{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# A propos du calcul de $\\pi$\n", "\n", "## En demandant à la lib maths \n", "\n", "Mon ordinateur m'indique que $\\pi$ vaut _approximativement_" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "3.141592653589793\n" ] } ], "source": [ "from math import *\n", "print(pi)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## En utilisant la méthode des aiguilles de Buffon\n", "\n", "Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** : " ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "3.128911138923655" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import numpy as np \n", "np.random.seed(seed=42)\n", "N=10000\n", "x=np.random.uniform(size=N, low=0, high=1)\n", "theta=np.random.uniform(size=N, low=0, high=pi/2)\n", "2/(sum((x+np.sin(theta))>1)/N)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Avec un argument \"fréquentiel\" de surfae \n", "Sinon, une méhode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X\\sim\\mathcal(U)(0,1)$ et $Y\\sim\\mathcal(U)(0,1)$ alors $P\\left[X^2+Y^2\\leq1\\right]=\\pi/4$ (voir la [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline \n", "import matplotlib.pyplot as plt\n", "\n", "np.random.seed(seed=42)\n", "N = 1000\n", "x = np.random.uniform(size=N, low=0, high=1)\n", "y = np.random.uniform(size=N, low=0, high=1)\n", "\n", "accept = (x*x+y*y) <= 1\n", "reject = np.logical_not(accept)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }