{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Incidence of influenza-like illness in France" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import isoweek" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The data on the incidence of influenza-like illness are available from the Web site of the [Réseau Sentinelles](http://www.sentiweb.fr/). We download them as a file in CSV format, in which each line corresponds to a week in the observation period. Only the complete dataset, starting in 1984 and ending with a recent week, is available for download." ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "# Define the data url and the file name , check if the file exists in local system, if it does not then request to download file using urllib.request.urlretrieve. \n", "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\"\n", "\n", "data_file = \"incidence-PAY-3.csv\"\n", "import os\n", "import urllib.request\n", "if not os.path.exists(data_file):\n", " urllib.request.urlretrieve(data_url, data_file)\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This is the documentation of the data from [the download site](https://ns.sentiweb.fr/incidence/csv-schema-v1.json):\n", "\n", "| Column name | Description |\n", "|--------------|---------------------------------------------------------------------------------------------------------------------------|\n", "| `week` | ISO8601 Yearweek number as numeric (year times 100 + week nubmer) |\n", "| `indicator` | Unique identifier of the indicator, see metadata document https://www.sentiweb.fr/meta.json |\n", "| `inc` | Estimated incidence value for the time step, in the geographic level |\n", "| `inc_low` | Lower bound of the estimated incidence 95% Confidence Interval |\n", "| `inc_up` | Upper bound of the estimated incidence 95% Confidence Interval |\n", "| `inc100` | Estimated rate incidence per 100,000 inhabitants |\n", "| `inc100_low` | Lower bound of the estimated incidence 95% Confidence Interval |\n", "| `inc100_up` | Upper bound of the estimated rate incidence 95% Confidence Interval |\n", "| `geo_insee` | Identifier of the geographic area, from INSEE https://www.insee.fr |\n", "| `geo_name` | Geographic label of the area, corresponding to INSEE code. This label is not an id and is only provided for human reading |\n", "\n", "The first line of the CSV file is a comment, which we ignore with `skip=1`." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020234236733157544.077118.010186.0116.0FRFrance
120234135927551833.066717.08978.0100.0FRFrance
220234036889460069.077719.010491.0117.0FRFrance
320233937200363452.080554.010895.0121.0FRFrance
420233836321855227.071209.09583.0107.0FRFrance
520233734908542079.056091.07463.085.0FRFrance
620233633824732237.044257.05849.067.0FRFrance
720233533169526013.037377.04839.057.0FRFrance
820233432666321057.032269.04032.048.0FRFrance
920233331914413161.025127.02920.038.0FRFrance
1020233231464110285.018997.02215.029.0FRFrance
1120233131528610705.019867.02316.030.0FRFrance
122023303132058647.017763.02013.027.0FRFrance
132023293111227113.015131.01711.023.0FRFrance
14202328391795703.012655.0149.019.0FRFrance
15202327389995763.012235.0149.019.0FRFrance
16202326390235934.012112.0149.019.0FRFrance
172023253100906739.013441.01510.020.0FRFrance
182023243113087639.014977.01711.023.0FRFrance
1920232331430010661.017939.02217.027.0FRFrance
2020232231830313822.022784.02821.035.0FRFrance
2120232131646012188.020732.02519.031.0FRFrance
2220232031616211963.020361.02418.030.0FRFrance
2320231931690112577.021225.02518.032.0FRFrance
2420231831992915402.024456.03023.037.0FRFrance
2520231732700721779.032235.04133.049.0FRFrance
2620231632787522767.032983.04234.050.0FRFrance
2720231533745530993.043917.05646.066.0FRFrance
2820231434806040671.055449.07261.083.0FRFrance
2920231336485956800.072918.09886.0110.0FRFrance
.................................
200419852132609619621.032571.04735.059.0FRFrance
200519852032789620885.034907.05138.064.0FRFrance
200619851934315432821.053487.07859.097.0FRFrance
200719851834055529935.051175.07455.093.0FRFrance
200819851733405324366.043740.06244.080.0FRFrance
200919851635036236451.064273.09166.0116.0FRFrance
201019851536388145538.082224.011683.0149.0FRFrance
20111985143134545114400.0154690.0244207.0281.0FRFrance
20121985133197206176080.0218332.0357319.0395.0FRFrance
20131985123245240223304.0267176.0445405.0485.0FRFrance
20141985113276205252399.0300011.0501458.0544.0FRFrance
20151985103353231326279.0380183.0640591.0689.0FRFrance
20161985093369895341109.0398681.0670618.0722.0FRFrance
20171985083389886359529.0420243.0707652.0762.0FRFrance
20181985073471852432599.0511105.0855784.0926.0FRFrance
20191985063565825518011.0613639.01026939.01113.0FRFrance
20201985053637302592795.0681809.011551074.01236.0FRFrance
20211985043424937390794.0459080.0770708.0832.0FRFrance
20221985033213901174689.0253113.0388317.0459.0FRFrance
202319850239758680949.0114223.0177147.0207.0FRFrance
202419850138548965918.0105060.0155120.0190.0FRFrance
202519845238483060602.0109058.0154110.0198.0FRFrance
2026198451310172680242.0123210.0185146.0224.0FRFrance
20271984503123680101401.0145959.0225184.0266.0FRFrance
2028198449310107381684.0120462.0184149.0219.0FRFrance
202919844837862060634.096606.0143110.0176.0FRFrance
203019844737202954274.089784.013199.0163.0FRFrance
203119844638733067686.0106974.0159123.0195.0FRFrance
20321984453135223101414.0169032.0246184.0308.0FRFrance
203319844436842220056.0116788.012537.0213.0FRFrance
\n", "

2034 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low \\\n", "0 202342 3 67331 57544.0 77118.0 101 86.0 \n", "1 202341 3 59275 51833.0 66717.0 89 78.0 \n", "2 202340 3 68894 60069.0 77719.0 104 91.0 \n", "3 202339 3 72003 63452.0 80554.0 108 95.0 \n", "4 202338 3 63218 55227.0 71209.0 95 83.0 \n", "5 202337 3 49085 42079.0 56091.0 74 63.0 \n", "6 202336 3 38247 32237.0 44257.0 58 49.0 \n", "7 202335 3 31695 26013.0 37377.0 48 39.0 \n", "8 202334 3 26663 21057.0 32269.0 40 32.0 \n", "9 202333 3 19144 13161.0 25127.0 29 20.0 \n", "10 202332 3 14641 10285.0 18997.0 22 15.0 \n", "11 202331 3 15286 10705.0 19867.0 23 16.0 \n", "12 202330 3 13205 8647.0 17763.0 20 13.0 \n", "13 202329 3 11122 7113.0 15131.0 17 11.0 \n", "14 202328 3 9179 5703.0 12655.0 14 9.0 \n", "15 202327 3 8999 5763.0 12235.0 14 9.0 \n", "16 202326 3 9023 5934.0 12112.0 14 9.0 \n", "17 202325 3 10090 6739.0 13441.0 15 10.0 \n", "18 202324 3 11308 7639.0 14977.0 17 11.0 \n", "19 202323 3 14300 10661.0 17939.0 22 17.0 \n", "20 202322 3 18303 13822.0 22784.0 28 21.0 \n", "21 202321 3 16460 12188.0 20732.0 25 19.0 \n", "22 202320 3 16162 11963.0 20361.0 24 18.0 \n", "23 202319 3 16901 12577.0 21225.0 25 18.0 \n", "24 202318 3 19929 15402.0 24456.0 30 23.0 \n", "25 202317 3 27007 21779.0 32235.0 41 33.0 \n", "26 202316 3 27875 22767.0 32983.0 42 34.0 \n", "27 202315 3 37455 30993.0 43917.0 56 46.0 \n", "28 202314 3 48060 40671.0 55449.0 72 61.0 \n", "29 202313 3 64859 56800.0 72918.0 98 86.0 \n", "... ... ... ... ... ... ... ... \n", "2004 198521 3 26096 19621.0 32571.0 47 35.0 \n", "2005 198520 3 27896 20885.0 34907.0 51 38.0 \n", "2006 198519 3 43154 32821.0 53487.0 78 59.0 \n", "2007 198518 3 40555 29935.0 51175.0 74 55.0 \n", "2008 198517 3 34053 24366.0 43740.0 62 44.0 \n", "2009 198516 3 50362 36451.0 64273.0 91 66.0 \n", "2010 198515 3 63881 45538.0 82224.0 116 83.0 \n", "2011 198514 3 134545 114400.0 154690.0 244 207.0 \n", "2012 198513 3 197206 176080.0 218332.0 357 319.0 \n", "2013 198512 3 245240 223304.0 267176.0 445 405.0 \n", "2014 198511 3 276205 252399.0 300011.0 501 458.0 \n", "2015 198510 3 353231 326279.0 380183.0 640 591.0 \n", "2016 198509 3 369895 341109.0 398681.0 670 618.0 \n", "2017 198508 3 389886 359529.0 420243.0 707 652.0 \n", "2018 198507 3 471852 432599.0 511105.0 855 784.0 \n", "2019 198506 3 565825 518011.0 613639.0 1026 939.0 \n", "2020 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", "2021 198504 3 424937 390794.0 459080.0 770 708.0 \n", "2022 198503 3 213901 174689.0 253113.0 388 317.0 \n", "2023 198502 3 97586 80949.0 114223.0 177 147.0 \n", "2024 198501 3 85489 65918.0 105060.0 155 120.0 \n", "2025 198452 3 84830 60602.0 109058.0 154 110.0 \n", "2026 198451 3 101726 80242.0 123210.0 185 146.0 \n", "2027 198450 3 123680 101401.0 145959.0 225 184.0 \n", "2028 198449 3 101073 81684.0 120462.0 184 149.0 \n", "2029 198448 3 78620 60634.0 96606.0 143 110.0 \n", "2030 198447 3 72029 54274.0 89784.0 131 99.0 \n", "2031 198446 3 87330 67686.0 106974.0 159 123.0 \n", "2032 198445 3 135223 101414.0 169032.0 246 184.0 \n", "2033 198444 3 68422 20056.0 116788.0 125 37.0 \n", "\n", " inc100_up geo_insee geo_name \n", "0 116.0 FR France \n", "1 100.0 FR France \n", "2 117.0 FR France \n", "3 121.0 FR France \n", "4 107.0 FR France \n", "5 85.0 FR France \n", "6 67.0 FR France \n", "7 57.0 FR France \n", "8 48.0 FR France \n", "9 38.0 FR France \n", "10 29.0 FR France \n", "11 30.0 FR France \n", "12 27.0 FR France \n", "13 23.0 FR France \n", "14 19.0 FR France \n", "15 19.0 FR France \n", "16 19.0 FR France \n", "17 20.0 FR France \n", "18 23.0 FR France \n", "19 27.0 FR France \n", "20 35.0 FR France \n", "21 31.0 FR France \n", "22 30.0 FR France \n", "23 32.0 FR France \n", "24 37.0 FR France \n", "25 49.0 FR France \n", "26 50.0 FR France \n", "27 66.0 FR France \n", "28 83.0 FR France \n", "29 110.0 FR France \n", "... ... ... ... \n", "2004 59.0 FR France \n", "2005 64.0 FR France \n", "2006 97.0 FR France \n", "2007 93.0 FR France \n", "2008 80.0 FR France \n", "2009 116.0 FR France \n", "2010 149.0 FR France \n", "2011 281.0 FR France \n", "2012 395.0 FR France \n", "2013 485.0 FR France \n", "2014 544.0 FR France \n", "2015 689.0 FR France \n", "2016 722.0 FR France \n", "2017 762.0 FR France \n", "2018 926.0 FR France \n", "2019 1113.0 FR France \n", "2020 1236.0 FR France \n", "2021 832.0 FR France \n", "2022 459.0 FR France \n", "2023 207.0 FR France \n", "2024 190.0 FR France \n", "2025 198.0 FR France \n", "2026 224.0 FR France \n", "2027 266.0 FR France \n", "2028 219.0 FR France \n", "2029 176.0 FR France \n", "2030 163.0 FR France \n", "2031 195.0 FR France \n", "2032 308.0 FR France \n", "2033 213.0 FR France \n", "\n", "[2034 rows x 10 columns]" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data = pd.read_csv(data_file, skiprows=1)\n", "raw_data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Are there missing data points? Yes, week 19 of year 1989 does not have any observed values." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
17971989193-NaNNaN-NaNNaNFRFrance
\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n", "1797 198919 3 - NaN NaN - NaN NaN \n", "\n", " geo_insee geo_name \n", "1797 FR France " ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data[raw_data.isnull().any(axis=1)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We delete this point, which does not have big consequence for our rather simple analysis." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020234236733157544.077118.010186.0116.0FRFrance
120234135927551833.066717.08978.0100.0FRFrance
220234036889460069.077719.010491.0117.0FRFrance
320233937200363452.080554.010895.0121.0FRFrance
420233836321855227.071209.09583.0107.0FRFrance
520233734908542079.056091.07463.085.0FRFrance
620233633824732237.044257.05849.067.0FRFrance
720233533169526013.037377.04839.057.0FRFrance
820233432666321057.032269.04032.048.0FRFrance
920233331914413161.025127.02920.038.0FRFrance
1020233231464110285.018997.02215.029.0FRFrance
1120233131528610705.019867.02316.030.0FRFrance
122023303132058647.017763.02013.027.0FRFrance
132023293111227113.015131.01711.023.0FRFrance
14202328391795703.012655.0149.019.0FRFrance
15202327389995763.012235.0149.019.0FRFrance
16202326390235934.012112.0149.019.0FRFrance
172023253100906739.013441.01510.020.0FRFrance
182023243113087639.014977.01711.023.0FRFrance
1920232331430010661.017939.02217.027.0FRFrance
2020232231830313822.022784.02821.035.0FRFrance
2120232131646012188.020732.02519.031.0FRFrance
2220232031616211963.020361.02418.030.0FRFrance
2320231931690112577.021225.02518.032.0FRFrance
2420231831992915402.024456.03023.037.0FRFrance
2520231732700721779.032235.04133.049.0FRFrance
2620231632787522767.032983.04234.050.0FRFrance
2720231533745530993.043917.05646.066.0FRFrance
2820231434806040671.055449.07261.083.0FRFrance
2920231336485956800.072918.09886.0110.0FRFrance
.................................
200419852132609619621.032571.04735.059.0FRFrance
200519852032789620885.034907.05138.064.0FRFrance
200619851934315432821.053487.07859.097.0FRFrance
200719851834055529935.051175.07455.093.0FRFrance
200819851733405324366.043740.06244.080.0FRFrance
200919851635036236451.064273.09166.0116.0FRFrance
201019851536388145538.082224.011683.0149.0FRFrance
20111985143134545114400.0154690.0244207.0281.0FRFrance
20121985133197206176080.0218332.0357319.0395.0FRFrance
20131985123245240223304.0267176.0445405.0485.0FRFrance
20141985113276205252399.0300011.0501458.0544.0FRFrance
20151985103353231326279.0380183.0640591.0689.0FRFrance
20161985093369895341109.0398681.0670618.0722.0FRFrance
20171985083389886359529.0420243.0707652.0762.0FRFrance
20181985073471852432599.0511105.0855784.0926.0FRFrance
20191985063565825518011.0613639.01026939.01113.0FRFrance
20201985053637302592795.0681809.011551074.01236.0FRFrance
20211985043424937390794.0459080.0770708.0832.0FRFrance
20221985033213901174689.0253113.0388317.0459.0FRFrance
202319850239758680949.0114223.0177147.0207.0FRFrance
202419850138548965918.0105060.0155120.0190.0FRFrance
202519845238483060602.0109058.0154110.0198.0FRFrance
2026198451310172680242.0123210.0185146.0224.0FRFrance
20271984503123680101401.0145959.0225184.0266.0FRFrance
2028198449310107381684.0120462.0184149.0219.0FRFrance
202919844837862060634.096606.0143110.0176.0FRFrance
203019844737202954274.089784.013199.0163.0FRFrance
203119844638733067686.0106974.0159123.0195.0FRFrance
20321984453135223101414.0169032.0246184.0308.0FRFrance
203319844436842220056.0116788.012537.0213.0FRFrance
\n", "

2033 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low \\\n", "0 202342 3 67331 57544.0 77118.0 101 86.0 \n", "1 202341 3 59275 51833.0 66717.0 89 78.0 \n", "2 202340 3 68894 60069.0 77719.0 104 91.0 \n", "3 202339 3 72003 63452.0 80554.0 108 95.0 \n", "4 202338 3 63218 55227.0 71209.0 95 83.0 \n", "5 202337 3 49085 42079.0 56091.0 74 63.0 \n", "6 202336 3 38247 32237.0 44257.0 58 49.0 \n", "7 202335 3 31695 26013.0 37377.0 48 39.0 \n", "8 202334 3 26663 21057.0 32269.0 40 32.0 \n", "9 202333 3 19144 13161.0 25127.0 29 20.0 \n", "10 202332 3 14641 10285.0 18997.0 22 15.0 \n", "11 202331 3 15286 10705.0 19867.0 23 16.0 \n", "12 202330 3 13205 8647.0 17763.0 20 13.0 \n", "13 202329 3 11122 7113.0 15131.0 17 11.0 \n", "14 202328 3 9179 5703.0 12655.0 14 9.0 \n", "15 202327 3 8999 5763.0 12235.0 14 9.0 \n", "16 202326 3 9023 5934.0 12112.0 14 9.0 \n", "17 202325 3 10090 6739.0 13441.0 15 10.0 \n", "18 202324 3 11308 7639.0 14977.0 17 11.0 \n", "19 202323 3 14300 10661.0 17939.0 22 17.0 \n", "20 202322 3 18303 13822.0 22784.0 28 21.0 \n", "21 202321 3 16460 12188.0 20732.0 25 19.0 \n", "22 202320 3 16162 11963.0 20361.0 24 18.0 \n", "23 202319 3 16901 12577.0 21225.0 25 18.0 \n", "24 202318 3 19929 15402.0 24456.0 30 23.0 \n", "25 202317 3 27007 21779.0 32235.0 41 33.0 \n", "26 202316 3 27875 22767.0 32983.0 42 34.0 \n", "27 202315 3 37455 30993.0 43917.0 56 46.0 \n", "28 202314 3 48060 40671.0 55449.0 72 61.0 \n", "29 202313 3 64859 56800.0 72918.0 98 86.0 \n", "... ... ... ... ... ... ... ... \n", "2004 198521 3 26096 19621.0 32571.0 47 35.0 \n", "2005 198520 3 27896 20885.0 34907.0 51 38.0 \n", "2006 198519 3 43154 32821.0 53487.0 78 59.0 \n", "2007 198518 3 40555 29935.0 51175.0 74 55.0 \n", "2008 198517 3 34053 24366.0 43740.0 62 44.0 \n", "2009 198516 3 50362 36451.0 64273.0 91 66.0 \n", "2010 198515 3 63881 45538.0 82224.0 116 83.0 \n", "2011 198514 3 134545 114400.0 154690.0 244 207.0 \n", "2012 198513 3 197206 176080.0 218332.0 357 319.0 \n", "2013 198512 3 245240 223304.0 267176.0 445 405.0 \n", "2014 198511 3 276205 252399.0 300011.0 501 458.0 \n", "2015 198510 3 353231 326279.0 380183.0 640 591.0 \n", "2016 198509 3 369895 341109.0 398681.0 670 618.0 \n", "2017 198508 3 389886 359529.0 420243.0 707 652.0 \n", "2018 198507 3 471852 432599.0 511105.0 855 784.0 \n", "2019 198506 3 565825 518011.0 613639.0 1026 939.0 \n", "2020 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", "2021 198504 3 424937 390794.0 459080.0 770 708.0 \n", "2022 198503 3 213901 174689.0 253113.0 388 317.0 \n", "2023 198502 3 97586 80949.0 114223.0 177 147.0 \n", "2024 198501 3 85489 65918.0 105060.0 155 120.0 \n", "2025 198452 3 84830 60602.0 109058.0 154 110.0 \n", "2026 198451 3 101726 80242.0 123210.0 185 146.0 \n", "2027 198450 3 123680 101401.0 145959.0 225 184.0 \n", "2028 198449 3 101073 81684.0 120462.0 184 149.0 \n", "2029 198448 3 78620 60634.0 96606.0 143 110.0 \n", "2030 198447 3 72029 54274.0 89784.0 131 99.0 \n", "2031 198446 3 87330 67686.0 106974.0 159 123.0 \n", "2032 198445 3 135223 101414.0 169032.0 246 184.0 \n", "2033 198444 3 68422 20056.0 116788.0 125 37.0 \n", "\n", " inc100_up geo_insee geo_name \n", "0 116.0 FR France \n", "1 100.0 FR France \n", "2 117.0 FR France \n", "3 121.0 FR France \n", "4 107.0 FR France \n", "5 85.0 FR France \n", "6 67.0 FR France \n", "7 57.0 FR France \n", "8 48.0 FR France \n", "9 38.0 FR France \n", "10 29.0 FR France \n", "11 30.0 FR France \n", "12 27.0 FR France \n", "13 23.0 FR France \n", "14 19.0 FR France \n", "15 19.0 FR France \n", "16 19.0 FR France \n", "17 20.0 FR France \n", "18 23.0 FR France \n", "19 27.0 FR France \n", "20 35.0 FR France \n", "21 31.0 FR France \n", "22 30.0 FR France \n", "23 32.0 FR France \n", "24 37.0 FR France \n", "25 49.0 FR France \n", "26 50.0 FR France \n", "27 66.0 FR France \n", "28 83.0 FR France \n", "29 110.0 FR France \n", "... ... ... ... \n", "2004 59.0 FR France \n", "2005 64.0 FR France \n", "2006 97.0 FR France \n", "2007 93.0 FR France \n", "2008 80.0 FR France \n", "2009 116.0 FR France \n", "2010 149.0 FR France \n", "2011 281.0 FR France \n", "2012 395.0 FR France \n", "2013 485.0 FR France \n", "2014 544.0 FR France \n", "2015 689.0 FR France \n", "2016 722.0 FR France \n", "2017 762.0 FR France \n", "2018 926.0 FR France \n", "2019 1113.0 FR France \n", "2020 1236.0 FR France \n", "2021 832.0 FR France \n", "2022 459.0 FR France \n", "2023 207.0 FR France \n", "2024 190.0 FR France \n", "2025 198.0 FR France \n", "2026 224.0 FR France \n", "2027 266.0 FR France \n", "2028 219.0 FR France \n", "2029 176.0 FR France \n", "2030 163.0 FR France \n", "2031 195.0 FR France \n", "2032 308.0 FR France \n", "2033 213.0 FR France \n", "\n", "[2033 rows x 10 columns]" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = raw_data.dropna().copy()\n", "data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Our dataset uses an uncommon encoding; the week number is attached\n", "to the year number, leaving the impression of a six-digit integer.\n", "That is how Pandas interprets it.\n", "\n", "A second problem is that Pandas does not know about week numbers.\n", "It needs to be given the dates of the beginning and end of the week.\n", "We use the library `isoweek` for that.\n", "\n", "Since the conversion is a bit lengthy, we write a small Python \n", "function for doing it. Then we apply it to all points in our dataset. \n", "The results go into a new column 'period'." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "def convert_week(year_and_week_int):\n", " year_and_week_str = str(year_and_week_int)\n", " year = int(year_and_week_str[:4])\n", " week = int(year_and_week_str[4:])\n", " w = isoweek.Week(year, week)\n", " return pd.Period(w.day(0), 'W')\n", "\n", "data['period'] = [convert_week(yw) for yw in data['week']]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "There are two more small changes to make.\n", "\n", "First, we define the observation periods as the new index of\n", "our dataset. That turns it into a time series, which will be\n", "convenient later on.\n", "\n", "Second, we sort the points chronologically." ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "sorted_data = data.set_index('period').sort_index()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We check the consistency of the data. Between the end of a period and\n", "the beginning of the next one, the difference should be zero, or very small.\n", "We tolerate an error of one second.\n", "\n", "This is OK except for one pair of consecutive periods between which\n", "a whole week is missing.\n", "\n", "We recognize the dates: it's the week without observations that we\n", "have deleted earlier!" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1989-05-01/1989-05-07 1989-05-15/1989-05-21\n" ] } ], "source": [ "periods = sorted_data.index\n", "for p1, p2 in zip(periods[:-1], periods[1:]):\n", " delta = p2.to_timestamp() - p1.end_time\n", " if delta > pd.Timedelta('1s'):\n", " print(p1, p2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A first look at the data!" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "ename": "TypeError", "evalue": "Empty 'DataFrame': no numeric data to plot", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0msorted_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'inc'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, kind, ax, figsize, use_index, title, grid, legend, style, logx, logy, loglog, xticks, yticks, xlim, ylim, rot, fontsize, colormap, table, yerr, xerr, label, secondary_y, **kwds)\u001b[0m\n\u001b[1;32m 2501\u001b[0m \u001b[0mcolormap\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcolormap\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtable\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtable\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0myerr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0myerr\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2502\u001b[0m \u001b[0mxerr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mxerr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlabel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msecondary_y\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msecondary_y\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2503\u001b[0;31m **kwds)\n\u001b[0m\u001b[1;32m 2504\u001b[0m \u001b[0m__call__\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__doc__\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mplot_series\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__doc__\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2505\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36mplot_series\u001b[0;34m(data, kind, ax, figsize, use_index, title, grid, legend, style, logx, logy, loglog, xticks, yticks, xlim, ylim, rot, fontsize, colormap, table, yerr, xerr, label, secondary_y, **kwds)\u001b[0m\n\u001b[1;32m 1925\u001b[0m \u001b[0myerr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0myerr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mxerr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mxerr\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1926\u001b[0m \u001b[0mlabel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlabel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msecondary_y\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msecondary_y\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1927\u001b[0;31m **kwds)\n\u001b[0m\u001b[1;32m 1928\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1929\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36m_plot\u001b[0;34m(data, x, y, subplots, ax, kind, **kwds)\u001b[0m\n\u001b[1;32m 1727\u001b[0m \u001b[0mplot_obj\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mklass\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msubplots\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msubplots\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkind\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mkind\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1728\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1729\u001b[0;31m \u001b[0mplot_obj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgenerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1730\u001b[0m \u001b[0mplot_obj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1731\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mplot_obj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36mgenerate\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 248\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mgenerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 249\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_args_adjust\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 250\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_compute_plot_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 251\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_setup_subplots\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 252\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_make_plot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36m_compute_plot_data\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 363\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_empty\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 364\u001b[0m raise TypeError('Empty {0!r}: no numeric data to '\n\u001b[0;32m--> 365\u001b[0;31m 'plot'.format(numeric_data.__class__.__name__))\n\u001b[0m\u001b[1;32m 366\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 367\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnumeric_data\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mTypeError\u001b[0m: Empty 'DataFrame': no numeric data to plot" ] } ], "source": [ "sorted_data['inc'].plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A zoom on the last few years shows more clearly that the peaks are situated in winter." ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "ename": "TypeError", "evalue": "Empty 'DataFrame': no numeric data to plot", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0msorted_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'inc'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m200\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, kind, ax, figsize, use_index, title, grid, legend, style, logx, logy, loglog, xticks, yticks, xlim, ylim, rot, fontsize, colormap, table, yerr, xerr, label, secondary_y, **kwds)\u001b[0m\n\u001b[1;32m 2501\u001b[0m \u001b[0mcolormap\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcolormap\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtable\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtable\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0myerr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0myerr\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2502\u001b[0m \u001b[0mxerr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mxerr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlabel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msecondary_y\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msecondary_y\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2503\u001b[0;31m **kwds)\n\u001b[0m\u001b[1;32m 2504\u001b[0m \u001b[0m__call__\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__doc__\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mplot_series\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__doc__\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2505\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36mplot_series\u001b[0;34m(data, kind, ax, figsize, use_index, title, grid, legend, style, logx, logy, loglog, xticks, yticks, xlim, ylim, rot, fontsize, colormap, table, yerr, xerr, label, secondary_y, **kwds)\u001b[0m\n\u001b[1;32m 1925\u001b[0m \u001b[0myerr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0myerr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mxerr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mxerr\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1926\u001b[0m \u001b[0mlabel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlabel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msecondary_y\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msecondary_y\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1927\u001b[0;31m **kwds)\n\u001b[0m\u001b[1;32m 1928\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1929\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36m_plot\u001b[0;34m(data, x, y, subplots, ax, kind, **kwds)\u001b[0m\n\u001b[1;32m 1727\u001b[0m \u001b[0mplot_obj\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mklass\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msubplots\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msubplots\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkind\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mkind\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1728\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1729\u001b[0;31m \u001b[0mplot_obj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgenerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1730\u001b[0m \u001b[0mplot_obj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1731\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mplot_obj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36mgenerate\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 248\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mgenerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 249\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_args_adjust\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 250\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_compute_plot_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 251\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_setup_subplots\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 252\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_make_plot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36m_compute_plot_data\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 363\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_empty\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 364\u001b[0m raise TypeError('Empty {0!r}: no numeric data to '\n\u001b[0;32m--> 365\u001b[0;31m 'plot'.format(numeric_data.__class__.__name__))\n\u001b[0m\u001b[1;32m 366\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 367\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnumeric_data\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mTypeError\u001b[0m: Empty 'DataFrame': no numeric data to plot" ] } ], "source": [ "sorted_data['inc'][-200:].plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Study of the annual incidence" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Since the peaks of the epidemic happen in winter, near the transition\n", "between calendar years, we define the reference period for the annual\n", "incidence from August 1st of year $N$ to August 1st of year $N+1$. We\n", "label this period as year $N+1$ because the peak is always located in\n", "year $N+1$. The very low incidence in summer ensures that the arbitrariness\n", "of the choice of reference period has no impact on our conclusions.\n", "\n", "Our task is a bit complicated by the fact that a year does not have an\n", "integer number of weeks. Therefore we modify our reference period a bit:\n", "instead of August 1st, we use the first day of the week containing August 1st.\n", "\n", "A final detail: the dataset starts in October 1984, the first peak is thus\n", "incomplete, We start the analysis with the first full peak." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n", " for y in range(1985,\n", " sorted_data.index[-1].year)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Starting from this list of weeks that contain August 1st, we obtain intervals of approximately one year as the periods between two adjacent weeks in this list. We compute the sums of weekly incidences for all these periods.\n", "\n", "We also check that our periods contain between 51 and 52 weeks, as a safeguard against potential mistakes in our code." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "year = []\n", "yearly_incidence = []\n", "for week1, week2 in zip(first_august_week[:-1],\n", " first_august_week[1:]):\n", " one_year = sorted_data['inc'][week1:week2-1]\n", " assert abs(len(one_year)-52) < 2\n", " yearly_incidence.append(one_year.sum())\n", " year.append(week2.year)\n", "yearly_incidence = pd.Series(data=yearly_incidence, index=year)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And here are the annual incidences." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "yearly_incidence.plot(style='*')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A sorted list makes it easier to find the highest values (at the end)." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "yearly_incidence.sort_values()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Finally, a histogram clearly shows the few very strong epidemics, which affect about 10% of the French population,\n", "but are rare: there were three of them in the course of 35 years. The typical epidemic affects only half as many people." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "yearly_incidence.hist(xrot=20)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 1 }