Commit 6c937df7 authored by 2fef2734b12e1db3f41ece819fbcb91c's avatar 2fef2734b12e1db3f41ece819fbcb91c

Exercice fini

parents 54f1a3b4 376956e5
{
"cells": [],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 4
}
......@@ -9,6 +9,7 @@
},
{
"cell_type": "code",
<<<<<<< HEAD
"execution_count": 1,
"metadata": {},
"outputs": [],
......@@ -537,13 +538,38 @@
"outputs": [],
"source": [
"resultat = data.groupby([\"Smoker\",\"Status\"])[\"Age\"].nunique()"
=======
"execution_count": 6,
"metadata": {},
"outputs": [
{
"ename": "ModuleNotFoundError",
"evalue": "No module named 'Subject6_smoking'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-6-9cc46ef2df56>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mpandas\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0misoweek\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mSubject6_smoking\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcsv\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'Subject6_smoking'"
]
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"import pandas as pd\n",
"import isoweek"
>>>>>>> 376956e5bafbf00b217f68b71e68784490367ecf
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
<<<<<<< HEAD
"Maintenant, on créer un jeu de données pour afficher les données sous-forme d'un tableau, en y ajoutant de taux de mortalité pour les femmes fumeuses (en divisant le nombre de femmes fumeuses décédées par le nom de femmes fumeuses total) et pour les femmes non-fumeuses."
=======
"Les données sont données dans le sujet : on va les importer."
>>>>>>> 376956e5bafbf00b217f68b71e68784490367ecf
]
},
{
......@@ -552,6 +578,7 @@
"metadata": {},
"outputs": [
{
<<<<<<< HEAD
"data": {
"text/html": [
"<div>\n",
......@@ -645,10 +672,26 @@
"metadata": {},
"source": [
"On va chercher a utiliser les valeurs selon l'âge. On trie donc les valeurs selon celui-ci."
=======
"ename": "NameError",
"evalue": "name 'Subject6_smoking' is not defined",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-5-e9cd5be426c4>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mSubject6_smoking\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcsv\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'Subject6_smoking' is not defined"
]
}
],
"source": [
"data = Subject6_smoking.csv"
>>>>>>> 376956e5bafbf00b217f68b71e68784490367ecf
]
},
{
"cell_type": "code",
<<<<<<< HEAD
"execution_count": 6,
"metadata": {},
"outputs": [
......@@ -1318,6 +1361,12 @@
"source": [
"Il m'est impossible d'effectuer une régression logistique."
]
=======
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
>>>>>>> 376956e5bafbf00b217f68b71e68784490367ecf
}
],
"metadata": {
......
{
"cells": [
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"import pandas as pd\n",
"import isoweek"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"On va importer les données."
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [],
"source": [
"data_url = \"Subject6_smoking.csv\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"On observe le jeu de données."
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Smoker</th>\n",
" <th>Status</th>\n",
" <th>Age</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Yes</td>\n",
" <td>Alive</td>\n",
" <td>21.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Yes</td>\n",
" <td>Alive</td>\n",
" <td>19.3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>No</td>\n",
" <td>Dead</td>\n",
" <td>57.5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>47.1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Yes</td>\n",
" <td>Alive</td>\n",
" <td>81.4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>36.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>23.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>Yes</td>\n",
" <td>Dead</td>\n",
" <td>57.5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>Yes</td>\n",
" <td>Alive</td>\n",
" <td>24.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>Yes</td>\n",
" <td>Alive</td>\n",
" <td>49.5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>Yes</td>\n",
" <td>Alive</td>\n",
" <td>30.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>No</td>\n",
" <td>Dead</td>\n",
" <td>66.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>Yes</td>\n",
" <td>Alive</td>\n",
" <td>49.2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>58.4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>No</td>\n",
" <td>Dead</td>\n",
" <td>60.6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>25.1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>43.5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>27.1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>58.3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>Yes</td>\n",
" <td>Alive</td>\n",
" <td>65.7</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20</th>\n",
" <td>No</td>\n",
" <td>Dead</td>\n",
" <td>73.2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>21</th>\n",
" <td>Yes</td>\n",
" <td>Alive</td>\n",
" <td>38.3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>33.4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>23</th>\n",
" <td>Yes</td>\n",
" <td>Dead</td>\n",
" <td>62.3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>18.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>56.2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>26</th>\n",
" <td>Yes</td>\n",
" <td>Alive</td>\n",
" <td>59.2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>27</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>25.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>28</th>\n",
" <td>No</td>\n",
" <td>Dead</td>\n",
" <td>36.9</td>\n",
" </tr>\n",
" <tr>\n",
" <th>29</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>20.2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1284</th>\n",
" <td>Yes</td>\n",
" <td>Dead</td>\n",
" <td>36.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1285</th>\n",
" <td>Yes</td>\n",
" <td>Alive</td>\n",
" <td>48.3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1286</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>63.1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1287</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>60.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1288</th>\n",
" <td>Yes</td>\n",
" <td>Dead</td>\n",
" <td>39.3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1289</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>36.7</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1290</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>63.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1291</th>\n",
" <td>No</td>\n",
" <td>Dead</td>\n",
" <td>71.3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1292</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>57.7</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1293</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>63.2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1294</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>46.6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1295</th>\n",
" <td>Yes</td>\n",
" <td>Dead</td>\n",
" <td>82.4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1296</th>\n",
" <td>Yes</td>\n",
" <td>Alive</td>\n",
" <td>38.3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1297</th>\n",
" <td>Yes</td>\n",
" <td>Alive</td>\n",
" <td>32.7</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1298</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>39.7</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1299</th>\n",
" <td>Yes</td>\n",
" <td>Dead</td>\n",
" <td>60.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1300</th>\n",
" <td>No</td>\n",
" <td>Dead</td>\n",
" <td>71.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1301</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>20.5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1302</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>44.4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1303</th>\n",
" <td>Yes</td>\n",
" <td>Alive</td>\n",
" <td>31.2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1304</th>\n",
" <td>Yes</td>\n",
" <td>Alive</td>\n",
" <td>47.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1305</th>\n",
" <td>Yes</td>\n",
" <td>Alive</td>\n",
" <td>60.9</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1306</th>\n",
" <td>No</td>\n",
" <td>Dead</td>\n",
" <td>61.4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1307</th>\n",
" <td>Yes</td>\n",
" <td>Alive</td>\n",
" <td>43.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1308</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>42.1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1309</th>\n",
" <td>Yes</td>\n",
" <td>Alive</td>\n",
" <td>35.9</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1310</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>22.3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1311</th>\n",
" <td>Yes</td>\n",
" <td>Dead</td>\n",
" <td>62.1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1312</th>\n",
" <td>No</td>\n",
" <td>Dead</td>\n",
" <td>88.6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1313</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>39.1</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>1314 rows × 3 columns</p>\n",
"</div>"
],
"text/plain": [
" Smoker Status Age\n",
"0 Yes Alive 21.0\n",
"1 Yes Alive 19.3\n",
"2 No Dead 57.5\n",
"3 No Alive 47.1\n",
"4 Yes Alive 81.4\n",
"5 No Alive 36.8\n",
"6 No Alive 23.8\n",
"7 Yes Dead 57.5\n",
"8 Yes Alive 24.8\n",
"9 Yes Alive 49.5\n",
"10 Yes Alive 30.0\n",
"11 No Dead 66.0\n",
"12 Yes Alive 49.2\n",
"13 No Alive 58.4\n",
"14 No Dead 60.6\n",
"15 No Alive 25.1\n",
"16 No Alive 43.5\n",
"17 No Alive 27.1\n",
"18 No Alive 58.3\n",
"19 Yes Alive 65.7\n",
"20 No Dead 73.2\n",
"21 Yes Alive 38.3\n",
"22 No Alive 33.4\n",
"23 Yes Dead 62.3\n",
"24 No Alive 18.0\n",
"25 No Alive 56.2\n",
"26 Yes Alive 59.2\n",
"27 No Alive 25.8\n",
"28 No Dead 36.9\n",
"29 No Alive 20.2\n",
"... ... ... ...\n",
"1284 Yes Dead 36.0\n",
"1285 Yes Alive 48.3\n",
"1286 No Alive 63.1\n",
"1287 No Alive 60.8\n",
"1288 Yes Dead 39.3\n",
"1289 No Alive 36.7\n",
"1290 No Alive 63.8\n",
"1291 No Dead 71.3\n",
"1292 No Alive 57.7\n",
"1293 No Alive 63.2\n",
"1294 No Alive 46.6\n",
"1295 Yes Dead 82.4\n",
"1296 Yes Alive 38.3\n",
"1297 Yes Alive 32.7\n",
"1298 No Alive 39.7\n",
"1299 Yes Dead 60.0\n",
"1300 No Dead 71.0\n",
"1301 No Alive 20.5\n",
"1302 No Alive 44.4\n",
"1303 Yes Alive 31.2\n",
"1304 Yes Alive 47.8\n",
"1305 Yes Alive 60.9\n",
"1306 No Dead 61.4\n",
"1307 Yes Alive 43.0\n",
"1308 No Alive 42.1\n",
"1309 Yes Alive 35.9\n",
"1310 No Alive 22.3\n",
"1311 Yes Dead 62.1\n",
"1312 No Dead 88.6\n",
"1313 No Alive 39.1\n",
"\n",
"[1314 rows x 3 columns]"
]
},
"execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = pd.read_csv(data_url, encoding = 'iso-8859-1')\n",
"data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Il n'y a pas de donnée manquante dans le jeu de données. \n",
"Il ne faut donc pas enlever de lignes. \n",
"On cherche à comptabiliser le nombre de femmes fumeuses qui sont vivantes et mortes, de même pour les non-fumeuses. \n",
"On crée un jeu de données en utilisant les fonctions prédéfinies dans la bibliothèque Pandas.\n"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
"outputs": [],
"source": [
"resultat = data.groupby([\"Smoker\",\"Status\"])[\"Age\"].nunique()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Maintenant, on crée un jeu de données pour afficher les données sous-forme d'un tableau, en y ajoutant le taux de mortalité pour les femmes fumeuses (en divisant le nombre de femmes fumeuses décédées par le nombre de femmes fumeuses total) et pour les femmes non-fumeuses."
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Décédées</th>\n",
" <th>Vivantes</th>\n",
" <th>Total</th>\n",
" <th>Taux de mortalité</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Fumeuses</th>\n",
" <td>121</td>\n",
" <td>274</td>\n",
" <td>395</td>\n",
" <td>0.306</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Non-fumeuses</th>\n",
" <td>184</td>\n",
" <td>323</td>\n",
" <td>507</td>\n",
" <td>0.363</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Décédées Vivantes Total Taux de mortalité\n",
"Fumeuses 121 274 395 0.306\n",
"Non-fumeuses 184 323 507 0.363"
]
},
"execution_count": 48,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"non_fum_vivante = resultat[0]\n",
"non_fum_morte = resultat[1]\n",
"fum_vivante = resultat[2]\n",
"fum_morte = resultat[3]\n",
"\n",
"données=[[fum_morte,fum_vivante,fum_morte+fum_vivante,round(fum_morte/(fum_morte+fum_vivante),3)],[non_fum_morte,non_fum_vivante,non_fum_morte+non_fum_vivante,round(non_fum_morte/(non_fum_morte+non_fum_vivante),3)]]\n",
"res = pd.DataFrame(données, index = [\"Fumeuses\", \"Non-fumeuses\"] , columns = [\"Décédées\", \"Vivantes\",\"Total\",\"Taux de mortalité\"])\n",
"res\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"On observe les données finales dans un graphe."
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<BarContainer object of 2 artists>"
]
},
"execution_count": 49,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEICAYAAABI7RO5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3X28VVW97/HPFwg1FKhATUAlpWvUESMkvdqD+RBaN6zsqscyUyM6mdfMOrzO7dE6pWV5Mikiw16ZRlZyDiqGaXUrHwpM0zTtEGogqFtJ8RmR3/1jjK2TxVp7z7nZc6+94ft+vfZrrznnGGP+1nz6zTnmXGspIjAzMytrULsDMDOzgcWJw8zMKnHiMDOzSpw4zMysEicOMzOrxInDzMwqceLoRZL2krS+3XH0BknTJC0rDP9N0v4l6g2WdJWk4+uN8Pn5bZ/nt1bSRX0xzzzfQyT9qY/mdb+kA3tQb6N1aH2vp+uuh/O6UdJ7+2JeAzJxSHq88LdB0lOF4ePaHV9/JOksSRf0tH5E7BERN5Ro66vAf0bED3o6r4qOBbYHXhIR76tjBpK2lRSSxnaOi4hrImJSHfOrSz6I7dzuOKx7zba5/mRIuwPoiYjYvvO1pHuAkyPimvZF1L9J6rP1HBGn99W8st2AuyLiuT6er9nWKyIG9B9wD3BIw7gDgN8DjwKrgHOBIXnaXsD6hvI3Au/Nry8ELi5M+wZwZYt5D8nTHwaWAR8ttg28FPgBcD+wAvgsMKhFW2cBFwM/Bh4HbgHG5zoP5fd5UKH8rsAiYA3wV+D9DW1dktt6DHgvsA54Nrf9h1zuQ8Cducwy4MRCG9OAZYXh+4EDgSNbtFXlvQ4GPg0sz+/tYmBkcf0AHwBWAh3AJ1q0c3ZDLMfltj8P/B14AJgH7FCm7bw+P5vjWgssAXYG/gAE8ESez5FNls8/Ab8FHgFuBQ4vTJsP/AewOC/r64DdutimT8rxdwCf6Fz23S27Ju00W4c7N27zeXgmcE1hHufn+T8K/An4H3naO/PwWuBe4N8a5nlyIfZP9jT2XP4jwN9I+9dlwE5l9uEu9q0f5eV/K7BPG9bdfOBTrdZPQzvNtrnRwFW57TXAfwEvb1gGXwBuyuvtZ8CIwrb9M9I+8Qjwq851mqcPA84j7buPAv+PfMxsGl93B+b+/kfzxDEV2DdvqHuQDoozy2x0wA7A3cAxwMHAg+Sdrcm8TwNuA3bJK/V3bJw4rgK+CbwYeDlwM4UDfJON+0ngoLySf5zjOCMPfxT4S6H870kJcRtgSt6QDii09QxwBKk7crs87oKGeb6DlJwEHAI8Bby62UbdsAM0a6vKe51F2lF3AbYFvg9cWFg/AczO0/YlJYdXdLHcLigM/wvwF9KVyHDgCuC7ZdomHdRuBvbMy+21wMhcNoCxzXb6PP1e4OPAi4C3knb28YUDxoPA5Dz9p8D3W7yffUgHqP3zup1NSnYHdrfsmrTV1YGpq8QxHbghL79BwKuBHfO0g/PwoPx+1gDTCrGvBfbLsZ+3GbEfQdrm9s5l5wK/KLMPd7FvHUo6JpwL/LoN665K4mi2ze2U1812wAhS4pjfsAzuzctne+By8r5BOoa8P4/fFvg2cGOh7veAq0knSoOBNwCDWx53uzooD4Q/miSOJmVmAT8qu9HlhfYQ6az0XV20ez1wQmH4HZ1tkw5cTwAvKkz/AHBVFxv35YXh95DOtJSHR+cNaTtgAvA0sF2h/LnAnEJbVzdp/4JW7yWX+TnwoWYbNV0kjh6817vJSS4Pjyft2OKFg/uowvRbgSO7WG7FWK5j4yunSWXbzjvdW5vMo7vEcWiuq8L0BcCs/Ho+cH5h2ruAW1q8ny9RODCRDhAbCsu+5bJr0lZPE8cRwO2kE7BN2m1oZw7w5ULsFxamDd+M2C8GziwMj8xt7UzPEscVheHJwCNtWHeblTialNkPWN2wDD7X8D6faFF35xzbtqSE+CyFK5Du/gbkPY7uSJoIfI204LYjZdvrKjTxO2B1rrugi3K7kC7tOt1beL0baaV0SOocN4h09dPKA4XXTwEdkddyHoZ0SblLnvZUofy9pLPBTsW4mpL0DuBTvHCG/WLSGWFVpd+rUoFxwCJJUZg0CHhZfv1cRDxUmPYk6UypjF3YeD3cS1qPL+2q7RzXGFLXSFW7AH8vrKvO+Y4pDN/fOM8u2np+3UXEo5IehVLLrvi+NsdVpIPzd4Axkn4KfDIiHpd0AOkAOREYSjqz7nyabRdSN01n7Gs3I/ZdgF8W2npE0lrSMn2iB++p1fLvk3XXGyTtQOoaP4SUSCFt20WNx6MXSxpBWmZnkRLfKFLSEGnZDyYdI5eXjWVAPlVVwneBPwJ7RMRw4EzSQoK0AAdL2qZQvvFJk9NJGXgtqTuqldWknaHTroXXK0iXvC+JiJH5b3hETK78bja1ChgtqbjR7ArcVxiOjatsPCxpGPATUp/ojhExkrSjiu41tl36veYd9D7gLYWyIyNi24YDek+tIiWyTruSku6arioV4tqj2eQS89y1YVzj+ihro20q7/QjGmLsjWX3BOlEodPz+0AkX4+I15K6iiYB/ydPvpTUjTouIkaQups6t5nVwPNPAUkavhmxb7Qe83IYntsosw+X1SfrLmu5zJtots3NIi3fffNx7TA23V8bj0dPRsSjpB6Aw0hd4SNIJwbk+qtJXWqv6CKejWypiWMH4NF8hvRq4IOFaatIN5eOy585+BcKZxeSXkM6C39v/vtMvoJp5lLgY5JeLmkU6WYgABFxN+nS8SuSdpA0SNKEXnqmexmpi+WLkraRNJnUf3lxF3UeAMbrhUuC7UiXqA8CG/LVx5tLzn+jtnrwXucAZ0kaByBpR0n/q+S8u/Mj4AxJu+YztC8ClzScUbZyAfAlSa9Q8lpJIyPiGdINw1Y71m+BQZJOkzRE0qGknfQnPYj/UuBdkl6fD4xfJJ0dduqtZXcLcFR+7HMv4ITOCZL2kzQlP433BOk+0HN5fW8PPBwRT0v6n6Qu1WLs75a0r6ShpBO2nsb+I+CDkl4jaVvSgxC/jIj76WYfrqgv190twNsljZQ0hnTfsqkW29wOpCueR/Lx5lNNqp4g6ZWStgc+R0rynXWfJnV/D8uxdc7rWdKDLd+QtFNepgdKGtwqvi01cXwMOFnS46QbVJ0Lj0iPbZ7MC08rjSM9hUDe2H8IfD4i7oiIO0gb/0WSXtRkPueTNrzbSTerL22YfizpkvJO0hnvj0k3uDZLPgj+b1J3wf253U9ERFfdTPNJZztrJF2fz/LOIN1Ae5j01MaikiFs1FYeV+W9fgW4BvilpMdI94p640oM0k2/y3Kbf8uxlH1E+CzgStKV11rSga7zrPYzwE8kPZKT7PMi4mng7cBRpGX5deDoiKjc7RURN5Nu1P6UdI/t72zcjdNby+4rpO6JDtKN5x8Wpo0kXUk8Quq+uBc4L293M4Fz8rw/SeEAm2P/BKl79z7SmeyjpAc1KsUeEVcAXwYWkhLFzsD78rSW+3BVfbzu5pFO+v5OemjjR9002bjNnUPqZnqY1J3ebH+9KLd7HylpfTyP/x5pXd9PeqDndw31TiXtLzfn9r9AF70PKnciZmZWjaSXkBL3LhGxut3xWO/ZUq84zKwNJL1D0na5q+TrwO+dNLY8Thxm1pveQ+oOWUm67+CvANoCuavKzMwq8RWHmZlVskV9AHDUqFGx++67tzsMM7MB46abbnooIkZXqbNFJY7dd9+dpUuXtjsMM7MBQ9K93ZfamLuqzMysEicOMzOrxInDzMwqceIwM7NKnDjMzKwSJw4zM6vEicPMzCpx4jAzs0qcOMzMrJIt6pPjZluy3Wdd2e4QrJ+656y39en8fMVhZmaVOHGYmVklThxmZlZJrYlD0jRJd0laJmlWk+nTJd0q6RZJSyUdWJh2j6TbOqfVGaeZmZVX281xSYOB2cChpJ+RXCJpYUTcUSh2LbAwIkLS3sClwF6F6QdFxEN1xWhmZtXVecUxFVgWEcsjYh0wH5heLBARj8cLv107DPDv2JqZ9XN1Jo4xwIrCcOeP129E0jsl3QlcCZxYmBTA1ZJukjSj1UwkzcjdXEs7Ojp6KXQzM2ulzsShJuM2uaKIiAURsRdwJPCFwqQDImIycDjwEUlvbDaTiJgbEVMiYsro0ZV+/dDMzHqgzsSxEhhXGB4LrGpVOCJ+A+whaVQeXpX/PwgsIHV9mZlZm9WZOJYAEySNlzQUOAZYWCwgaU9Jyq8nA0OBhyUNk7RDHj8MOAz4c42xmplZSbU9VRUR6yWdAiwGBgPzIuJ2STPz9DnAu4HjJT0LPAUcnZ+w2glYkHPKEOCSiPh5XbGamVl5tX5XVUQsAhY1jJtTeH02cHaTesuBSXXGZmZmPeNPjpuZWSVOHGZmVokTh5mZVeLEYWZmlThxmJlZJU4cZmZWiROHmZlV4sRhZmaVOHGYmVklThxmZlaJE4eZmVXixGFmZpU4cZiZWSVOHGZmVokTh5mZVeLEYWZmlThxmJlZJU4cZmZWiROHmZlVUutvjkuaBnwDGAxcEBFnNUyfDnwB2ACsB06LiN+Vqdvbdp91ZZ3N2wB2z1lva3cIZv1KbVcckgYDs4HDgYnAsZImNhS7FpgUEfsAJwIXVKhrZmZtUGdX1VRgWUQsj4h1wHxgerFARDweEZEHhwFRtq6ZmbVHnYljDLCiMLwyj9uIpHdKuhO4knTVUbqumZn1vToTh5qMi01GRCyIiL2AI0n3O0rXBZA0Q9JSSUs7Ojp6HKyZmZVTZ+JYCYwrDI8FVrUqHBG/AfaQNKpK3YiYGxFTImLK6NGjNz9qMzPrUp2JYwkwQdJ4SUOBY4CFxQKS9pSk/HoyMBR4uExdMzNrj9oex42I9ZJOARaTHqmdFxG3S5qZp88B3g0cL+lZ4Cng6HyzvGndumI1M7Pyav0cR0QsAhY1jJtTeH02cHbZumZm1n7+5LiZmVXixGFmZpU4cZiZWSVOHGZmVokTh5mZVeLEYWZmlThxmJlZJU4cZmZWiROHmZlV4sRhZmaVOHGYmVklThxmZlaJE4eZmVXixGFmZpWUThyStqkzEDMzGxiaJg5JQwqvp0q6DfjvPDxJ0jf7KD4zM+tnWl1xfEjS/vn1ecDbST/pSkT8CTioD2IzM7N+qFXi+A5wXGeZiLi3Yfpz9YVkZmb9WdOfjo2I9cApeXCFpKlASBoMfBT4ax/FZ2Zm/UyZm+MfBk4HdgUeAPYDZtYZlJmZ9V9lEscrIuKYiBiV/44BJpRpXNI0SXdJWiZpVpPpx0m6Nf9dL2lSYdo9km6TdIukpeXfkpmZ1alM4vhWk3Gzu6uUu7VmA4cDE4FjJU1sKHY38KaI2Bv4AjC3YfpBEbFPREwpEaeZmfWBpvc4ID2GC+wPjJZ0amHScOBFJdqeCiyLiOW5vfnAdOCOzgIRcX2h/I3A2PKhm5lZO3R1xTEMGEVKLqMLf+uA95RoewywojC8Mo9r5STgqsJwAFdLuknSjFaVJM2QtFTS0o6OjhJhmZnZ5mh5xRERvwJ+JenCzquGitSs2aYFpYNIiePAwugDImKVpB2BX0i6MyJ+0yTOueQurilTpjRt38zMek9XXVVfi4iPA1+TtMkBOSLe1U3bK4FxheGxwKom89kbuAA4PCIeLrS/Kv9/UNICUtfXJonDzMz6VsvEAfw4/z+/h20vASZIGg/cBxwD/HOxgKRdgcuA90XEXwvjh5E+ePhYfn0YcGYP4zAzs17UVVfVH/L/a3vScESsl3QKsBgYDMyLiNslzczT5wCfAV4GfEsSwPr8BNVOwII8bghwSUT8vCdxmJlZ7+qqq+pmWtyTAIiIyd01HhGLgEUN4+YUXp8MnNyk3nJgUuN4MzNrv666qo7qsyjMzGzA6Kqr6m99GYiZmQ0M3X5yXNK+km6U9KikpyU9I2ltXwRnZmb9T1ddVZ2+BbwXmE96JPYENn7M1szMtiJlvqtqUETcBQyJiGcj4rvAITXHZWZm/VSZK44nJA0F/iTpS8BqYPt6wzIzs/6qzBXHCbncKaRf/psAvLvGmMzMrB8rkziOiIinI+KRiPh0RJwKvLXuwMzMrH8qkzhObDLupN4OxMzMBoauPjl+NOn7pV4h6bLCpOHAI3UHZmZm/VNXN8f/ADxM+lbb4i/+PQbcXGdQZmbWf3X1yfG7Jf0dWNPTLzo0M7MtT5f3OCLiOWCdpOF9FI+ZmfVzZT7H8TjpMxxXA090joyI02uLyszM+q0yieOa/GdmZtZ94oiI70kaAuyZRy2LiPX1hmVmZv1Vt4lD0huAi0g//ypgZ0nvi4jr6g7OzMz6nzJdVeeSPj1+B4CkV5ESyZQ6AzMzs/6pzCfHh3YmDYCI+AswtL6QzMysPytzxfFHSd8hXWUAHIc/AGhmttUqc8UxE/gb8EngX4HlwIfKNC5pmqS7JC2TNKvJ9OMk3Zr/rpc0qWxdMzNrjzJPVT0NfCX/lSZpMOmrSg4FVgJLJC0sdnsBdwNvioh/SDocmAu8vmRdMzNrgzK/OT5N0hJJD0paI+kfktaUaHsq6dHd5RGxjvTTs9OLBSLi+oj4Rx68kfS9WKXqmplZe5Tpqjqf1DU1BhgNjMr/uzMGWFEYXpnHtXIScFXVupJmSFoqaWlHR0eJsMzMbHOUSRwrgVvy740/1/lXop6ajIumBaWDSInjX6vWjYi5ETElIqaMHl0mn5mZ2eYo81TVJ4HLJf0aeKZzZESc1029lcC4wvBYYFVjIUl7AxcAh0fEw1XqmplZ3ytzxfF50m+NjyR1UXX+dWcJMEHSeElDST8KtbBYQNKuwGXA+yLir1XqmplZe5S54tgxIl5XteGIWC/pFGAxMBiYFxG3S5qZp88BPgO8DPiWJID1udupad2qMZiZWe8rkziulfSWiPhl1cYjYhGwqGHcnMLrk4GTy9Y1M7P2K9NV9UHgGkmPV3wc18zMtkBlrjhG1R6FmZkNGGU+OV7m0VszM9tKlOmqMjMze54Th5mZVVIqcUjaT9Lx+fXL8ucvzMxsK1Tmp2M/BRwA7AH8ANgWuAQ4sN7QzMysPypzxXEUcATwBEBE3AcMrzMoMzPrv8okjmciIshfMijpxfWGZGZm/VmZxHGZpNnACEkfAK4G5tUblpmZ9VdlPsdxdv51vnXAJODfI+KqbqqZmdkWqswnx8mJwsnCzMxaJw5J/6DFjycBRMRLa4nIzMz6ta6uOEaRfonvs0AHcFEePg7wDXIzs61Uy8TR+R1Vkg6LiNcXJn1T0o3A2XUHZ2Zm/U+Zp6pC0tHKv7Qk6eiaYzIzs36sTOL4Z+B44GFJDwHvI3VXmZnZVqjM47jLgbf1QSxmZjYA+NtxzcyskloTh6Rpku6StEzSrCbT95J0g6RnJJ3RMO0eSbdJukXS0jrjNDOz8kp9ALAnJA0GZgOHAiuBJZIWRsQdhWJrgFOBI1s0c1BEPFRXjGZmVl23VxySLpS0Q2F4rKSrS7Q9FVgWEcsjYh0wH5heLBARD0bEEuDZinGbmVmblOmqWgr8QdJh+UsOfwV8u0S9McCKwvDKPK6sAK6WdJOkGa0KSZohaamkpR0dHRWaNzOznijzVNVsSX8iJYyHgMkRsbpE22rWXIXYDoiIVZJ2BH4h6c6I+E2T+OYCcwGmTJlSpX0zM+uBMl1Vx5K+Rv1E4IfA5ZJeU6LtlcC4wvBYYFXZwCJiVf7/ILCA1PVlZmZtVubm+HHAGyPifgBJ+wMXk75ivStLgAmSxgP3AceQPkzYLUnDgEER8Vh+fRhwZpm6ZmZWrzJdVW9vGL5B0utblS+UWy/pFGAxMBiYFxG3S5qZp8+RtDPpHspwYIOk04CJpC9YXJC/5WQIcElE/LzaWzMzszp0mzgkzW0xqeUN604RsQhY1DBuTuH1/aQurEZr6f6KxszM2qBMV9W1hdfbAu9k46elzMxsK1Kmq+rHxWFJFwG/qC0iMzPr13rylSPjgd16OxAzMxsYytzjKP6E7CDS14Rs8r1TZma2dShzj2NU4fWGiPCH7MzMtmJl7nE8J2kEsAewbX5Eloi4vubYzMysHyrTVXUScDrpe6ZuA/YFbgTeXGtkZmbWL5W5OX4aMAW4JyLeALwOKPNdVWZmtgUqkziejoinACQNjYjbgb3qDcvMzPqrll1VkoZExHpgtaSRwOXAYklrgAf6KkAzM+tfurrH8QfSV6i/Iw9/WtLBwAjgytojMzOzfqmrxLHJ72lExLXNCpqZ2dajq8QxWtLprSZGxNdriMfMzPq5rhLHYGB7mv+Sn5mZbaW6ShyrI8I/nmRmZhvp6nFcX2mYmdkmukocB/dZFGZmNmC0TBwRsaYvAzEzs4GhJ7/HYWZmWzEnDjMzq6TWxCFpmqS7JC2TtMmPP0naS9INkp6RdEaVumZm1h61JQ5Jg4HZwOHAROBYSRMbiq0BTgXO6UFdMzNrgzqvOKYCyyJieUSsA+YD04sFIuLBiFgCPFu1rpmZtUediWMMsKIwvDKP69W6kmZIWippaUdHR48CNTOz8upMHM0+QFj298pL142IuRExJSKmjB49unRwZmbWM3UmjpXAuMLwWGBVH9Q1M7Ma1Zk4lgATJI2XNBQ4BljYB3XNzKxGXX3J4WaJiPWSTgEWk75pd15E3C5pZp4+R9LOwFJgOLBB0mnAxIhY26xuXbGamVl5tSUOgIhYBCxqGDen8Pp+UjdUqbpmZtZ+/uS4mZlV4sRhZmaVOHGYmVklThxmZlaJE4eZmVXixGFmZpU4cZiZWSVOHGZmVokTh5mZVeLEYWZmlThxmJlZJU4cZmZWiROHmZlV4sRhZmaVOHGYmVklThxmZlaJE4eZmVXixGFmZpU4cZiZWSW1Jg5J0yTdJWmZpFlNpkvSeXn6rZImF6bdI+k2SbdIWlpnnGZmVt6QuhqWNBiYDRwKrASWSFoYEXcUih0OTMh/rwe+nf93OigiHqorRjMzq67OK46pwLKIWB4R64D5wPSGMtOBH0RyIzBS0strjMnMzDZTnYljDLCiMLwyjytbJoCrJd0kaUarmUiaIWmppKUdHR29ELaZmXWlzsShJuOiQpkDImIyqTvrI5Le2GwmETE3IqZExJTRo0f3PFozMyulzsSxEhhXGB4LrCpbJiI6/z8ILCB1fZmZWZvVmTiWABMkjZc0FDgGWNhQZiFwfH66aj/g0YhYLWmYpB0AJA0DDgP+XGOsZmZWUm1PVUXEekmnAIuBwcC8iLhd0sw8fQ6wCDgCWAY8CXwgV98JWCCpM8ZLIuLndcVqZmbl1ZY4ACJiESk5FMfNKbwO4CNN6i0HJtUZm5mZ9Yw/OW5mZpU4cZiZWSVOHGZmVokTh5mZVeLEYWZmlThxmJlZJU4cZmZWiROHmZlV4sRhZmaVOHGYmVklThxmZlaJE4eZmVXixGFmZpU4cZiZWSVOHGZmVokTh5mZVeLEYWZmlThxmJlZJU4cZmZWiROHmZlVUmvikDRN0l2Slkma1WS6JJ2Xp98qaXLZumZm1h61JQ5Jg4HZwOHAROBYSRMbih0OTMh/M4BvV6hrZmZtUOcVx1RgWUQsj4h1wHxgekOZ6cAPIrkRGCnp5SXrmplZGwypse0xwIrC8Erg9SXKjClZFwBJM0hXKwCPS7prM2K2ZBTwULuD6C90drsjsBa8nWabuY3uVrVCnYlDTcZFyTJl6qaREXOBudVCs65IWhoRU9odh1lXvJ22T52JYyUwrjA8FlhVsszQEnXNzKwN6rzHsQSYIGm8pKHAMcDChjILgePz01X7AY9GxOqSdc3MrA1qu+KIiPWSTgEWA4OBeRFxu6SZefocYBFwBLAMeBL4QFd164rVNuGuPxsIvJ22iSKa3jowMzNryp8cNzOzSpw4zMysEieOAUjSc5JuKfzt3u6YbMsnKSR9rTB8hqTP9VLboyX9XtLNkt7QG21afep8HNfq81RE7NPuIGyr8wzwLklfjoje/uDdwcCdEfH+Xm7XauArji2EpBMknV8YvkLSm/PrxyWdLekmSddImirp15KWS3pHLjNY0lclLclfOPmhPP7Nkq4otHu+pBPy67Mk3ZHLn5PHjZb0s9zOEkkH5PFvKlwh3Sxph75aNtZr1pOeZPpY4wRJu0m6Nm8L10raNY//fv4i0+vz9nZUk7r7AF8Bjsjbx3aSHi9MP0rS9wvtfVvSr3J7b5I0T9JfOsvkcodJukHSHyX9RNL2efw9kkbl11Mk/Tq/brp9SvpEYZ/4fB43TNKVkv4k6c+Sju6VpTuAOHEMTNsVNvIFJcoPA34dEa8DHgO+CBwKvBM4M5c5ifQ5mn2BfYEPShrfqkFJL831Xx0Re+c2Ab4BnJvbeTdwQR5/BvCRfKX0BuCp8m/X+pHZwHGSRjSMP5/0vXN7AxcD5xWmvRw4EHg7cFZjgxFxC/AZ4McRsU9EdLdtvAR4CymBXQ6cC7wa+CdJ++TE8CngkIiYDCwFTu+mzU22T0mHkb6AdSqwD/A6SW8EpgGrImJSRLwG+Hk3bW9x3FU1MFXtqlrHCxv3bcAzEfGspNuA3fP4w4C9C2eEI0g7zboWba4FngYukHQl0HlVcggwUXr+W2OG57O364CvS7oYuCwiVlaI3/qJiFgr6QfAqWyc/PcH3pVfX0S6guj0nxGxAbhD0k69EMblERF5+30gIm4DkHQ7aXseS/pW7evydjgUuKGbNjfZPnPiOAy4OZfZnrRP/BY4R9LZwBUR8dteeE8DihPHlmM9G19Bblt4/Wy88IGdDaS+aiJig6TObUDARyNicbFRSQc2azd/SHMqqW/6GOAU0lngIGD/JmeNZ+UEcwRwo6RDIuLOnr1Va7P/AP4IXNhFmeIHxJ4pvBaApH8H3gbQ4iSoWH/bhmmd7W1g47Y3kI5pzwG/iIhjm7Rb3E+ebzciNtk+c6xfjojvNDYi6XW57JclXR0RZzaW2ZK5q2rLcQ+wj6RBksaRLq+rWAx8WNKLACS9UtIw4F7SFcQ2uXvi4Dx9e2BERCwCTiNdygNcTUoi5HL75P97RMRtEXE2qetgrx6+T2uziFgDXErq3ux0PekEAuA44HfdtPF/c7d1DPR3AAABGklEQVRUqyvnByS9StIgUpdoFTcCB0jaE0DSiyW9Mk+7B3hdfv3uzgotts/FwImF+yNjJO0oaRfgyYj4IXAO8PwP0G0tfMWx5bgOuJvUFfVn0hlhFReQLvP/qHR93wEcGRErJF0K3Ar8Ny9ctu8A/JekbUlnZp03TE8FZku6lbR9/QaYCZwm6SDS2eAdwFU9eZPWb3yNwgkCab3Pk/QJ0rbzgc1sfxap+3MFaXvevmzFiOjID3D8SNI2efSngL8Cnwe+J+nfgN8Xqm2yfUbEM5JeBdyQu7weB94L7Al8VdIG4Fngwz1+lwOUv3LEzMwqcVeVmZlV4sRhZmaVOHGYmVklThxmZlaJE4eZmVXixGFmZpU4cZiZWSX/H5eJaoNEMyCNAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.title(\"Taux de mortalité en fonction de l'usage ou non du tabac\")\n",
"plt.ylabel(\"Taux de mortalité\")\n",
"plt.bar(res.index,res[\"Taux de mortalité\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"On observe que le taux de mortalité est plus important chez les non-fumeuses (0.363) que chez les fumeuses (0.306).\n",
"C'est un résultat surprenant : on aurait attendu l'inverse. \n",
"On va chercher à utiliser les valeurs selon l'âge. On trie donc les valeurs selon celui-ci."
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Smoker</th>\n",
" <th>Status</th>\n",
" <th>Age</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>654</th>\n",
" <td>Yes</td>\n",
" <td>Alive</td>\n",
" <td>18.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1132</th>\n",
" <td>Yes</td>\n",
" <td>Alive</td>\n",
" <td>18.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>832</th>\n",
" <td>Yes</td>\n",
" <td>Alive</td>\n",
" <td>18.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>220</th>\n",
" <td>Yes</td>\n",
" <td>Alive</td>\n",
" <td>18.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>18.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>922</th>\n",
" <td>Yes</td>\n",
" <td>Alive</td>\n",
" <td>18.1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>206</th>\n",
" <td>Yes</td>\n",
" <td>Alive</td>\n",
" <td>18.1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>449</th>\n",
" <td>Yes</td>\n",
" <td>Alive</td>\n",
" <td>18.1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>91</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>18.3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>168</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>18.3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1107</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>18.3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>47</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>18.5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>701</th>\n",
" <td>Yes</td>\n",
" <td>Alive</td>\n",
" <td>18.5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>282</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>18.5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>98</th>\n",
" <td>Yes</td>\n",
" <td>Alive</td>\n",
" <td>18.6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>685</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>18.6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>94</th>\n",
" <td>Yes</td>\n",
" <td>Alive</td>\n",
" <td>18.6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>774</th>\n",
" <td>Yes</td>\n",
" <td>Alive</td>\n",
" <td>18.7</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1138</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>18.7</td>\n",
" </tr>\n",
" <tr>\n",
" <th>788</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>18.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1075</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>18.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>79</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>18.9</td>\n",
" </tr>\n",
" <tr>\n",
" <th>539</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>18.9</td>\n",
" </tr>\n",
" <tr>\n",
" <th>195</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>19.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>688</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>19.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>951</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>19.1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1128</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>19.1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>615</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>19.2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>929</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>19.2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Yes</td>\n",
" <td>Alive</td>\n",
" <td>19.3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>468</th>\n",
" <td>Yes</td>\n",
" <td>Dead</td>\n",
" <td>86.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>150</th>\n",
" <td>No</td>\n",
" <td>Dead</td>\n",
" <td>86.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>483</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>86.9</td>\n",
" </tr>\n",
" <tr>\n",
" <th>183</th>\n",
" <td>No</td>\n",
" <td>Dead</td>\n",
" <td>87.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>512</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>87.4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>196</th>\n",
" <td>No</td>\n",
" <td>Dead</td>\n",
" <td>87.6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>883</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>87.6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>823</th>\n",
" <td>No</td>\n",
" <td>Dead</td>\n",
" <td>87.6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>278</th>\n",
" <td>No</td>\n",
" <td>Dead</td>\n",
" <td>87.7</td>\n",
" </tr>\n",
" <tr>\n",
" <th>129</th>\n",
" <td>Yes</td>\n",
" <td>Dead</td>\n",
" <td>87.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>536</th>\n",
" <td>Yes</td>\n",
" <td>Dead</td>\n",
" <td>87.9</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1222</th>\n",
" <td>Yes</td>\n",
" <td>Dead</td>\n",
" <td>87.9</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1225</th>\n",
" <td>No</td>\n",
" <td>Dead</td>\n",
" <td>87.9</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1152</th>\n",
" <td>No</td>\n",
" <td>Dead</td>\n",
" <td>88.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>545</th>\n",
" <td>No</td>\n",
" <td>Dead</td>\n",
" <td>88.1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>657</th>\n",
" <td>Yes</td>\n",
" <td>Dead</td>\n",
" <td>88.3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>932</th>\n",
" <td>No</td>\n",
" <td>Dead</td>\n",
" <td>88.4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>131</th>\n",
" <td>No</td>\n",
" <td>Dead</td>\n",
" <td>88.4</td>\n",
" </tr>\n",
" <tr>\n",
" <th>507</th>\n",
" <td>No</td>\n",
" <td>Dead</td>\n",
" <td>88.5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1080</th>\n",
" <td>Yes</td>\n",
" <td>Dead</td>\n",
" <td>88.6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1312</th>\n",
" <td>No</td>\n",
" <td>Dead</td>\n",
" <td>88.6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>525</th>\n",
" <td>Yes</td>\n",
" <td>Dead</td>\n",
" <td>88.7</td>\n",
" </tr>\n",
" <tr>\n",
" <th>393</th>\n",
" <td>No</td>\n",
" <td>Dead</td>\n",
" <td>88.8</td>\n",
" </tr>\n",
" <tr>\n",
" <th>201</th>\n",
" <td>Yes</td>\n",
" <td>Dead</td>\n",
" <td>89.2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1246</th>\n",
" <td>No</td>\n",
" <td>Dead</td>\n",
" <td>89.2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>114</th>\n",
" <td>No</td>\n",
" <td>Dead</td>\n",
" <td>89.3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1126</th>\n",
" <td>No</td>\n",
" <td>Dead</td>\n",
" <td>89.5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>163</th>\n",
" <td>No</td>\n",
" <td>Dead</td>\n",
" <td>89.7</td>\n",
" </tr>\n",
" <tr>\n",
" <th>369</th>\n",
" <td>No</td>\n",
" <td>Alive</td>\n",
" <td>89.7</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1108</th>\n",
" <td>No</td>\n",
" <td>Dead</td>\n",
" <td>89.9</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>1314 rows × 3 columns</p>\n",
"</div>"
],
"text/plain": [
" Smoker Status Age\n",
"654 Yes Alive 18.0\n",
"1132 Yes Alive 18.0\n",
"832 Yes Alive 18.0\n",
"220 Yes Alive 18.0\n",
"24 No Alive 18.0\n",
"922 Yes Alive 18.1\n",
"206 Yes Alive 18.1\n",
"449 Yes Alive 18.1\n",
"91 No Alive 18.3\n",
"168 No Alive 18.3\n",
"1107 No Alive 18.3\n",
"47 No Alive 18.5\n",
"701 Yes Alive 18.5\n",
"282 No Alive 18.5\n",
"98 Yes Alive 18.6\n",
"685 No Alive 18.6\n",
"94 Yes Alive 18.6\n",
"774 Yes Alive 18.7\n",
"1138 No Alive 18.7\n",
"788 No Alive 18.8\n",
"1075 No Alive 18.8\n",
"79 No Alive 18.9\n",
"539 No Alive 18.9\n",
"195 No Alive 19.0\n",
"688 No Alive 19.0\n",
"951 No Alive 19.1\n",
"1128 No Alive 19.1\n",
"615 No Alive 19.2\n",
"929 No Alive 19.2\n",
"1 Yes Alive 19.3\n",
"... ... ... ...\n",
"468 Yes Dead 86.8\n",
"150 No Dead 86.8\n",
"483 No Alive 86.9\n",
"183 No Dead 87.0\n",
"512 No Alive 87.4\n",
"196 No Dead 87.6\n",
"883 No Alive 87.6\n",
"823 No Dead 87.6\n",
"278 No Dead 87.7\n",
"129 Yes Dead 87.8\n",
"536 Yes Dead 87.9\n",
"1222 Yes Dead 87.9\n",
"1225 No Dead 87.9\n",
"1152 No Dead 88.0\n",
"545 No Dead 88.1\n",
"657 Yes Dead 88.3\n",
"932 No Dead 88.4\n",
"131 No Dead 88.4\n",
"507 No Dead 88.5\n",
"1080 Yes Dead 88.6\n",
"1312 No Dead 88.6\n",
"525 Yes Dead 88.7\n",
"393 No Dead 88.8\n",
"201 Yes Dead 89.2\n",
"1246 No Dead 89.2\n",
"114 No Dead 89.3\n",
"1126 No Dead 89.5\n",
"163 No Dead 89.7\n",
"369 No Alive 89.7\n",
"1108 No Dead 89.9\n",
"\n",
"[1314 rows x 3 columns]"
]
},
"execution_count": 50,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data_sorted = data.sort_values(by=\"Age\")\n",
"data_sorted"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"On regroupe les données dans quatre classes :\n",
" - la première pour les individus de 18 ans compris à 34 ans non-compris.\n",
" - la deuxième pour ceux de 34 ans compris à 55 ans non-compris.\n",
" - la troisième pour les individus 55 ans compris à 65 ans non-compris.\n",
" - la quatrième pour les individus de plus de 65 ans."
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [],
"source": [
"classe1 = data_sorted[(data_sorted.Age>=18) & (data_sorted.Age<34)]\n",
"classe2 = data_sorted[(data_sorted.Age>=34) & (data_sorted.Age<55)]\n",
"classe3 = data_sorted[(data_sorted.Age>=55) & (data_sorted.Age<65)]\n",
"classe4 = data_sorted[(data_sorted.Age>=65)]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"On réalise sur chaque classe la même chose qu'on a effectué sur la série entière. On crée donc une fonction pour pouvoir la réutiliser sur les quatre classes."
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<BarContainer object of 8 artists>"
]
},
"execution_count": 52,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFjlJREFUeJzt3X2QXXd93/H3JytEgo0hRQsESUYqyDFKCw5sBLSGuM0YZJwgu/ZMZNIyEBiNKAppMrQobfEQSKamDA3TWkSjEuM0baqGZ4GFzSSpoWnKVHLiJ/mBKMKxhcJY2B2ICcHI/vaPczYcX9/Vnl3d9drH79fMnT0Pv3vOd79393PPPfcpVYUkaVh+YLkLkCRNnuEuSQNkuEvSABnukjRAhrskDZDhLkkDZLhL0gAZ7pI0QIa7JA3QiuXa8apVq2rdunXLtXtJekK64YYbvlFV0/ONW7ZwX7duHQcPHlyu3UvSE1KSv+gzztMykjRAhrskDZDhLkkDZLhL0gAZ7pI0QIa7JA2Q4S5JA2S4S9IAGe6SNEDL9g5VScO3buc1y7bvu664cNn2/XjgkbskDZDhLkkDZLhL0gB5zl3Sk9LQnw/wyF2SBshwl6QBMtwlaYB6hXuSzUnuTHI4yc4x65+R5LNJbkpyKMmbJ1+qJKmvecM9yRSwC7gA2AhclmTjyLC3A7dV1UuA84APJlk54VolST31OXLfBByuqiNV9SCwF9gyMqaApycJcDpwP3BiopVKknrrE+6rgXs680fbZV1XAi8CjgG3AL9YVQ+PbijJtiQHkxw8fvz4IkuWJM2nT7hnzLIamX8tcCPwPOAc4MokZzzqSlV7qmqmqmamp6cXXKwkqZ8+4X4UWNuZX0NzhN71ZuCT1TgMfBU4ezIlSpIWqk+4HwA2JFnfPkm6Fdg3MuZu4KcAkjwH+FHgyCQLlST1N+/HD1TViSQ7gOuAKeCqqjqUZHu7fjfwPuDqJLfQnMZ5V1V9YwnrliSdRK/Plqmq/cD+kWW7O9PHgNdMtjRJ0mL5DlVJGiDDXZIGyHCXpAEy3CVpgAx3SRogw12SBshwl6QBMtwlaYAMd0kaIMNdkgbIcJekATLcJWmADHdJGiDDXZIGyHCXpAHqFe5JNie5M8nhJDvHrP+XSW5sL7cmeSjJ35l8uZKkPuYN9yRTwC7gAmAjcFmSjd0xVfWBqjqnqs4BfgX4YlXdvxQFS5Lm1+fIfRNwuKqOVNWDwF5gy0nGXwb890kUJ0lanD7hvhq4pzN/tF32KEmeBmwGPnHqpUmSFqtPuGfMsppj7M8A/3uuUzJJtiU5mOTg8ePH+9YoSVqgPuF+FFjbmV8DHJtj7FZOckqmqvZU1UxVzUxPT/evUpK0IH3C/QCwIcn6JCtpAnzf6KAkzwB+EvjMZEuUJC3UivkGVNWJJDuA64Ap4KqqOpRke7t+dzv0YuALVfXtJatWktTLvOEOUFX7gf0jy3aPzF8NXD2pwiRJi+c7VCVpgAx3SRogw12SBshwl6QBMtwlaYAMd0kaIMNdkgbIcJekATLcJWmADHdJGiDDXZIGyHCXpAEy3CVpgAx3SRogw12SBshwl6QB6hXuSTYnuTPJ4SQ75xhzXpIbkxxK8sXJlilJWoh5v4kpyRSwCzif5suyDyTZV1W3dcY8E/gwsLmq7k7y7KUqWJI0vz5H7puAw1V1pKoeBPYCW0bGvAH4ZFXdDVBV9062TEnSQvQJ99XAPZ35o+2yrrOAH05yfZIbkrxx3IaSbEtyMMnB48ePL65iSdK8+oR7xiyrkfkVwMuAC4HXAu9OctajrlS1p6pmqmpmenp6wcVKkvqZ95w7zZH62s78GuDYmDHfqKpvA99O8iXgJcBXJlKlJGlB+hy5HwA2JFmfZCWwFdg3MuYzwKuSrEjyNODlwO2TLVWS1Ne8R+5VdSLJDuA6YAq4qqoOJdnert9dVbcnuRa4GXgY+EhV3bqUhUuS5tbntAxVtR/YP7Js98j8B4APTK40SdJi+Q5VSRogw12SBshwl6QBMtwlaYAMd0kaIMNdkgbIcJekATLcJWmADHdJGiDDXZIGyHCXpAEy3CVpgAx3SRogw12SBshwl6QB6hXuSTYnuTPJ4SQ7x6w/L8k3k9zYXi6ffKmSpL7m/bKOJFPALuB8mu9KPZBkX1XdNjL0f1XVTy9BjZKkBepz5L4JOFxVR6rqQWAvsGVpy5IknYo+4b4auKczf7RdNuqVSW5K8vkkPzaR6iRJi9LnO1QzZlmNzP8J8PyqeiDJ64BPAxsetaFkG7AN4Mwzz1xgqZKkvvocuR8F1nbm1wDHugOq6ltV9UA7vR94SpJVoxuqqj1VNVNVM9PT06dQtiTpZPqE+wFgQ5L1SVYCW4F93QFJnpsk7fSmdrv3TbpYSVI/856WqaoTSXYA1wFTwFVVdSjJ9nb9buBS4G1JTgDfAbZW1eipG0nSY6TPOffZUy37R5bt7kxfCVw52dIkSYvlO1QlaYAMd0kaIMNdkgbIcJekATLcJWmADHdJGiDDXZIGyHCXpAHq9SYm6clu3c5rlm3fd11x4bLtW09cHrlL0gAZ7pI0QIa7JA2Q4S5JA2S4S9IAGe6SNEC9wj3J5iR3JjmcZOdJxv1EkoeSXDq5EiVJCzVvuCeZAnYBFwAbgcuSbJxj3PtpvrFJkrSM+hy5bwIOV9WRqnoQ2AtsGTPuF4BPAPdOsD5J0iL0CffVwD2d+aPtsr+VZDVwMbAbSdKy6xPuGbNs9MuvPwS8q6oeOumGkm1JDiY5ePz48b41SpIWqM9nyxwF1nbm1wDHRsbMAHuTAKwCXpfkRFV9ujuoqvYAewBmZmZG7yAkSRPSJ9wPABuSrAe+BmwF3tAdUFXrZ6eTXA18bjTYJUmPnXnDvapOJNlB8yqYKeCqqjqUZHu73vPskvQ40+sjf6tqP7B/ZNnYUK+qN516WZKkU+E7VCVpgAx3SRogw12SBshwl6QB8jtUpSc4v99V43jkLkkDZLhL0gAZ7pI0QIa7JA2Q4S5JA2S4S9IAGe6SNECGuyQNkOEuSQNkuEvSABnukjRAvcI9yeYkdyY5nGTnmPVbktyc5Mb2C7DPnXypkqS+5v3gsCRTwC7gfJovyz6QZF9V3dYZ9gfAvqqqJC8Gfg84eykKliTNr8+R+ybgcFUdqaoHgb3Alu6AqnqgqqqdPQ0oJEnLpk+4rwbu6cwfbZc9QpKLk9wBXAP8/GTKkyQtRp9wz5hljzoyr6pPVdXZwEXA+8ZuKNnWnpM/ePz48YVVKknqrU+4HwXWdubXAMfmGlxVXwJekGTVmHV7qmqmqmamp6cXXKwkqZ8+4X4A2JBkfZKVwFZgX3dAkhcmSTv9UmAlcN+ki5Uk9TPvq2Wq6kSSHcB1wBRwVVUdSrK9Xb8buAR4Y5LvAd8BfrbzBKsk6THW6ztUq2o/sH9k2e7O9PuB90+2NEnSYvkOVUkaIMNdkgbIcJekATLcJWmADHdJGiDDXZIGyHCXpAEy3CVpgAx3SRogw12SBshwl6QB6vXZMhqGdTuvWdb933XFhcu6f+nJxCN3SRogw12SBshwl6QB6hXuSTYnuTPJ4SQ7x6z/uSQ3t5c/TvKSyZcqSepr3nBPMgXsAi4ANgKXJdk4MuyrwE9W1Ytpvhx7z6QLlST11+fIfRNwuKqOVNWDwF5gS3dAVf1xVf2/dvbLNF+iLUlaJn3CfTVwT2f+aLtsLm8BPn8qRUmSTk2f17lnzLKxX36d5B/RhPu5c6zfBmwDOPPMM3uWKElaqD5H7keBtZ35NcCx0UFJXgx8BNhSVfeN21BV7amqmaqamZ6eXky9kqQe+oT7AWBDkvVJVgJbgX3dAUnOBD4J/LOq+srky5QkLcS8p2Wq6kSSHcB1wBRwVVUdSrK9Xb8buBx4FvDhJAAnqmpm6cqWJJ1Mr8+Wqar9wP6RZbs7028F3jrZ0iRJi+U7VCVpgAx3SRogw12SBshwl6QBMtwlaYAMd0kaIMNdkgbIcJekATLcJWmADHdJGqBeHz8gLbV1O69Z1v3fdcWFy7p/adI8cpekATLcJWmADHdJGiDDXZIGyHCXpAHqFe5JNie5M8nhJDvHrD87yf9J8t0k75x8mZKkhZj3pZBJpoBdwPk0X5Z9IMm+qrqtM+x+4B3ARUtSpSRpQfocuW8CDlfVkap6ENgLbOkOqKp7q+oA8L0lqFGStEB9wn01cE9n/mi7bMGSbEtyMMnB48ePL2YTkqQe+oR7xiyrxeysqvZU1UxVzUxPTy9mE5KkHvqE+1FgbWd+DXBsacqRJE1Cn3A/AGxIsj7JSmArsG9py5IknYp5Xy1TVSeS7ACuA6aAq6rqUJLt7frdSZ4LHATOAB5O8i+AjVX1rSWsXZI0h16fCllV+4H9I8t2d6a/TnO6RpL0OOA7VCVpgAx3SRogw12SBshwl6QBMtwlaYAMd0kaIMNdkgao1+vcH2/W7bxmWfd/1xUXzrnu8VybpCcPj9wlaYAMd0kaIMNdkgbIcJekATLcJWmADHdJGiDDXZIGqFe4J9mc5M4kh5PsHLM+Sf5ju/7mJC+dfKmSpL7mDfckU8Au4AJgI3BZko0jwy4ANrSXbcBvTrhOSdIC9Dly3wQcrqojVfUgsBfYMjJmC/BfqvFl4JlJfmTCtUqSeuoT7quBezrzR9tlCx0jSXqM9PlsmYxZVosYQ5JtNKdtAB5IcmeP/S+FVcA3FnvlvH+ClTyatS2OtS2OtS3Octb2/D6D+oT7UWBtZ34NcGwRY6iqPcCePoUtpSQHq2pmuesYx9oWx9oWx9oW5/Fc26w+p2UOABuSrE+yEtgK7BsZsw94Y/uqmVcA36yqv5xwrZKknuY9cq+qE0l2ANcBU8BVVXUoyfZ2/W5gP/A64DDw18Cbl65kSdJ8en2ee1Xtpwnw7rLdnekC3j7Z0pbUsp8aOglrWxxrWxxrW5zHc20ApMllSdKQ+PEDkjRAT8hwT/JQkhs7l3VJnpXkfyZ5IMmVI+MvS3JL+9EI1yZZNcd2r01yU5JDSXa3787trr80SSWZ6SyrJB/szL8zyXva6fck+Vqnziva5Tvaj2qobi1JnpHks50axj53kWRL+7vcmORgknNH1k8l+dMkn+vRt02d+ZuSXDxmf/uS3Dqulnb99e3HU8xu59nt8jclOd5Z/tZT7NtvtTXenOTjSU4fqeMn2t/x0jnqPC/JNzvbvbyz7q72b+TGJAd79G1dku90lu3ujB/bjzH1rEyyJ8lXktyR5JIl6tvVSb7aWX7OfP2Yo3c3tn+XX+zTtzHbeFQfTzb+VPrUY5sL7mPP7Z5ynyamqp5wF+CBMctOA84FtgNXdpavAO4FVrXz/x54zxzbPaP9GeATwNbOuqcDXwK+DMx0lv8N8NXO9t85u33gPcA7x+znx4F1wF2z12uX/2vg/e30NHA/sHLM9U/n+6fUXgzcMbL+l4HfBT7Xo29PA1a00z/S9mpFZ/0/abd160luj+u7Peksf1P3thhZt5i+ndGZ/g/Azs78FPCHNM8NXTrHPs8b7Uln3SNuix59WzdXT+bqx5hxvwr8Wjv9A51eTLpvV4/rycn6MTLumcBtwJnt/LP79K1PH0fWvwd40yT61KOWBfdx9O9lqfo0qcsT8sh9nKr6dlX9Ec2N1pX2clqSAGcw5jX47Ta+1U6uAFbyyDdivY/mjmF0+ydonlz5pQXU+qdVdde4VcDT2zpPpwn3E2Ou/0C1fzE0d2p/W2eSNcCFwEd61vLXVTW7jx8c2dbpNHcUv9ZnWwu0mL59q60rwA/xyNvnF2jukO+dYI1L7eeBfwdQVQ9XVZ83xSy4bxPwBuCTVXU3QFU91j1eTJ/msxR9XO4+PcITNdx/qPOQ6VMnG1hV3wPeBtxCE+obgd+aa3yS62gC4q+Aj7fLfhxYW1Wfm+Nqu4CfS/KMMet+qVPra+f5va4EXtTWeQvwi1X18Bx1XpzkDuAamj/+WR8C/hUw7npj+5bk5UkOtfvc3gn79wEfpHl563w+2m733W34zrqkcxpl7ch1Fty3JB8Fvg6cDfyndtlq4GJg95jtjHplmlM7n0/yY53lBXwhyQ1p3kndNdff2/o0p7++mORVI9eZqx+zv8cz28n3JfmTJB9L8pzOkIn2Dfj1dnu/keSpPfrRdRbww2lON92Q5I2ddSfr26je/7ezTrFP85nU/+2sSfVpMh7LhwmTunCSh3eMPFQDngL8AfACmiP4K4F/O8/2f5DmKPB8mjvA64F17brreeRpmQfan+8F3s0CHt7x6NMylwK/0db5QpqHjWfMU+urgd9vp38a+HA7fR49TsuMrH8R8H/b3/8c4LPt8nWc/LTM6vbn04EvAG9s558FPLWd3g784YT6NgV8GHhzO/8x4BXt9NXMfVrmDOD0dvp1wJ911j2v/fls4Cbg1SfrG/BU4Fnt9MtoPlvpjJP1Y+T6q2j+4S9p538Z+J2l6BvN6ba0Nf82cPl8/Ri5/pU0pyNPa+v+M+Cs+frW5/8W+PvAje3l68DdnflnLbZP810W2cddndoe7Ez/m0n2aVKXJ+qR+0KcA1BVf15Nd38P+AdpnnScvWd+b/cKVfU3NO+63ULzD/r3gOuT3AW8AtiXzpOqrQ8Bb6G5YRfrzTQP66qqDtOE+9lJ3t6p9XkjtX4JeEGaJ2b/IfD6ts69wD9O8l/77ryqbge+TfP7vhJ4WbutPwLOao9IHtW3qvpa+/OvaM7Pb2rn76uq77ab/880IThqwX2rqoeA/wFc0i6aAfa2tV4KfDjJRaN9q6pvVdUD7Tb2A09p+0ZVHWt/3gt8avZ3OEkN362q+9rpG4A/pzlyG9uPMX27j+YR0ewR7MeAl7bXm2jfquov27+p7wIf5fu3z9h+jPl7OwpcW82pz2/QPPf0ksX0bUxtt1TVOVV1Ds0jr8tn59v+nmqf5rOQPr69U+uxTp2/3g5Zsj4txpMh3L8GbEwy3c6fD9xeVQ91bpzLk5ye9mOKk6ygOZK5o6q+WVWrqmpdVa2juWd+fVU94hnvqrqf5o7jLadQ693AT7U1PAf4UeBIVe3q1HosyQtnH+qn+WKUlcB9VfUrVbWmrXMrzZHMPz3ZDtN8rMSKdvr57T7vqqrfrKrntds6F/hKVZ03pm8rZgMyyVNoHj3c2s53P/b59cDto/vv27c0Xjg7DfwMcEe7jfWd2+fjwD+vqk+P6dtzO33bRPP3f1+S05I8vV1+GvCa2d/hJPVMp301VZK/S/NdBkfm6sdo39oDjc/SPMKC5na/bdJ9626v/d0v4vu3z9h+jPYN+AzwqvZ3exrwcuD2xfRtoU61Tz22P4n/21nL1qdxer1D9YmiPXI7A1iZ5CLgNVV1W5JfBb6U5HvAX9Ccuhl1Gs0R+VP5/isv+pzD7fogsKNHne+gOS/+XODmJPur6q0057ivTnILzcPod9X4J48uofksn+8B3wF+tv0nWIxzgZ3tth6mCcaFPGH1VOC6NsimgN+nOYoCeEeS19M8eXU/4/sO/foW4LeTnNFO30TzXMpCXAq8LckJmr5trapq70g/1ebcCuB3q+raebb1auC97bYeonmu4v72n3eufox6F/A7ST4EHOf7H9sxyb4B/Lf24CY0pxG2t8vH9mP0ylV1e5JrgZtp/kY+UlW3tndqC+3bYpxqn+bTt48n9Tjo0yP4DlVJGqAnw2kZSXrSMdwlaYAMd0kaIMNdkgbIcJekATLcJWmADHdJGiDDXZIG6P8D7QgcSTBbKtkAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"def regroupement(data):\n",
" resultat = data.groupby([\"Smoker\",\"Status\"])[\"Age\"].nunique()\n",
" non_fum_vivante = resultat[0]\n",
" non_fum_morte = resultat[1]\n",
" fum_vivante = resultat[2]\n",
" fum_morte = resultat[3]\n",
"\n",
" données=[[fum_morte,fum_vivante,fum_morte+fum_vivante,round(fum_morte/(fum_morte+fum_vivante),3)],[non_fum_morte,non_fum_vivante,non_fum_morte+non_fum_vivante,round(non_fum_morte/(non_fum_morte+non_fum_vivante),3)]]\n",
" sortie = pd.DataFrame(données, index = [\"Fumeuses\", \"Non-fumeuses\"] , columns = [\"Décédées\", \"Vivantes\",\"Total\",\"Taux de mortalité\"])\n",
" return sortie\n",
"\n",
"plt.bar([\"F18-34\",\"NF18-34\",\"F34-55\",\"NF34-55\",\"F55-65\",\"NF55-65\",\"F+65\",\"NF+65\"],concatenation[\"Taux de mortalité\"])\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"On appelle la fonction avec chaque classe."
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {},
"outputs": [],
"source": [
"d1=regroupement(classe1)\n",
"d2=regroupement(classe2)\n",
"d3=regroupement(classe3)\n",
"d4=regroupement(classe4)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"On concatène toutes les classes étant donné qu'elles ont les mêmes colums."
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {},
"outputs": [],
"source": [
"concatenation=pd.concat([d1,d2,d3,d4])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"On affiche toutes les données dans un graphe."
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<BarContainer object of 8 artists>"
]
},
"execution_count": 55,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFjlJREFUeJzt3X2QXXd93/H3JytEgo0hRQsESUYqyDFKCw5sBLSGuM0YZJwgu/ZMZNIyEBiNKAppMrQobfEQSKamDA3TWkSjEuM0baqGZ4GFzSSpoWnKVHLiJ/mBKMKxhcJY2B2ICcHI/vaPczYcX9/Vnl3d9drH79fMnT0Pv3vOd79393PPPfcpVYUkaVh+YLkLkCRNnuEuSQNkuEvSABnukjRAhrskDZDhLkkDZLhL0gAZ7pI0QIa7JA3QiuXa8apVq2rdunXLtXtJekK64YYbvlFV0/ONW7ZwX7duHQcPHlyu3UvSE1KSv+gzztMykjRAhrskDZDhLkkDZLhL0gAZ7pI0QIa7JA2Q4S5JA2S4S9IAGe6SNEDL9g5VScO3buc1y7bvu664cNn2/XjgkbskDZDhLkkDZLhL0gB5zl3Sk9LQnw/wyF2SBshwl6QBMtwlaYB6hXuSzUnuTHI4yc4x65+R5LNJbkpyKMmbJ1+qJKmvecM9yRSwC7gA2AhclmTjyLC3A7dV1UuA84APJlk54VolST31OXLfBByuqiNV9SCwF9gyMqaApycJcDpwP3BiopVKknrrE+6rgXs680fbZV1XAi8CjgG3AL9YVQ+PbijJtiQHkxw8fvz4IkuWJM2nT7hnzLIamX8tcCPwPOAc4MokZzzqSlV7qmqmqmamp6cXXKwkqZ8+4X4UWNuZX0NzhN71ZuCT1TgMfBU4ezIlSpIWqk+4HwA2JFnfPkm6Fdg3MuZu4KcAkjwH+FHgyCQLlST1N+/HD1TViSQ7gOuAKeCqqjqUZHu7fjfwPuDqJLfQnMZ5V1V9YwnrliSdRK/Plqmq/cD+kWW7O9PHgNdMtjRJ0mL5DlVJGiDDXZIGyHCXpAEy3CVpgAx3SRogw12SBshwl6QBMtwlaYAMd0kaIMNdkgbIcJekATLcJWmADHdJGiDDXZIGyHCXpAHqFe5JNie5M8nhJDvHrP+XSW5sL7cmeSjJ35l8uZKkPuYN9yRTwC7gAmAjcFmSjd0xVfWBqjqnqs4BfgX4YlXdvxQFS5Lm1+fIfRNwuKqOVNWDwF5gy0nGXwb890kUJ0lanD7hvhq4pzN/tF32KEmeBmwGPnHqpUmSFqtPuGfMsppj7M8A/3uuUzJJtiU5mOTg8ePH+9YoSVqgPuF+FFjbmV8DHJtj7FZOckqmqvZU1UxVzUxPT/evUpK0IH3C/QCwIcn6JCtpAnzf6KAkzwB+EvjMZEuUJC3UivkGVNWJJDuA64Ap4KqqOpRke7t+dzv0YuALVfXtJatWktTLvOEOUFX7gf0jy3aPzF8NXD2pwiRJi+c7VCVpgAx3SRogw12SBshwl6QBMtwlaYAMd0kaIMNdkgbIcJekATLcJWmADHdJGiDDXZIGyHCXpAEy3CVpgAx3SRogw12SBshwl6QB6hXuSTYnuTPJ4SQ75xhzXpIbkxxK8sXJlilJWoh5v4kpyRSwCzif5suyDyTZV1W3dcY8E/gwsLmq7k7y7KUqWJI0vz5H7puAw1V1pKoeBPYCW0bGvAH4ZFXdDVBV9062TEnSQvQJ99XAPZ35o+2yrrOAH05yfZIbkrxx3IaSbEtyMMnB48ePL65iSdK8+oR7xiyrkfkVwMuAC4HXAu9OctajrlS1p6pmqmpmenp6wcVKkvqZ95w7zZH62s78GuDYmDHfqKpvA99O8iXgJcBXJlKlJGlB+hy5HwA2JFmfZCWwFdg3MuYzwKuSrEjyNODlwO2TLVWS1Ne8R+5VdSLJDuA6YAq4qqoOJdnert9dVbcnuRa4GXgY+EhV3bqUhUuS5tbntAxVtR/YP7Js98j8B4APTK40SdJi+Q5VSRogw12SBshwl6QBMtwlaYAMd0kaIMNdkgbIcJekATLcJWmADHdJGiDDXZIGyHCXpAEy3CVpgAx3SRogw12SBshwl6QB6hXuSTYnuTPJ4SQ7x6w/L8k3k9zYXi6ffKmSpL7m/bKOJFPALuB8mu9KPZBkX1XdNjL0f1XVTy9BjZKkBepz5L4JOFxVR6rqQWAvsGVpy5IknYo+4b4auKczf7RdNuqVSW5K8vkkPzaR6iRJi9LnO1QzZlmNzP8J8PyqeiDJ64BPAxsetaFkG7AN4Mwzz1xgqZKkvvocuR8F1nbm1wDHugOq6ltV9UA7vR94SpJVoxuqqj1VNVNVM9PT06dQtiTpZPqE+wFgQ5L1SVYCW4F93QFJnpsk7fSmdrv3TbpYSVI/856WqaoTSXYA1wFTwFVVdSjJ9nb9buBS4G1JTgDfAbZW1eipG0nSY6TPOffZUy37R5bt7kxfCVw52dIkSYvlO1QlaYAMd0kaIMNdkgbIcJekATLcJWmADHdJGiDDXZIGyHCXpAHq9SYm6clu3c5rlm3fd11x4bLtW09cHrlL0gAZ7pI0QIa7JA2Q4S5JA2S4S9IAGe6SNEC9wj3J5iR3JjmcZOdJxv1EkoeSXDq5EiVJCzVvuCeZAnYBFwAbgcuSbJxj3PtpvrFJkrSM+hy5bwIOV9WRqnoQ2AtsGTPuF4BPAPdOsD5J0iL0CffVwD2d+aPtsr+VZDVwMbAbSdKy6xPuGbNs9MuvPwS8q6oeOumGkm1JDiY5ePz48b41SpIWqM9nyxwF1nbm1wDHRsbMAHuTAKwCXpfkRFV9ujuoqvYAewBmZmZG7yAkSRPSJ9wPABuSrAe+BmwF3tAdUFXrZ6eTXA18bjTYJUmPnXnDvapOJNlB8yqYKeCqqjqUZHu73vPskvQ40+sjf6tqP7B/ZNnYUK+qN516WZKkU+E7VCVpgAx3SRogw12SBshwl6QB8jtUpSc4v99V43jkLkkDZLhL0gAZ7pI0QIa7JA2Q4S5JA2S4S9IAGe6SNECGuyQNkOEuSQNkuEvSABnukjRAvcI9yeYkdyY5nGTnmPVbktyc5Mb2C7DPnXypkqS+5v3gsCRTwC7gfJovyz6QZF9V3dYZ9gfAvqqqJC8Gfg84eykKliTNr8+R+ybgcFUdqaoHgb3Alu6AqnqgqqqdPQ0oJEnLpk+4rwbu6cwfbZc9QpKLk9wBXAP8/GTKkyQtRp9wz5hljzoyr6pPVdXZwEXA+8ZuKNnWnpM/ePz48YVVKknqrU+4HwXWdubXAMfmGlxVXwJekGTVmHV7qmqmqmamp6cXXKwkqZ8+4X4A2JBkfZKVwFZgX3dAkhcmSTv9UmAlcN+ki5Uk9TPvq2Wq6kSSHcB1wBRwVVUdSrK9Xb8buAR4Y5LvAd8BfrbzBKsk6THW6ztUq2o/sH9k2e7O9PuB90+2NEnSYvkOVUkaIMNdkgbIcJekATLcJWmADHdJGiDDXZIGyHCXpAEy3CVpgAx3SRogw12SBshwl6QB6vXZMhqGdTuvWdb933XFhcu6f+nJxCN3SRogw12SBshwl6QB6hXuSTYnuTPJ4SQ7x6z/uSQ3t5c/TvKSyZcqSepr3nBPMgXsAi4ANgKXJdk4MuyrwE9W1Ytpvhx7z6QLlST11+fIfRNwuKqOVNWDwF5gS3dAVf1xVf2/dvbLNF+iLUlaJn3CfTVwT2f+aLtsLm8BPn8qRUmSTk2f17lnzLKxX36d5B/RhPu5c6zfBmwDOPPMM3uWKElaqD5H7keBtZ35NcCx0UFJXgx8BNhSVfeN21BV7amqmaqamZ6eXky9kqQe+oT7AWBDkvVJVgJbgX3dAUnOBD4J/LOq+srky5QkLcS8p2Wq6kSSHcB1wBRwVVUdSrK9Xb8buBx4FvDhJAAnqmpm6cqWJJ1Mr8+Wqar9wP6RZbs7028F3jrZ0iRJi+U7VCVpgAx3SRogw12SBshwl6QBMtwlaYAMd0kaIMNdkgbIcJekATLcJWmADHdJGqBeHz8gLbV1O69Z1v3fdcWFy7p/adI8cpekATLcJWmADHdJGiDDXZIGyHCXpAHqFe5JNie5M8nhJDvHrD87yf9J8t0k75x8mZKkhZj3pZBJpoBdwPk0X5Z9IMm+qrqtM+x+4B3ARUtSpSRpQfocuW8CDlfVkap6ENgLbOkOqKp7q+oA8L0lqFGStEB9wn01cE9n/mi7bMGSbEtyMMnB48ePL2YTkqQe+oR7xiyrxeysqvZU1UxVzUxPTy9mE5KkHvqE+1FgbWd+DXBsacqRJE1Cn3A/AGxIsj7JSmArsG9py5IknYp5Xy1TVSeS7ACuA6aAq6rqUJLt7frdSZ4LHATOAB5O8i+AjVX1rSWsXZI0h16fCllV+4H9I8t2d6a/TnO6RpL0OOA7VCVpgAx3SRogw12SBshwl6QBMtwlaYAMd0kaIMNdkgao1+vcH2/W7bxmWfd/1xUXzrnu8VybpCcPj9wlaYAMd0kaIMNdkgbIcJekATLcJWmADHdJGiDDXZIGqFe4J9mc5M4kh5PsHLM+Sf5ju/7mJC+dfKmSpL7mDfckU8Au4AJgI3BZko0jwy4ANrSXbcBvTrhOSdIC9Dly3wQcrqojVfUgsBfYMjJmC/BfqvFl4JlJfmTCtUqSeuoT7quBezrzR9tlCx0jSXqM9PlsmYxZVosYQ5JtNKdtAB5IcmeP/S+FVcA3FnvlvH+ClTyatS2OtS2OtS3Octb2/D6D+oT7UWBtZ34NcGwRY6iqPcCePoUtpSQHq2pmuesYx9oWx9oWx9oW5/Fc26w+p2UOABuSrE+yEtgK7BsZsw94Y/uqmVcA36yqv5xwrZKknuY9cq+qE0l2ANcBU8BVVXUoyfZ2/W5gP/A64DDw18Cbl65kSdJ8en2ee1Xtpwnw7rLdnekC3j7Z0pbUsp8aOglrWxxrWxxrW5zHc20ApMllSdKQ+PEDkjRAT8hwT/JQkhs7l3VJnpXkfyZ5IMmVI+MvS3JL+9EI1yZZNcd2r01yU5JDSXa3787trr80SSWZ6SyrJB/szL8zyXva6fck+Vqnziva5Tvaj2qobi1JnpHks50axj53kWRL+7vcmORgknNH1k8l+dMkn+vRt02d+ZuSXDxmf/uS3Dqulnb99e3HU8xu59nt8jclOd5Z/tZT7NtvtTXenOTjSU4fqeMn2t/x0jnqPC/JNzvbvbyz7q72b+TGJAd79G1dku90lu3ujB/bjzH1rEyyJ8lXktyR5JIl6tvVSb7aWX7OfP2Yo3c3tn+XX+zTtzHbeFQfTzb+VPrUY5sL7mPP7Z5ynyamqp5wF+CBMctOA84FtgNXdpavAO4FVrXz/x54zxzbPaP9GeATwNbOuqcDXwK+DMx0lv8N8NXO9t85u33gPcA7x+znx4F1wF2z12uX/2vg/e30NHA/sHLM9U/n+6fUXgzcMbL+l4HfBT7Xo29PA1a00z/S9mpFZ/0/abd160luj+u7Peksf1P3thhZt5i+ndGZ/g/Azs78FPCHNM8NXTrHPs8b7Uln3SNuix59WzdXT+bqx5hxvwr8Wjv9A51eTLpvV4/rycn6MTLumcBtwJnt/LP79K1PH0fWvwd40yT61KOWBfdx9O9lqfo0qcsT8sh9nKr6dlX9Ec2N1pX2clqSAGcw5jX47Ta+1U6uAFbyyDdivY/mjmF0+ydonlz5pQXU+qdVdde4VcDT2zpPpwn3E2Ou/0C1fzE0d2p/W2eSNcCFwEd61vLXVTW7jx8c2dbpNHcUv9ZnWwu0mL59q60rwA/xyNvnF2jukO+dYI1L7eeBfwdQVQ9XVZ83xSy4bxPwBuCTVXU3QFU91j1eTJ/msxR9XO4+PcITNdx/qPOQ6VMnG1hV3wPeBtxCE+obgd+aa3yS62gC4q+Aj7fLfhxYW1Wfm+Nqu4CfS/KMMet+qVPra+f5va4EXtTWeQvwi1X18Bx1XpzkDuAamj/+WR8C/hUw7npj+5bk5UkOtfvc3gn79wEfpHl563w+2m733W34zrqkcxpl7ch1Fty3JB8Fvg6cDfyndtlq4GJg95jtjHplmlM7n0/yY53lBXwhyQ1p3kndNdff2/o0p7++mORVI9eZqx+zv8cz28n3JfmTJB9L8pzOkIn2Dfj1dnu/keSpPfrRdRbww2lON92Q5I2ddSfr26je/7ezTrFP85nU/+2sSfVpMh7LhwmTunCSh3eMPFQDngL8AfACmiP4K4F/O8/2f5DmKPB8mjvA64F17brreeRpmQfan+8F3s0CHt7x6NMylwK/0db5QpqHjWfMU+urgd9vp38a+HA7fR49TsuMrH8R8H/b3/8c4LPt8nWc/LTM6vbn04EvAG9s558FPLWd3g784YT6NgV8GHhzO/8x4BXt9NXMfVrmDOD0dvp1wJ911j2v/fls4Cbg1SfrG/BU4Fnt9MtoPlvpjJP1Y+T6q2j+4S9p538Z+J2l6BvN6ba0Nf82cPl8/Ri5/pU0pyNPa+v+M+Cs+frW5/8W+PvAje3l68DdnflnLbZP810W2cddndoe7Ez/m0n2aVKXJ+qR+0KcA1BVf15Nd38P+AdpnnScvWd+b/cKVfU3NO+63ULzD/r3gOuT3AW8AtiXzpOqrQ8Bb6G5YRfrzTQP66qqDtOE+9lJ3t6p9XkjtX4JeEGaJ2b/IfD6ts69wD9O8l/77ryqbge+TfP7vhJ4WbutPwLOao9IHtW3qvpa+/OvaM7Pb2rn76uq77ab/880IThqwX2rqoeA/wFc0i6aAfa2tV4KfDjJRaN9q6pvVdUD7Tb2A09p+0ZVHWt/3gt8avZ3OEkN362q+9rpG4A/pzlyG9uPMX27j+YR0ewR7MeAl7bXm2jfquov27+p7wIf5fu3z9h+jPl7OwpcW82pz2/QPPf0ksX0bUxtt1TVOVV1Ds0jr8tn59v+nmqf5rOQPr69U+uxTp2/3g5Zsj4txpMh3L8GbEwy3c6fD9xeVQ91bpzLk5ye9mOKk6ygOZK5o6q+WVWrqmpdVa2juWd+fVU94hnvqrqf5o7jLadQ693AT7U1PAf4UeBIVe3q1HosyQtnH+qn+WKUlcB9VfUrVbWmrXMrzZHMPz3ZDtN8rMSKdvr57T7vqqrfrKrntds6F/hKVZ03pm8rZgMyyVNoHj3c2s53P/b59cDto/vv27c0Xjg7DfwMcEe7jfWd2+fjwD+vqk+P6dtzO33bRPP3f1+S05I8vV1+GvCa2d/hJPVMp301VZK/S/NdBkfm6sdo39oDjc/SPMKC5na/bdJ9626v/d0v4vu3z9h+jPYN+AzwqvZ3exrwcuD2xfRtoU61Tz22P4n/21nL1qdxer1D9YmiPXI7A1iZ5CLgNVV1W5JfBb6U5HvAX9Ccuhl1Gs0R+VP5/isv+pzD7fogsKNHne+gOS/+XODmJPur6q0057ivTnILzcPod9X4J48uofksn+8B3wF+tv0nWIxzgZ3tth6mCcaFPGH1VOC6NsimgN+nOYoCeEeS19M8eXU/4/sO/foW4LeTnNFO30TzXMpCXAq8LckJmr5trapq70g/1ebcCuB3q+raebb1auC97bYeonmu4v72n3eufox6F/A7ST4EHOf7H9sxyb4B/Lf24CY0pxG2t8vH9mP0ylV1e5JrgZtp/kY+UlW3tndqC+3bYpxqn+bTt48n9Tjo0yP4DlVJGqAnw2kZSXrSMdwlaYAMd0kaIMNdkgbIcJekATLcJWmADHdJGiDDXZIG6P8D7QgcSTBbKtkAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.bar([\"F18-34\",\"NF18-34\",\"F34-55\",\"NF34-55\",\"F55-65\",\"NF55-65\",\"F+65\",\"NF+65\"],concatenation[\"Taux de mortalité\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"D'après le graphique précédent, on observe que pour la tranche 18-34 ans, le taux de mortalité entre les fumeurs et les non-fumeurs est presque semblable. \n",
"Au contraire, on observe que sur les trois autres tranches d'âge, le taux de mortalité pour les fumeurs est plus élevé que le taux de mortalité des non-fumeurs. \n",
"Ce qui est contraire aux résultats trouvés précédemment pour l'ensemble de la série de données. \n",
"Cela peut s'expliquer par le fait que l'échantillon dans chaque sous-groupe n'est pas le même (le nombre de fumeurs décédés ou vivants, et le nombre de non-fumeurs décédés et vivants n'est pas le même)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Il m'est impossible d'effectuer une régression logistique."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment