"
+ ],
+ "text/plain": [
+ " Smoker Status Age\n",
+ "0 Yes Alive 21.0\n",
+ "1 Yes Alive 19.3\n",
+ "2 No Dead 57.5\n",
+ "3 No Alive 47.1\n",
+ "4 Yes Alive 81.4\n",
+ "5 No Alive 36.8\n",
+ "6 No Alive 23.8\n",
+ "7 Yes Dead 57.5\n",
+ "8 Yes Alive 24.8\n",
+ "9 Yes Alive 49.5\n",
+ "10 Yes Alive 30.0\n",
+ "11 No Dead 66.0\n",
+ "12 Yes Alive 49.2\n",
+ "13 No Alive 58.4\n",
+ "14 No Dead 60.6\n",
+ "15 No Alive 25.1\n",
+ "16 No Alive 43.5\n",
+ "17 No Alive 27.1\n",
+ "18 No Alive 58.3\n",
+ "19 Yes Alive 65.7\n",
+ "20 No Dead 73.2\n",
+ "21 Yes Alive 38.3\n",
+ "22 No Alive 33.4\n",
+ "23 Yes Dead 62.3\n",
+ "24 No Alive 18.0\n",
+ "25 No Alive 56.2\n",
+ "26 Yes Alive 59.2\n",
+ "27 No Alive 25.8\n",
+ "28 No Dead 36.9\n",
+ "29 No Alive 20.2\n",
+ "... ... ... ...\n",
+ "1284 Yes Dead 36.0\n",
+ "1285 Yes Alive 48.3\n",
+ "1286 No Alive 63.1\n",
+ "1287 No Alive 60.8\n",
+ "1288 Yes Dead 39.3\n",
+ "1289 No Alive 36.7\n",
+ "1290 No Alive 63.8\n",
+ "1291 No Dead 71.3\n",
+ "1292 No Alive 57.7\n",
+ "1293 No Alive 63.2\n",
+ "1294 No Alive 46.6\n",
+ "1295 Yes Dead 82.4\n",
+ "1296 Yes Alive 38.3\n",
+ "1297 Yes Alive 32.7\n",
+ "1298 No Alive 39.7\n",
+ "1299 Yes Dead 60.0\n",
+ "1300 No Dead 71.0\n",
+ "1301 No Alive 20.5\n",
+ "1302 No Alive 44.4\n",
+ "1303 Yes Alive 31.2\n",
+ "1304 Yes Alive 47.8\n",
+ "1305 Yes Alive 60.9\n",
+ "1306 No Dead 61.4\n",
+ "1307 Yes Alive 43.0\n",
+ "1308 No Alive 42.1\n",
+ "1309 Yes Alive 35.9\n",
+ "1310 No Alive 22.3\n",
+ "1311 Yes Dead 62.1\n",
+ "1312 No Dead 88.6\n",
+ "1313 No Alive 39.1\n",
+ "\n",
+ "[1314 rows x 3 columns]"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data = pd.read_csv(data_url, encoding = 'iso-8859-1')\n",
+ "data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Il n'y a pas de données manquantes dans le jeu de données. Il ne faut donc pas enlever de lignes.\n",
+ "On cherche à comptabiliser le nombre de femmes fumeuses qui sont vivantes et mortes, de même pour les non-fumeuses.\n",
+ "On créer un jeu de données en utilisant les fonctions prédéfinies dans la bibliothèque Pandas."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "resultat = data.groupby([\"Smoker\",\"Status\"])[\"Age\"].nunique()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Maintenant, on créer un jeu de données pour afficher les données sous-forme d'un tableau, en y ajoutant de taux de mortalité pour les femmes fumeuses (en divisant le nombre de femmes fumeuses décédées par le nom de femmes fumeuses total) et pour les femmes non-fumeuses."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "non_fum_vivante = resultat[0]\n",
+ "non_fum_morte = resultat[1]\n",
+ "fum_vivante = resultat[2]\n",
+ "fum_morte = resultat[3]\n",
+ "\n",
+ "données=[[fum_morte,fum_vivante,fum_morte+fum_vivante,round(fum_morte/(fum_morte+fum_vivante),3)],[non_fum_morte,non_fum_vivante,non_fum_morte+non_fum_vivante,round(non_fum_morte/(non_fum_morte+non_fum_vivante),3)]]\n",
+ "res = pd.DataFrame(données, index = [\"Fumeuses\", \"Non-fumeuses\"] , columns = [\"Décédées\", \"Vivantes\",\"Total\",\"Taux de mortalité\"])\n",
+ "plt.bar(res.index,res[\"Taux de mortalité\"])\n",
+ "res"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "On observe que le taux de mortalité est plus important chez les non-fumeuses (0.363) que chez les fumeuses (0.306).\n",
+ "C'est un résultat surprenant : on aurait attendu l'inverse."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "On va chercher a utiliser les valeurs selon l'âge. On trie donc les valeurs selon celui-ci."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
Smoker
\n",
+ "
Status
\n",
+ "
Age
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
654
\n",
+ "
Yes
\n",
+ "
Alive
\n",
+ "
18.0
\n",
+ "
\n",
+ "
\n",
+ "
1132
\n",
+ "
Yes
\n",
+ "
Alive
\n",
+ "
18.0
\n",
+ "
\n",
+ "
\n",
+ "
832
\n",
+ "
Yes
\n",
+ "
Alive
\n",
+ "
18.0
\n",
+ "
\n",
+ "
\n",
+ "
220
\n",
+ "
Yes
\n",
+ "
Alive
\n",
+ "
18.0
\n",
+ "
\n",
+ "
\n",
+ "
24
\n",
+ "
No
\n",
+ "
Alive
\n",
+ "
18.0
\n",
+ "
\n",
+ "
\n",
+ "
922
\n",
+ "
Yes
\n",
+ "
Alive
\n",
+ "
18.1
\n",
+ "
\n",
+ "
\n",
+ "
206
\n",
+ "
Yes
\n",
+ "
Alive
\n",
+ "
18.1
\n",
+ "
\n",
+ "
\n",
+ "
449
\n",
+ "
Yes
\n",
+ "
Alive
\n",
+ "
18.1
\n",
+ "
\n",
+ "
\n",
+ "
91
\n",
+ "
No
\n",
+ "
Alive
\n",
+ "
18.3
\n",
+ "
\n",
+ "
\n",
+ "
168
\n",
+ "
No
\n",
+ "
Alive
\n",
+ "
18.3
\n",
+ "
\n",
+ "
\n",
+ "
1107
\n",
+ "
No
\n",
+ "
Alive
\n",
+ "
18.3
\n",
+ "
\n",
+ "
\n",
+ "
47
\n",
+ "
No
\n",
+ "
Alive
\n",
+ "
18.5
\n",
+ "
\n",
+ "
\n",
+ "
701
\n",
+ "
Yes
\n",
+ "
Alive
\n",
+ "
18.5
\n",
+ "
\n",
+ "
\n",
+ "
282
\n",
+ "
No
\n",
+ "
Alive
\n",
+ "
18.5
\n",
+ "
\n",
+ "
\n",
+ "
98
\n",
+ "
Yes
\n",
+ "
Alive
\n",
+ "
18.6
\n",
+ "
\n",
+ "
\n",
+ "
685
\n",
+ "
No
\n",
+ "
Alive
\n",
+ "
18.6
\n",
+ "
\n",
+ "
\n",
+ "
94
\n",
+ "
Yes
\n",
+ "
Alive
\n",
+ "
18.6
\n",
+ "
\n",
+ "
\n",
+ "
774
\n",
+ "
Yes
\n",
+ "
Alive
\n",
+ "
18.7
\n",
+ "
\n",
+ "
\n",
+ "
1138
\n",
+ "
No
\n",
+ "
Alive
\n",
+ "
18.7
\n",
+ "
\n",
+ "
\n",
+ "
788
\n",
+ "
No
\n",
+ "
Alive
\n",
+ "
18.8
\n",
+ "
\n",
+ "
\n",
+ "
1075
\n",
+ "
No
\n",
+ "
Alive
\n",
+ "
18.8
\n",
+ "
\n",
+ "
\n",
+ "
79
\n",
+ "
No
\n",
+ "
Alive
\n",
+ "
18.9
\n",
+ "
\n",
+ "
\n",
+ "
539
\n",
+ "
No
\n",
+ "
Alive
\n",
+ "
18.9
\n",
+ "
\n",
+ "
\n",
+ "
195
\n",
+ "
No
\n",
+ "
Alive
\n",
+ "
19.0
\n",
+ "
\n",
+ "
\n",
+ "
688
\n",
+ "
No
\n",
+ "
Alive
\n",
+ "
19.0
\n",
+ "
\n",
+ "
\n",
+ "
951
\n",
+ "
No
\n",
+ "
Alive
\n",
+ "
19.1
\n",
+ "
\n",
+ "
\n",
+ "
1128
\n",
+ "
No
\n",
+ "
Alive
\n",
+ "
19.1
\n",
+ "
\n",
+ "
\n",
+ "
615
\n",
+ "
No
\n",
+ "
Alive
\n",
+ "
19.2
\n",
+ "
\n",
+ "
\n",
+ "
929
\n",
+ "
No
\n",
+ "
Alive
\n",
+ "
19.2
\n",
+ "
\n",
+ "
\n",
+ "
1
\n",
+ "
Yes
\n",
+ "
Alive
\n",
+ "
19.3
\n",
+ "
\n",
+ "
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
...
\n",
+ "
\n",
+ "
\n",
+ "
468
\n",
+ "
Yes
\n",
+ "
Dead
\n",
+ "
86.8
\n",
+ "
\n",
+ "
\n",
+ "
150
\n",
+ "
No
\n",
+ "
Dead
\n",
+ "
86.8
\n",
+ "
\n",
+ "
\n",
+ "
483
\n",
+ "
No
\n",
+ "
Alive
\n",
+ "
86.9
\n",
+ "
\n",
+ "
\n",
+ "
183
\n",
+ "
No
\n",
+ "
Dead
\n",
+ "
87.0
\n",
+ "
\n",
+ "
\n",
+ "
512
\n",
+ "
No
\n",
+ "
Alive
\n",
+ "
87.4
\n",
+ "
\n",
+ "
\n",
+ "
196
\n",
+ "
No
\n",
+ "
Dead
\n",
+ "
87.6
\n",
+ "
\n",
+ "
\n",
+ "
883
\n",
+ "
No
\n",
+ "
Alive
\n",
+ "
87.6
\n",
+ "
\n",
+ "
\n",
+ "
823
\n",
+ "
No
\n",
+ "
Dead
\n",
+ "
87.6
\n",
+ "
\n",
+ "
\n",
+ "
278
\n",
+ "
No
\n",
+ "
Dead
\n",
+ "
87.7
\n",
+ "
\n",
+ "
\n",
+ "
129
\n",
+ "
Yes
\n",
+ "
Dead
\n",
+ "
87.8
\n",
+ "
\n",
+ "
\n",
+ "
536
\n",
+ "
Yes
\n",
+ "
Dead
\n",
+ "
87.9
\n",
+ "
\n",
+ "
\n",
+ "
1222
\n",
+ "
Yes
\n",
+ "
Dead
\n",
+ "
87.9
\n",
+ "
\n",
+ "
\n",
+ "
1225
\n",
+ "
No
\n",
+ "
Dead
\n",
+ "
87.9
\n",
+ "
\n",
+ "
\n",
+ "
1152
\n",
+ "
No
\n",
+ "
Dead
\n",
+ "
88.0
\n",
+ "
\n",
+ "
\n",
+ "
545
\n",
+ "
No
\n",
+ "
Dead
\n",
+ "
88.1
\n",
+ "
\n",
+ "
\n",
+ "
657
\n",
+ "
Yes
\n",
+ "
Dead
\n",
+ "
88.3
\n",
+ "
\n",
+ "
\n",
+ "
932
\n",
+ "
No
\n",
+ "
Dead
\n",
+ "
88.4
\n",
+ "
\n",
+ "
\n",
+ "
131
\n",
+ "
No
\n",
+ "
Dead
\n",
+ "
88.4
\n",
+ "
\n",
+ "
\n",
+ "
507
\n",
+ "
No
\n",
+ "
Dead
\n",
+ "
88.5
\n",
+ "
\n",
+ "
\n",
+ "
1080
\n",
+ "
Yes
\n",
+ "
Dead
\n",
+ "
88.6
\n",
+ "
\n",
+ "
\n",
+ "
1312
\n",
+ "
No
\n",
+ "
Dead
\n",
+ "
88.6
\n",
+ "
\n",
+ "
\n",
+ "
525
\n",
+ "
Yes
\n",
+ "
Dead
\n",
+ "
88.7
\n",
+ "
\n",
+ "
\n",
+ "
393
\n",
+ "
No
\n",
+ "
Dead
\n",
+ "
88.8
\n",
+ "
\n",
+ "
\n",
+ "
201
\n",
+ "
Yes
\n",
+ "
Dead
\n",
+ "
89.2
\n",
+ "
\n",
+ "
\n",
+ "
1246
\n",
+ "
No
\n",
+ "
Dead
\n",
+ "
89.2
\n",
+ "
\n",
+ "
\n",
+ "
114
\n",
+ "
No
\n",
+ "
Dead
\n",
+ "
89.3
\n",
+ "
\n",
+ "
\n",
+ "
1126
\n",
+ "
No
\n",
+ "
Dead
\n",
+ "
89.5
\n",
+ "
\n",
+ "
\n",
+ "
163
\n",
+ "
No
\n",
+ "
Dead
\n",
+ "
89.7
\n",
+ "
\n",
+ "
\n",
+ "
369
\n",
+ "
No
\n",
+ "
Alive
\n",
+ "
89.7
\n",
+ "
\n",
+ "
\n",
+ "
1108
\n",
+ "
No
\n",
+ "
Dead
\n",
+ "
89.9
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
1314 rows × 3 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Smoker Status Age\n",
+ "654 Yes Alive 18.0\n",
+ "1132 Yes Alive 18.0\n",
+ "832 Yes Alive 18.0\n",
+ "220 Yes Alive 18.0\n",
+ "24 No Alive 18.0\n",
+ "922 Yes Alive 18.1\n",
+ "206 Yes Alive 18.1\n",
+ "449 Yes Alive 18.1\n",
+ "91 No Alive 18.3\n",
+ "168 No Alive 18.3\n",
+ "1107 No Alive 18.3\n",
+ "47 No Alive 18.5\n",
+ "701 Yes Alive 18.5\n",
+ "282 No Alive 18.5\n",
+ "98 Yes Alive 18.6\n",
+ "685 No Alive 18.6\n",
+ "94 Yes Alive 18.6\n",
+ "774 Yes Alive 18.7\n",
+ "1138 No Alive 18.7\n",
+ "788 No Alive 18.8\n",
+ "1075 No Alive 18.8\n",
+ "79 No Alive 18.9\n",
+ "539 No Alive 18.9\n",
+ "195 No Alive 19.0\n",
+ "688 No Alive 19.0\n",
+ "951 No Alive 19.1\n",
+ "1128 No Alive 19.1\n",
+ "615 No Alive 19.2\n",
+ "929 No Alive 19.2\n",
+ "1 Yes Alive 19.3\n",
+ "... ... ... ...\n",
+ "468 Yes Dead 86.8\n",
+ "150 No Dead 86.8\n",
+ "483 No Alive 86.9\n",
+ "183 No Dead 87.0\n",
+ "512 No Alive 87.4\n",
+ "196 No Dead 87.6\n",
+ "883 No Alive 87.6\n",
+ "823 No Dead 87.6\n",
+ "278 No Dead 87.7\n",
+ "129 Yes Dead 87.8\n",
+ "536 Yes Dead 87.9\n",
+ "1222 Yes Dead 87.9\n",
+ "1225 No Dead 87.9\n",
+ "1152 No Dead 88.0\n",
+ "545 No Dead 88.1\n",
+ "657 Yes Dead 88.3\n",
+ "932 No Dead 88.4\n",
+ "131 No Dead 88.4\n",
+ "507 No Dead 88.5\n",
+ "1080 Yes Dead 88.6\n",
+ "1312 No Dead 88.6\n",
+ "525 Yes Dead 88.7\n",
+ "393 No Dead 88.8\n",
+ "201 Yes Dead 89.2\n",
+ "1246 No Dead 89.2\n",
+ "114 No Dead 89.3\n",
+ "1126 No Dead 89.5\n",
+ "163 No Dead 89.7\n",
+ "369 No Alive 89.7\n",
+ "1108 No Dead 89.9\n",
+ "\n",
+ "[1314 rows x 3 columns]"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data_sorted = data.sort_values(by=\"Age\")\n",
+ "data_sorted"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "On regroupe les données dans quatre classe :\n",
+ " - la première pour les individus de 18 ans compris à 34 ans non-compris.\n",
+ " - la deuxième pour ceux de 34 ans compris à 55 ans non-compris.\n",
+ " - la troisième pour les individus 55 ans compris à 65 ans non-compris.\n",
+ " - la quatrième pour les individus de plus de 65 ans."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "classe1 = data_sorted[(data_sorted.Age>=18) & (data_sorted.Age<34)]\n",
+ "classe2 = data_sorted[(data_sorted.Age>=34) & (data_sorted.Age<55)]\n",
+ "classe3 = data_sorted[(data_sorted.Age>=55) & (data_sorted.Age<65)]\n",
+ "classe4 = data_sorted[(data_sorted.Age>=65)]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "On réefectue les mêmes regroupements effectués sur chaque des autres classes. On créer une fonction car on effectue les mêmes calculs."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
Décédées
\n",
+ "
Vivantes
\n",
+ "
Total
\n",
+ "
Taux de mortalité
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
Fumeuses
\n",
+ "
5
\n",
+ "
97
\n",
+ "
102
\n",
+ "
0.049
\n",
+ "
\n",
+ "
\n",
+ "
Non-fumeuses
\n",
+ "
6
\n",
+ "
119
\n",
+ "
125
\n",
+ "
0.048
\n",
+ "
\n",
+ "
\n",
+ "
Fumeuses
\n",
+ "
36
\n",
+ "
119
\n",
+ "
155
\n",
+ "
0.232
\n",
+ "
\n",
+ "
\n",
+ "
Non-fumeuses
\n",
+ "
19
\n",
+ "
120
\n",
+ "
139
\n",
+ "
0.137
\n",
+ "
\n",
+ "
\n",
+ "
Fumeuses
\n",
+ "
41
\n",
+ "
51
\n",
+ "
92
\n",
+ "
0.446
\n",
+ "
\n",
+ "
\n",
+ "
Non-fumeuses
\n",
+ "
33
\n",
+ "
58
\n",
+ "
91
\n",
+ "
0.363
\n",
+ "
\n",
+ "
\n",
+ "
Fumeuses
\n",
+ "
39
\n",
+ "
7
\n",
+ "
46
\n",
+ "
0.848
\n",
+ "
\n",
+ "
\n",
+ "
Non-fumeuses
\n",
+ "
126
\n",
+ "
26
\n",
+ "
152
\n",
+ "
0.829
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Décédées Vivantes Total Taux de mortalité\n",
+ "Fumeuses 5 97 102 0.049\n",
+ "Non-fumeuses 6 119 125 0.048\n",
+ "Fumeuses 36 119 155 0.232\n",
+ "Non-fumeuses 19 120 139 0.137\n",
+ "Fumeuses 41 51 92 0.446\n",
+ "Non-fumeuses 33 58 91 0.363\n",
+ "Fumeuses 39 7 46 0.848\n",
+ "Non-fumeuses 126 26 152 0.829"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFjlJREFUeJzt3X2QXXd93/H3JytEgo0hRQsESUYqyDFKCw5sBLSGuM0YZJwgu/ZMZNIyEBiNKAppMrQobfEQSKamDA3TWkSjEuM0baqGZ4GFzSSpoWnKVHLiJ/mBKMKxhcJY2B2ICcHI/vaPczYcX9/Vnl3d9drH79fMnT0Pv3vOd79393PPPfcpVYUkaVh+YLkLkCRNnuEuSQNkuEvSABnukjRAhrskDZDhLkkDZLhL0gAZ7pI0QIa7JA3QiuXa8apVq2rdunXLtXtJekK64YYbvlFV0/ONW7ZwX7duHQcPHlyu3UvSE1KSv+gzztMykjRAhrskDZDhLkkDZLhL0gAZ7pI0QIa7JA2Q4S5JA2S4S9IAGe6SNEDL9g5VScO3buc1y7bvu664cNn2/XjgkbskDZDhLkkDZLhL0gB5zl3Sk9LQnw/wyF2SBshwl6QBMtwlaYB6hXuSzUnuTHI4yc4x65+R5LNJbkpyKMmbJ1+qJKmvecM9yRSwC7gA2AhclmTjyLC3A7dV1UuA84APJlk54VolST31OXLfBByuqiNV9SCwF9gyMqaApycJcDpwP3BiopVKknrrE+6rgXs680fbZV1XAi8CjgG3AL9YVQ+PbijJtiQHkxw8fvz4IkuWJM2nT7hnzLIamX8tcCPwPOAc4MokZzzqSlV7qmqmqmamp6cXXKwkqZ8+4X4UWNuZX0NzhN71ZuCT1TgMfBU4ezIlSpIWqk+4HwA2JFnfPkm6Fdg3MuZu4KcAkjwH+FHgyCQLlST1N+/HD1TViSQ7gOuAKeCqqjqUZHu7fjfwPuDqJLfQnMZ5V1V9YwnrliSdRK/Plqmq/cD+kWW7O9PHgNdMtjRJ0mL5DlVJGiDDXZIGyHCXpAEy3CVpgAx3SRogw12SBshwl6QBMtwlaYAMd0kaIMNdkgbIcJekATLcJWmADHdJGiDDXZIGyHCXpAHqFe5JNie5M8nhJDvHrP+XSW5sL7cmeSjJ35l8uZKkPuYN9yRTwC7gAmAjcFmSjd0xVfWBqjqnqs4BfgX4YlXdvxQFS5Lm1+fIfRNwuKqOVNWDwF5gy0nGXwb890kUJ0lanD7hvhq4pzN/tF32KEmeBmwGPnHqpUmSFqtPuGfMsppj7M8A/3uuUzJJtiU5mOTg8ePH+9YoSVqgPuF+FFjbmV8DHJtj7FZOckqmqvZU1UxVzUxPT/evUpK0IH3C/QCwIcn6JCtpAnzf6KAkzwB+EvjMZEuUJC3UivkGVNWJJDuA64Ap4KqqOpRke7t+dzv0YuALVfXtJatWktTLvOEOUFX7gf0jy3aPzF8NXD2pwiRJi+c7VCVpgAx3SRogw12SBshwl6QBMtwlaYAMd0kaIMNdkgbIcJekATLcJWmADHdJGiDDXZIGyHCXpAEy3CVpgAx3SRogw12SBshwl6QB6hXuSTYnuTPJ4SQ75xhzXpIbkxxK8sXJlilJWoh5v4kpyRSwCzif5suyDyTZV1W3dcY8E/gwsLmq7k7y7KUqWJI0vz5H7puAw1V1pKoeBPYCW0bGvAH4ZFXdDVBV9062TEnSQvQJ99XAPZ35o+2yrrOAH05yfZIbkrxx3IaSbEtyMMnB48ePL65iSdK8+oR7xiyrkfkVwMuAC4HXAu9OctajrlS1p6pmqmpmenp6wcVKkvqZ95w7zZH62s78GuDYmDHfqKpvA99O8iXgJcBXJlKlJGlB+hy5HwA2JFmfZCWwFdg3MuYzwKuSrEjyNODlwO2TLVWS1Ne8R+5VdSLJDuA6YAq4qqoOJdnert9dVbcnuRa4GXgY+EhV3bqUhUuS5tbntAxVtR/YP7Js98j8B4APTK40SdJi+Q5VSRogw12SBshwl6QBMtwlaYAMd0kaIMNdkgbIcJekATLcJWmADHdJGiDDXZIGyHCXpAEy3CVpgAx3SRogw12SBshwl6QB6hXuSTYnuTPJ4SQ7x6w/L8k3k9zYXi6ffKmSpL7m/bKOJFPALuB8mu9KPZBkX1XdNjL0f1XVTy9BjZKkBepz5L4JOFxVR6rqQWAvsGVpy5IknYo+4b4auKczf7RdNuqVSW5K8vkkPzaR6iRJi9LnO1QzZlmNzP8J8PyqeiDJ64BPAxsetaFkG7AN4Mwzz1xgqZKkvvocuR8F1nbm1wDHugOq6ltV9UA7vR94SpJVoxuqqj1VNVNVM9PT06dQtiTpZPqE+wFgQ5L1SVYCW4F93QFJnpsk7fSmdrv3TbpYSVI/856WqaoTSXYA1wFTwFVVdSjJ9nb9buBS4G1JTgDfAbZW1eipG0nSY6TPOffZUy37R5bt7kxfCVw52dIkSYvlO1QlaYAMd0kaIMNdkgbIcJekATLcJWmADHdJGiDDXZIGyHCXpAHq9SYm6clu3c5rlm3fd11x4bLtW09cHrlL0gAZ7pI0QIa7JA2Q4S5JA2S4S9IAGe6SNEC9wj3J5iR3JjmcZOdJxv1EkoeSXDq5EiVJCzVvuCeZAnYBFwAbgcuSbJxj3PtpvrFJkrSM+hy5bwIOV9WRqnoQ2AtsGTPuF4BPAPdOsD5J0iL0CffVwD2d+aPtsr+VZDVwMbAbSdKy6xPuGbNs9MuvPwS8q6oeOumGkm1JDiY5ePz48b41SpIWqM9nyxwF1nbm1wDHRsbMAHuTAKwCXpfkRFV9ujuoqvYAewBmZmZG7yAkSRPSJ9wPABuSrAe+BmwF3tAdUFXrZ6eTXA18bjTYJUmPnXnDvapOJNlB8yqYKeCqqjqUZHu73vPskvQ40+sjf6tqP7B/ZNnYUK+qN516WZKkU+E7VCVpgAx3SRogw12SBshwl6QB8jtUpSc4v99V43jkLkkDZLhL0gAZ7pI0QIa7JA2Q4S5JA2S4S9IAGe6SNECGuyQNkOEuSQNkuEvSABnukjRAvcI9yeYkdyY5nGTnmPVbktyc5Mb2C7DPnXypkqS+5v3gsCRTwC7gfJovyz6QZF9V3dYZ9gfAvqqqJC8Gfg84eykKliTNr8+R+ybgcFUdqaoHgb3Alu6AqnqgqqqdPQ0oJEnLpk+4rwbu6cwfbZc9QpKLk9wBXAP8/GTKkyQtRp9wz5hljzoyr6pPVdXZwEXA+8ZuKNnWnpM/ePz48YVVKknqrU+4HwXWdubXAMfmGlxVXwJekGTVmHV7qmqmqmamp6cXXKwkqZ8+4X4A2JBkfZKVwFZgX3dAkhcmSTv9UmAlcN+ki5Uk9TPvq2Wq6kSSHcB1wBRwVVUdSrK9Xb8buAR4Y5LvAd8BfrbzBKsk6THW6ztUq2o/sH9k2e7O9PuB90+2NEnSYvkOVUkaIMNdkgbIcJekATLcJWmADHdJGiDDXZIGyHCXpAEy3CVpgAx3SRogw12SBshwl6QB6vXZMhqGdTuvWdb933XFhcu6f+nJxCN3SRogw12SBshwl6QB6hXuSTYnuTPJ4SQ7x6z/uSQ3t5c/TvKSyZcqSepr3nBPMgXsAi4ANgKXJdk4MuyrwE9W1Ytpvhx7z6QLlST11+fIfRNwuKqOVNWDwF5gS3dAVf1xVf2/dvbLNF+iLUlaJn3CfTVwT2f+aLtsLm8BPn8qRUmSTk2f17lnzLKxX36d5B/RhPu5c6zfBmwDOPPMM3uWKElaqD5H7keBtZ35NcCx0UFJXgx8BNhSVfeN21BV7amqmaqamZ6eXky9kqQe+oT7AWBDkvVJVgJbgX3dAUnOBD4J/LOq+srky5QkLcS8p2Wq6kSSHcB1wBRwVVUdSrK9Xb8buBx4FvDhJAAnqmpm6cqWJJ1Mr8+Wqar9wP6RZbs7028F3jrZ0iRJi+U7VCVpgAx3SRogw12SBshwl6QBMtwlaYAMd0kaIMNdkgbIcJekATLcJWmADHdJGqBeHz8gLbV1O69Z1v3fdcWFy7p/adI8cpekATLcJWmADHdJGiDDXZIGyHCXpAHqFe5JNie5M8nhJDvHrD87yf9J8t0k75x8mZKkhZj3pZBJpoBdwPk0X5Z9IMm+qrqtM+x+4B3ARUtSpSRpQfocuW8CDlfVkap6ENgLbOkOqKp7q+oA8L0lqFGStEB9wn01cE9n/mi7bMGSbEtyMMnB48ePL2YTkqQe+oR7xiyrxeysqvZU1UxVzUxPTy9mE5KkHvqE+1FgbWd+DXBsacqRJE1Cn3A/AGxIsj7JSmArsG9py5IknYp5Xy1TVSeS7ACuA6aAq6rqUJLt7frdSZ4LHATOAB5O8i+AjVX1rSWsXZI0h16fCllV+4H9I8t2d6a/TnO6RpL0OOA7VCVpgAx3SRogw12SBshwl6QBMtwlaYAMd0kaIMNdkgao1+vcH2/W7bxmWfd/1xUXzrnu8VybpCcPj9wlaYAMd0kaIMNdkgbIcJekATLcJWmADHdJGiDDXZIGqFe4J9mc5M4kh5PsHLM+Sf5ju/7mJC+dfKmSpL7mDfckU8Au4AJgI3BZko0jwy4ANrSXbcBvTrhOSdIC9Dly3wQcrqojVfUgsBfYMjJmC/BfqvFl4JlJfmTCtUqSeuoT7quBezrzR9tlCx0jSXqM9PlsmYxZVosYQ5JtNKdtAB5IcmeP/S+FVcA3FnvlvH+ClTyatS2OtS2OtS3Octb2/D6D+oT7UWBtZ34NcGwRY6iqPcCePoUtpSQHq2pmuesYx9oWx9oWx9oW5/Fc26w+p2UOABuSrE+yEtgK7BsZsw94Y/uqmVcA36yqv5xwrZKknuY9cq+qE0l2ANcBU8BVVXUoyfZ2/W5gP/A64DDw18Cbl65kSdJ8en2ee1Xtpwnw7rLdnekC3j7Z0pbUsp8aOglrWxxrWxxrW5zHc20ApMllSdKQ+PEDkjRAT8hwT/JQkhs7l3VJnpXkfyZ5IMmVI+MvS3JL+9EI1yZZNcd2r01yU5JDSXa3787trr80SSWZ6SyrJB/szL8zyXva6fck+Vqnziva5Tvaj2qobi1JnpHks50axj53kWRL+7vcmORgknNH1k8l+dMkn+vRt02d+ZuSXDxmf/uS3Dqulnb99e3HU8xu59nt8jclOd5Z/tZT7NtvtTXenOTjSU4fqeMn2t/x0jnqPC/JNzvbvbyz7q72b+TGJAd79G1dku90lu3ujB/bjzH1rEyyJ8lXktyR5JIl6tvVSb7aWX7OfP2Yo3c3tn+XX+zTtzHbeFQfTzb+VPrUY5sL7mPP7Z5ynyamqp5wF+CBMctOA84FtgNXdpavAO4FVrXz/x54zxzbPaP9GeATwNbOuqcDXwK+DMx0lv8N8NXO9t85u33gPcA7x+znx4F1wF2z12uX/2vg/e30NHA/sHLM9U/n+6fUXgzcMbL+l4HfBT7Xo29PA1a00z/S9mpFZ/0/abd160luj+u7Peksf1P3thhZt5i+ndGZ/g/Azs78FPCHNM8NXTrHPs8b7Uln3SNuix59WzdXT+bqx5hxvwr8Wjv9A51eTLpvV4/rycn6MTLumcBtwJnt/LP79K1PH0fWvwd40yT61KOWBfdx9O9lqfo0qcsT8sh9nKr6dlX9Ec2N1pX2clqSAGcw5jX47Ta+1U6uAFbyyDdivY/mjmF0+ydonlz5pQXU+qdVdde4VcDT2zpPpwn3E2Ou/0C1fzE0d2p/W2eSNcCFwEd61vLXVTW7jx8c2dbpNHcUv9ZnWwu0mL59q60rwA/xyNvnF2jukO+dYI1L7eeBfwdQVQ9XVZ83xSy4bxPwBuCTVXU3QFU91j1eTJ/msxR9XO4+PcITNdx/qPOQ6VMnG1hV3wPeBtxCE+obgd+aa3yS62gC4q+Aj7fLfhxYW1Wfm+Nqu4CfS/KMMet+qVPra+f5va4EXtTWeQvwi1X18Bx1XpzkDuAamj/+WR8C/hUw7npj+5bk5UkOtfvc3gn79wEfpHl563w+2m733W34zrqkcxpl7ch1Fty3JB8Fvg6cDfyndtlq4GJg95jtjHplmlM7n0/yY53lBXwhyQ1p3kndNdff2/o0p7++mORVI9eZqx+zv8cz28n3JfmTJB9L8pzOkIn2Dfj1dnu/keSpPfrRdRbww2lON92Q5I2ddSfr26je/7ezTrFP85nU/+2sSfVpMh7LhwmTunCSh3eMPFQDngL8AfACmiP4K4F/O8/2f5DmKPB8mjvA64F17brreeRpmQfan+8F3s0CHt7x6NMylwK/0db5QpqHjWfMU+urgd9vp38a+HA7fR49TsuMrH8R8H/b3/8c4LPt8nWc/LTM6vbn04EvAG9s558FPLWd3g784YT6NgV8GHhzO/8x4BXt9NXMfVrmDOD0dvp1wJ911j2v/fls4Cbg1SfrG/BU4Fnt9MtoPlvpjJP1Y+T6q2j+4S9p538Z+J2l6BvN6ba0Nf82cPl8/Ri5/pU0pyNPa+v+M+Cs+frW5/8W+PvAje3l68DdnflnLbZP810W2cddndoe7Ez/m0n2aVKXJ+qR+0KcA1BVf15Nd38P+AdpnnScvWd+b/cKVfU3NO+63ULzD/r3gOuT3AW8AtiXzpOqrQ8Bb6G5YRfrzTQP66qqDtOE+9lJ3t6p9XkjtX4JeEGaJ2b/IfD6ts69wD9O8l/77ryqbge+TfP7vhJ4WbutPwLOao9IHtW3qvpa+/OvaM7Pb2rn76uq77ab/880IThqwX2rqoeA/wFc0i6aAfa2tV4KfDjJRaN9q6pvVdUD7Tb2A09p+0ZVHWt/3gt8avZ3OEkN362q+9rpG4A/pzlyG9uPMX27j+YR0ewR7MeAl7bXm2jfquov27+p7wIf5fu3z9h+jPl7OwpcW82pz2/QPPf0ksX0bUxtt1TVOVV1Ds0jr8tn59v+nmqf5rOQPr69U+uxTp2/3g5Zsj4txpMh3L8GbEwy3c6fD9xeVQ91bpzLk5ye9mOKk6ygOZK5o6q+WVWrqmpdVa2juWd+fVU94hnvqrqf5o7jLadQ693AT7U1PAf4UeBIVe3q1HosyQtnH+qn+WKUlcB9VfUrVbWmrXMrzZHMPz3ZDtN8rMSKdvr57T7vqqrfrKrntds6F/hKVZ03pm8rZgMyyVNoHj3c2s53P/b59cDto/vv27c0Xjg7DfwMcEe7jfWd2+fjwD+vqk+P6dtzO33bRPP3f1+S05I8vV1+GvCa2d/hJPVMp301VZK/S/NdBkfm6sdo39oDjc/SPMKC5na/bdJ9626v/d0v4vu3z9h+jPYN+AzwqvZ3exrwcuD2xfRtoU61Tz22P4n/21nL1qdxer1D9YmiPXI7A1iZ5CLgNVV1W5JfBb6U5HvAX9Ccuhl1Gs0R+VP5/isv+pzD7fogsKNHne+gOS/+XODmJPur6q0057ivTnILzcPod9X4J48uofksn+8B3wF+tv0nWIxzgZ3tth6mCcaFPGH1VOC6NsimgN+nOYoCeEeS19M8eXU/4/sO/foW4LeTnNFO30TzXMpCXAq8LckJmr5trapq70g/1ebcCuB3q+raebb1auC97bYeonmu4v72n3eufox6F/A7ST4EHOf7H9sxyb4B/Lf24CY0pxG2t8vH9mP0ylV1e5JrgZtp/kY+UlW3tndqC+3bYpxqn+bTt48n9Tjo0yP4DlVJGqAnw2kZSXrSMdwlaYAMd0kaIMNdkgbIcJekATLcJWmADHdJGiDDXZIG6P8D7QgcSTBbKtkAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "def regroupement(data):\n",
+ " resultat = data.groupby([\"Smoker\",\"Status\"])[\"Age\"].nunique()\n",
+ " non_fum_vivante = resultat[0]\n",
+ " non_fum_morte = resultat[1]\n",
+ " fum_vivante = resultat[2]\n",
+ " fum_morte = resultat[3]\n",
+ "\n",
+ " données=[[fum_morte,fum_vivante,fum_morte+fum_vivante,round(fum_morte/(fum_morte+fum_vivante),3)],[non_fum_morte,non_fum_vivante,non_fum_morte+non_fum_vivante,round(non_fum_morte/(non_fum_morte+non_fum_vivante),3)]]\n",
+ " sortie = pd.DataFrame(données, index = [\"Fumeuses\", \"Non-fumeuses\"] , columns = [\"Décédées\", \"Vivantes\",\"Total\",\"Taux de mortalité\"])\n",
+ " return sortie\n",
+ "\n",
+ "d1=regroupement(classe1)\n",
+ "d2=regroupement(classe2)\n",
+ "d3=regroupement(classe3)\n",
+ "d4=regroupement(classe4)\n",
+ "\n",
+ "concatenation=pd.concat([d1,d2,d3,d4])\n",
+ "\n",
+ "plt.bar([\"F18-34\",\"NF18-34\",\"F34-55\",\"NF34-55\",\"F55-65\",\"NF55-65\",\"F+65\",\"NF+65\"],concatenation[\"Taux de mortalité\"])\n",
+ "concatenation"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "D'après le graphique précédent, on observe que pour la tranche 18-34 ans, le taux de mortalité entre les fumeurs et les non-fumeurs est presque semblable. \n",
+ "Au contraire, on observe que sur les trois autres tranches d'âge, le taux de mortalité pour les fumeurs est plus élevé que le taux de mortalité des non-fumeurs. \n",
+ "Ce qui est contraire aux résultats trouvés précédemment pour l'ensemble de la série de données. \n",
+ "Cela peut s'expliquer par le fait que l'échantillon dans chaque sous-groupe n'est pas le même (le nombre de fumeurs décédés ou vivants, et le nombre de non-fumeurs décédés et vivants n'est pas le même)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Il m'est impossible d'effectuer une régression logistique."
+ ]
+ }
+ ],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
@@ -16,10 +1336,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.6.3"
+ "version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
-