diff --git a/module2/exo1/toy_document_en.Rmd b/module2/exo1/toy_document_en.Rmd index 1b6ef528789006119a46378729abc2b250b9cced..74d3b915899a44c55a11128e10427373dbadb490 100644 --- a/module2/exo1/toy_document_en.Rmd +++ b/module2/exo1/toy_document_en.Rmd @@ -5,41 +5,45 @@ date: "23 Octobre 2023" output: html_document --- -{r setup, include=FALSE} +```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE) +``` ## Asking the maths library -My computer tells me that $\pi$ is approximatively +My computer tells me that $\pi$ is *approximatively* -{r} +```{r} pi +``` -Buffon's needle +## Buffon's needle -Applying the method of Buffon's needle, we get the approximation +Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the **approximation** -{r} +```{r} set.seed(42) N = 100000 x = runif(N) theta = pi/2*runif(N) 2/(mean(x+sin(theta)>1)) +``` -Using a surface fraction argument +## Using a surface fraction argument -A method that is easier to understand and does not make use of the $\sin$ function is based on the fact that if $X\sim U(0,1)$ and $Y\sim U(0,1)$, then $P[X^2+Y^2\leq 1] = \pi/4$ (see "Monte Carlo method" on Wikipedia). The following code uses this approach: +A method that is easier to understand and does not make use of the $\sin$ function is based on the fact that if $X\sim U(0,1)$ and $Y\sim U(0,1)$, then $P[X^2+Y^2\leq 1] = \pi/4$ (see ["Monte Carlo method" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach: -{r} +```{r} set.seed(42) N = 1000 df = data.frame(X = runif(N), Y = runif(N)) df$Accept = (df$X**2 + df$Y**2 <=1) library(ggplot2) ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() +``` It is therefore straightforward to obtain a (not really good) approximation to $\pi$ by counting how many times, on average, $X^2 + Y^2$ is smaller than 1 -{r} +```{r} 4*mean(df$Accept) - +```