cZ9fh3z8yB0Rk28WXb+7Cju78QzS9vQm//+LZ+N/PnQ4AeHXnAWRzAif/5/8BsB5aJQwA4DdykeiyzfkylJbj9G094FhMevzhY9HcEEeMgK7+YQwMZ+3BAQD2D6Tx0rb92N+fxncXv4nTb/izPRs955hJ+M7FJwGwNJlTZ4zD8s35gUpdA7gDDP7p/pdtcxiQ34anMRnHU292YunGfdjbO4RxMtx4imPblQt/8Az+5YFXXH6wvzzVGrQPH9eIl7btx56eQbuO08Y14Z7PnSHbwMrv96+8BSEEVjjqetbRE9Axvgm7DgzgqTc7IYTAfdJMdM4xk+y1Dw2JGDZ39kEIgQ17evD+71kD5bgmVdeUPfh6+ejJh2P5li4cGEjj2fV7bbOlYkxjEhNbG/Ditm77mNKmpo61TGqHj7OE51v7B63+uH2/qwwisrX3xat3Y8OeXvs+fvJXpyERj6FjfBPWvt0joxXzz8Q1Fx5n/VatDdjbO4ThTA7pbA73r9xht8PnzjkSDYkYxjUnbfPgfSu22Xmo51tNFgDgh0vW2+ax6e3NiMUI41uSLnP0gy/uwOa9ffjgCYdh8pgUmhviLv/XfSu24ZXt++1IwpOmjcXYpiQefuUt/POvLQ3uCrnD+dXvPQovXHseAOBbf8zXAwBu/fRpup8mcmr31V/BzAewQQixCQCI6F4ACwD4b6EaIRedOg0PvrTTfqgURITPvmsW7nx+i33MOTtob2nA9QuOx388lJ/RvmNqG5791/fapq1L58/ALY9vsM+rgbG9pQF3Xzkfl91uhRI/+rplH3WulL7whMMAAD99aiN++tRGnH30RADAqq+93/Z9/PuH52Dx6t24d8V23LvCevBmyGiyebPacfbRE/Hshr22VgHktRvAenWvEMC63T34q59b9vpjprTiotM6bNv2l+97GV+WNnXFzy+fZ8/MiQgLz5yJRUu32rP7p7/yXtvJO6E1hZOnj8MtS9bjD6/mB6vPnWNpc7d86lT8wz0v4fo/rMa3H1trR9zEyAocAArtxnNnjsddV8y3Z905YZkunaYqAPj8uUeiY3yTbdLrG87iXTc9DgD49PwZrlcXD6ZzrnDUi06dhv+UYeROoaAcxADw0r9/wM7j1BnjsWxzl+1fUuaieIzwvU+cbJt+1AA3e3IrFv/TuXZeqgxlxgKARVfMt2ez6h0+D7/yFuIxsoX7p+ZPBxFh2rgm5EQ+PB2wtOi7rpgPwPqdZrQ349erdhTs8HDusVafOPvoibZfSYXQK857xxTctXSrPSFw8s2PnYB4jHDB8YfhV8u24ZFXH3Gdv+Ozlr9S/V43/2mta9DefOOH7O8d45vR3W+ZQJWfqSEew/vnTAFgaRQbO/twwnWP2Wn+65KT8S75fCiN75ivPYpPnz4DAHDRadPwrb880b5+OJPD3S9sxd0vbLWP/fQzp6G5IYFp45qwc/8AbvzjGizfkt/5oiEew7Fy94uB4SzuW7kd6/f04MyjJuDWJ6x1YeceMwlEhFkTWnDn81tw6oxxaEzG8a+/sSakH5D3EIsRTp0xzrVz+VcuOBb/cuGxttn9sjNmuur3my+cWdDulaJuNRQA0wBsd/y/Qx4bMf7rkpPx8n98wJ61O/n6R/MP1Tc8DxgAXH7mLPzFyVY45m2XzUV7SwM6xjdjrJxNHj6uCd/+uDULjscsAaV49+xJeP0/L8BHZXoA+OL7jnblf5RjbcSzG/Zi6thGVz1nTGjGL6883ZVm9uQxdnn/9qF3FNT5/e+Y4vr/79/rLvMT86YDsKK0zjtuckH64w4bYz/cis+dcyTiMcKmzj4cd9gY+6FWqJBVNWv73dVn2bPbvzhpKs462nK2KmHy6dNnYOO3PmQLzo+f1oFL5nbY+V08t8MenADgk7LOivPnTMGWmz6M9x03Bd+95GR85YJjC+5j9pRW1/9XnXOk6/+vLzjeHsQntqbse1D850ePx3hHqPEn5nW4zjt9SBed1oHLZfSPQmk/ivdq2vpIh1l1XFPSbrPfvrQTbx8cxGVnzLQHyrPkgOrEuxbIe48A8NRX3mPvXfdP5x+LL503G1ecdQQuP3OW67pzj5mEK88+oiD98q+eh8+cYd3b355zVMH5ez53Bt4h/WwAcMK0Ntf5Bz5/puuNnyd2FPoEX/36+XYdP326ux1P6hiLix19w9mOyvfypfNmu/yj//ERtxHkC+85CheeYJl/1TPzs6c32cLkIydNxfKvnmdfr4T/i9v249YnNqKtMYGfXTYXJ8udM84/3no+vnTvy/jbu1cBAH555el433H55+bT82fY32+86EQ0NcRddfzGx07AP77/GPy/84/Blps+jLkz3ebGSkJBey7VKkR0CYALhBB/I/+/DMB8IcQXPdddBeAqAJgxY8bcrVu3FuRVKXYfHMRjb7yNT75zuh255SSbE653WhSLEAJPrNuDd85qtwcwRd9QBouWbkEyFsPvXt6JGy86ESd1jCvII53N4fZnN+Oc2ZNsM5giIxcRKj+Lzgabywm8/tYBnHD4WNesHQB2HRjAdx5bh+FMDp8/9yi8w7H9v5OuvmHcs3wbLp7b4ZrRK9bv7sH9K7ejY3wzLj9zpmsQ6RvKYFtXP57fuA/tLUn85akdBekBy7G/sbPXngk623A4m0N3Xxp7e4ds7cnLz57aiNuf3Yy7rpyP4w5rKzg/MJzF9X94A2ccOcH2HzjpH87gqXWd2D+QxiVzOwracm/vELbu68eLW7ux8F2z7PBQJ0IILN/chXfOai9o68F0Fps6+/D42t246LQO20TkZNu+fpzznSdw3GFj8MAX3uUyG+7vH8arOw7gxkfXYmJrA771lye6/HGA5UhfuaUbZx09EfEYuQb7IIQQWLGlG4e1NeL2ZzfhM2fMxGzpI1McHExj/e5erNjShcvOmOkS/Or89q5+CGFNuNo96396BtNYtqkLmZzAwYE0zj12UkF/Gspk8db+QWvn3kS8IA8A2NHdj6ff3IvBdBZXaAQhkF/kef6cKXZ/GspkcdtTm7C3dwhnHjURxx02Bh3jm1y/dd9QBjc+ugZnHz0J2ZzASR1jXe2cyebw4Is7sfbtHoxvTuKk6ePs3c6dDGesnSC8r9CuFES0SggxL/C6OhYoZwL4uhDiAvn/tQAghLjRlGbevHli5cqVI1RDhmGY0UFYgVLPJq8VAGYT0RFE1ADgUgAPV7lODMMwhyx165QXQmSI6O8BPAYgDuAOIURh3CbDMAwzItStQAEAIcQfAfyx2vVgGIZh6tvkxTAMw9QQLFAYhmGYSGCBwjAMw0QCCxSGYRgmEligMAzDMJFQtwsbS4GIBgD4hRaPBXDA5/wMANt8zofJo9LngeB6VruO3I7RnAeqX8cw11S6jlHkwXX0v+ZYIcQYzXE3QohD5g9AZ8D528pJHzKPip6P6D4rfZ7bcZTUMYrfe4TqwHUso44AVgalFUIcciav/QHnf19m+jB5VPo8UP59Vvo8t2M054Hq1zHMNZWuYxR5cB3DX2PkUDN5rRQh9qOpVPqRotbrWev1U9RDPbmO0cB1jKbsQ01Dua3K6UeKWq9nrddPUQ/15DpGA9cxgrIPKQ2FYRiGqRyHmobCMAzDVIhDXqAQ0R1EtIeIXnccO5mIlhLRa0T0eyJqk8eTRLRIHl+j3sEizz1JROuI6GX5V/gavZGpYwMR/UIef4WI3uNIM1ce30BEt1CEb+eJsI6VbMfpRPSE/O3eIKIvyePtRLSYiNbLz/GONNfK9lpHRBc4jlekLSOuY0Xastg6EtEEeX0vEf3Ik1dNtGNAHWulHT9ARKtke60iovc58qrYs10UYULBRvMfgHMAnAbgdcexFQDOld+vAPAN+f3TAO6V35sBbAEwS/7/JIB5NVDHqwH8Qn6fDGAVgJj8fzmAMwEQgEcBfLAG61jJdpwK4DT5fQyANwHMAfBtANfI49cAuFl+nwPgFQApAEcA2AggXsm2jLiOFWnLEurYAuBsAJ8H8CNPXrXSjn51rJV2PBXA4fL7CQB2Vrodi/075DUUIcTTALo8h48F8LT8vhjAx9XlAFqIKAGgCcAwgIM1Vsc5AJbIdHtghRrOI6KpANqEEEuF1QPvAvCxWqpjVHXxqeMuIcSL8nsPgDUApgFYAGCRvGwR8u2yANYEYkgIsRnABgDzK9mWUdUxirpEVUchRJ8Q4lkAg858aqkdTXWsJCXU8SUhxFvy+BsAGokoVelnuxgOeYFi4HUAH5XfLwEwXX5/AEAfgF2wVqz+lxDCOYj+QqrE/z4CKqepjq8AWEBECSI6AsBceW4agB2O9DvksVqqo6Li7UhEs2DN+JYBmCKE2AVYDzksrQmw2me7I5lqsxFpyzLrqKhoW4aso4laascgaq0dPw7gJSHEEKrzbGthgaLnCgBXE9EqWKrosDw+H0AWwOGwzAv/TERHynN/JYQ4EcC75d9lVarjHbA61EoAPwDwPIAMLFXYS6VD/IqtIzAC7UhErQB+A+DLQgg/DdPUZhVvywjqCFS4LYuoozELzbFqtaMfNdWORHQ8gJsB/K06pLmsKuG7LFA0CCHWCiHOF0LMBXAPLLs0YPlQ/iSESEtTzXOQphohxE752QPgf1F5s4O2jkKIjBDiH4UQpwghFgAYB2A9rAG8w5FFB4C3vPlWuY4Vb0ciSsJ6eH8lhHhQHt4tzQbKDLNHHt8Bt+ak2qyibRlRHSvalkXW0UQttaORWmpHIuoA8FsAlwsh1Lg04s+2CRYoGlQUBxHFAHwNwE/lqW0A3kcWLQDOALBWmm4myjRJAB+BZe4Z8ToSUbOsG4joAwAyQojVUnXuIaIzpMp+OYCHaqmOlW5Hed+3A1gjhPie49TDABbK7wuRb5eHAVwq7dRHAJgNYHkl2zKqOlayLUuoo5Yaa0dTPjXTjkQ0DsAjAK4VQjynLq7Gs20kai9/vf3BmjnvApCGJemvBPAlWBEXbwK4CfkFoK0Afg3LIbYawFdEPkJkFYBX5bkfQkbaVKGOswCsg+Xg+zOAmY585sF6GDYC+JFKUyt1HIF2PBuWKeBVAC/Lvw8BmAArSGC9/Gx3pPmqbK91cETOVKoto6pjJduyxDpugRW00Sv7x5wabMeCOtZSO8KalPU5rn0ZwORKP9vF/PFKeYZhGCYS2OTFMAzDRAILFIZhGCYSWKAwDMMwkcAChWEYhokEFigMwzBMJLBAYZgagYg+T0SXF3H9LHLs7sww1SZR7QowDGMtoBNC/DT4SoapXVigMExEyA3+/gRrg79TYS3ovBzAOwB8D9bC2L0APiuE2EVET8Lax+wsAA8T0RgAvUKI/yKiU2DtLNAMa7HaFUKIbiKaC2svtH4Az47c3TFMMGzyYphoORbAbUKIk2C92uBqAP8N4GJh7Wl2B4AbHNePE0KcK4T4riefuwD8q8znNQDXyeO/APAPQogzK3kTDFMKrKEwTLRsF/l9ln4J4N9gvQxpsdz1PA5rixrFfd4MiGgsLEHzlDy0CMCvNcfvBvDB6G+BYUqDBQrDRIt3L6MeAG/4aBR9ReRNmvwZpmZgkxfDRMsMIlLC41MAXgAwSR0joqR8n4URIcQBAN1E9G556DIATwkh9gM4QERny+N/FX31GaZ0WENhmGhZA2AhEf0M1m6x/w3gMQC3/P/27hCHYRiGAui3VNSz7E5TbzW0U/Qqoz1GaQoWPmKpA+/BACvsy5aVzJHVku+nYp8fdZ5JXlW1JjmSbPN8S/KuqnPWhb/htWFoMre89jHG4+arwC2MvABooUMBoIUOBYAWAgWAFgIFgBYCBYAWAgWAFgIFgBYX0XwtZAkAglwAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sorted_data['inc'].plot()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ " Un zoom sur les dernières années montre mieux la situation des pics en hiver. Le creux des incidences se trouve en été."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEKCAYAAADTgGjXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xt4lPWZ+P/3PTOZnAkJJIAcBAEPiAoV8Vht1Sq1u9VutcVuK93qYl273R7222q319eurt+t/tratba2rtKidavW1tV6xmPFAwqKIOdwDockkARCzjNz//54PhMmYZJMJkNmMrlf15Urk888n2eeeS6Ye+7PUVQVY4wxJhm+dF+AMcaYocuCiDHGmKRZEDHGGJM0CyLGGGOSZkHEGGNM0iyIGGOMSZoFEWOMMUmzIGKMMSZpFkSMMcYkLZDuC0i10aNH6+TJk9N9GcYYM6SsWLFin6qW97de1gWRyZMns3z58nRfhjHGDCkisj2ZetacZYwxJmkWRIwxxiQt4SAiIn4R+UBEnnZ/l4nIEhHZ5H6Xxhx7s4hUisgGEbk0pvx0EVntnrtbRMSV54rIo658mYhMjqmzwL3GJhFZkIo3bYwxJjX6k4n8C7Au5u+bgJdVdTrwsvsbEZkBzAdOBuYBvxIRv6tzL7AQmO5+5rnya4F6VZ0G3AXc4c5VBtwCnAnMBW6JDVbGGGPSK6EgIiITgM8A98cUXw4sdo8XA1fElD+iqm2quhWoBOaKyDhghKq+rd4mJg92qxM91+PARS5LuRRYoqp1qloPLOFw4DHGGJNmiWYiPwe+B0Riysao6h4A97vClY8HdsYcV+XKxrvH3cu71FHVEHAAGNXLuboQkYUislxEltfW1ib4lowxxgxUn0FERP4GqFHVFQmeU+KUaS/lydY5XKB6n6rOUdU55eX9HuZsjDEmSYlkIucCnxWRbcAjwIUi8nug2jVR4X7XuOOrgIkx9ScAu135hDjlXeqISAAoAep6OZfJYDUHW3lhzd50X4YxZhD0GURU9WZVnaCqk/E6zF9R1S8DTwHR0VILgCfd46eA+W7E1RS8DvR3XZNXo4ic5fo7rulWJ3quK91rKPACcImIlLoO9Utcmclgv39nOzf8fgUd4UjfBxtjhrSBzFj/MfCYiFwL7ACuAlDVNSLyGLAWCAE3qmrY1bkB+B2QDzznfgAeAB4SkUq8DGS+O1ediNwGvOeOu1VV6wZwzWYQ7GtqJ6LQFoqQ47epSMZks34FEVV9DXjNPd4PXNTDcbcDt8cpXw7MjFPeigtCcZ5bBCzqz3Wa9Ko71A5Aa0eYotysW1nHGBPDviaalKtrPhxEjDHZzYKISbn6pmgQsT4RY7KdBRGTcvWWiRgzbFgQMSkViSj1zR0AtIUsiBiT7SyImJQ62NpBOOLNB7XmLGOynwURk1J1rj8ErDnLmOHAgohJqWh/CFgmYsxwYEHEpFRdU0fnY8tEjMl+FkRMStU1tXU+brWOdWOyngURk1JdMxFrzjIm21kQMSlV39yO3+et4G/NWcZkPwsiJqXqmtqpKM5FBNosiBiT9SyImJSqa2qnrDBIbsBHa8ias4zJdhZETEpFg0hejt+as4wZBiyImJSqb3ZBJGBBxJjhwIKISam6pnZKC4Lk5fhsdJYxw0CfQURE8kTkXRH5UETWiMi/u/IficguEVnpfi6LqXOziFSKyAYRuTSm/HQRWe2eu9ttk4vbSvdRV75MRCbH1FkgIpvczwJMxgqFIzS2hhhZkGPNWcYME4lsO9cGXKiqh0QkB1gqItFtbe9S1Z/EHiwiM/C2tz0ZOAZ4SUSOd1vk3gssBN4BngXm4W2Rey1Qr6rTRGQ+cAfwRREpA24B5gAKrBCRp1S1fmBv2xwNba4jPT/HT26O3zrWjRkG+sxE1HPI/ZnjfrSXKpcDj6hqm6puBSqBuSIyDhihqm+rqgIPAlfE1FnsHj8OXOSylEuBJapa5wLHErzAYzJQuwsawYCPvIDPMhFjhoGE+kRExC8iK4EavA/1Ze6pb4jIKhFZJCKlrmw8sDOmepUrG+8edy/vUkdVQ8ABYFQv5+p+fQtFZLmILK+trU3kLZmjoD0cE0Ry/DZPxJhhIKEgoqphVZ0FTMDLKmbiNU1NBWYBe4CfusMl3il6KU+2Tuz13aeqc1R1Tnl5ea/vxRw90Uwkx+/z5olYx7oxWa9fo7NUtQF4DZinqtUuuESA/wbmusOqgIkx1SYAu135hDjlXeqISAAoAep6OZfJQNE+kVyXidgCjMZkv0RGZ5WLyEj3OB+4GFjv+jiiPgd85B4/Bcx3I66mANOBd1V1D9AoIme5/o5rgCdj6kRHXl0JvOL6TV4ALhGRUtdcdokrMxmoI9qc5fe5Ib4WRIzJdomMzhoHLBYRP17QeUxVnxaRh0RkFl7z0jbgegBVXSMijwFrgRBwoxuZBXAD8DsgH29UVnSU1wPAQyJSiZeBzHfnqhOR24D33HG3qmrdAN6vOYq6dKzn+K05y5hhoM8goqqrgNlxyr/SS53bgdvjlC8HZsYpbwWu6uFci4BFfV2nSb/uHeuWiRiT/WzGukmZ2I71vICPtlAEr1XSGJOtLIiYlIltzsrN8QOHO9uNMdnJgohJmfYuHeteELEmLWOymwURkzLtXYb4ev+0rHPdmOxmQcSkTNdlTywTMWY4sCBiUibanJUT25xlEw6NyWoWREzKdJ0nYs1ZxgwHFkRMynR0mycC1pxlTLazIGJSJjqcN7rsCVgQMSbbWRAxKdMeE0RyAzZPxJjhwIKISZn2cISAT/D5xJqzjBkmLIiYlGkPRQgGvH9S0easNutYNyarWRAxKdMRjg0iNsTXmOHAgohJmfZQhKC/WxCx5ixjspoFEZMyXZqzAjZPxJjhwIKISZm2mOasgN9HwCeWiRiT5RLZHjdPRN4VkQ9FZI2I/LsrLxORJSKyyf0ujalzs4hUisgGEbk0pvx0EVntnrvbbZOL20r3UVe+TEQmx9RZ4F5jk4gswGSs2OYs8BZibLchvsZktUQykTbgQlU9DZgFzBORs4CbgJdVdTrwsvsbEZmBt73tycA84Fdua12Ae4GFePuuT3fPA1wL1KvqNOAu4A53rjLgFuBMYC5wS2ywMpkltmMdvGwkOovdGJOd+gwi6jnk/sxxPwpcDix25YuBK9zjy4FHVLVNVbcClcBcERkHjFDVt9Xb7u7BbnWi53ocuMhlKZcCS1S1TlXrgSUcDjwmw3TPRHL8PtrDtrOhMdksoT4REfGLyEqgBu9DfRkwRlX3ALjfFe7w8cDOmOpVrmy8e9y9vEsdVQ0BB4BRvZzLZKDYjnWAoF8IWSZiTFZLKIioalhVZwET8LKKmb0cLvFO0Ut5snUOv6DIQhFZLiLLa2tre7k0czS1d2vOyglYc5Yx2a5fo7NUtQF4Da9Jqdo1UeF+17jDqoCJMdUmALtd+YQ45V3qiEgAKAHqejlX9+u6T1XnqOqc8vLy/rwlk0LtoQg53ZqzOqw5y5islsjorHIRGeke5wMXA+uBp4DoaKkFwJPu8VPAfDfiagpeB/q7rsmrUUTOcv0d13SrEz3XlcArrt/kBeASESl1HeqXuDKTgbpnIgGfdG5UZYzJToEEjhkHLHYjrHzAY6r6tIi8DTwmItcCO4CrAFR1jYg8BqwFQsCNqhqdLHAD8DsgH3jO/QA8ADwkIpV4Gch8d646EbkNeM8dd6uq1g3kDZujpz0UITcmEwkGfNYnYkyW6zOIqOoqYHac8v3ART3UuR24PU75cuCI/hRVbcUFoTjPLQIW9XWdJv26d6xbc5Yx2c9mrJuUOaJj3W/NWcZkOwsiJmXid6xbEDEmm1kQMSnTfca6BRFjsp8FEZMSkYjSEdZuM9aFkPWJGJPVLIiYlIj2fXTPRKxPxJjsZkHEpEQ0WOR2WfbEmrOMyXYWRExKRJd8j+1YD/iFjpA1ZxmTzSyImJTo6KE5KxSxTMSYbGZBxKRENBM5Yil425TKmKxmQcSkRGcQCXRd9sRmrBuT3SyImJRoixNEcvxiHevGZDkLIiYlOof4xnas+3yEIoq3ILMxJhtZEDEp0dFDcxZgTVrGZDELIiYl4k829DamtCYtY7KXBRGTEj2NzgILIsZkMwsiJiXijc6KBhFb+sSY7JXI9rgTReRVEVknImtE5F9c+Y9EZJeIrHQ/l8XUuVlEKkVkg4hcGlN+uoisds/d7bbJxW2l+6grXyYik2PqLBCRTe5nASYjRQNFjv/I5ixbhNGY7JXI9rgh4Luq+r6IFAMrRGSJe+4uVf1J7MEiMgNve9uTgWOAl0TkeLdF7r3AQuAd4FlgHt4WudcC9ao6TUTmA3cAXxSRMuAWYA6g7rWfUtX6gb1tk2rRTCQ3TiZizVnGZK8+MxFV3aOq77vHjcA6YHwvVS4HHlHVNlXdClQCc0VkHDBCVd9Wb8zng8AVMXUWu8ePAxe5LOVSYImq1rnAsQQv8JgM09MqvmBBxJhs1q8+EdfMNBtY5oq+ISKrRGSRiJS6svHAzphqVa5svHvcvbxLHVUNAQeAUb2cy2SY3jrW220RRmOyVsJBRESKgD8B31LVg3hNU1OBWcAe4KfRQ+NU117Kk60Te20LRWS5iCyvra3t9X2YoyN+x7oN8TUm2yUUREQkBy+APKyqfwZQ1WpVDatqBPhvYK47vAqYGFN9ArDblU+IU96ljogEgBKgrpdzdaGq96nqHFWdU15enshbMikWbyn46GNbydeY7JXI6CwBHgDWqerPYsrHxRz2OeAj9/gpYL4bcTUFmA68q6p7gEYROcud8xrgyZg60ZFXVwKvuH6TF4BLRKTUNZdd4spMhunoHJ11OHm05ixjsl8io7POBb4CrBaRla7sB8DVIjILr3lpG3A9gKquEZHHgLV4I7tudCOzAG4Afgfk443Kes6VPwA8JCKVeBnIfHeuOhG5DXjPHXerqtYl91bN0dQWjhAM+HCjtgEIBqw5y5hs12cQUdWlxO+beLaXOrcDt8cpXw7MjFPeClzVw7kWAYv6uk6TXu2hCLn+romtjc4yJvvZjHWTEm2hCLk5/i5lAZ8twGhMtrMgYlKitSPcZaIhWHOWMcOBBRGTEl4mYs1Zxgw3FkRMSrR1RMgLdG3OsiBiTPazIGJSoi0U7iUTsT4RY7KVBRGTEm0dkSP6RGzGujHZz4KISYm2UJhca84yZtixIGJSoi0UIc+as4wZdiyImJTwhvh2z0S85qzoulrGmOxjQcSkRFvoyD4RESHHL7YAozFZzIKISQmvOct/RHnA57PmLGOymAURkxJtcWasg9ekZc1ZxmQvCyImJVrjzFgHb5MqG51lTPayIGIGLBSOEI7oER3r4I3QCllzljFZy4KIGbA211zVfYgvQMAvlokYk8UsiJgBa+3w9hzrKRNptyDSLzUHWzvvqTGZLpHtcSeKyKsisk5E1ojIv7jyMhFZIiKb3O/SmDo3i0iliGwQkUtjyk8XkdXuubvdNrm4rXQfdeXLRGRyTJ0F7jU2icgCTMaJZiLxOtaDfusT6Y9IRJn3X29w72ub030pxiQkkUwkBHxXVU8CzgJuFJEZwE3Ay6o6HXjZ/Y17bj5wMjAP+JWIRL+i3gssxNt3fbp7HuBaoF5VpwF3AXe4c5UBtwBnAnOBW2KDlckMnUEkTnNWjt+G+PZHVX0LdU3tbNjbmO5LMSYhfQYRVd2jqu+7x43AOmA8cDmw2B22GLjCPb4ceERV21R1K1AJzBWRccAIVX1bVRV4sFud6LkeBy5yWcqlwBJVrVPVemAJhwOPyRBtIa/ppftS8OAN8bVMJHGVtV7w2FHXnOYrMSYx/eoTcc1Ms4FlwBhV3QNeoAEq3GHjgZ0x1apc2Xj3uHt5lzqqGgIOAKN6OZfJIK0dPWciAWvO6pdN1YcA2FnXjPddy5jMlnAQEZEi4E/At1T1YG+HxinTXsqTrRN7bQtFZLmILK+tre3l0szR0NZLx3rQmrP6pbLGCyKNbSEamjvSfDXG9C2hICIiOXgB5GFV/bMrrnZNVLjfNa68CpgYU30CsNuVT4hT3qWOiASAEqCul3N1oar3qeocVZ1TXl6eyFsyKdTbEF9rzuqfTTWH8Pu87047661Jy2S+REZnCfAAsE5Vfxbz1FNAdLTUAuDJmPL5bsTVFLwO9Hddk1ejiJzlznlNtzrRc10JvOL6TV4ALhGRUtehfokrMxmkryG+lokkRlWprDnE6cd6Y0esX8QMBYEEjjkX+AqwWkRWurIfAD8GHhORa4EdwFUAqrpGRB4D1uKN7LpRVaOD3m8AfgfkA8+5H/CC1EMiUomXgcx356oTkduA99xxt6pqXZLv1RwlvQ3xzbFlTxJWfbCNQ20hLjyxgne31lkQMUNCn0FEVZcSv28C4KIe6twO3B6nfDkwM055Ky4IxXluEbCor+s06XM4iMTJRHzWnJWoTTXeyKzTJoxkVGGQnRZEzBBgM9bNgHUO8e1pnoit4puQaKf6tIoiJpYVsLOuJc1XZEzfLIiYAesc4hsvEwn4aLc+kYTsO9SG3yeMLgoyqazAmrPMkGBBxAxYNBOJuxS832c7GyaoqS1MQdCPiDCprIBdDS2ErCnQZDgLImbA2lwmEvT3MMTXmrMS0tweojDodVOOG5lHOKLsO9Se5qsypncWRMyAtYUiBAM+fL4jx18EbIhvwprbwxTkek2CpQVBAOqbLYiYzGZBxAxYaw9b48LhpeBtCY++NbeHOzMRCyJmqLAg4tQ3tfMfT69lxXabhtJfbaFI3E51gKDfy07CEQsifWlqC1EQdJlIYQ4A9U229InJbBZEnJyAj/uXbuWtyv3pvpQhpy0Ujju8F7xMBLAmrQQ0t4cpzPUykTLLRMwQYUHEKcoNMLEsnw3Vto9Df7V1RHptzgJot871PjW1H85ERkaDSJMFEZPZLIjEOGFMMRstiPRbWyjcY3NWdNhvdBiw6VmzG+ILEAz4KMoNUG8r+ZoMZ0EkxvFjitlS22TfmvupLRSJO0cEDm9UFZ2QaHrmZSKHVyIaWZBjzVkm41kQiXHC2GJCEWXrvqZ0X8qQ0tYRiburIUBejlfe0mGZSG9U1fWJHL6PZYVB6qw5y2Q4CyIxjh9TDGD9Iv3UGgr3mInkB73yVgsivWoPRwhHtFsmEqTBMhGT4SyIxDiuvBC/T9iwt7eNG013vXWsH27OsiDSm+Y27/4UBmMykYIc6iyImAxnQSRGbsDPcaML2bD3ULovZUjxhvj21LHugoj1M/WqqT0EQEHu4UyktDBIg80TMRnOgkg3x48tZkO1ZSL90dpbJuKauVraLRPpTXN7NBOJCSIFQRrbQjbQw2S0RLbHXSQiNSLyUUzZj0Rkl4isdD+XxTx3s4hUisgGEbk0pvx0EVntnrvbbZGL20b3UVe+TEQmx9RZICKb3E90+9yjanpFEVX1Lfah1w+9DfHNd5mIDfHtXVNbNBM5fB9LC725Ig0t1qRlMlcimcjvgHlxyu9S1Vnu51kAEZmBt7Xtya7Or0Qk+r/iXmAh3p7r02POeS1Qr6rTgLuAO9y5yoBbgDOBucAtbp/1o2paRRGqsGWfNWklylv2pKdMxPpEEhHNRApimgVLC2zpE5P5+gwiqvpXvH3PE3E58IiqtqnqVqASmCsi44ARqvq2eivxPQhcEVNnsXv8OHCRy1IuBZaoap2q1gNLiB/MUmpaRRFweJc507e2UKTHPpHOIb6W2fUqmokUxvSJ2NInZigYSJ/IN0RklWvuimYI44GdMcdUubLx7nH38i51VDUEHABG9XKuo2rK6EJ8ApstiCSkww1N7atPxDrWexedR1MQMzrLlj4xQ0GyQeReYCowC9gD/NSVH7mhBGgv5cnW6UJEForIchFZXltb29t19yk34OfYUYVU1loQSUSbCw59z1i3TKQ3TdEhvrGZiOsTsWG+JpMlFURUtVpVw6oaAf4br88CvGxhYsyhE4DdrnxCnPIudUQkAJTgNZ/1dK5413Ofqs5R1Tnl5eXJvKUuppYXWXNWgqLBoaeOdZ9PCAZ8tuxJH5qjQ3y7ZCJen0iDrZ9lMlhSQcT1cUR9DoiO3HoKmO9GXE3B60B/V1X3AI0icpbr77gGeDKmTnTk1ZXAK67f5AXgEhEpdc1ll7iyo25aRRFb9zXZ/tYJiPZ15AfjBxGAvIDPMpE+RDOR2BnreTl+CoJ+W/rEZLRAXweIyB+ATwCjRaQKb8TUJ0RkFl7z0jbgegBVXSMijwFrgRBwo6pGPz1uwBvplQ88534AHgAeEpFKvAxkvjtXnYjcBrznjrtVVQdlx6hpFUV0hJV1exopyPUztbxoMF52SIrXlt9dXo7fgkgfmttD5OX48HfbYrisMMj+Q21puipj+tZnEFHVq+MUP9DL8bcDt8cpXw7MjFPeClzVw7kWAYv6usZUi47Q+sJv3iYcUd6++UJGFeUO9mUMCZ1DUy2IDEj3FXyjRhflsu+QZSImc9mM9TimlheS4xcKgn7awxGWrK1O9yVlrGhbfn5Oz99H8nP81ifSh9i9RGKVF+eyzzIRk8EsiMRRnJfD/954Li9/9wImjyrgmdV70n1JGasloUzEZ0vB96G5PdxlyZOo0UW51DZaEDGZy4JID04+poSRBUHmzRzHW5v321j9HiTSnJVrzVl9amoPdVnyJKq8OJe65nYb5GEylgWRPlx2yljCEbUmrR5EM5GeZqxHn7PJhr3rKRMpL85FFRuhZTKWBZE+nDK+hJEFOXywsyHdl5KR4s1v6C4/x0ebZSK9amoLxe8TKfImHNZYk5bJUBZE+iAiTCoroKq+Od2XkpGaO46c39BdXo7f+kT64G2NGz8TAaxz3WQsCyIJmFhWwM46CyLxtLSHETm8RlY8eQHrE+lLc3v8TGS0G1punesmU1kQScDE0gJ2NbQQjsRdumtYa2kPk5/jx20PE1deji170pemHob4RoOIzRUxmcqCSAImlRXQEVb2HmxN96VknOaO+B9+sfKClon0JhJRWjrC5MdpEizMDVAY9FsmYjKWBZEETCzLB7AmrTha2sO9rpsFXnNWWyhCxDK5uBrdXiIj8uL3K422CYcmg1kQScDE0gIAdlgQOUJze4iCXmarw+Hhv202zDeuA26V3uj+Id2V24RDk8EsiCTgmJH5+ASqLIgcoTmRTCS6MZU1acUV3UN9ZH5O3OdHF+VSa5mIyVAWRBIQDPgYV5LPzvqWdF9KxmlpT6BPJLpFrgWRuA60RDOR+EGk+/pZB1ttfxGTOSyIJGhiWb41Z8XR7EZn9Sb6vGUi8UU3nSrpIRMpL86lobmD9lCEl9ZWM/vWJSzfNii7IhjTJwsiCZpYanNF4vFGFSXanGV9IvE0uEykpJdMBGDb/iYefGc74Yjyn8+tx9u7zZj0siCSoEllBdQ0tnWuFWU8PU2Si5UbzURCdu/iOeD2UO8pE7nwxArycnzc8uQa3thUy/FjilixvZ4fP7+eX7++mTa7ryaN+gwiIrJIRGpE5KOYsjIRWSIim9zv0pjnbhaRShHZICKXxpSfLiKr3XN3u21ycVvpPurKl4nI5Jg6C9xrbBKR6Ba6aTF9TDEA6/ceTOdlZByvT6SP0Vlu//VWC8BxHWjpoCDo73Gf+jEj8vjHjx/H21v2A/Df18xhekURv3l9Cz9+bj3vbrWmLZM+iWQivwPmdSu7CXhZVacDL7u/EZEZeNvbnuzq/EpEov8z7gUW4u27Pj3mnNcC9ao6DbgLuMOdqwxvK94zgbnALbHBarCdOqEEgNW7DqTrEjJSIs1Z0ectE4mvobmjxywkauH5xzG6KMj508s5dlQhj99wDr+/9kzA1tUy6dVnEFHVv+LtfR7rcmCxe7wYuCKm/BFVbVPVrUAlMFdExgEjVPVt9RpyH+xWJ3qux4GLXJZyKbBEVetUtR5YwpHBbNCMK8ljdFGQVVUWRKI6whE6wkpBHx3r1ifSu4aWvoNIcV4Of/nn8/iv+bMAr+nrlPHeF5v9tiSKSaM+91jvwRhV3QOgqntEpMKVjwfeiTmuypV1uMfdy6N1drpzhUTkADAqtjxOnUEnIpwyvoTVFkQ6RTekSmTGOtjorJ4caO7ocXhvrHEl+V3+HpEfIOAT9tteIyaNUt2xHm8VPu2lPNk6XV9UZKGILBeR5bW1tQldaDJOmTCSTTWNnXtoDHeHt8ZNbMa6zROJ70BLByPz489W742IUFYYpM4yEZNGyQaRatdEhftd48qrgIkxx00AdrvyCXHKu9QRkQBQgtd81tO5jqCq96nqHFWdU15enuRb6tup40uIKKzbY53rkNiGVBA7T8Sas+JpaGnvszmrJ6OKctnfZH0iJn2SDSJPAdHRUguAJ2PK57sRV1PwOtDfdU1fjSJyluvvuKZbnei5rgRecf0mLwCXiEip61C/xJWlzSmuc936RTyJNmfl2rInvWpIsDkrntFFQVsm3qRVn30iIvIH4BPAaBGpwhsx9WPgMRG5FtgBXAWgqmtE5DFgLRACblTV6CfHDXgjvfKB59wPwAPAQyJSiZeBzHfnqhOR24D33HG3qmpaxzKOGeF1rq/f05jOy8gY0eapvmas5wZ8iGBb5MbR2hGmLRTpcaJhX8oKg2zfb5NgTfr0GURU9eoenrqoh+NvB26PU74cmBmnvBUXhOI8twhY1Nc1DqZjRuazx/YVAQ5nIn01Z4kIuQGf9YnE0bluVhJ9IgCjCnPZb0N8TRrZjPV+Gjsij70HbCFGONyx3ldzFnid69YncqS+1s3qy6iiIE3tYWsqNGljQaSfxpbksfeAZSIALR3RjvW+R4oX5wVotNVnj9DgljxJtk9kVKGXwdgwX5MuFkT6aWxJHgdbQzbMl8SbswDKCnOpa7Yg0l3n4osDGJ0F2DBfkzYWRPpp7Ig8AMtG6F9zVllBDnU2FPUIfe0l0pcyl4nss3tr0sSCSD+NLbEgEtWZifQxOgugtDBIfZNlIt0dGGCfyOgi15xlmYhJEwsi/dSZidgILZrbwwT9PgL+vv8ZlRUEqbN2+yM0tLTj9wlFucmtQNTZnGWZiEkTCyL9FM1E9lgmQkt7KKGmLPDFj4eYAAAd4klEQVQykZaOsO3H0k31wTbKi3JxOyP0W2HQTzDgs0zEpI0FkX4qCAYYkReg2jIRGltDCX+Djo4iqm+2D7tYu+pbmFCa3/eBPRARRhcGbXSWSRsLIkkYV5JvmQiwq6GFcS4z60upCyLWpNVVVUMz4wcQRMCtn2UTDk2aWBBJwpiSPMtE8IJIoh+AZZaJHCEcUfY0tDJ+5ECDiK2fZdLHgkgSxo3IG/aZSDii7D2Q+AdgaYFlIt1VH2wlFFEmlBYM6DwVxbnUNA7vf48mfSyIJGFMSR77DrXRER6+y3hEPwD7m4lYEDlsV4O3fM5Am7MqivPYd6idcCTudjvGHFUWRJJwTEkeqrC7YfiuodX5AZhgJlKSn4NPoN6CSKdd9d49HEjHOsCYEbmEI2r7ipi0sCCShJlub+uVOxvSfCXp098PQL9PGFkQpM76RDpV1XtLuA+0T6S82BvcUHPQgogZfBZEknDi2GIKg36Wb6tP96WkTTQTOaYfH4ClBTk2az3GroYWRhfldm4fnKyKEd6EQ+sXMelgQSQJAb+P2ZNKWb59eAeRssJgQiv4RpUV2qz1WFX1iY9u682YEZaJmPSxIJKkOZNLWb/3IAeH6fLmu+pbOGZkYnNEoiyIdLWrvoUJA2zKAih3S59UWxAxaTCgICIi20RktYisFJHlrqxMRJaIyCb3uzTm+JtFpFJENojIpTHlp7vzVIrI3W4fdtxe7Y+68mUiMnkg15tKc44tQxU+2DE8+0V2NbT0uy2/rND6RKIiEaWqYWCz1aOCAR9lhUFrzjJpkYpM5JOqOktV57i/bwJeVtXpwMvub0RkBt7+6ScD84BfiUi0MfheYCEw3f3Mc+XXAvWqOg24C7gjBdebErMmjcTvE1ZsS+u272mhquyqb2H8yP7NbygtCFLf1I6qDUWtbmylPRRJSRABb66IZSImHY5Gc9blwGL3eDFwRUz5I6rapqpbgUpgroiMA0ao6tvqfbo82K1O9FyPAxdJsivVpVhRboDpFUWs2nUg3Zcy6OqbO2jpCPe7Pb+sMEgoojS22YZe6/c2AnDC2BEpOV/FiDxqLRMxaTDQIKLAiyKyQkQWurIxqroHwP2ucOXjgZ0xdatc2Xj3uHt5lzqqGgIOAKO6X4SILBSR5SKyvLa2doBvKXHTxxSzpbZp0F4vU6zZ7QXOqeWF/apXXuza7of5bH+AdXsOAnDiuOKUnM8yEZMuAw0i56rqx4BPAzeKyPm9HBsvg9Beynur07VA9T5VnaOqc8rLy/u65pSZWl7IzvpmWjuG1/Lm726twycwZ3JZv+pNLS8CYFPNoaNxWUPK+j2NjB+Zz4i85Daj6q6iOJfaQ21EbNa6GWQDCiKqutv9rgGeAOYC1a6JCve7xh1eBUyMqT4B2O3KJ8Qp71JHRAJACZAxnRBTy4tQha37hlc2smxLHTPHl/R7I6Wp5UWIwKZqCyLr9hzkpHGpacoCb5ivN2s98wcutIci3P/GFq5b/B53Pr9+2H0JyzZJBxERKRSR4uhj4BLgI+ApYIE7bAHwpHv8FDDfjbiagteB/q5r8moUkbNcf8c13epEz3Ul8IpmUK9s9Jv15trh86HY2hFm5c4GzpzSvywEvL3YJ5UVsLGm8Shc2dDR2hFmy74mTkpRUxZ4mQgMjQmHDyzdyn88s44N1Y386rXN/O0vlnLI+smGrIFkImOApSLyIfAu8IyqPg/8GPiUiGwCPuX+RlXXAI8Ba4HngRtVNfoV5AbgfrzO9s3Ac678AWCUiFQC38GN9MoUx5UXIgKVw6R5pqU9zAc7GmgPRzhzyhFdUwmZXlHEpurhHUQqaw4RjignpqhTHbyOdWBIbFHwvx/sYs6xpbzxvQv52RdOY1PNId4bhqMcU+35j/by7Oo9g/66yW3sDKjqFuC0OOX7gYt6qHM7cHuc8uXAzDjlrcBVyV7j0ZaX42dCaT6bh0HnemVNI/N+/gYj8nMQgTOSyETAG4zw+sZaOsIRchLYmz0bRTvVU5mJHDfaG+SwqfoQF544JmXnTbX1ew+yobqR2y4/GYALT/TG3Wzc28gnT6jorarpw6KlW1GUy04ZN6ivOzz/F6fQ1PIiNg+DTOTldTWEIkpB0M85U0dRkp9ch/DxY4roCCvbhlk/Uqw1uw+Sl+Pj2FH9G93Wm9LCIGNH5HUOHc5UT67cjd8nnR90IwuCjBmRy4Zhnp2mQmXtIaZVFA3661oQGaCp5UVs2Xco60fFLK3cx/SKIpZ+/0Ievu6spM8zvcL79r1xmHSut3aEufvlTZ3b10YiypK11Zx93Cj8vtROeTpxXHFnlpOJwhHlyQ92cd600YxyS7UAHD+mmI0WRAakrqmduqb2zn7awWRBZICmlhfR2hHpXNU2G7WFwry3rY5zp40e8LmmVRThE4bNh8Yzq/bwsyUb+f6fVqGqvL+jnl0NLXx21jEpf62Txo1gc+0h2kOZuVnaq+tr2H2glflnTOxSfsKYYjZVH7JNtQYgOrhnqmUiQ8+siSMBeGvzvjRfydHz/vYGWjsinJeCIJKX42fyqEJWD5OZ/v+7chcBn/DSuhoeXraDJ1fuJjfg41Mzxqb8tU4cW0xHWNmyLzOzvIfe2c6YEblcPKNrn83xY4tpC0XYUdc8qNfz2ze38vOXNg7qax4t0cE90ywTGXpOGlfM+JH5LFlb0/fBQ9Sblfvw+4Qzj0uuM727C04oZ2nlvqwf1lnT2Mqblfv4x/OP45ypo/jh/37EH97dwcUzxvR7jk0iovNO1u/JvCxv+/4mXt9Yy/wzJh0xoOKEMV4T54ZB7M/ZUnuI259Zx89f2sSTK3cN2uumwuK3tnH/G1s40Hx4BfHNNYfIy/ENeIOzZFgQGSAR4eKTKlhaWUtLe/ZNmlJVXlpXzeyJIylO0ezqT88cR3sowivrszfwgteUFVH4u9njWfTVM/jevBMYW5LHV8469qi83pTRhQT9PtbtTX+/SFV9Mx3hw81q/7NsB36fcPXcSUccO32M9+15oE2cH+06kPD2y3c+v4FgwMepE0r44RMfZXxz9O/f2c7/LNvBL17exC1PreE/nlnHeXe+wo79XvZWWXuI40YX4UtxP1siLIikwMUzxtDaEeHNyuxr0vpo10HW723k8tnj+z44QacfW8roolye/2jwx7QPlh37m/nVa5uZOX4E08cUk5fj558+MY2l37+Qs45Lbo5NX3L8PqZVFLEuzZlI9cFWLvrp69z+zDrAG1zw6PKdXDJjDGNLjtyDpiAYYFJZwYCaON/evJ/P3rOUq37zNg3N7UQi2uNq0Su21/H8mr1cf/5Ufvmlj9ERifCfz65L+rWPtr98uJsf/u9H/OCJ1fx0yUY+e9oxPPFP59DUFuKR93YAXp9IOvpDwIJISpw5ZRRFuQFeXLs33ZeScn9csZNgwMdnT01dR7DfJ8ybOYZX12dn9lbb2MaXH1hGRzjCXV+YNaivPWdyKe9s2Z/WSYcPv7OdtlCEh5dtZ2ddM8+s2kNDc0evGdglM8bw8rpq1veQRVXVN3cGheb2ECu21/HhTm8vn5rGVr75yAeMK8lnx/5m5v38DWbc8jxz/9/LfPexD1m7+/A5VZX/9+x6yotz+cfzpzCxrIDrz5/K06v2sDwDJzzurGvm5j+v5mOTRvLHr5/N//2bGfzkqtOYPamUC44v58/v76KpLURVfUta+kPAgkhKBAM+LjtlLE+u3M2+Q9mxkmpjawfLtuznyZW7ufTksZQUpKYpK+ryWeNp6Qjz8LLtKT1vurWFwnz99yuoaWzlt189g+ljUjehMBHXnXcc4Yhy72ubB/V1o9pCYR5etoPTjy3FJ8L/efxD7nm1kuPKCzl7as8Z2DcunEZRboD/fHb9Ec+9tqGG8+54lXteqWTH/mbO+fErfP7et/m7e99iVVUD33t8FY2tHSz66hn88u8/xuTRBXxxzkTOOm4UL67Zy2V3v8G//2UNqsoLa6pZsb2e73zq+M6tna+/4DjGjsjjW4+u5LUNmdXE+rMlG4mocvfVszljchlfO28KwYD3sf2FORPZe7CVW/+yFlXSMkcELIikzPUXTKU9HOGBpVvTfSkDVnOwlXk/f4Mv3vcOB1o6uLrbkMxUOGNyGR+fPpp7Xq3Mmi2GO8IR/s8fV7Fiez0/vWoWsyeV9l0pxSaNKuDzHxvP/7y7Iy1ruj394R72N7Xz7YuP57qPT+GdLXUcbOngpnkn0ttWQCMLgvzzhdN5fWMtb2w6vJ1Dc3uIf3viIwB++Vol33r0A0Jh5Zdf+hiji4J8+f5lvLahlps/fRInjC3mUzPG8MjCs/n3y2fyi6tns/SmC/nKWcfy2ze38fXfr+Bf//gh0yuKuOr0w2u+FgQD3POl2eT4fXz1t+/xH0+vPWrzvn79+ma+/ehK2kJ9Z+BV9c089eFu5p8xiQmlR24Ad9FJYygtyOHR5Ts5+ZgRnDd94KMnk2FBJEWmlhdx2SnjeOjt7RxoGbofii3tYa57cDn1ze386u8/xkvfOZ9zUjC0N57vzzuRhuYOfvlq5VE5/2Bqbg/xD799j6c+3M335p3AZ04d3KUnYv3zhdMJ+n18+udv8IuXNw3qaz/y3g6OG13IudNG8Z1PncB7/3Yxy394MZec3PeQ5mvOOZYJpfnc/sy6zjkjdz6/gV0NLfzXfK9Z8P0dDZ33947Pn8rB1hDnTB3VY1NZSX4Ot15+MlfPncgLa6qZNXEki756BoFuI8TmTC7jhW+dz1fPmcz9S7fygydWp3wHztVVB7jz+fU88cEu/uUPKwmFe5/Pc/8bWxHguo9Pift8MODj7qtn84urZ/OXb5yX9CoSA5X6cYbD2HXnTeGZVXt4ZX01n5s9oe8KGeiO59ezetcB/vsrc44Yz59qM8eXcNXpE7jvr1s4+7hRfGIIr53069c2s7RyH3deeSpfmJP6zK0/JpYV8NJ3LuDWp9fw0yUbmTmhZFDWpdq2r4n3ttXzvXknICL45fBGZInIDfj53rwT+eYfPmDxW9sYVRTkd29t42vnTuHyWeNp64jw7rY6vnymFzA+cUIFj11/NieMLe51VJKIcPsVp/Dls45lxrgRPWZEwYCPW/52BvlBP/e+tpmzjhvFFSkYUHKwtYNlW+q4a8lGRhXlsuDsY/nJixv5zV+3cOMnpx1xfEt7mJ+8uIEH397G52ZP4Jhehu1+fPrg7Z/UEwsiKXTahJGMLMjhzcr9QzKIvLetjsVvb+Oas4496gEk6tbLZ/LR7oN88w8f8OK3L4g7eifT7T/UxgNLt/KZU8alPYBEjS3J464vzmJj9VL+7c+refE7FxyVuSmx/vR+FT6BvxvAv/2/PXUci9/axq1PrwVgzrGl3PTpEwH4whkT+UK3ptW5CS4E6vMJJx9T0udxIsK/XnIC726t4/8++RFV9c1MKC3g8lnH9Noc15OOcIQv/Ppt1u9txO8Tfvml2cybOY7Vuw5wzyuVTK8o4qcvev0esyeN5F8vPYFvP7qSNyv38/dnTuLmy07q92sONsmg7TlSYs6cObp8+fK0vf4/PbyCD3Y08NZNFyb1jy4dlqyt5juPrqSxLcT4kfm8+O3zKTzKHzixtu1r4qKfvc7Xzp3Mv31mxqC97kC0tIcJ+IUcv48fPbWGB9/exovfPp9pFYPbkd6XFdvrufLXbzHzmBLu/fLH4ratD9TeA608vWo3v/nrFmaMG8Hir80d0Pma20O8ur6WD6sauO7jU6goHvwvFtv2NXHlr9/uHCjz+Y9NYM7kUtpDEa6eO6mzczseVeXnL22iLRShIOjnZ0s2cufnT+VTM8ZQWhgEvFFXF/3sddpDEcaPzGfGMSN4bUMNIkJ7KMJPrzqNz58+uF9ERWSFqs7pdz0LIqn18LLt/NsTH/Hydy9Iy2JosVo7wkRU8fuE/YfaWbfnILsbWigtDDJ3chkVI/KoaWzl0rv+ypgReXx21jFcNnMck0enbnXZRH3zDx/wyvoa3rr5wpRtGZsKrR1hnvhgFxurG7nq9IkU5vr504oqfvPXLYwuyuXUCSU899Ferp47kf/8u1PTfblxvbhmL9997EOCAR+PXn92QqN49h9q455XK9m6r4mg38cp40u49uNTOkc0RR1o6eDye5aybX8zo4uC/PJLH+PMozQPZrCFwhFCEeU3r2/hrpjlUeZOLuPLZx9LUa6fc6eNJjfgB7zJknVN7azc2cCPnzs8yuzik8Zw/4IjP5sXv7WN1zfWcsfnT6W8OJcPdtRz859Xc9WciVx7Xvx+kKPJgoiT7iCyfX8TF/x/r3Hr5SdzzdmT03Ydf36/ih88sZrWjviddwG3jEn1wTZ21DXz7DfPS+u36NVVB/jbe5Zy06dP5OsXTE3bdcR6q3If3/3jh+w50IrfJ10WCLzslLHsrGth9a4D/POF0/jWxcenfFXeVKqsOcT8+97B74NHF57d6xeFSET5h9+9x1ub93H8mGJaO8Jsrm3ib04dx0+uOo1X1tfQ0NxBeyjMC2uqeW9bHb+/7syjNokyE6zbc5DcgI/Vuw7w/T+t6vx/NbIgh6+eM5npFcV869EP6Ah7/0YuO2Usf3/msd6Xys/MSMtyJP2V1UFEROYB/wX4gftV9cc9HZvuIKKqfPzOV6kozuXBa88EvA/svBx/r/U+2nWAP7y7g+K8HM6eOooTxxZTUZzb7yax6oOt3PH8ev78/i7OnFLGJ0+sIBSOUFoYZHpFMceOKqC2sY2nPtzNm5X78Ilw7XlTUtKBOFBfeWAZb1bu4/oLpnL1GZOYWJbf+f5VddCaB+ub2rnrpY089M52powu5N8/ezKnjh/JEx9UkZvjZ86xpUwfU0wkouw71Na5q2Cm27C3kfn3vQ3ADz8zg4OtHUwZXch500YT8PvYuq+JpZX7WL/nIA8v28FtV8zsHPV072ubueP59YzIC3Cw9fCaZ36fcNvlM/nSmUcuZ5KtvGXX29jd0MrDy7bzwppqAE6bUMLXL5jKln1NfO3cKeQHe/8/n2myNoiIiB/YiLfVbhXwHnC1qq6Nd3y6gwjAI+/u4AdPrKasMJeDLR0U5vr52RdmsXJnA+/vqCfH72NjdSMi8K+XnMCLa6t5ZtUe8nP8dLgUGuC0iSO5/nxv8lhLR/xx5aUFQU4cW4wq/PmDKn7z+hbCEeW6j0/hO586/oihjJmssbWD255ey2PLqwBv8tQNF0zl8RVVLN9eR3lRLuUj8hhTnEvFiFzGFOcxeXQhF51UgU+EzbWH2HeonfV7DrLnQCt/c+o4ggEfH+xoIMfvo6ktxL6mNmaMG8HkUYWEVYlElJEFQSaW5fPimmqeXrWbNzbto7UjzJfPOpabPn3iEU04Q9m2fU1cu/i9LrtxFuUGGFmQQ1X94fWjPnPqOO65enaXIH7zn1ezbX8T//SJaUwfU0TQ7yM/6M+q+5OMNyv3sWRtNd+++PiUT8odTNkcRM4GfqSql7q/bwZQ1f+Md3wmBBGAd7fWcc+rlRxfUcSrG2o6/9POHD+CUFg5rryQzTVNbKhuJOj3ceMnp/EP503GL8KHOxtYs/sgv31zK7sP9G/5is+cMo7vzzuRSaNS34E6WDZWN7Jsy34eWLqVbfubGVmQw+dmj+dgS4iaxlZqDrZR3dhKg1vFND/HTygS6WxKAAj6fbTHGYffvVkqyicQUTimJI9PnFjBgrMnc8LYzOokT5WmthBrdh9kUlkBK3c28NbmfTQ0d3DC2GI+e9oxjMjPYUReYMgMDDGpkc1B5Epgnqpe5/7+CnCmqn4j5piFwEKASZMmnb59e2YtpXGwtYP739jKJ08o7zKLuT0U4U/vV3U2j3TX2hFmVdUBRhbkUBAnNVb11g3aWH2IgE84cewITpnQ9zDGoaItFObNyn3MmlhKmRvVEqu1I8yHOxt4ZvUeCnMDzDymhIoRuRw3upC8HD/Prt6D3yecM3U0ilKQE6Aw18+6PY1UH2zF7xf8IlQfbGVjdSPnTBvNBdPL07ISqjHpls1B5Crg0m5BZK6q/nO84zMlEzHGmKEk2SAyFBrMq4DYGUYTgN1puhZjjDExhkIQeQ+YLiJTRCQIzAeeSvM1GWOMYQgse6KqIRH5BvAC3hDfRaq6Js2XZYwxhiEQRABU9Vng2XRfhzHGmK6GQnOWMcaYDGVBxBhjTNIsiBhjjEmaBRFjjDFJy/jJhv0lIo3AhgQPHw3sS8HLlgAHUnCeo3W+o3XeVN0/yPx7mMn3DjL//Q6n+zcU791ooFBV+79Voqpm1Q+w/Ggc28d57kvxe0jp+Y7idabk/g2Fe5jJ926IvN9hc/+G4r0byP205qzU+EuGn+9onzcVMv0eZvK9g8x/v8Pp/g2re5eNzVnLNcH1X/pzrDmS3b/k2b0bGLt/yYt37wZyP7MxE7nvKB1rjmT3L3l27wbG7l/y4t27pO9n1mUixhhjBk82ZiLGGGMGSVYFERGZKCKvisg6EVkjIv/iystEZImIbHK/S135KHf8IRG5p9u5rhaR1SKySkSeF5HR6XhPgynF9++L7t6tEZE70/F+BlMS9+5TIrLC/RtbISIXxpzrdFdeKSJ3yzDYYjDF9+92EdkpIofS9X4GU6runYgUiMgzIrLenefHCV1AKoeOpfsHGAd8zD0uxtubfQZwJ3CTK78JuMM9LgTOA74O3BNzngBQA4x2f9+Jt0Vv2t/jELl/o4AdQLn7ezFwUbrfX4bdu9nAMe7xTGBXzLneBc4GBHgO+HS6398Qu39nufMdSvf7Gkr3DigAPukeB4E3Evm3l/YbcJRv7pPAp/AmH46LueEbuh331W4fgjlALXCs+4/8a2Bhut/PELp/ZwAvxfz9FeBX6X4/mXjvXLkA+4Fcd8z6mOeuBn6T7vczVO5ft/JhEUSOxr1zz/0X8I99vV5WNWfFEpHJeBF3GTBGVfcAuN8VvdVV1Q7gBmA13i6KM4AHjuLlZpyB3D+gEjhRRCaLSAC4gq67U2a1JO7d54EPVLUNGI+3m2dUlSsbNgZ4/4a1VN07ERkJ/C3wcl+vmZVBRESKgD8B31LVg0nUz8ELIrOBY4BVwM0pvcgMNtD7p6r1ePfvUbyUeBsQSuU1Zqr+3jsRORm4A7g+WhTnsGEzhDIF92/YStW9c1/8/gDcrapb+jpP1gURFwD+BDysqn92xdUiMs49Pw6vv6M3swBUdbN6ed1jwDlH6ZIzSoruH6r6F1U9U1XPxkurNx2ta84U/b13IjIBeAK4RlU3u+IqYELMaSfgZcNZL0X3b1hK8b27D9ikqj9P5LWzKoi4USwPAOtU9WcxTz0FLHCPF+C1GfZmFzBDRKKLkX0KWJfKa81EKbx/iEiF+10K/BNwf2qvNrP099655oJngJtV9c3owa7ZoVFEznLnvIYE7vdQl6r7Nxyl8t6JyH/gLfj4rYQvIN2dQCnuUDoPL/VfBax0P5fhjRZ6Ge/b8MtAWUydbUAdcAjvW+AMV/51vMCxCm/tmlHpfn9D7P79AVjrfuan+71l2r0Dfgg0xRy7Eqhwz80BPgI2A/fgJgVn80+K79+d7t9ixP3+Ubrf31C4d3hZr7rPvWj5dX29vs1YN8YYk7Ssas4yxhgzuCyIGGOMSZoFEWOMMUmzIGKMMSZpFkSMMcYkzYKIMYNMRL4uItf04/jJIvLR0bwmY5IVSPcFGDOciEhAVX+d7uswJlUsiBjTT26Ru+fxFrmbjbf09jXAScDPgCJgH/BVVd0jIq8BbwHnAk+JSDHeCrM/EZFZeKtEF+BNLvyaqtaLyOnAIqAZWDp4786Y/rHmLGOScwJwn6qeChwEbgR+AVypqtEAcHvM8SNV9QJV/Wm38zwIfN+dZzVwiyv/LfBN9dYeMyZjWSZiTHJ26uF1h34P/ABvg58lbiNCP7An5vhHu59ARErwgsvrrmgx8Mc45Q8Bn079WzBm4CyIGJOc7usFNQJreskcmvpxbolzfmMykjVnGZOcSSISDRhXA+8A5dEyEclx+zX0SFUPAPUi8nFX9BXgdVVtAA6IyHmu/O9Tf/nGpIZlIsYkZx2wQER+g7dK6i+AF4C7XXNUAPg5sKaP8ywAfi0iBcAW4B9c+T8Ai0Sk2Z3XmIxkq/ga009udNbTqjozzZdiTNpZc5YxxpikWSZijDEmaZaJGGOMSZoFEWOMMUmzIGKMMSZpFkSMMcYkzYKIMcaYpFkQMcYYk7T/H9tbGJniGNb4AAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sorted_data['inc'][-200:].plot()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Etude de l'incidence annuelle\n",
+ "\n",
+ " Etant donné que le pic de l'épidémie se situe en hiver, à cheval entre deux années civiles, nous définissons la période de référence entre deux minima de l'incidence, du 1er août de l'année *N* au 1er août de l'année *N+1*.\n",
+ " \n",
+ " Notre tâche est un peu compliquée par le fait que l'année ne comporte pas un nombre entier de semaines. Nous modifions donc un peu nos périodes de référence: à la place du 1er août de chaque année, nous utilisons le premier jour de la semaine qui contient le 1er août.\n",
+ " \n",
+ " Comme l'incidence de syndrome grippal est très faible en été, cette modification ne risque pas de fausser nos conclusions.\n",
+ " \n",
+ " Encore un petit détail: les données commencent an octobre 1984, ce qui rend la première année incomplète. Nous commençons donc l'analyse en 1985."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n",
+ " for y in range(1985,\n",
+ " sorted_data.index[-1].year)]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ " En partant de cette liste des semaines qui contiennent un 1er août, nous obtenons nos intervalles d'environ un an comme les périodes entre deux semaines adjacentes dans cette liste. Nous calculons les sommes des incidences hebdomadaires pour toutes ces périodes.\n",
+ " \n",
+ " Nous vérifions également que ces périodes contiennent entre 51 et 52 semaines, pour nous protéger contre des éventuelles erreurs dans notre code."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ " year = []\n",
+ "yearly_incidence = []\n",
+ "for week1, week2 in zip(first_august_week[:-1],\n",
+ " first_august_week[1:]):\n",
+ " one_year = sorted_data['inc'][week1:week2-1]\n",
+ " assert abs(len(one_year)-52) < 2\n",
+ " yearly_incidence.append(one_year.sum())\n",
+ " year.append(week2.year)\n",
+ "yearly_incidence = pd.Series(data=yearly_incidence, index=year)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ " Voici les incidences annuelles."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAD8CAYAAABQFVIjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3X+QldWd5/H3B0FxElEg6PBDhY3GCppZHLrQLfdHxB0gPyrgjJmwOkrVWEXijy1nNrWiE7fMKFMVU5M4y7ohMWNG1FF0TCzdRIa0UWucWQSaoFE0TjMrgygjWI2KUwVj43f/eL53fLhpbt9ubve9t/vzqrrVT5/nnHNPPzT9vefH8xxFBGZmZkdrTLMbYGZmI4MDipmZNYQDipmZNYQDipmZNYQDipmZNYQDipmZNYQDipmZNYQDipmZNYQDipmZNcTYZjdgOH3sYx+LmTNnNrsZZmZtZcuWLW9FxJT+8o2qgDJz5ky6urqa3Qwzs7Yi6R/ryechLzMzawgHFDMzawgHFDMza4i6AoqkHZJekPScpK5M+7qk1zPtOUmfLeW/UdJ2Sa9IWlhKn5v1bJe0SpIy/ThJD2b6RkkzS2WWSerO17JS+qzM251ljz36y2FmZoM1kB7KhRExJyI6Smm3Z9qciHgcQNJsYClwNrAI+I6kYzL/amA5cGa+FmX6lcC+iDgDuB24LeuaBNwMnAfMA26WNDHL3JbvfyawL+swM7MmGYohr8XA2og4GBGvAtuBeZKmAhMiYkMUu3rdAywplVmTxw8DF2XvZSHQGRE9EbEP6AQW5bn5mZcsW6mrre159wC/+70N7Nl/oNlNMTMbkHoDSgA/lbRF0vJS+rWSfiHpB6Wew3TgtVKeXZk2PY+r0w8rExG9wDvA5Bp1TQbezrzVdbW1VT/rZvOOHlY90d3sppiZDUi996FcEBFvSDoZ6JT0S4rhq1spgs2twLeA3wfUR/mokc4gytSq6zAZAJcDnHbaaX1laQln3bSOg70f/Ov3923cyX0bd3Lc2DG8svIzTWyZmVl96uqhRMQb+XUP8AgwLyLejIhDEfEB8H2KOQ4oegunlorPAN7I9Bl9pB9WRtJY4ESgp0ZdbwEnZd7quqrbfmdEdEREx5Qp/d7o2TTPXH8hX5gzjfHjin+S8ePGsHjONJ5ZcWGTW2ZmVp9+A4qkj0g6oXIMLABezDmRiouBF/P4MWBprtyaRTH5vikidgP7JZ2fcyBXAI+WylRWcF0CPJnzLOuBBZIm5pDaAmB9nnsq85JlK3W1pZMnjOeE48ZysPcDjhs7hoO9H3DCcWM5+YTxzW6amVld6hnyOgV4JFf4jgXuj4i/lnSvpDkUQ007gC8DRMQ2SQ8BLwG9wDURcSjrugq4GzgeWJcvgLuAeyVtp+iZLM26eiTdCmzOfLdERE8erwDWSloJbM062tpb7x3ksvNO59J5p3H/pp3s9cS8mbURFR/2R4eOjo7ws7zMzAZG0paqW0b65DvlzcysIRxQzMysIRxQzMysIRxQzMysIRxQzMysIRxQ2pCf92VmrcgBpQ35eV9m1opG1Z7y7c7P+zKzVuYeShvx877MrJU5oLQRP+/LzFqZh7zajJ/3ZWatys/yqsOedw9w7QNbuePSc90bMLNRx8/yaiCvqjIz65+HvGrwqiozs/q5h1KDV1WZmdXPAaUGr6oyM6tfXQFF0g5JL0h6TlJXpk2S1CmpO79OLOW/UdJ2Sa9IWlhKn5v1bJe0KrcCJrcLfjDTN0qaWSqzLN+jW9KyUvqszNudZY89+svxqyqrqh65+gIuO+909r53cCjexsys7dW1ykvSDqAjIt4qpX0T6ImIb0i6AZgYESskzQYeAOYB04AngE9ExCFJm4DrgGeBx4FVEbFO0tXAb0TEVyQtBS6OiC9JmgR0AR0UWw1vAeZGxL7cZvhHEbFW0neB5yNida2fwzs2mpkN3HCs8loMrMnjNcCSUvraiDgYEa8C24F5kqYCEyJiQxRR7J6qMpW6HgYuyt7LQqAzInoiYh/QCSzKc/Mzb/X7m5lZE9QbUAL4qaQtkpZn2ikRsRsgv56c6dOB10pld2Xa9DyuTj+sTET0Au8Ak2vUNRl4O/NW12VmZk1Q77LhCyLiDUknA52Sflkjr/pIixrpgylTq67DG1MEwOUAp512Wl9ZzMysAerqoUTEG/l1D/AIxfzImzmMRX7dk9l3AaeWis8A3sj0GX2kH1ZG0ljgRKCnRl1vASdl3uq6qtt+Z0R0RETHlClT6vlxzcxsEPoNKJI+IumEyjGwAHgReAyorLpaBjyax48BS3Pl1izgTGBTDovtl3R+zoFcUVWmUtclwJM5z7IeWCBpYq4iWwCsz3NPZd7q9zczsyaoZ8jrFOCRXOE7Frg/Iv5a0mbgIUlXAjuBLwJExLZcgfUS0AtcExGHsq6rgLuB44F1+QK4C7hX0naKnsnSrKtH0q3A5sx3S0T05PEKYK2klcDWrMPMzJrED4c0M7Oa/HBIMzMbVg4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEHUHFEnHSNoq6cf5/dclvS7puXx9tpT3RknbJb0iaWEpfa6kF/Lcqtxbntx//sFM3yhpZqnMMknd+VpWSp+Vebuz7LFHdynMzOxoDKSHch3wclXa7RExJ1+PA0iaTbEn/NnAIuA7ko7J/KuB5cCZ+VqU6VcC+yLiDOB24LasaxJwM3AeMA+4WdLELHNbvv+ZwL6sw8zMmqSugCJpBvA54M/ryL4YWBsRByPiVWA7ME/SVGBCRGyIYiP7e4AlpTJr8vhh4KLsvSwEOiOiJyL2AZ3Aojw3P/OSZSt1mZlZE9TbQ/kz4Hrgg6r0ayX9QtIPSj2H6cBrpTy7Mm16HlenH1YmInqBd4DJNeqaDLydeavrMjOzJug3oEj6PLAnIrZUnVoNfByYA+wGvlUp0kc1USN9MGVq1XUYScsldUnq2rt3b19ZzMysAerpoVwAfEHSDmAtMF/SfRHxZkQciogPgO9TzHFA0Vs4tVR+BvBGps/oI/2wMpLGAicCPTXqegs4KfNW13WYiLgzIjoiomPKlCl1/LhmZjYY/QaUiLgxImZExEyKyfYnI+L3ck6k4mLgxTx+DFiaK7dmUUy+b4qI3cB+SefnHMgVwKOlMpUVXJfkewSwHlggaWIOqS0A1ue5pzIvWbZSl5mZNcHY/rMc0TclzaEYatoBfBkgIrZJegh4CegFromIQ1nmKuBu4HhgXb4A7gLulbSdomeyNOvqkXQrsDnz3RIRPXm8AlgraSWwNeswM7MmUfFhf3To6OiIrq6uZjfDzKytSNoSER395fOd8mZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGY2Kux59wC/+70N7Nl/oNlNGbEcUMxsVFj1s2427+hh1RPdzW7KiHU0z/IyM2t5Z920joO9H27ldN/Gndy3cSfHjR3DKys/08SWjTzuoZjZiPbM9RfyhTnTGD+u+HM3ftwYFs+ZxjMrLmxyy0YeBxQza5rhmNc4ecJ4TjhuLAd7P+C4sWM42PsBJxw3lpNPGD9k7zlaOaCYWdMM17zGW+8d5LLzTueRqy/gsvNOZ+97B4f0/UYrP77ezIZd9bxGhec1WpMfX29mLcvzGiOTA4qZDTvPa4xMdQcUScdI2irpx/n9JEmdkrrz68RS3hslbZf0iqSFpfS5kl7Ic6tyb3ly//kHM32jpJmlMsvyPbolLSulz8q83Vn22KO7FGY2nDyvMfLUPYci6b8BHcCEiPi8pG8CPRHxDUk3ABMjYoWk2cADwDxgGvAE8ImIOCRpE3Ad8CzwOLAqItZJuhr4jYj4iqSlwMUR8SVJk4CufN8AtgBzI2Jf7lv/o4hYK+m7wPMRsbrWz+A5FDOzgWvoHIqkGcDngD8vJS8G1uTxGmBJKX1tRByMiFeB7cA8SVMpgtGGKKLYPVVlKnU9DFyUvZeFQGdE9ETEPqATWJTn5mfe6vc3M7MmqHfI68+A64HysoxTImI3QH49OdOnA6+V8u3KtOl5XJ1+WJmI6AXeASbXqGsy8Hbmra7rMJKWS+qS1LV37946f1wzMxuofgOKpM8DeyJiS511qo+0qJE+mDK16jo8MeLOiOiIiI4pU6b0lcXMzBqgnh7KBcAXJO0A1gLzJd0HvJnDWOTXPZl/F3BqqfwM4I1Mn9FH+mFlJI0FTgR6atT1FnBS5q2uy6wmP3XWbGj0G1Ai4saImBERM4GlwJMR8XvAY0Bl1dUy4NE8fgxYmiu3ZgFnAptyWGy/pPNzDuSKqjKVui7J9whgPbBA0sRcRbYAWJ/nnsq81e9vVpOfOms2NI7macPfAB6SdCWwE/giQERsyxVYLwG9wDURcSjLXAXcDRwPrMsXwF3AvZK2U/RMlmZdPZJuBTZnvlsioiePVwBrJa0EtmYdZkfkp86aDS0/esVGjT3vHmDl4y/z023/xIH3P2D8uDEsPPvX+drnPukb6sxq8KNXzKoM5O7sdpxnacc228jigGKjSr13Z7fjPEs7ttlGFg95mZW041Nw27HN1l485GU2CO34FNx2bLONTA4oZiXt+BTcdmyzjUxHs2zYbESqzLNcOu807t+0k71tMMndjm22kcdzKGZmVpPnUMzMbFg5oJiZWUM4oJiZDYBvID0yBxQzswHwDaRH5lVe1lb2vHuAax/Yyh2XnutlsTas/HDR/rmHYm3Fnw6tWXwDaf/cQ7G2MNo/Hbpn1ny+gbR/7qFYWxjtnw7dM2sN9T5cdLRyD8VaRq1P4aP10+Fo75m1mu9d/uG9fSuXnNPElrSmfnsoksZL2iTpeUnbJP1xpn9d0uuSnsvXZ0tlbpS0XdIrkhaW0udKeiHPrcqtgMntgh/M9I2SZpbKLJPUna9lpfRZmbc7yx7bmEtiA9WoZZT9fQofjZ8OR3vPzNpLPT2Ug8D8iHhP0jjgbyVVtu69PSL+tJxZ0myKLXzPBqYBT0j6RG4DvBpYDjwLPA4sotgG+EpgX0ScIWkpcBvwJUmTgJuBDiCALZIei4h9mef2iFgr6btZx+rBXwobrHIgWHnxpwZcvt5P4aPx0+Fo7ZlZe+q3hxKF9/Lbcfmq9QCwxcDaiDgYEa8C24F5kqYCEyJiQxQPELsHWFIqsyaPHwYuyt7LQqAzInoyiHQCi/Lc/MxLlq3UZcPkrJvWMfOGn3Dfxp1EFIFg5g0/4ayb1vVfuMSfwmsbjT0za091zaFIOgbYApwB/O+I2CjpM8C1kq4AuoCv5h/96RQ9kIpdmfZ+Hlenk19fA4iIXknvAJPL6VVlJgNvR0RvH3XZMHnm+guPuEf7QPhTeG2jsWdm7amuVV4RcSgi5gAzKHob51AML30cmAPsBr6V2dVXFTXSB1OmVl2HkbRcUpekrr179/aVxQapkYHAn8JHHj+iZPQZ0CqviHhb0tPAovLciaTvAz/Ob3cBp5aKzQDeyPQZfaSXy+ySNBY4EejJ9E9XlXkaeAs4SdLY7KWU66pu853AnVA8vn4gP6/1r1H7cPhT+MhztHNr1n763Q9F0hTg/QwmxwM/pZgQ3xIRuzPPHwLnRcRSSWcD9wPzKCblfwacGRGHJG0G/iuwkWJS/n9FxOOSrgE+FRFfyUn5346I381J+S3Ab2Zzfg7MjYgeSX8F/LA0Kf+LiPhOrZ/F+6GYDT3vcT/y1LsfSj09lKnAmpxHGQM8FBE/lnSvpDkUQ007gC8DRMQ2SQ8BLwG9wDW5wgvgKuBu4HiK1V2V2du7gHslbafomSzNunok3Qpszny3RERPHq8A1kpaCWzNOsysyRo1t2btp9+AEhG/AM7tI/3yGmX+BPiTPtK7gF8Zz4iIA8AXj1DXD4Af9JH+/yh6QWbWQrzIYvTynfJm1nDe43508p7yZmZWk/eUNzOzYeWAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYjaEvCeIjSYOKGZDqLwniNlI54dDmg2B6j1B7tu4k/s27vSeIDaiuYdiNgSeuf5CvjBnGuPHFf/Fxo8bw+I503hmxYVNbpnZ0HFAMRsC3hPERiMHFBtRWmkSvLInyCNXX8Bl553O3vcONrtJZkOq34AiabykTZKel7RN0h9n+iRJnZK68+vEUpkbJW2X9IqkhaX0uZJeyHOrJCnTj5P0YKZvlDSzVGZZvke3pGWl9FmZtzvLHtuYS2LtrJUmwb93eQcrl5zD7GkTWLnkHL53eb/bSZi1tX432Mo/+h+JiPckjQP+FrgO+G2gJyK+IekGYGJErJA0G3iAYnveacATwCci4pCkTVn2WeBxYFVErJN0NfAbEfEVSUuBiyPiS5ImAV1AB8Xe9VuAuRGxL/et/1FErJX0XeD5iFhd62fxBlsjV/UkeIUnwc2OXsM22IrCe/ntuHwFsBhYk+lrgCV5vBhYGxEHI+JVYDswT9JUYEJEbIgiit1TVaZS18PARRnIFgKdEdETEfuATmBRnpufeavf30YhT4IPr1YaWrTWUdcciqRjJD0H7KH4A78ROCUidgPk15Mz+3TgtVLxXZk2PY+r0w8rExG9wDvA5Bp1TQbezrzVdVW3fbmkLklde/furefHtTbkSfDh1UpDi9Y66roPJSIOAXMknQQ8IumcGtnVVxU10gdTplZdhydG3AncCcWQV195bGSoTIJfOu807t+0k73+9Nxwvr/GahnQjY0R8bakp4FFwJuSpkbE7hzO2pPZdgGnlorNAN7I9Bl9pJfL7JI0FjgR6Mn0T1eVeRp4CzhJ0tjspZTrslGqPOm9ckmtzzw2WM9cfyErH3+Zn277Jw68/wHjx41h4dm/ztc+98lmN81aQD2rvKZkzwRJxwP/Gfgl8BhQWXW1DHg0jx8DlubKrVnAmcCmHBbbL+n8nAO5oqpMpa5LgCdznmU9sEDSxFxFtgBYn+eeyrzV729mQ8RDi1ZLPT2UqcAaScdQBKCHIuLHkjYAD0m6EtgJfBEgIrblCqyXgF7gmhwyA7gKuBs4HliXL4C7gHslbafomSzNunok3Qpszny3RERPHq8A1kpaCWzNOsxsiHlo0Y6k32XDI8lQLhve8+4Brn1gK3dceq4/rZk1UDv+32rHNtfSsGXDVh+vejEbGu34f6sd29wI7qEcJd9QZzY02vH/Vju2uR7uoQwT31BnNjTa8f9WO7a5kRxQjtJAVr347mJrB63ye9qOK8rasc2N5IDSAPU+VXa0jqtae2ml39N2fGJzO7a5UTyHMgxG6riqjSz+PbUj8RxKCxnt46rWHvx72npaZfixXg4ow6Cdx1Xb7RfaBq+df09HqlYafqzHgJ7lZYPXrncXl3+hV178qWY3x4ZYu/6ejjTt+hBOz6FYnzyebtY8e949cMSHcDajx+g5FDsqHk83a552HX70kJf1qV1/oc1GinYcfnRAsSNqx19os5GiHff38RzKKDbSnohqZkPDcyjWr3Zbkmhmrc1DXqNQuy5JbDXu4Zkdrp4tgE+V9JSklyVtk3Rdpn9d0uuSnsvXZ0tlbpS0XdIrkhaW0udKeiHPrcqtgMntgh/M9I2SZpbKLJPUna9lpfRZmbc7yx7bmEsy8nkFV2O4h2d2uHp6KL3AVyPi55JOALZI6sxzt0fEn5YzS5pNsYXv2cA04AlJn8htgFcDy4FngceBRRTbAF8J7IuIMyQtBW4DviRpEnAz0AFEvvdjEbEv89weEWslfTfrWD34SzF6eAXX0XEPz6xv/fZQImJ3RPw8j/cDLwPTaxRZDKyNiIMR8SqwHZgnaSowISI2RLES4B5gSanMmjx+GLgoey8Lgc6I6Mkg0gksynPzMy9ZtlKX1WE0PxH1aLmHZ9a3Ac2h5FDUucBG4ALgWklXAF0UvZh9FMHm2VKxXZn2fh5Xp5NfXwOIiF5J7wCTy+lVZSYDb0dEbx91WR3acUliq3APz6xvda/ykvRR4IfAH0TEuxTDSx8H5gC7gW9VsvZRPGqkD6ZMrbqq271cUpekrr179/aVxWzA3MMz+1V19VAkjaMIJn8ZET8CiIg3S+e/D/w4v90FnFoqPgN4I9Nn9JFeLrNL0ljgRKAn0z9dVeZp4C3gJEljs5dSruswEXEncCcU96HU8/Oa9cc9PLNfVc8qLwF3AS9HxLdL6VNL2S4GXszjx4CluXJrFnAmsCkidgP7JZ2fdV4BPFoqU1nBdQnwZM6zrAcWSJooaSKwAFif557KvGTZSl1mZtYE9fRQLgAuB16Q9Fym/RHwXyTNoRhq2gF8GSAitkl6CHiJYoXYNbnCC+Aq4G7geIrVXesy/S7gXknbKXomS7OuHkm3Apsz3y0R0ZPHK4C1klYCW7MOMzNrEj96xczMavKjV8zMbFg5oJiZNcFI3F7bAcVsFBmJf8Ta1Uh8dI8fDmk2ipT/iK28+FPNbs6oNJIf3eNJebNRoPqPWMVI+CPWbhq5X/xwPfHak/Jm9q/8/LHW0chH97TasJmHvMyabDg+Zfr5Y63laLfXbtVhMwcUsyYbrnmNo/0jZo1ztI/ueeb6C484bNZMDihmTTLcnzL9/LGRo1V7nJ5DMWsSz2s0zmhcDt2KT7x2D8WsSVr1U2Y7Go3LoVuxx+mAYtZEntc4Oq06OT1a+T4UM2tbjbynw47M96GY2YjnYcPW4iEvM2trHjZsHR7yMjMbwRpx46yHvMzMbFgfz1LPnvKnSnpK0suStkm6LtMnSeqU1J1fJ5bK3Chpu6RXJC0spc+V9EKeW5V7y5P7zz+Y6RslzSyVWZbv0S1pWSl9VubtzrLHNuaSmJm1v7NuWsfMG37CfRt3ElGsgJt5w08466Z1/RcepHp6KL3AVyPik8D5wDWSZgM3AD+LiDOBn+X35LmlwNnAIuA7ko7JulYDy4Ez87Uo068E9kXEGcDtwG1Z1yTgZuA8YB5wcylw3Qbcnu+/L+swMzOac+NsvwElInZHxM/zeD/wMjAdWAysyWxrgCV5vBhYGxEHI+JVYDswT9JUYEJEbIhi4uaeqjKVuh4GLsrey0KgMyJ6ImIf0AksynPzM2/1+5uZjXrNWAE3oFVeORR1LrAROCUidkMRdCSdnNmmA8+Wiu3KtPfzuDq9Uua1rKtX0jvA5HJ6VZnJwNsR0dtHXWZmxvCvgKs7oEj6KPBD4A8i4t2c/ugzax9pUSN9MGVq1XV4Y6TlFMNsnHbaaX1lMTMbkYb78Sx1rfKSNI4imPxlRPwok9/MYSzy655M3wWcWio+A3gj02f0kX5YGUljgROBnhp1vQWclHmr6zpMRNwZER0R0TFlypR6flwzMxuEelZ5CbgLeDkivl069RhQWXW1DHi0lL40V27Noph835TDY/slnZ91XlFVplLXJcCTOc+yHlggaWJOxi8A1ue5pzJv9fubmVkT1DPkdQFwOfCCpOcy7Y+AbwAPSboS2Al8ESAitkl6CHiJYoXYNRFxKMtdBdwNHA+syxcUAeteSdspeiZLs64eSbcCmzPfLRHRk8crgLWSVgJbsw4zM2sS3ylvZmY1+U55aymjcQMks9HGAcWGxXA+/sHMmsNPG7Yh5Q2QzEYP91BsSHnfdLPRwwHFhpQ3QDIbPTzkZUPOGyCZjQ5eNmxmZjV52bCZmQ0rBxQzM2sIB5QRyjcSmtlwc0AZoXwjoZkNN6/yGmF8I6GZNYt7KCOMbyQ0GzwPFR8dB5QRxjcSmg2eh4qPjoe8RiDfSGg2MB4qbgzf2Ghmo96edw+w8vGX+em2f+LA+x8wftwYFp7963ztc590754G3tgo6QeS9kh6sZT2dUmvS3ouX58tnbtR0nZJr0haWEqfK+mFPLcqtwEmtwp+MNM3SppZKrNMUne+lpXSZ2Xe7ix7bD0XxcysLx4qbox65lDuBhb1kX57RMzJ1+MAkmZTbN97dpb5jqRjMv9qYDnFHvNnluq8EtgXEWcAtwO3ZV2TgJuB84B5wM25rzyZ5/aIOBPYl3WYmQ1aZaj4kasv4LLzTmfveweb3aS20+8cSkT8TbnX0I/FwNqIOAi8mnvEz5O0A5gQERsAJN0DLKHYU34x8PUs/zBwR/ZeFgKdlT3kJXUCiyStBeYDl2aZNVl+dZ1tNDP7Fd+7/MMRnZVLzmliS9rX0azyulbSL3JIrNJzmA68VsqzK9Om53F1+mFlIqIXeAeYXKOuycDbmbe6LjMza5LBBpTVwMeBOcBu4FuZrj7yRo30wZSpVdevkLRcUpekrr179x4pm5mZHaVBBZSIeDMiDkXEB8D3KeY4oOgtnFrKOgN4I9Nn9JF+WBlJY4ETgZ4adb0FnJR5q+vqq613RkRHRHRMmTJloD+qmZnVaVABRdLU0rcXA5UVYI8BS3Pl1iyKyfdNEbEb2C/p/JwfuQJ4tFSmsoLrEuDJKNYyrwcWSJqYQ2oLgPV57qnMS5at1GVmZk3S76S8pAeATwMfk7SLYuXVpyXNoRhq2gF8GSAitkl6CHgJ6AWuiYhDWdVVFCvGjqeYjF+X6XcB9+YEfg/FKjEiokfSrcDmzHdLZYIeWAGslbQS2Jp1mJlZE/nGRjMzq6neGxtHVUCRtBf4xz5OfYxibqaduM1Dr93aC27zcGm3Nh9te0+PiH4noUdVQDkSSV31RN9W4jYPvXZrL7jNw6Xd2jxc7fXThs3MrCEcUMzMrCEcUAp3NrsBg+A2D712ay+4zcOl3do8LO31HIqZmTWEeyhmZtYQIzKgHGEPl38raUPuyfJ/JE3I9HGS1mT6y5JuLJV5Ovd1qez7cnKLtPlYSX+R6c9L+nSpTJ/7zrR4m4flOks6VdJT+e+8TdJ1mT5JUmfur9NZetjpgPf3afE2t+R1ljQ5878n6Y6qulryOvfT5iG/zoNo729J2pLXcouk+aW6GneNI2LEvYD/CPwm8GIpbTPwn/L494Fb8/hSikfuA/waxZ3/M/P7p4GOFmzzNcBf5PHJwBZgTH6ruEO0AAADpklEQVS/Cfh3FA/RXAd8pg3aPCzXGZgK/GYenwD8PTAb+CZwQ6bfANyWx7OB54HjgFnAPwDHDOd1bnCbW/U6fwT498BXgDuq6mrV61yrzUN+nQfR3nOBaXl8DvD6UFzjEdlDiYi/oXiMS9lZwN/kcSfwO5XswEdUPGzyeOBfgHeHo51lA2zzbOBnWW4P8DbQoeIZaxMiYkMUvymVfWdats1D1ba+RMTuiPh5Hu8HXqbY+mAxxb465NfKNfvX/X0i4lWgsr/PsF3nRrV5KNrWqDZHxD9HxN8CB8r1tPJ1PlKbh8sg2rs1IioP0d0GjFfxzMWGXuMRGVCO4EXgC3n8RT58kvHDwD9TPIZ/J/Cn8eEzwwD+Irut/2Moh4+O4Ehtfh5YLGmsiodwzs1ztfadGS4DbXPFsF5nFZvGnQtsBE6J4gGm5NfKEMVg9vcZMkfZ5opWvM5H0srXuT/Ddp0H0d7fAbZGsRFiQ6/xaAoovw9cI2kLRRfxXzJ9HnAImEYxRPBVSf8mz10WEZ8C/kO+Lh/eJh+xzT+g+IfvAv4M+L8UD+Mc0F4xQ2SgbYZhvs6SPgr8EPiDiKjVG23InjyN0IA2Q+te5yNW0Udaq1znWobtOg+0vZLOpthC/cuVpD6yDfoaj5qAEhG/jIgFETEXeIBibBmKOZS/joj3cyjm78ihmIh4Pb/uB+5n+IcO+mxzRPRGxB9GxJyIWAycBHRTe9+ZVm3zsF5nSeMo/gP+ZUT8KJPfzK5/ZZhlT6YPZn+fVm1zK1/nI2nl63xEw3WdB9peSTOAR4ArIqLy96+h13jUBJTKSgtJY4CbgO/mqZ3AfBU+ApwP/DKHZj6WZcYBn+fDfV+a2mZJv5ZtRdJvAb0R8VLU3nemJds8nNc5r8ldwMsR8e3SqfKePOX9dQazv09LtrnFr3OfWvw6H6meYbnOA22vpJOAnwA3RsTfVTI3/BoPdja/lV8Un4x3A+9TROArgesoVkL8PfANPryp86PAX1FMVL0E/Pf4cBXHFuAXee5/kqtlWqDNM4FXKCbinqB4Emilng6KX+B/AO6olGnVNg/ndaZYlRP5Xs/l67PAZIoFA935dVKpzNfyWr5CafXLcF3nRrW5Da7zDooFHu/l79LsNrjOv9Lm4brOA20vxYe7fy7lfQ44udHX2HfKm5lZQ4yaIS8zMxtaDihmZtYQDihmZtYQDihmZtYQDihmZtYQDihmZtYQDihmZtYQDihmZtYQ/x/rFzgxQKYDrwAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "yearly_incidence.hist(xrot=20)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.4"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/module3/exercice/Untitled.ipynb b/module3/exercice/Untitled.ipynb
deleted file mode 100644
index 8a921968de21a324250f4101bb23281ff9d9a859..0000000000000000000000000000000000000000
--- a/module3/exercice/Untitled.ipynb
+++ /dev/null
@@ -1,2116 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [],
- "source": [
- "%matplotlib inline\n",
- "import matplotlib.pyplot as plt\n",
- "import pandas as pd\n",
- "import isoweek"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Les données de l'incidence du syndrome grippal sont disponibles du site Web du [Réseau Sentinelles](https://www.sentiweb.fr/france/fr/?page=table). Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période demandée. Nous téléchargeons toujours le jeu de données complet, qui commence en 1984 et se termine avec une semaine récente.(Donées téléchargées le 28/11/2021)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [],
- "source": [
- "data_url = \"incidence-PAY-3.csv\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Voici l'explication des colonnes données [sur le site d'origine](https://ns.sentiweb.fr/incidence/csv-schema-v1.json):\n",
- "\n",
- "| Nom de colonne | Libellé de colonne |\n",
- "|----------------|-----------------------------------------------------------------------------------------------------------------------------------|\n",
- "| week | Semaine calendaire (ISO 8601) |\n",
- "| indicator | Code de l'indicateur de surveillance |\n",
- "| inc | Estimation de l'incidence de consultations en nombre de cas |\n",
- "| inc_low | Estimation de la borne inférieure de l'IC95% du nombre de cas de consultation |\n",
- "| inc_up | Estimation de la borne supérieure de l'IC95% du nombre de cas de consultation |\n",
- "| inc100 | Estimation du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
- "| inc100_low | Estimation de la borne inférieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
- "| inc100_up | Estimation de la borne supérieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
- "| geo_insee | Code de la zone géographique concernée (Code INSEE) http://www.insee.fr/fr/methodes/nomenclatures/cog/ |\n",
- "| geo_name | Libellé de la zone géographique (ce libellé peut être modifié sans préavis) |\n",
- "\n",
- "La première ligne du fichier CSV est un commentaire, que nous ignorons en précisant `skiprows=1`."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "