From f0fcc7c4a22c596c9d68e61f96773703a3f31d58 Mon Sep 17 00:00:00 2001 From: 3118843cd5989329b845885a6012ff41 <3118843cd5989329b845885a6012ff41@app-learninglab.inria.fr> Date: Sun, 30 Jun 2024 02:44:09 +0000 Subject: [PATCH] Exericise_module_3 --- module2/exo2/exercice.ipynb | 224 +++- module3/exo1/Untitled.ipynb | 6 + module3/exo2/Untitled.ipynb | 6 + module3/exo2/exercice.ipynb | 2298 ++++++++++++++++++++++++++++++++++- 4 files changed, 2528 insertions(+), 6 deletions(-) create mode 100644 module3/exo1/Untitled.ipynb create mode 100644 module3/exo2/Untitled.ipynb diff --git a/module2/exo2/exercice.ipynb b/module2/exo2/exercice.ipynb index 0bbbe37..c819512 100644 --- a/module2/exo2/exercice.ipynb +++ b/module2/exo2/exercice.ipynb @@ -1,5 +1,224 @@ { - "cells": [], + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([14. , 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9,\n", + " 18.1, 7.3, 9.8, 10.9, 12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7,\n", + " 13.1, 13.2, 12.3, 11.7, 16. , 12.4, 17.9, 12.2, 16.2, 18.7, 8.9,\n", + " 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7,\n", + " 14. , 13.6, 18. , 13.6, 19.9, 13.7, 17. , 20.5, 9.9, 12.5, 13.2,\n", + " 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6,\n", + " 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15. , 14.3, 16.8, 14. ,\n", + " 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8,\n", + " 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9,\n", + " 21. ])" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import numpy as np\n", + "numbers = np.array([14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0])\n", + "numbers" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "14.113000000000001" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.mean(numbers)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2.8" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.min(numbers)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "23.4" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.max(numbers)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "14.5" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.median(numbers)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4.334094455301447" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.std(numbers, ddof=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([ 4., 3., 5., 9., 16., 20., 22., 9., 8., 4.]),\n", + " array([ 2.8 , 4.86, 6.92, 8.98, 11.04, 13.1 , 15.16, 17.22, 19.28,\n", + " 21.34, 23.4 ]),\n", + " )" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAACmRJREFUeJzt3UGIXId9x/Hfv3F6SXKw8dqY1KraYEp8qVKECbgUh5Dgxgc7h0B9KDoElIMNCeQickkuBfeQ5FQCCjbWIXEJJK4NNm2MCLiFEioHE8uowSGoqWMhyfgQ91Rs/3vYMai25J3dHe1o//p8QMzM2zd6f56evjze7put7g4A+98frHsAAFZD0AGGEHSAIQQdYAhBBxhC0AGGEHSAIQQdYAhBBxjihr3c2M0339wHDx7cy00C7HsvvPDC6929sdV6exr0gwcP5tSpU3u5SYB9r6r+a5n1XHIBGELQAYYQdIAhBB1gCEEHGELQAYYQdIAhBB1gCEEHGGJP7xQF3u/gsWfWst2zj9y3lu1y9ThDBxhC0AGGEHSAIQQdYAhBBxhC0AGGEHSAIQQdYAhBBxhC0AGGEHSAIQQdYAhBBxhC0AGG2DLoVXV7Vf2sqs5U1ctV9dXF8puq6rmqemXxeOPVHxeAK1nmDP2tJF/v7k8m+XSSh6rqziTHkpzs7juSnFy8BmBNtgx6d5/r7l8snr+Z5EySjye5P8mJxWonkjxwtYYEYGvbuoZeVQeTfCrJz5Pc2t3nks3oJ7ll1cMBsLylfwVdVX00yY+TfK27f19Vy77vaJKjSXLgwIGdzAhX3bp+DRys0lJn6FX14WzG/Afd/ZPF4vNVddvi67cluXC593b38e4+3N2HNzY2VjEzAJexzE+5VJJHk5zp7u9c8qWnkxxZPD+S5KnVjwfAspa55HJ3kr9N8lJVvbhY9o0kjyT5UVV9Oclvk3zp6owIwDK2DHp3/1uSK10w/+xqxwFgp9wpCjCEoAMMIegAQwg6wBCCDjCEoAMMIegAQwg6wBCCDjCEoAMMIegAQwg6wBCCDjCEoAMMIegAQwg6wBCCDjCEoAMMIegAQwg6wBCCDjCEoAMMIegAQwg6wBCCDjCEoAMMIegAQwg6wBCCDjCEoAMMIegAQwg6wBA3rHsAuNTBY8+sewTYt5yhAwwh6ABDCDrAEIIOMISgAwyxZdCr6rGqulBVpy9Z9q2q+l1Vvbj484WrOyYAW1nmDP3xJPdeZvl3u/vQ4s+zqx0LgO3aMujd/XySN/ZgFgB2YTfX0B+uql8uLsncuLKJANiRnQb9e0k+keRQknNJvn2lFavqaFWdqqpTFy9e3OHmANjKjoLe3ee7++3ufifJ95Pc9QHrHu/uw919eGNjY6dzArCFHQW9qm675OUXk5y+0roA7I0tP5yrqp5Ick+Sm6vq1STfTHJPVR1K0knOJvnKVZwRgCVsGfTufvAyix+9CrMAsAvuFAUYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhtgy6FX1WFVdqKrTlyy7qaqeq6pXFo83Xt0xAdjKMmfojye59z3LjiU52d13JDm5eA3AGm0Z9O5+Pskb71l8f5ITi+cnkjyw4rkA2KadXkO/tbvPJcni8ZbVjQTATlz1b4pW1dGqOlVVpy5evHi1Nwdw3dpp0M9X1W1Jsni8cKUVu/t4dx/u7sMbGxs73BwAW9lp0J9OcmTx/EiSp1YzDgA7tcyPLT6R5N+T/FlVvVpVX07ySJLPVdUrST63eA3AGt2w1Qrd/eAVvvTZFc8CwC64UxRgCEEHGELQAYYQdIAhtvymKNefg8eeWfcI7IF1/juffeS+tW17MmfoAEMIOsAQgg4whKADDCHoAEMIOsAQgg4whKADDOHGImDPreumpuk3NDlDBxhC0AGGEHSAIQQdYAhBBxhC0AGGEHSAIQQdYAhBBxhC0AGGEHSAIQQdYAhBBxhC0AGGEHSAIQQdYAhBBxhC0AGGEHSAIQQdYAhBBxhC0AGGEHSAIQQdYIgbdvPmqjqb5M0kbyd5q7sPr2IoALZvV0Ff+Ex3v76CvweAXXDJBWCI3Qa9k/y0ql6oqqOrGAiAndntJZe7u/u1qrolyXNV9Z/d/fylKyxCfzRJDhw4sMvNXV8OHntm3SMA+8iuztC7+7XF44UkTya56zLrHO/uw919eGNjYzebA+AD7DjoVfWRqvrYu8+TfD7J6VUNBsD27OaSy61Jnqyqd/+eH3b3P69kKgC2bcdB7+7fJPnzFc4CwC74sUWAIQQdYAhBBxhC0AGGWMVnueyJdd5kc/aR+9a2bWB1pnfEGTrAEIIOMISgAwwh6ABDCDrAEIIOMISgAwwh6ABDCDrAEPvmTtF18qvggP3AGTrAEIIOMISgAwwh6ABDCDrAEIIOMISgAwwh6ABDCDrAEIIOMISgAwwh6ABDCDrAEIIOMISgAwwh6ABDCDrAEIIOMISgAwwh6ABDCDrAEIIOMISgAwyxq6BX1b1V9auq+nVVHVvVUABs346DXlUfSvIPSf46yZ1JHqyqO1c1GADbs5sz9LuS/Lq7f9Pd/5vkH5Pcv5qxANiu3QT940n++5LXry6WAbAGN+zivXWZZf2+laqOJjm6ePk/VfWrXWxz3W5O8vq6h9gH7Ket2UfLGbOf6u939fY/Xmal3QT91SS3X/L6j5K89t6Vuvt4kuO72M41o6pOdffhdc9xrbOftmYfLcd+2p7dXHL5jyR3VNWfVNUfJvmbJE+vZiwAtmvHZ+jd/VZVPZzkX5J8KMlj3f3yyiYDYFt2c8kl3f1skmdXNMt+MOLS0R6wn7ZmHy3HftqG6n7f9zEB2Ifc+g8whKAvoarOVtVLVfViVZ1a9zzXiqp6rKouVNXpS5bdVFXPVdUri8cb1znjteAK++lbVfW7xTH1YlV9YZ0zXguq6vaq+llVnamql6vqq4vljqklCfryPtPdh/wI1f/zeJJ737PsWJKT3X1HkpOL19e7x/P+/ZQk310cU4cW34+63r2V5Ovd/ckkn07y0OLjRBxTSxJ0dqy7n0/yxnsW35/kxOL5iSQP7OlQ16Ar7Cfeo7vPdfcvFs/fTHImm3efO6aWJOjL6SQ/raoXFne+cmW3dve5ZPM/aJJb1jzPtezhqvrl4pKMywiXqKqDST6V5OdxTC1N0Jdzd3f/RTY/WfKhqvqrdQ/Evve9JJ9IcijJuSTfXu84146q+miSHyf5Wnf/ft3z7CeCvoTufm3xeCHJk9n8pEku73xV3ZYki8cLa57nmtTd57v77e5+J8n345hKklTVh7MZ8x90908Wix1TSxL0LVTVR6rqY+8+T/L5JKc/+F3XtaeTHFk8P5LkqTXOcs16N1ALX4xjKlVVSR5Ncqa7v3PJlxxTS3Jj0Raq6k+zeVaebN5Z+8Pu/rs1jnTNqKonktyTzU/EO5/km0n+KcmPkhxI8tskX+ru6/obglfYT/dk83JLJzmb5CvvXie+XlXVXyb51yQvJXlnsfgb2byO7phagqADDOGSC8AQgg4whKADDCHoAEMIOsAQgg4whKADDCHoAEP8H8IJKtNnWIm7AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib inline\n", + "\n", + "plt.hist(numbers)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztvXmYJGd95/l9MzIj8qyrq7r6qD4ltS5AEghJ3Ie51wN4vNgGDPjEO+PZwYN3Z/HMzq7x7Dzr8T0z9ngsGwzLADMe47GwGWMwh8UlgQQCXS211Oru6u6qrjOr8o7IiHf/iHjjfCMy6og8It/P8/TTVVlZlfFmRvzi935/F6GUQiAQCASjT2bQByAQCASC/UEYdIFAIEgJwqALBAJBShAGXSAQCFKCMOgCgUCQEoRBFwgEgpQgDLpAIBCkBGHQBQKBICUIgy4QCAQpIdvPF5udnaUnT57s50sKBALByPPwww+vUUrnej2vrwb95MmTeOihh/r5kgKBQDDyEEIuxnmekFwEAoEgJQiDLhAIBClBGHSBQCBICcKgCwQCQUoQBl0gEAhSgjDoAoFAkBKEQRcIBIKUIAy6QCAYa75zYQNPLm0P+jD2BWHQBQLBWPOhz/wAv/vFpwd9GPuCMOgCgWCsWd5qo6Xpgz6MfUEYdIFAMLbUO100VB1q1xj0oewLwqALBIKxZXmrDQDoCIMuEAgEo83KtmnQhYcuEAgEI84yM+i6MOgCgUAw0lzb7gAQHrpAIBCMPNe2mYYuslwEAoFgpLkmNHSBQCAYfnSD4r0f/Ta+8cxa6HOWhUEXCASC4afW1nD/06v4zoWN0OesMA1dBEUFAoFgeKl3ugCAhvW/H8OgWKmZHrqmUxgG7duxJYUw6AKBIJU0VTPQWQ8x6BtNFZpOcWgiDyAdXrow6AKBIJUwQ17v8DNYWED02EwBQDqqRYVBFwgEqaRpGfIwycUx6EUA6QiMCoMuEAhs1uudQR/CvuF46GEG3VzrccugpyEXXRh0gUAAAHjg/Dru/Dd/h0vrzUEfyr7QVC2D3uYb9OWtNggBjk6Zkovw0AUCQWr4/mIVlAKr9fagD2VfaFhB0YbKN+grtTYOlBSUlCwAERQVCAQjQqPTxfnVeuRzzq82AAAdbfQNG+Bo52Ea+vJWG/MTCpSsaQbTsG5h0AWCMeCjX38Ob/uDb4DS8Fzr82umwU9DtgcANGNo6Icm8pAtgy48dIFAMBKs1juotbuRxtr20FMQHAScdMW2ZqDLMdbXtts4OJGHLFkGPQU3MmHQBYIxgBXZhMkP1aaK9YYKIEUeuks7b/hy0dWugfWG6vXQU7BuYdAFgjGAGTe/YWM8a3nnQDq0ZMArtdR9gdFVKz3T1NAlAMntTJa32vj9L5/DxfVG7yfvEWHQBYIxgBnyMD3ZHTDtpEBLBpxdCRDcmbBZovOTjoee1M7k8mYTv/WFp3GxD+mgwqALBGNAq0cK3/k1t4eeDg3dbcRrvlx0Nkt0vpK3s1ySklxYsDUnJW9uhUEXCMYAZsijPPSF6fT0NAHMNU/kzRzzgIduGfRDky6DntDOhN0o2E4gSYRBFwjGgF5B0fOrDdx0qAIgPQa92dExb3VS9K/72nYHspTBdDHnSC4JxQ6YQVeEQRcIBsN9j1zBl568NujD2Deiimx0g+LiehPXzZWhZDMpSlvs4uCEYn/txkxZVEAISTwPnf1d4aELBAPi97/8DD72zQuDPox9o2X3Bg8a68ubTai6gdNzJdOg9ynL5W8eXcK99z+757/T1nT8i//+KNZ8jcWaqo75SpiH3ra996Tz0NnfHQoNnRByjBDyFULIk4SQxwkhH7AenyGEfJEQcs76fzrxoxUI+sRqvZMa6YFSamvoPA+dFRSdnitDyUl9WffiRhO//N++j498/bk9/63Hr27jUw9e8swOZWueC/HQl7fNsn8AyEoZSBmSmEHXhsxD7wL4ZUrpzQDuAfCLhJBbAHwIwJcopTcA+JL1vUAw8qhdA9WmlhqD3ukaYNPVeAb9WStl8fRsCbKUvORCKcW//MvH0FT10E6IO2GrpVr/a/ZjLU0HpcB0UYYsZQI7k/W6itmyYn+f5LrtoOgweOiU0iVK6Xetr2sAngRwFMDbAHzcetrHAbw9qYMUCPrJesMaHJwSg+7Ox+ZluZxfa2CykMNMSYaSyyR+I7vvkau4/+lVHJ0qoKHq0Pc4y7PaNA35VtMx6GydJVlCSZE8N7KubmCrpWGmJNuPydlMYp93Z1izXAghJwHcAeBBAPOU0iXANPoADu73wQkEg2Ctxkrg0xEcdBszrkFfreP0XAmEEChZKdEb2Xq9gw//1eO44/gU3vuSE+bxheTGx4V55lWXh86mFZWULMr5rOc9YM8LGPSEg6JDleVCCCkD+AyAX6KUbu/g995PCHmIEPLQ6urqbo5RINg3KKV470e/ja+cXQl9DusHnpYS+KiKScDU0K+bKwOAleWS3Lr/3ZfOod7p4t/+6AswWcgBCB9AERfmoVddHjq7SRTlLEpyFjXXujetnjXTRcegJ7lurWvuQIYiKAoAhJAcTGP+SUrpX1gPXyOEHLZ+fhgA9wqhlN5LKb2TUnrn3NzcfhyzQLBrGqqO+59exXcubIQ+x/HQ02HQ3R6w30OvtTWs1Do4PVcCYBm2BCtFz6828LyjkzgzX0HZKvrxV3HuFOahMy0dcFodlJUsyorXQ9+wDLrfQ0/q81Z1HVKGQMqQRP6+mzhZLgTARwA8SSn9HdePPgvgfdbX7wNw3/4fnkCwvzR69MgGnMZNakokF5ayWJKlQHOu56yS/9OzloeecJaL2jXs4GAlb3noHS3qV3pSbarW/xwPXZFQ8hn0zWbQQ5el5DR095qTJs6rvAzAewC8lhDyiPXvLQB+HcDrCSHnALze+l4gGGp6DQ4GgNWaadBT46Fba52rKAHJxTbobg89wXV3dMMODpaV/fHQqxwNna2Teeh1j4ce1NCVBIOiatfoS0AUALK9nkAp/TqAsL3CD+3v4QgEydJrLBkAu0Cl0zVAKYW5SR1dmIZ+sJLHBV8L17W6av3MTOFLulJU7Rp2cLBiSS5RN9c42FkunKBoUZYCBp156FPFnP1YksFgVad90c8BUSkqGDPqtkEPN1rMQwcATd9bSt0wwAz63ETQQ99qqiAEmLDkDyUrJRoMVrt6wEPfa1B0u+WkLbIRe07aYtaSXJzPe6OhoiRLyOck+zE5wRuZ+yaWNMKgC8aKXn3BAXhKyNOQusiGWxysKGioOgxX3ne1pWGykEPGCtglGRwEzBQ+pieX98tDtwy6qhtoWQFdtuaSkkVZkdBQu7ax32yomHbJLUDyaYv9klyEQReMFbGCorUOspaB65eOfnmzuecCG8BcF0vLY7Cb2JwlqzRdWSzVpoapglt6yCQaDHbrySV57xq6YVBUm07VJ5NfGqqOnGQ23iopWVDq7FQ2mqpHPweSDorqQxUUFQhSQ72Hht7p6thud3F4Km99n7xBv7zZxKt/86v4wuPLe/5bH/7s4/i5/+8hz2NNtQslm7FlFX+RzaQ7HzvhSlG3QZcyBGUluyeDXle7MChw4kARgMugd7ooWZKOfyew2VA9GS6Aue40BEWFQReMFb08dBYkPDplDnvoR/n/wxc30TWoPXRhL1zaaOLypnfUWVPV7eAg4F17tali2hccZMHgJDBT+Bzt2gxY7j5tkZX72wbdykVvdHR7B+Bfd5iHnlhhkU6Rk/oTWBcGXTBWuLNceEZrzQqIHp0yDUQ/NPTvXap6jm0vbLU0Tz42YOZkF63goP91eJILkGxvcLe3Ws5n96Shs7WePGCmXbIAqemhmzcOZtgbtoeuBTz0JHu5CA9dMDQYBsVXnlpJzGPrN6zrnkFhB9DcsIDoUTaOrQ/l/9+/XPUc215gXSLbrrU1OzpKimQbOL+HPuUrgQeSkZoMg0LTqdeg95BcWqruaYvrh6UqBiQX6yYGwL6R1TtddLo66p0uZko5z99JtDmXbkDOSr2fuA8Igy6I5O/PreKn//Q7ePTK1qAPZV/o1aiKpSwuTPVnvqbaNfD41e3Ase0WJjlsu3OyNR1FOWtLDyxIqhsU2+2u3VMFMCtFgWRuZLwmVZUeHvp//c4lvPtPHgzISAy2XuahV10eOluvOz2SGXx/louSldBJcKaoCIoKhoLnrOEHe63mGxbqrr4mvFx0v4eetIb+5NK2/Rp7Td9razraliH2dh7soihLAcmFebfeAhvmoe+/1GSPYpO8HnpUHvqz1vn31HKN+3NmoA9N5iFLGft7FjcAnKBoQ+06fVxCJJckdqKabkDOCg1dMAQsWp5RGvKxAa8XzPOIV2sdVPJZu4ox6XUzuWWqmNu3iknAWzXZUL0eOnudKqenSZKSiz3owSe5RK374oZ5/j19rc79OVvnZCGHyWLObtBVd2W5OFKT7nRaDHjo8WMHlzeb+JtHl3o+jyE8dMHQsLjRApCeVrKNThes6R1v17FWVzFXUaBYmmfSkssjl6qYqyi4bq68Z8ml6uo26DbuTbVraeheD5158ZM8Dz0JyYVj0Cv5XOTu76LVquDpa2Eeuop8LoN8TsJUIWcb+Kaq24a87Fr3RjPYaRHY2VzRj3/zAv7xp77riVNEIYKigqGBaZftlHjo9Y5uF6GEeeizZSVR6cHNI4tV3LYwFegIuBvCPHQmPxQtfdyWXKzne7NczOckkeXCG8XGslwMTlGVphu4smk6FOEGXcNUwTTOU8WcNw/dCooWchIyxNTQNzmtcwEzD919jFFc3WqDUmB5K16aqagUHVL+9vFlfPnstUEfRt+glOLyZvo89EOT1iR4zqSctXoHcxXFvgCT1NC3mhrOrzVwx/EplBVpXyUXJqcATEPPIpMhKMmSnU3DPHpulksCPdFVzrDkiuLo236uVlvoGhTTxRyeWalzK2m3WpodA5gsyKg2NXR1A52uYe9ICCEoWdIO67TovokBzk0mzo7smmXIr1RbPZ8LBHPvk0QY9B3we393Dvfef37Qh9E3qk3NNjKj1kpW0w382l894enLApgG/WDFNOjcLJd6B3MeDz25dTP9/PZjUyjJWW6Qdie4jTjLcjEMiqamo2QFCN07gU3LuHkKi3J91tAj+rlcWDd3h6+9aR6droHFjWCmC+tFA5g6+lZLQ0N1Oi3ar2Ote7OpYrKQQ9anae/kBr60U4OuG8iJoOjwsVprj5xhi+LRy1v4zb89G/rzRVeqWFy9cFg4u1TDR7/xHL76lHfsYb3TxfyEKbn4syvamo5au2tq6Amm7zEeWayCEOD5C5P7I7lYRlzOZuyv210dlAJFVwofy/SptjQQ4gyaAJBo7IA3LDmq4+IlSz9//S3zAPiyy1bT8dBNyUX19EJnlJSsneXil1vcx9RLajIMipWaadCvxjDolFKz26IIig4Xmm5gra6mZhI8AHzu0SX8wVeeDdWJWUAUGD0PfdOeYuN4rWwrzppU+Q0o8+Zny7ITJEsoNxkAvr9YxXVzZUzkc6YHqfKrV+NSbWrISQSHJ/Oe4CDgeKvuG8dWU8VEPucZjZZo2qJ1DilS0EOvhXjo+VwGL7v+AADg3Eow06XaUm0PfaqQQ0PV7bUXfQa91jY9dPeOhGHHDnqc5xtN1W6pzPT9KNhzhYY+ZKRtig1gzpM0/+d7hqPsodtTbNxjyXxzJv2VmewznqsoyEkEhCSjJQOm5/bIYhW3H5sCYBqcsOrVuGy1zKrPqYITHHQGPTgpfO4slymfcbM99AQLi9zGbSIf7qFfXG/gxEwJlXwOR6cK3Fz0alOzYwBsLcxzLituycVcdy8PvdeNzB0IvbrV26Dz1pwkwqDHZKXG5kymyaBbjapCDPrlzSYmC6b3OGo3MuaZb7o8dCY1lJWsx7AxWGOu2bICQkii49iuVFtYb6i4zTLo+9EbnPVlmXCl77FgI9PQ3TeyTZcxZPRdQ1dMI8xzKi6uN+2S/hvmywHJpa3p6HQNR0O31sIMOruJma9jxih4nRaB+EFRZtAXpgu4Wu2d5aJZf09MLBoyrlmd8NJSYAM4HnqYEVncaOHYTCHxsWRJwAJ+bg+d3bhKitmoqu7LrHB76IDTeTAJ2M2DtRhg3uReAqObTRVTxRymirIdFGWSSyFEcgnP9khOcuEHRb0NxQyD4uJGEydnzZL+G+crOL/aQNclgbHP1slyMf+/bBn0kuyVXOpWHnqkht7LoFt24EUnpnGl2uKmW3rWLDz04WTF+iDT5KEzQ77d5rcvXdxs4th0EfmcZJeUjwosJc9dbMPWW85nuSXnTEM/UDINepLTe5iU4x/2sJfAaLWpYbIgY7KQtSUn9+Qe9n+k5JKkh65ba5aCQVG/h7683YbaNXB8hnnoFai6YVeOAq7WBSwPvcAkF/NaLSneLJe1egdtzQhUiQLxK2SXt9qQMgS3LUxB7RpY9w0TCayZk3ufJMKgx2QllRp6uORiGGYO+rGZYuKT4JOAeW/MUweCk+B5QdGpYs42sknuTPyNqni9ynfKVkvDdDFnp+9RSm2Pv+iRXFjpvxbqoSfhuISV/gPBdV+0UhZZ060z82UAwDmX7FL1DXv2a+glX1CUncP+Pi6Aq/Q/hoc+V1ZwzLrR9Mp04WX2JIkw6DFxJJfRMmxRMIPO0y9X6x2oXQML0wXTUx21oCgny4UZcDY42G9EWJUoI8kbmd+48XqV75SqlcI3VZChGxT1Ttfx0FlQVDYNmzmZKaihZ6UMshnSN8lFyhAUZSngVLCSf6ahX3/QNOhPLTuZLlVXHxfA8dR5Bt2dwsjz0ONKLte225ifzNsDUHrlotuZPcKgDxfMQ9cN6tHxRpntCA2dFXHYksuI3cg2LQ/d3XWw7vfQ1aCHPlt2V01KieWh+z230h499Lamo6XpmCrKtoHbammctEXz/2WrfN0vuQDWjSyBdbM1K76qSV6DrosbTeQkgiOW4SzKWRybKeDpFcdDZ60L2Hor+SwIcZwv1uqAvQbD3wsdiJ+HvrTVxuEJx6D38tA1XQRFB0Knq0cGOK5tOxWHSeYm9wvD8uAAvhFhJf92UDRBD103qO1J7hfMM2+quu1t2h66NezB7xX6PfREJ8Hbnpu/gdTu3md/10HA9NjZ++ouLAKcz5dr0HPJBIPDAoSVfDaQh35xvYFj00VPjvyZgxWv5NLySi6ZDMFkIQeDmjewjOt33d46L8vFSdeMfv+vbbVxaDKPiUIWJVnq7aGLoGj/oZTi1b/5VXzy25dCn7PimveYhsCoWcRifs0LijIPfWG6mNgFzvi/7nsML/jVL+A9H3kQn/jWBTvbZC9UW5qtB7snwQNOlovfeK7UOnZbAACJ3siCkou3cdZOsQc3uDz07ZZmr7GQc7JcAKcohskUbnYSO9hua9weKzx4kgsAlDkdFy+sOSmLjBvmK3hurWF7vdWmZg+aZrC1u1MWAW9O+m4rReudLmqdLuYn8iCE4Oh0oWdxkQiKDgBVN7C01caFtQb355puRrMPWulsadDR3RcQLyi6uNnEXEVBPichn80kWli0tNVGScni8mYL/+q+x/ET935rT39PNyi2WhqO+8aS1TtdZDNmfnlFyULVDfuCa3S6aKo6Dk64NPQEb2TMYLILnWncu5Vc3AFC5rFWWxpamo58LmN7uraHXo3w0GPGDjTdwKt+4yv4xLcuxDpGtWsgmyEerxswG3TVXU4FpRSXNpo4YQVEGTcdqkDTqV1gtNUyg7qEOH+PBXndGS7m9+a6MwSYyHMklxjBYJaDfthq7nZkqtCzuCjsJpYUwqDDnFsIIHTbzzxGlkKVhs6DboPOC4oubrRwzJrao+SkRHclatfA9QfL+PIvvwo/ec9xj7y1G7ZbGih1MiRYcVHDGnrAuu+xxwAnRsJu2kCyQVFbT7bSBDNWcHDXHrpbcnFp6O42sgDHQw+RH+Kc48tbbWw2NZwNmSbkJ6wvuF9DX2+oqHe6AQ/95TfMghDgi0+YHU+rLc3Tyx1wiotKAQ/d/H66KHukGEZOIvYxhsG0+fkJ06AfnepdXKQKDb3/sMBRmH7JLnaWqsTyaUeZWjsYLHSzuNm015u0h67qhlVqT3CgpKDe6cbexvNgxu3ULPPQnSk27ML2ByGZpOaWXMyxZMmmLbq34iVOoDYuW64iG2bQTQ1dR9HlrTLPlfW596ctAiz/vve6mSy3k66DXIOe99YEsAyXkz4Pfbas4MUnZ/C3jy8DsBpz+Y4/zEO3DTpHbgEQqzKYeeiHXB76RkONjP+ILJcB4Bh0/gfD7szMYx21IhsezCvP5zIByaVrSVALtoeebB66phu2B1PZhxJ45pGfmjVT3TxDD3xTbOp+D32iTx66FjJfc5dB0U3XOLlCToIsZbgeOls3M8ITHIOuxAwGs14/S3EHPYSMYisr3qAoy0H3e+gA8KZbD+Hscg0X1hqexlwMJiG5g6Du73k56IxehWSsSvSQy0MHEOmlC8llADDJJcw7Yt7bgu2hj75BZ4HQI5OFQFB0aasN3aA4Nm2uN8kSeMA86ZkHw/TNWkj1ahyYt3rS8tA3bYOueyomzceiJJfk1q3qpnHzZmJESy6PX92yW7f6qbbMTotFWQIhxO7n0tJ0u+zffA1z3ctbbUzkswE9G7Bu4DGcFtaNc6naitUlMkxymbCmFrG/cX61ASlDsDAdNOhvfN4hAOawmSqnFw0z8H7JpWR76MEbGKPXjWx5q43JQs5+P9kg8ajURZHlMgDYlol56n5Wah1kiGn8gHRp6EemCgFvmHletuSSS1Zy4XnoUXMme8G81cOTZlEUT3IJeuhtyFLG4/ElneXiv8hLcvjA5Fpbwzv+07fw4c8+wf05K/tnAcIpa2BymIfeNWio/BD3RsbOk4aqY7vV+/PqREgulDrX39nlGk7NlrjPPTpVwAsWJvH5x5ex1dQCHvpkD8mFl+HCkKVMdFB0u2175wDsHPkoyUnjSGtJIgw6gKbWW3KZqyj2nXnUGlXxYAbz8GQ+YESWrC0k21IqWQndBAuqNJ26DHp49724bNopfDlMh8yZ9Od9r9bM0XPujIm40gMArNc7uP/p1d5PtOh09WD6XsSQi7985Cqaqo6/f3rVNhJuzNa5jnFj5f9snihDyToZLzz9nD0nzjl+2ZWyF6uVbKjk4v3Mn7q2jZsOVUL/zhtvPYTvXaqi1ukGsnSYx+5PW5QyBNcfLOOmQxOhf7dXVtOylYPOmK8okDIk2kNn3RaFh94/Wj2Cote2zfzkuP0eho1nVmp48Py657Fa28zhnasoqLW9gxU2rIZDB6yqSSVGju5ecHurjoe+F8lFBbHS06aLciDLBXA8ONbljxl0N0xDjyMnfOybF/BTf/rt2AVSPOMWNrWIUopPPXgJSjaDeqeL71zYCDyn2tQ8gxtYT3S/QSeE2K10J0P05Lixg8WNJm6wSvKXYhp0XnDQ3XGx3ulicaOFmw+HG943WbILELwpse/LPg0dAP7ug6/C+156MvTvmh56+I3M76FnpQwOTeQjPXS7Ilh46P2jp4Ze62B+oj9zJpPgd//uHP63P/++57F6p4tKPotKPgfdoJ5A73pDRU5yCjbyVlFKUsFgdd8lF3MrzioH3Xno5UBQ1PzsV7Y7Hv0cMD02Sp2pM1Fc2WzBoPGm2ACWccsFDTovKPr9y1t4cmkbH3z9GchSJjBWD2Brdgy046F3PZN7AGft4R5677TFtqZjpdbBXadmAABXYvQGD9PQ2aDoWrtr55jfOB/uoV83V7ZvJH4NnXnsRZ/kEgczq4m/bnNiWQfzLg8dAI5M5SM/c1FYNACY5NJUda43trLdxlwlH3tM1bCxXu9gZbvjWVutzQx60CPetKa6MPkhybFkgHmxyFYecGUfgqLmmDHzQp8uyqi2VLPzoBoVFG17MlwA7GgMHcv0uBwzha/D8dDLIUHRTz14EYWchHfdfRx3n57Bl8+uBJ6z1fRKLhOFHLaaZqVoSeYX2fBGsQEsqyn6s2ZyywuPTyObIViKse6otEXAvOGeXd4GANx0ONygA46X7s9Dt7Nc5KCH3osoiW2l1gGlTlER42iP4iKWksvLfU8CYdABtCzPXDdowPtmVaLzE4prTFXyBr3R6eJ3vvBU7BzfKKpNDZ2u4dHKa20NFSXnGHRfYYe73wXzJJPy0DWO5LId4aGvbLfxH750LjRXfcs1CX6qmMOmtX7doLYxy0kZKNkMGp0u1K6BzabmyUEHXL3BYwRGmeRweQceeiAoqmTR0nTPurbbGv7q+0t4621HUMnn8OobD+KZlbqdA86otrw52VPFHGqdrpXlws/4CJNcZKm35MICoicOFDE/kY+VuhimoVdcY+ieWq6homTt+E0YP/rCBdxyeAI3+zTxo1NFvOjENO44PtXzePzIEU3J7Bz0Cb+HXsCylRXGQ+safSsqAoRBB+DNbvF7SKxKdH4in7inythqavjJjzyIf//lZ/BFq4hiLzANeb3utJLd9nno7lz0zaZq6+cAkM8mGwx2Sy55K4c6SnL55IOX8NtffBpPXN3m/tw9CHiqKGOrqXk6LTJY/vNqPZiyCMQfekAptQ1abMlFD+rJdqDWJf3d970raGk63nX3cQDAa286CAD4ylOOl97p6miquidrxZ394ffQe0ouMeoOLm84mVBHpvI9uw4C0ZWigOlUnF2q4cZDFU9wmsfJ2RL+xwde4QlSAuZkps/8o5fiBQu7M+hhHrq/SpRxsKJA06ndHM1P2K4kKYRBh6OhA8HUxWt2BaFie2xJSi4rtTZ+/N5v4bErWwD2VmADmMaGZX2wiTwAk1xy3JmOGyEeehLpmpRST5YLYFUOdsIllwesAO8TS1vcn5sBQia55KDqhn1j9g89aHS6gdFzDLsDX4/Pm+2AAKcCsxcdje+hA16n4tPfXsQthyfwgoVJAMCp2RJOHijiKy7Zxd9GFvD2aPFr6CwgzOvjApjr7tUm+vJmC3I2g7mygsOTvXuaAMy4BbXtiuscfHJ5u6fckhT+tMUvPXkN/+dfPoovn72GC1b1ql9y6SURhu1KkkIYdPg8dF9gdMXloccdJLtb2pqOH/+jB3DfdbZYAAAgAElEQVRxvYmP/tSLTU91jwa9pen2Seo16Boq1ig2wDvTcaOh4kDJ2xecHd9+wwKObuNWyWdDPfS2puN7i1UAwOMhHnq16fT4YEaLSSFlxVtk0+h0uWX/7mPqdQN3yw1xJbIOx7j5DXpb0/HE0jbe9LxDHo/1NTcdxDefXbcdEdbqwJ+2aP/dUA09PMsFiI4dLG42sTBVQCZDbNmh53zNEOPGbjDnrtVQa3dxY0RqYZL4exZ94oGL+M8PXMLPfOwh/Mbnn4KczQRugr2C+GG7kqTo+UqEkI8SQlYIIY+5HvtVQsgVQsgj1r+3JHuYyeKVXHwtVV0eelYyc3iT8tDPrzbw3FoDH37rrXjFDXMo58PzkuPCvHMAWHVJLv6gKNOsNd0wR5m5DHo+0TmTwSyAKIP+/cUq1K4ZaOJJLqoVK2DGimVBMM/Z7aFXrKZQvLJ/IH4wmOnnZ+bLO9LQg5ILS6U0X4/JGMdmvHrya248iE7XsHcq9rBkT5aL83UxRHLxBxQZ9rojdmSLGy27cvrIVB6aTrHWiG6q1gkxblkpg0JOstMxb47IQU8Sf+xgtdbBK26Yxcd/5i68++7j+F9eeTogBTEPPWwu7zBKLh8D8CbO479LKb3d+vc/9vew+ktLc4yH34Be2zarRA9Ygw/MDz3Zhk2zFatjHGcIw07ZdA2xXbMMF6XUlbbo1dCZcZjheOhJGHSNFV5IzoVSUXKhW9gHn9sAIcBbnn8YTy5tB7xCpmUyDZ0ZdqZteyUXyTbohMCzKwHir5t56HeenMFqrRNrJ8MrLPIPimbePqtQZtx9egaFnIQvsK6DvtmagNdD9xfZlHpq6L3XbQ4QN4/r8GTvniYAoHb10CZV5XwWz66assaZQRn0bNCgH50q4FVn5vBvfuT5+OAbbgz8TiwPfZgkF0rp/QCClQwpoqnq9pvuLwxZqZlVoqy6LslGVf5xVWUlt2cNvery0NctD6qpmpkUpobuLYFnRUUzHA89GcklWEkX5aE/+Nw6bpyv4KXXHUBD1XHJn+1hGbdJ20P3Sy5+DV3Haq2NAyVzB+ZGjuGpAs4k+DuOmYG4uAFChVNYBDifBfs7R3wZH0pWwj+47TA+893LuFJt9ZZcQsrgea1zzb8fvTOptTVUm5rdGoLpyr1SF6O8VZaLfnSqwO1X3g8UV3dN3aBYb6iBuIqfiR6VzcPooYfxTwghP7Akmel9O6IB0FR1e5akX3JhVaIMJaL4YK/4ixCYJLAXWIZLTiJYq5lfs5Ovks/a213mEdsGvdgfD51XSVfhTLABzPfn4YubuOf0Adxy2AwS+nV0d9k/4DLo1aDkwvpw84qKALeW3EtyaeNgRbH75ceRXXiFRWWfhn5ls4UMQSCTAwA+8LozAAV+74tPuzx0fpZLIef10N962xH8yptvCs9D933etbaGt//BN/C9S5sAnKZcrHmb3XWwR+pilLfKPN2bBxQQBbx56BsNFbpBexr0XpXNQ+ehh/CHAK4DcDuAJQC/HfZEQsj7CSEPEUIeWl2N3+siCeqdLn74P3zNziBhtFQds9YHF/TQvRd7rxabe0H1eavl/P4Z9FOzJTsoyk4+pv+5X8c26J5hycl76P6gKE+TfPRKFW3NwD2nZ3DDfBnZDAlkulRdbWQBR1dmkktZDma5rHDK/oH42T1LWy0cnszbmnKcwCivsMgfFL1SbWN+Is/NYz46VcB7XnICn/nuZXznwiayGeIJfsrZTGAwNOPYTBG/8KrrQlMD/Rr6s6sNPLJYxe988WkATjyCtVeeKuaQz2UidyZd3YBBw7sOsuKiGwcktwDOtU0pdTKfytEGvTxqQVEelNJrlFKdUmoA+GMAd0U8915K6Z2U0jvn5uZ2e5z7wqX1Jh67so1HrCwJRlPt2sOB/aXXrGqSoWSTm97j99BLSnYfNHTTMF43V7YN+rbLQ2f/s8c2mhwPPYamultYlovbaLF2qn59/IHzpvJ316kDyOckXH+wHAiMVn0pfHI2g5Is2Z6727iVlSyaqo7l7XaIhx5v3ctbbRyeLNjNmuKkLvIudH87gqvVVmSBzS++5nqU5Cy++MQ1TBXlgIFmGrlfQ++F7JNcWOzla+fW8MTVbSzaA8TNGxghBEcmC5H9XHq1kWVrj2qelTSylAGlZidKVpvQy0PP+Xa4ftydRPvBrl6JEHLY9e2PAHgs7LnDBPP6/HfTlqpjuiiDkKCHvtXSPNrkTgbo7hS/t7qXgQeMzaaKipLF/EQea3UmuZjvwwQz6K4bx4b1nOlS0ENPYt28XheVfA6UBlNIH3xuA2fmy/YN9pbDE3hiyWfQW8HjZ1KEks14dHJmRFZrnUCGCxA0bDxYUdGhyTyyUgaHJ6N7ezDMwiKv55zPZZAh3qCoXz93M1OS8f5XnrbWGJRPJkJayfbCX1DFYi9ShuCPv3YeixtNlGTJI9kc6TGOrVdPE1YPEdVlMWncaaphtQk8omI+YZk9SREnbfHTAL4F4EZCyGVCyM8C+A1CyKOEkB8AeA2Af5bwce4LLAPCfzdtajpKioSS7J0E3+nqaGm6R49MVHLxa+g9CmziUG2qmCrlMFcxR7u1Nd2loQcll82miko+6/EqHMml97oppXjtb30Vn3zwYqzj88tM5nEFt7GabuDhCxu4+9QB+7Fbjkzg2nbHk1+/2TQHPbjlBzbUwN+Bz62n+3PQAZeGHvF5b7fM8noWGFyYLvTU0Lu62YbAf6GzWadsd7K0FW3QAeBnXn4Ks2UlkKEDOEY+zynmiYLtyJz6BfMm+eMvPoa/+v5VPHRxA8dmip4dweHJfLSH3mNyz7Ql25yaLXF/3g+UBAx6v4OiPfdilNJ3ch7+SALHkjjbLb6H3lTNqS4lRfJ46OwGMFn0equJZ7lYJ0BJzqKtGejqRiADIy6bVtUkC/qu1Tu28bYlFyWH1VodgNnHxW8cnHmLvT301XoH59caePjCJt5994mez3cye1xpi5zMgceubKGh6rj79Iz92C1Wi9Unrm7jlWdMOa/aVD2DHgBHRw+OJXMMXVRQNOrzZhWSLHXv6FQR33x2LfT5QLT8wHqir9Y70HRqT8UJo6Rk8YmfvQs8OXyykENRlnbcGMq/I1uvqyjJEv7xq6/Df/3OIh67so3X3XzQ8zuHpwpYqXVCNeNOD4P+8688jTc+79Cuz/P9QHZJbKu1DspKNpZcVc7nwvPQOdlMSTJWlaI8D103KNSugWIua3roriIjXkm1nORYMp+HzgIuYX3a41BtqpgqynaMYK2u8oOilvHcbKjcSTZKROMiNywDYjFmCTwz6O785DInc+C7l8y4B2vXCpgeOgCP7OLvCw6Ez5l0e+w8ySWOhu4fHLwwXcDydjvSq48aHMwGRbPA6tGp4M7Bz82HJ7ja8/xEPnJCTxg8yWW2omBhuoh/8AJTbfWPhzs6lQelTqsMPyrnc/Yf64tPznB/1i88kkudHyjnMRHhoWsjlLY4crDAnztzhHnkRVlC0de+1PbQfWPJEguKsjJ4V9oiANT2ILtsWgbONui1DmrtLghxSsLdW0aehw6waS5xptg0rf/jV0wC3qAorwPk1WoLJVnySCNTRRlHpwqewKi7dS6DfV8OyccG+JIL2zVEGXRWVMQkl6PTBVDqGHoeUd4q64keloO+E37pdWfwsZ8OzVcIxQ6Ca07LCHZO/Lyl2V9n9SNnsB1KWNfFfvcF3w22Qdd1s2V2jwwXRiUiG00V3RaTg0ku7tasLSsVryBLKMreUnunpLo/QVG/zugvNNkNzMCx7onrDdOgl5WsLUtUlCzqqqnbbjaCBhEwA3ZxPHRmyJe327HeJ38xFeAEa91ez/J2O9DpDjC9U7+HHtojO0JD53ljcaSm5S0zV5xJNiyVLyrTJcq4sZ7oLLDaq41sFDMlGdf7DG8ceJILq5S+9cgk/uYDr8A7XrTg+Z0j1k4iLHWxl4Y+DLh3Jjvx0KMqm0cibbHfnF3e9nSX2y08DZ01OCrKkp3GxuB56FE9k/eKX092JJfdGfSubqDWNucuuiWX7bbmqcZjQ3obahcbDdWTg86IPTjYqtyktHcpOODsSnK+LBfAK7msbAcHUACm7HJ+te40quJKLnwNnXnolXzWnsrkp5fUdHWrjYOVvK39Lkz1Li5i76PCec2S5VRcrbbsiVL9xi+5rNVVOwYDmDdR//tll/+HBEZ7pS0OA+55B7yRhGEMU1B0eN9dF5984BI++GeP7PnvOGmLjqFougx6UZY8qXK8kmolKyU6WzNDYBsHu0/0LnPRq3ZfExn5nISKksWqJbkwWQNwDOi17TZU3fDkoDOUbCZWYdHiZhNZKwjnH8LAg6cn87Jc/PMcGXccm4JBgU88cAFAmORixQpCeprwAqKMnQ4OPjSZR4ZETy5ini/fQze371eq7T1553vBbdgMg2Kj0cGBUrRxKylmX6CVbX6DrlGQXFjwstbuotbu7sCg59BU9UC7YcMwW0OPQqVoX2E9N/bKFsdDZwa9IGdt78j/fLeXZHpsyeWh5zh50ruVXPxNm2YrCtbqHbt1rv91Lq6bBpgXSMv3MGyMy5st3G71NIkTGOVJLoWcBClD7BsvpRTXtjtcyeXVN87hTbcewq//zVn83RPX0OkasSUX9h7w9HOGv0e2HzO10Pl9OZvB/EQ+luQSGhTtmEHRgRl01iZa01FtaTAoPANPwohqVTEKkgs7NiZ37URDB4LXqWb0f83D++66KCumV7zXYOR2ywmKsvmabKteyJlB0abrxrHd0jCRz9qNuYDouYN7xV+EsFfJZdPXOXG2LFsGveu5SbETkjW64hn0OB66blBcrbbwopPTyEkkVmCUl7ZICPFsY6tNDWrX4Bp0Qgh+68duw3VzZfyvn/4egGCf76mQoKiSNdsh86Qc+zkR8zXtoqIJr+FdmC7EGhwcZtDrluSyl4DoXrBjB9ZgZAC2ZBdFQZY8w2Lc9EpbHAZYVtMVq+/PTiQXILiTHsSuZHjfXRcsF9RfxblTmOSiG9T2zN1ZLmUrZYwZ+2pTDXh7LA+dN0x6r5jDkoMe+m4lF9Y6lxm4AyUF63WVI7nsj4e+vN2GplOcmCnh6FRhR5KL/0J3G/RrNf74L0ZZyeKP33unfVPwa+jTIRo6IQQ3Harg+UcnQ48vKnaw3e6iqercwcFxNHR+HrpkjzTrlYOeJCx2wAx6HA+9KGdDr9FeaYvDAPs82Ge3E8kFCPZEH8SuZHjfXRd7lR4YWy3NbljEjIU/y8WgzgW31dI8QwMA88Oh1OlBsp/4I+IsrXC3694MSC5yiORi/ryXh94ra2XRnjNZwMJ00e75EYXKkVwAb+aAk+sdfoGdnC3h37/zDkwVc4HMjkMTeRybKeDmw8Fc7c/901fg515xOvTvRlUGs+M67MsVX5guYnm7HTrCLepCd990BuWhA07sgM2hjeOhmzEo/jnieKs7q1rtJ37JJSq24oaXlQUMJhA8Egbd6UK3e+1a0w00Vd1OK2PGwh0ULSleA1p1TY9nsG1ZErKLX0NnrW33KrkwD3W2rGCzqVkDooOSy0VrbmK45NJjEvwG68JXxLGZgj1IOAqt6829dx8TSy9lgbYorRsAXn3jQXzvX70e1x/09gMpyBK+9s9fa1eT7gR3j2w/S3aVqPe45icU6Aa1O1f6cbxVTpaLy6DHKSpKCnYDX2ceeowCpWKE5DJKGvrlzRYI4V8HPMI6Load20kyvO+uC7+h3Q0sZZEFmpixsA16zinzZTr6ViuY0+wMPUigURUnxWkvLXQ3mypkyWmjyrwsc7iFy0O3vl7cbCEnkUDPE4BJLtFrZhfCkak8FqaLWG+oPW9Gqq4jmyGB8nS35LLMxgBGaN2MXtPid0pUq4cle+fg9aSZUfYPHGfYWS4hpf+Mo1PFwM/7BVv3ekNFhoQPw3ATKblErHlYYHLQtVobB0py7DYEYYOiWR/9nPDQvfgb/+8GZsBZyTJ781vWCViQJTtoxlIXt5o8D51VkyUwX7NLA9JDWeHnuOoGxbef28BvfP5saO+QasPsFMmMnHvb7PbQWTqf2jUwUwq2YQXi9bBZ3Gzi0EQeSlayW6v26g2u6cE1s+Njn9G17TZmSjLXo00aJSuF5qEvbbVBSHBrzm6gYQY9juSSzZDYGm4SsHWv1VXMlBRPYkAYRVkKX/MI5aFTGk9iYoQFRXnDW5JmZ42SB8R+BEVtD92WXBwPPZsh1kAA53UoNQNTAYMec+jBbuB66EpwUPRvf+EpfOrBS1i3tvRfeWoVf/OBVwT+nj8n210cMuHy0DMZYuc/h06Cz0k9s1wub7TsKTZs3uTiRhNn5sNborKBz348QdGQfuX9ICx2QCnFFx5fxo3zlcANqdf5GpXlwpyKw1P5WEY0KVh2z1q94zlvoog06COQh+4+tp3cTMOmFkV9zkkxvO+uC3/j/92w5ZNcmIzBOi0CbmlHR0PV0TVoYJAuC+okNTBZ9hm3si+31zAo/uNXn8WxmSJ+/1134H9/4414cmkbT1+rBf5etent5e72OvyyCvs+LJshHyO7Z3GziQVrQj3bCfXKdAlrXsT6Y7AcdN4Ytn4Qlqb6tXNrOLtcw8+8/FTgZ7089OgsF/Pz8g+G7jfmMHQD6/VOrAwXACgqUZJLMD112NitQVeyEuRsJqihs95MwqB7YYZ2b5KLadD9QdGWqtsXoKOhd7ll/0C8Htm7heehl3ySy0bTnHX4I3ccxQ+/4Ah+7M5jkDIEf/m9K4G/F/DQK3zJxfzeXHuUh05puNTU6ZqTf5iHPluWUchJPTNdwmYuVvI56AZFSzP/7nyPgGhSKCE9bO69/zwOVhS87fYjgZ8V4hp0zrrZuT6ooiKGneXSUHtWiTKKOTPlUuOcIx3r3N7vGMd+kskQ+zPZqdw1kc96mskB/MZzSTMiBr132uLF9QZ+8VPfxaV1vkfIDPThyQIyxCW5aLptyG2tXtXt1rn+STBxptjsFt64qko+62lH4G+8P1dR8LLrZ3HfI1cDI9s2m5o93AEw0yDzOWd4hhsWGA3LZujVG3yp2galzg2TEIKF6d656JpucING7Pg2mxrW6h3MD8xDD+ahP3ZlC19/Zg0/8/JT/EyVPUku5u8OMgcdcLqKmo254nnoUTeyfvcF3y3s+u6VUeWHN9icBUWFh+5DyWaQzZBID/2zj1zF536whP/5P30TTy0H5QdWJTpZyHkCjS21i0KOeejshOzao8wm+umhc7zVsm+uKG+SyttvP4Ir1RYetqayA6bGy3qhMwghtrflN+jMY+f1QgeCLVX9sDJ/FgxlX/eqFo0KigLAc6sNUGqmAg4CmdMu+d77z6OsZPGuu49zfyeO5CJLfG91spDDP3r1dXjrbUHPv58o2Qy2WxrqnW7sAKGT3RO8TvvddXC3sGPcqYduxnxCCouEh+6FEBIZcAGAR69s4WBFASHAj9/7rcAg6O22BlnKIJ/LoOKaMNJ0SS7unQALovoLi5IcmBwmubh3Jrxp5G+49RDyuYxHdql3uugaNFA1yWSXgOSixPPQwwKjbLCF26AvTBd69nPphEou5vGcWzFvzgOTXKygKIsdXN5s4nOPLuGddx3zdKx0U4wwbEC0cSOE4P940024ISKQ3A+UrGSni+4kKAqEe+gjYdCZ5LKDLBeA33FxEO0Ohv8dtvAHB/08emUL95w+gP/2Cy/FRD6Hd//xA57pKVstDROFbKBPiDsoqmTNIb3Nju5Mj/dLLlJykgvPQ6/ks9B0ar8ebxp5WcniDbccwuceXbK9AruXu08TnyvL9u+4Yd+Heej5Hjeyxc0mchLxdEQ8Nl1Erd215SseYZILy8J5ZsUcjTfIoKhhTYIHgE986yIIgJ9+WTAYymA7vvAUPn2oS+ABM3agW2uOq6Hb6+YkL/S7jexuYVlsO/bQOT3RWVBUZLlwKHHS9xhr9Q6Wttp4wcIkjh8o4nd+7DY0VB0/uLxlP8dstGUaZ/f2qK05Hjob0ttQnaCoP8vFTltMIsslJG0RgC27rNY6KMlSoC/J2+84gmpTw/1PrwJwyv79Qc65ioKKr+EY4HjEYdVx/qEHfi5vms2k3H/3mJXxEuWlm/1reGmL5vt+zjLocYqKkkD2xQ4ev7qNW49ORpblSxmzuVVooypt+I2b2wjF1dB7Si6joKHvMiha5njoIigagV96cPPoFdNwP89qsnTigDk5/IrLkJgeOjPoOY+H7h4EW5Kzpofe0pDNENvYMxwPPRkN3f/h+wPCYY33X3HDHGZKMv7soUUA7rJ/7w3p515xGr/1jtsCv1+OadDDyv8XN5p2hgsjTupi2Fac3WCeXalDyhDMxvQS9xu71YP1eV+ptuzAbxTMMeAxCt6qO9gbV0O3g6IcWW5kJJdsBnI246nTiANPchlEdezwv8MWvAIbxmOWJ36rNTR4tixDyWY8Abntdtdl0PmSCwAUFQl1y0N3V1kymIceJyh63yNX8Mrf+ErsAKqm03APvYdBz0kZvOeeE/jCE9fwg8tVu9OiX3K5bq6MN956KPD77n4vPBzJJcxDbwYMHdPTowKjvMwewFn3ekPFwYqy48n1+4V7Z2IYFFc24xn0Qi66yGbYJRd5Nx66r3WGm1G4iQHmuufKyo7TKyv5HOqdri1TAaI5VyRFWQptzvWDK1s4PVeyt+mEEBydLnjKzmtWb3PAK7m4s1wA5qGbuq8/wwWINwme8dc/WMKljWbksAM3PA/dbp7PGlXV2qHbwZ97xSnMlGT828+fdUku8UaYvf2Oo/iT994ZatBtw+bz0DXdwB9+9Vms1VV7Z8SYLORQyWejhz2EZLmU5CzYNRXWNrcfuCuD1+odqLqBhRg54iUlujf4sBs39nkXrS6kcXBnifkJC34PG2UlG2i2FgdmW9wqgqb3vznXSJT+A7B7lfN47MoW7jo143lsYdqbMucu42eSC6XUykN3GXTFbAGq6cEqUaC3lswwDIrvXNgAYPYZPz0XPayXUhqa5QI4/WVWax28/PpZ7t+o5HP4J6+5Hr/210+goxkgJFgYFcZkIYfX3TIf+nPnRuas++GLm/gXf/EonrpWwxtvnce77gqm8U1w8nPdqF2de8KzdgS1dndgKYuAtzKYtVpYmO7dNKsgZyNbyQ67cWPneVzvHHAkl1aI5OJPlR1GfvWtt+5q1oG7/J9dc51u/6tjh/uschEWFGUBUf+QggWXh04pNQcjuySXrmH2aqEUHsmlZHWMq7ZUrjFkF2IvGeWpazU70+SC1ZY2CuduHiz9B8xCqLamY7vHrMN333McR6cKeOjiJibyudgd43qR9wWD1+odvPOPH8B2W8O973kR/ug9dwYyggDzBhmVbsqTmRgsiM2bJdov3HUH7HyKU/RTzEl24zc/puQyvH3BASc9N26GC+BILryd9CjITIApSfrbL8fB6bjofObsxt3P6tjhf4ctwuaK+gOijKNTBWw0VDTVLlqa6XG7PXQAuGb12S7m3Bq6+Tq8xlyA6TnmJNJTcnnw/DoAs2vexZDqVTdhept7XuEaJ2XRj5KV8MHXnwEQX26JA7vAWR76hbUG1K6B//cfPh9v4GjyjIKc5QbJGKaGzj/h7ZmfwyC5dHVbOopTll9SwiXCTlcfGcklbg46YN70CQH3RjYqGvpu4XVcHEQgeGTe4bC5oo9e3gIhTkCUwQJXVzZbdpUo8/iY3rVijTbzZrmYAyW2mlpoD2glK/X00B98bgNHpwo4M1+xB0dEoYWkODnDPbrcKlEeb7/jKG46VNnXiTf+0n9WdHK4RxOpKE8VCA+KAs5FMlAN3RUzubzZwnQxF0gZ5VGQs1zpgf2tYTdutuSyAw+dEIJijj+1aBRkpr3A64mu6v2/cQ+/qGVRlB3DJmcdQ/volS2cmi0FKh+ZQTfzo83HJgpOUBRwPHSP5GLpti1N5wZFgd7j2Cg1e5W/6sY5tFSd24rAT5iHXsxJIMQMijKD3qvPhJQh+PTP3wN9H+ee5n2l//ZYuB7GtihLWN4OLyyKMm6VIZBc3L17zAyXeEMnSrIUOV9z2OUHdiObrcT30AFrRzbClaK7heeha13a95vYyLzDYXNFH7uyxR3yyy68y9WWXeYflFyYh+7W0CXbs+IFRQFrzmREP/RnVupYb6i459QBnDhQwuJm05POxCOsCCGTISjLZic3XpVoGNMleUdN+nvhL/1f3mqjkJPsm2QYUZPggeBgbDeOhz7IQQ+Ohn55sxm7C2JBlrjpe8CIFBbldu6hA2wM3RhLLi77pOoGctn+ptuOzDvMG+u1WuMHRAGzF4MsZXB5s2n3ZXFXigLAimXQvXnojoEKyxAJ65HNeOA5M7vl7tMzOHmgCE2nuNpjck/UVHQWEF6tdXY063A/yWYIMsQruRyazPcM+PTqwRPWnAtwGfQBlf0D3oKquEVFgLVuTedmTIyGh77zLBcgfFC0KbkMdyB4L1QUjuQyAJlpuM8qF7y5oo9ZAVGeQc9kCI5M5XFlsxXobc68fTso6tPQGf7WuYxeHvqD59dxaCKP4zNFHD9g7hR6BUZZD2lukY017GGl1sFMUe5rKTGDEOKZK7q81Y7lOUfNmdQNCt0Iz3K5fq6M4zNFu3HYIGDHdnWrhbZmxG5rW5Sz0A3KDZ6PQpbLwlQRspTBjYd2lvERNig67ZJLPmd2hHVLLqac2N/PeWQ0dN5cUdaJ76bDE9zfYbnotoful1xqHMkllocuhXrolFI8cH4DL7v+AAghOGkV21zcaODl4OePA9GtNlk+tqbTAc+ZzNil/8vbbbz45EyP37Akl5DgYNRNDADe99KTeO9LTg50KAIzvOdXzcB2XA2dnVMtVbfjD4xRyHI5fqCIs//6TTuu0C3KwXqRsBqLNOE0/XM89LBpXEkyMu+wOyjKWKuryOfC+y4cnSrg8mYLW1aWC9V5E4kAABfHSURBVNvCs5vDCguKutMWXd56mIceFRQ9v9bAWr2Du08dAGAG9ORsJr6HHjL0gEkugzTozEM3DIqV7U6s7BM2xYaXFaTq0YUXhJCBlfwzmJZ8ftVsEhZXcrHL4MP6moxAxsdu3nuehx4lJ6YJ/5ALlTNSMmlG5h3mBUXXah3MRvRdWJguYK3ewUqtjZIs2Z6gZFUhrnA9dOfrsCyXKMnlwfOOfg6YF8XxmSIurEWnLkaNJWOtg1drnR33ad5PmIe+0VSh6gYOxZBcCi5P1c8ghujuFHZsz1oeelzJxW5U5Qvid3UDBh3uNe8FXsxkFAZE7wf+Bl2D2JWMzDvMDK0nKFrv4ECEgWMX39nlWsA4sz7jgNcrd3+9m6DoN55Zw8GKgtOzTl+TkweKuNRzFBsbKBu8OZXz5tSi1fpgPXRzHJvupCzGGGRsz2nVgjp6L8llGGBGaMvqBRQ21MJP2LCHQQw96Ce8QdFqytfM8EsuIigaAW+u6FpdtQc28GB659ml7YBxZvILIU5ZO+DsBAo5KTRwFeaha7qB+59exWtuPOjZNRyfKeHCeiOyR4TjxQRf09xNdKB2jQFLLuYkeMeg95ZceDdihtY1349hNuiEENsQHY2pnwMuiXDMjFuR02VyEF0HBwFXchEeOh/eXNG1eicy15p56A1VD3hWLDBayEke48s8q6imVmFB0YcubKLW6eI1Nx30PH5ytoi2ZmDFKgzi4WjoHA9dydoTcwbtobc13a4SjVPww+ITXMnFGqLLixsME0weiaufA96gqBtHTx7uLJfdUrSC4O6B5eMquZhB0f5+ziPzDtvThCyDbhgUGw010qDPVxRkrcCOvwCGeegFXwYC2wmEBUQBKyjKCXZ99akV5CSCl9/gzWZhbWWjAqORWS6uoO9ADbrloV/bbkPKkFjHYksuXA29/+1FdwMzvnGLioDwnQnb2aXVWy0qWVAKtF1JA2nflTAmXLOKAVNe62enRWCEDDpg5ojXreq7akuDbtDIwoeslMHhKdOLDGrolofum0jEPKuwgChgSS6crI0vn13BXadmAvM6T1iDHqK6LqoRerI7lfLgoDV0zcDSVhtzZSUwxo6HHRzk5KJr9lZ8sJksvdiNh16wb2Q+yUXv/xSbfsKLHaQ9bsCoWPUibHcyiAKynq9GCPkoIWSFEPKY67EZQsgXCSHnrP+nkz1ME7eHzjoP9ipvZ15VUHIxLzj/iDkm7YSV/ZvPCTbnWtxo4txKHa+58WDg+UenzVmbl2J46LwTwF1YM1cebOfBdlfHNatKNA5h0gMQfRMbJnYluYQMio7KZkoDvEHR46Khl63dCYubDGtQ9GMA3uR77EMAvkQpvQHAl6zvE8c9p3GtFs+gs8BoWFC04JvGQog5RzRKQ+d56F99agUAAvo5YBqshelCpIceWSlqGXRZyvTsnZIkihUMXt5qx26YFZbtATgdJofduMm2Qd9BUDRMcmE37txwr3m32C06NG9wEACUIf+c9wrb9W9bOvpQFhZRSu8HsOF7+G0APm59/XEAb9/n4+Liniu6Zk2PmevRDc720H0GmnnsxVwwaPGhN9+Md99zIvRvsrRFd9bKV55axYkDRU+6opvjM8V4GnpILxfA1M8HWTXJCouWt+J76JGDgyOKqYYJ1gt+Jxq6LGUgZUhoCl9ajVuBcwMfFw399Jx57T95dRsAf6Rk0uz21eYppUsAYP0fdEsTwD00IL6HziQXflDUL7kAwLvuPo7bj02F/k3FN72nren45rNrgXRFNycPRKcuRnno7FhnB6ifA+aNbKulodbp7kByMY+d14FvEDMXd4MiZVCSpchAuR/WGzy0yCalxo03KDrta2bcfmwKcjaDB59bh2FQdCP6FCVF4q9GCHk/IeQhQshDq6ure/pbJTlr56Gv1TvIZkjPQg+2TfYPq7DzzTkGvRf2GDrLCH/r2XW0NYMrtzBOHCii1u7aY+n8OO1z+WmLwGADooDpoTMjHFdyKYRoycDoXOh5WcLCdHHHu6OiEmyha0suKU5bBLzB4HHR0PM5Cbcfm8KDz20MbM27fbVrhJDDAGD9vxL2RErpvZTSOymld87Nze3y5Uw8Gnq9gwNluWe/ibtOzeBfv+1WvPKMN5WQ6V08D70Xim/Yw98/vYp8LoO7T4U3q2Itb1nnRz+qTkPnD7oll0HiDtjGnSIkZQiUbIavoY9IUPSDrz+DX3vbrTv+vSJn/N6o3MR2S6TkMuSf835wz6kZPHZlyx4oPoxBUR6fBfA+6+v3Abhvfw4nGm+WS3QOOkPKELznJScDHpEjuew8yMj0T9ag69nVOs7MVwJd9dyEVQ4yoqrKKvksMmSwk3sAr1d5eAc9yosh03t6NecaFm4/NoW7Tx/Y8e/xhj2kPW2xxKk7SPtNzM3dpw/AoOauHeh/z56e1owQ8mkArwYwSwi5DOD/BvDrAP6MEPKzAC4BeEeSB8koK07nvvUeVaK9cLJcduOhO1NsAHPM3S0hLXwZUdkeQPSw5HxOwsd++i5u3/d+4m6REFdDB1hP9AjJJaWeW1EODopmu7q0Nufi1R10xkRyAYAXHp9GTiL42jlTXu737rOnQaeUvjPkRz+0z8fSE/fA5LW6iusOlnf9t6KyXHrhHphsGBRXNlt4wy3zkb8T1dME6N334ZVn9iZX7QfMQ58s5CJ3I37Chh5oKb/QC3I2ILGlXU/mOS5OZk864wZuCrKE2xam8PVzawBGR0MfCGw7V7fma+6llexUMYecRDCzwxFbgPMhqV2zP4uqG1iYic5RtkvgO3zJxfTQh/vjYDeyncgtQPgYulHR0HdLSZYCn3fa5YeclIEsZcZWcgHM1tm2hi4MejjMQ7+23YbaNfYoueRw3y++HD/6woUd/y7zVDtdA4ubZm75sR5VhCVbQw8ZHDwCE12YVx43IMoIGxQdNhg7LRQ4NzInyyWdawbY5x0sLBr283u/YMNtgP7LiSMzgg5wZIsLVoHObI+iol7cciRa9w5DzjpB0VUrH/5YDw89qqcJYFZNDruWzIzQToOzRdkZJuJG1Vn73OEOiu6WkpwNjN9Le+k/YO5M3I6LquvIZkis3j9p4EUnpiFlCHSD9r1obqTOKpaPfckqod+Lh74XFJfksrjRAtC7irCnhj4CHjoLBu8kIArwPVXAKo0OSdVMA2ZQNCi5pHnNQHBHlvYB0X5KStZOYOh3RfBIvctMcrloTf85UBqUQXckl8ubTRysKD2DhPmsBEJGW0Nna9ypQS/mwiWXtHrngGnYOl0Duqs3eKerp1puAYKDosfNoAPOCEqhoUfAdOj9klx2izsourjZ7Cm3AOZs0UJOCtXQR2Fw8OHJPLIZgpt7pGj6iQqKpvlCL3Fa6I6DcfN/3qo+/Of2fvO6m+eRzZAdx5v2ykhq6BfXGyAEmCkOxqArLg19caOFF5+M1z04LB8bMPXkgjzcJ/3CdBGPffiNO0pZBMz0vbC0xWHflewF94BsVpk8LgZ9ra7a33fGYM1+XnxyZlfXyl4ZqXeZSS7VpoaZoozsgIwBOzkbHR1LW61YHjpg3pDCgqKj4KED2NUJWpTNkX0sTZGhdmmqDTovbtLp9n/oQb8pKkJyAXZ3reyVkXqX2fAJAJGTivpxHIA5gcigwLGYfbKLcjZQOcgw5Yd06slhVbKjEAjeC4VcsN3DOBg3f8xkVJyVNDBS7zKbKwoMLsMFcIKiz67WAcSfZBPW0wRI90nvlh7cjEKq5l7gTWtK+00MCGb3DGIU27gycu9yybpIBmnQWWbGsytm+mRcySUsOAikW0/mBQcBa80p3ZUAYZKLntrWuYyi4s2/H4ddybAwcu/yMHjohJgtYZe325AyJHYpfEnORnvoKT3peS1VAdNzS+tNDHAkl0CWS4rXDJiSC2uiB6T73B42Ru5dtg36gFIWGe6+JnGDs7zue4w0GzdbeuD0Bk+zceN56ONg3NwSG6UUi5vNPfVdEsRnpNIWAadadHZARUUMOSsB6MYOiALmBBu/UWOoKc5+CAuKarph36DTCDNsjTHLcnEPiq51NFzb7uBFJ+Kl9gr2xshdTczrGRYPPW5AFDAlF38pOCPNGjqTHoLDHgxMpXTNAH+e6jh46O4b+GNXtgAALxQGvS+M3JnFAmyD1NABx6DHDYgC5gXuLwUHgK5uwKDp7UYX6qF3aaolF9481XEosim6BkU/dGETJVnCTYd21whPsDNG7swahqAo4BjfYzPxPXTeAF3APYpt5D6OWERJLv3uRtdPpAxBPpfhFBalPMvFdZ4/fHETdxyfHptOi4Nm5K6msjU6jg1dHhRsUPRONXSA76kC6fXQw/LQOylvzgUEM5vUMWjOxT7vlVoHZ5e3hX7eR0ZOQ3/HixZwfKY4kLJaN6wt5k4kF3vIhU9H77DBwSk1bkXO4GDA9NDHwbg1O+NVWMTO828+uw6DQhj0PjJyBv30XBmn53Y/S3S/UHIZyNnMjtKxwqWHdHvoUoZAzmb4hUUplZkY7mIySulYZLmw8/xr51aRIcAdx6cGfETjQ7rPrAQpyhKOTReQ2YE2GOapjsOILl6VrKanuzkXYHXYtFJVuwYFpemeVgQ4Bv3yZgs3HpqwO00KkmfkPPRh4ZffcCPqISmIYTANvcHxVIH0BkUBpiUHb2RpXjNg3cis82QcbtyA47gAwItOCO+8nwiDvkvOzFd2/DslVzqXG/tCT7FxK8gSWppzI6OUjoWeXJSzqDbNMYXjMCAaAPK5DAgBKAXuPDEz6MMZK9J9Zg0ZPdMWU3yh+yWXrpWLn9ZAMKMoO9XBjoee7rRFQgiKVtKCCIj2F+Gh95HQvuDMc0uzh56TAj1NgHTLTIC3ley4SC6AOaWqpGR3VEkt2DvCoPcRVhQVqqGn+EL3jyVja067cSu6xu91uub/aZdcAGCuouDMfBmEpHsHNmwIg95HlGwGGRIssBkHDd2cp9q0v097dSyjKEtoqF07ZRFI/00MAP70p15sFxgJ+ocw6H2EEMIdQzcOWS4FOTiWDEj3TQwwM5sMagZE1THZlQDAoZgzAgT7S/rPrCGDN4ZuHDy3oizZ+dhA+oupGCw42FJ1bFiS0zhILoLBIDz0PlNSsp7+2IDLuKXYWy34slzGYVcCODnZ7/ijb+GZlToIgRj2IEgMYdD7TCEnBfuCj4OHnstC7Rro6gayUsaV5ZLuoNmpuRKkDMFEPosPvfkmvPHWQzg1Wxr0YQlSijDofaakBMfQOd5qeo2bnbKp6ZiQMmORew8ALz45g6f/nzeL9rGCvpDuq2kIKXIGRY+Dh+5voauNQe49QxhzQb9I/9U0ZJSUYJOqcUjh8w9MZnGDtHvoAkE/EVdTnynk+E2qgJQHRXOs06RVNWn1gE/zTUwg6DfiauozJUXiVopmM2RHrXhHjaJPclG76c/sEQj6jbia+kxRznK7LaZZPweCfWyc0v/03sQEgn6TbisyhJRkCapu2AYNGI/JPQWfQR+X5lwCQT8RV1Of8Rs2YDzmTLICG9YTfVyacwkE/WRPeeiEkAsAagB0AF1K6Z37cVBphnVcbKpdTBbM0Vxql6ZeSw6TXISHLhDsH/tRWPQaSunaPvydsYDXE30cPHR/HnpHSC4Cwb4jrqY+U+SModO6RqqrRAGnSZU/Dz3tOxOBoJ/s9WqiAL5ACHmYEPL+/TigtFOSg4Oix8FDz0oZyFKGk+WS7nULBP1kr5LLyyilVwkhBwF8kRByllJ6v/sJlqF/PwAcP358jy83+hQtDb3l6zw4DtJDwdU6WO0ayBBRFi8Q7Cd7siKU0qvW/ysA/juAuzjPuZdSeiel9M65ubm9vFwq4Hnona4xFtJDydVCd1xuYgJBP9n1FUUIKRFCKuxrAG8A8Nh+HVhasdMWO14PfRykh5KSxUbDHPIwDjKTQNBv9nJFzQP4OiHk+wC+DeBzlNLP789hpZeSHBwUrY6Jh/6y62fxtXOrWK93zJvYGKxZIOgnu9bQKaXnAdy2j8cyFhSVYNriuMgP77r7OD72zQv484cvQ+2Ox5oFgn4irqg+I0sZSBni6Yk+Dr1cAODMfAV3npjGp799aWzWLBD0E3FF9RlCCIqyd2qRptOx8VbfdfdxXFhv4pvPrqc+914g6DfjYUWGjJKc9aQtdsbIW33L8w9jspDDSq0zNjcxgaBfiCtqABR9PdHNAOF4eKv5nIR/+MKjAABlTG5iAkG/EFfUACjK3jF046Ynv+sus8BMeOgCwf6yH825BDukKGfR6Hg99HEybjfMV/CqM3OYKuYGfSgCQaoQBn0AlGQJ61aBjWFQdA06Vh46APzJ++6ERMZDZhII+sV4WZEhoag4Hro6pn3Bc1Im1TNUBYJBMF5WZEgo5hwNnRl0ESAUCAR7RViRAVBSsmK2pkAg2HeEFRkARVcbWdEXXCAQ7BfCigyAoixB0ynUriE8dIFAsG8IKzIA2Bi6lqoLD10gEOwbwooMgJLiDLlgw5LHpVJUIBAkh8hDHwDMQ//o15/DmfkKAOGhCwSCvSMM+gC48+Q07jo1g4984zlQaj4mNHSBQLBXhEEfAIcnC/izX3gJ1uodfOnJa3j86jbuOD496MMSCAQjjjDoA2S2rODHX3x80IchEAhSgtjnCwQCQUoQBl0gEAhSgjDoAoFAkBKEQRcIBIKUIAy6QCAQpARh0AUCgSAlCIMuEAgEKUEYdIFAIEgJhLLa8368GCGrAC7u8tdnAazt4+GMCuO47nFcMzCe6x7HNQM7X/cJSulcryf11aDvBULIQ5TSOwd9HP1mHNc9jmsGxnPd47hmILl1C8lFIBAIUoIw6AKBQJASRsmg3zvoAxgQ47jucVwzMJ7rHsc1Awmte2Q0dIFAIBBEM0oeukAgEAgiGAmDTgh5EyHkKULIM4SQDw36eJKAEHKMEPIVQsiThJDHCSEfsB6fIYR8kRByzvo/dZMwCCESIeR7hJC/tr4fhzVPEUL+nBBy1vrMX5L2dRNC/pl1bj9GCPk0ISSfxjUTQj5KCFkhhDzmeix0nYSQX7Fs21OEkDfu5bWH3qATQiQAfwDgzQBuAfBOQsgtgz2qROgC+GVK6c0A7gHwi9Y6PwTgS5TSGwB8yfo+bXwAwJOu78dhzf8OwOcppTcBuA3m+lO7bkLIUQD/FMCdlNLnAZAA/ATSueaPAXiT7zHuOq1r/CcA3Gr9zn+0bN6uGHqDDuAuAM9QSs9TSlUA/wXA2wZ8TPsOpXSJUvpd6+sazAv8KMy1ftx62scBvH0wR5gMhJAFAP8TgD9xPZz2NU8AeCWAjwAApVSllFaR8nXDnJBWIIRkARQBXEUK10wpvR/Ahu/hsHW+DcB/oZR2KKXPAXgGps3bFaNg0I8CWHR9f9l6LLUQQk4CuAPAgwDmKaVLgGn0ARwc3JElwu8B+OcADNdjaV/zaQCrAP7Ukpr+hBBSQorXTSm9AuC3AFwCsARgi1L6BaR4zT7C1rmv9m0UDDrhPJba1BxCSBnAZwD8EqV0e9DHkySEkB8GsEIpfXjQx9JnsgBeCOAPKaV3AGggHVJDKJZm/DYApwAcAVAihPzkYI9qKNhX+zYKBv0ygGOu7xdgbtVSByEkB9OYf5JS+hfWw9cIIYetnx8GsDKo40uAlwF4KyHkAkwp7bWEkP+MdK8ZMM/py5TSB63v/xymgU/zul8H4DlK6SqlVAPwFwBeinSv2U3YOvfVvo2CQf8OgBsIIacIITLMAMJnB3xM+w4hhMDUVJ+klP6O60efBfA+6+v3Abiv38eWFJTSX6GULlBKT8L8XL9MKf1JpHjNAEApXQawSAi50XrohwA8gXSv+xKAewghRetc/yGYcaI0r9lN2Do/C+AnCCEKIeQUgBsAfHvXr0IpHfp/AN4C4GkAzwL4l4M+noTW+HKYW60fAHjE+vcWAAdgRsXPWf/PDPpYE1r/qwH8tfV16tcM4HYAD1mf918CmE77ugF8GMBZAI8B+AQAJY1rBvBpmHECDaYH/rNR6wTwLy3b9hSAN+/ltUWlqEAgEKSEUZBcBAKBQBADYdAFAoEgJQiDLhAIBClBGHSBQCBICcKgCwQCQUoQBl0gEAhSgjDoAoFAkBKEQRcIBIKU8P8DRKN2O9aFL9kAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib inline\n", + "\n", + "plt.plot(numbers)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], "metadata": { "kernelspec": { "display_name": "Python 3", @@ -16,10 +235,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 } - diff --git a/module3/exo1/Untitled.ipynb b/module3/exo1/Untitled.ipynb new file mode 100644 index 0000000..7fec515 --- /dev/null +++ b/module3/exo1/Untitled.ipynb @@ -0,0 +1,6 @@ +{ + "cells": [], + "metadata": {}, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/module3/exo2/Untitled.ipynb b/module3/exo2/Untitled.ipynb new file mode 100644 index 0000000..7fec515 --- /dev/null +++ b/module3/exo2/Untitled.ipynb @@ -0,0 +1,6 @@ +{ + "cells": [], + "metadata": {}, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/module3/exo2/exercice.ipynb b/module3/exo2/exercice.ipynb index 0bbbe37..eb4631c 100644 --- a/module3/exo2/exercice.ipynb +++ b/module3/exo2/exercice.ipynb @@ -1,5 +1,2298 @@ { - "cells": [], + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import isoweek" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "data_url = 'https://www.sentiweb.fr/datasets/all/inc-7-PAY.csv'" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
0202425712129813016128181224FRFrance
1202424712731943816024191424FRFrance
22024237146571133917975221727FRFrance
3202422711628836114895171222FRFrance
420242179701685112551151119FRFrance
52024207136611020917113201525FRFrance
620241971008364131375315921FRFrance
7202418713438951417362201426FRFrance
82024177153031121919387231729FRFrance
92024167181381354022736272034FRFrance
102024157249291731532543372648FRFrance
112024147161811254419818241929FRFrance
122024137183221420622438272133FRFrance
13202412712818912816508191325FRFrance
142024117159731240019546241929FRFrance
152024107143011076117841211626FRFrance
162024097143371087117803211626FRFrance
172024087158991199119807241830FRFrance
18202407711294822614362171222FRFrance
19202406712174902015328181323FRFrance
202024057881461101151813917FRFrance
2120240479504656612442141018FRFrance
22202403769484633926310713FRFrance
23202402771254852939811814FRFrance
24202401713305921417396201426FRFrance
25202352711636735415918181224FRFrance
26202351769124227959710614FRFrance
272023507879962151138313917FRFrance
282023497781753621027212816FRFrance
29202348773514749995311715FRFrance
.................................
17211991267176081130423912312042FRFrance
17221991257161691070021638281838FRFrance
17231991247161711007122271281739FRFrance
1724199123711947767116223211329FRFrance
1725199122715452995320951271737FRFrance
1726199121714903897520831261636FRFrance
17271991207190531274225364342345FRFrance
17281991197167391124622232291939FRFrance
17291991187213851388228888382551FRFrance
1730199117713462887718047241632FRFrance
17311991167148571006819646261834FRFrance
1732199115713975978118169251832FRFrance
1733199114712265768416846221430FRFrance
173419911379567604113093171123FRFrance
1735199112710864733114397191325FRFrance
17361991117155741118419964271935FRFrance
17371991107166431137221914292038FRFrance
1738199109713741878018702241533FRFrance
1739199108713289881317765231531FRFrance
1740199107712337807716597221529FRFrance
1741199106710877701314741191226FRFrance
1742199105710442654414340181125FRFrance
17431991047791345631126314820FRFrance
17441991037153871048420290271836FRFrance
17451991027162771104621508292038FRFrance
17461991017155651027120859271836FRFrance
17471990527193751329525455342345FRFrance
17481990517190801380724353342543FRFrance
1749199050711079666015498201228FRFrance
17501990497114302610205FRFrance
\n", + "

1751 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202425 7 12129 8130 16128 18 12 \n", + "1 202424 7 12731 9438 16024 19 14 \n", + "2 202423 7 14657 11339 17975 22 17 \n", + "3 202422 7 11628 8361 14895 17 12 \n", + "4 202421 7 9701 6851 12551 15 11 \n", + "5 202420 7 13661 10209 17113 20 15 \n", + "6 202419 7 10083 6413 13753 15 9 \n", + "7 202418 7 13438 9514 17362 20 14 \n", + "8 202417 7 15303 11219 19387 23 17 \n", + "9 202416 7 18138 13540 22736 27 20 \n", + "10 202415 7 24929 17315 32543 37 26 \n", + "11 202414 7 16181 12544 19818 24 19 \n", + "12 202413 7 18322 14206 22438 27 21 \n", + "13 202412 7 12818 9128 16508 19 13 \n", + "14 202411 7 15973 12400 19546 24 19 \n", + "15 202410 7 14301 10761 17841 21 16 \n", + "16 202409 7 14337 10871 17803 21 16 \n", + "17 202408 7 15899 11991 19807 24 18 \n", + "18 202407 7 11294 8226 14362 17 12 \n", + "19 202406 7 12174 9020 15328 18 13 \n", + "20 202405 7 8814 6110 11518 13 9 \n", + "21 202404 7 9504 6566 12442 14 10 \n", + "22 202403 7 6948 4633 9263 10 7 \n", + "23 202402 7 7125 4852 9398 11 8 \n", + "24 202401 7 13305 9214 17396 20 14 \n", + "25 202352 7 11636 7354 15918 18 12 \n", + "26 202351 7 6912 4227 9597 10 6 \n", + "27 202350 7 8799 6215 11383 13 9 \n", + "28 202349 7 7817 5362 10272 12 8 \n", + "29 202348 7 7351 4749 9953 11 7 \n", + "... ... ... ... ... ... ... ... \n", + "1721 199126 7 17608 11304 23912 31 20 \n", + "1722 199125 7 16169 10700 21638 28 18 \n", + "1723 199124 7 16171 10071 22271 28 17 \n", + "1724 199123 7 11947 7671 16223 21 13 \n", + "1725 199122 7 15452 9953 20951 27 17 \n", + "1726 199121 7 14903 8975 20831 26 16 \n", + "1727 199120 7 19053 12742 25364 34 23 \n", + "1728 199119 7 16739 11246 22232 29 19 \n", + "1729 199118 7 21385 13882 28888 38 25 \n", + "1730 199117 7 13462 8877 18047 24 16 \n", + "1731 199116 7 14857 10068 19646 26 18 \n", + "1732 199115 7 13975 9781 18169 25 18 \n", + "1733 199114 7 12265 7684 16846 22 14 \n", + "1734 199113 7 9567 6041 13093 17 11 \n", + "1735 199112 7 10864 7331 14397 19 13 \n", + "1736 199111 7 15574 11184 19964 27 19 \n", + "1737 199110 7 16643 11372 21914 29 20 \n", + "1738 199109 7 13741 8780 18702 24 15 \n", + "1739 199108 7 13289 8813 17765 23 15 \n", + "1740 199107 7 12337 8077 16597 22 15 \n", + "1741 199106 7 10877 7013 14741 19 12 \n", + "1742 199105 7 10442 6544 14340 18 11 \n", + "1743 199104 7 7913 4563 11263 14 8 \n", + "1744 199103 7 15387 10484 20290 27 18 \n", + "1745 199102 7 16277 11046 21508 29 20 \n", + "1746 199101 7 15565 10271 20859 27 18 \n", + "1747 199052 7 19375 13295 25455 34 23 \n", + "1748 199051 7 19080 13807 24353 34 25 \n", + "1749 199050 7 11079 6660 15498 20 12 \n", + "1750 199049 7 1143 0 2610 2 0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 24 FR France \n", + "1 24 FR France \n", + "2 27 FR France \n", + "3 22 FR France \n", + "4 19 FR France \n", + "5 25 FR France \n", + "6 21 FR France \n", + "7 26 FR France \n", + "8 29 FR France \n", + "9 34 FR France \n", + "10 48 FR France \n", + "11 29 FR France \n", + "12 33 FR France \n", + "13 25 FR France \n", + "14 29 FR France \n", + "15 26 FR France \n", + "16 26 FR France \n", + "17 30 FR France \n", + "18 22 FR France \n", + "19 23 FR France \n", + "20 17 FR France \n", + "21 18 FR France \n", + "22 13 FR France \n", + "23 14 FR France \n", + "24 26 FR France \n", + "25 24 FR France \n", + "26 14 FR France \n", + "27 17 FR France \n", + "28 16 FR France \n", + "29 15 FR France \n", + "... ... ... ... \n", + "1721 42 FR France \n", + "1722 38 FR France \n", + "1723 39 FR France \n", + "1724 29 FR France \n", + "1725 37 FR France \n", + "1726 36 FR France \n", + "1727 45 FR France \n", + "1728 39 FR France \n", + "1729 51 FR France \n", + "1730 32 FR France \n", + "1731 34 FR France \n", + "1732 32 FR France \n", + "1733 30 FR France \n", + "1734 23 FR France \n", + "1735 25 FR France \n", + "1736 35 FR France \n", + "1737 38 FR France \n", + "1738 33 FR France \n", + "1739 31 FR France \n", + "1740 29 FR France \n", + "1741 26 FR France \n", + "1742 25 FR France \n", + "1743 20 FR France \n", + "1744 36 FR France \n", + "1745 38 FR France \n", + "1746 36 FR France \n", + "1747 45 FR France \n", + "1748 43 FR France \n", + "1749 28 FR France \n", + "1750 5 FR France \n", + "\n", + "[1751 rows x 10 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "raw_data = pd.read_csv(data_url, encoding = 'iso-8859-1', skiprows=1)\n", + "raw_data" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
\n", + "
" + ], + "text/plain": [ + "Empty DataFrame\n", + "Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n", + "Index: []" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "raw_data[raw_data.isnull().any(axis=1)] " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
0202425712129813016128181224FRFrance
1202424712731943816024191424FRFrance
22024237146571133917975221727FRFrance
3202422711628836114895171222FRFrance
420242179701685112551151119FRFrance
52024207136611020917113201525FRFrance
620241971008364131375315921FRFrance
7202418713438951417362201426FRFrance
82024177153031121919387231729FRFrance
92024167181381354022736272034FRFrance
102024157249291731532543372648FRFrance
112024147161811254419818241929FRFrance
122024137183221420622438272133FRFrance
13202412712818912816508191325FRFrance
142024117159731240019546241929FRFrance
152024107143011076117841211626FRFrance
162024097143371087117803211626FRFrance
172024087158991199119807241830FRFrance
18202407711294822614362171222FRFrance
19202406712174902015328181323FRFrance
202024057881461101151813917FRFrance
2120240479504656612442141018FRFrance
22202403769484633926310713FRFrance
23202402771254852939811814FRFrance
24202401713305921417396201426FRFrance
25202352711636735415918181224FRFrance
26202351769124227959710614FRFrance
272023507879962151138313917FRFrance
282023497781753621027212816FRFrance
29202348773514749995311715FRFrance
.................................
17211991267176081130423912312042FRFrance
17221991257161691070021638281838FRFrance
17231991247161711007122271281739FRFrance
1724199123711947767116223211329FRFrance
1725199122715452995320951271737FRFrance
1726199121714903897520831261636FRFrance
17271991207190531274225364342345FRFrance
17281991197167391124622232291939FRFrance
17291991187213851388228888382551FRFrance
1730199117713462887718047241632FRFrance
17311991167148571006819646261834FRFrance
1732199115713975978118169251832FRFrance
1733199114712265768416846221430FRFrance
173419911379567604113093171123FRFrance
1735199112710864733114397191325FRFrance
17361991117155741118419964271935FRFrance
17371991107166431137221914292038FRFrance
1738199109713741878018702241533FRFrance
1739199108713289881317765231531FRFrance
1740199107712337807716597221529FRFrance
1741199106710877701314741191226FRFrance
1742199105710442654414340181125FRFrance
17431991047791345631126314820FRFrance
17441991037153871048420290271836FRFrance
17451991027162771104621508292038FRFrance
17461991017155651027120859271836FRFrance
17471990527193751329525455342345FRFrance
17481990517190801380724353342543FRFrance
1749199050711079666015498201228FRFrance
17501990497114302610205FRFrance
\n", + "

1751 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202425 7 12129 8130 16128 18 12 \n", + "1 202424 7 12731 9438 16024 19 14 \n", + "2 202423 7 14657 11339 17975 22 17 \n", + "3 202422 7 11628 8361 14895 17 12 \n", + "4 202421 7 9701 6851 12551 15 11 \n", + "5 202420 7 13661 10209 17113 20 15 \n", + "6 202419 7 10083 6413 13753 15 9 \n", + "7 202418 7 13438 9514 17362 20 14 \n", + "8 202417 7 15303 11219 19387 23 17 \n", + "9 202416 7 18138 13540 22736 27 20 \n", + "10 202415 7 24929 17315 32543 37 26 \n", + "11 202414 7 16181 12544 19818 24 19 \n", + "12 202413 7 18322 14206 22438 27 21 \n", + "13 202412 7 12818 9128 16508 19 13 \n", + "14 202411 7 15973 12400 19546 24 19 \n", + "15 202410 7 14301 10761 17841 21 16 \n", + "16 202409 7 14337 10871 17803 21 16 \n", + "17 202408 7 15899 11991 19807 24 18 \n", + "18 202407 7 11294 8226 14362 17 12 \n", + "19 202406 7 12174 9020 15328 18 13 \n", + "20 202405 7 8814 6110 11518 13 9 \n", + "21 202404 7 9504 6566 12442 14 10 \n", + "22 202403 7 6948 4633 9263 10 7 \n", + "23 202402 7 7125 4852 9398 11 8 \n", + "24 202401 7 13305 9214 17396 20 14 \n", + "25 202352 7 11636 7354 15918 18 12 \n", + "26 202351 7 6912 4227 9597 10 6 \n", + "27 202350 7 8799 6215 11383 13 9 \n", + "28 202349 7 7817 5362 10272 12 8 \n", + "29 202348 7 7351 4749 9953 11 7 \n", + "... ... ... ... ... ... ... ... \n", + "1721 199126 7 17608 11304 23912 31 20 \n", + "1722 199125 7 16169 10700 21638 28 18 \n", + "1723 199124 7 16171 10071 22271 28 17 \n", + "1724 199123 7 11947 7671 16223 21 13 \n", + "1725 199122 7 15452 9953 20951 27 17 \n", + "1726 199121 7 14903 8975 20831 26 16 \n", + "1727 199120 7 19053 12742 25364 34 23 \n", + "1728 199119 7 16739 11246 22232 29 19 \n", + "1729 199118 7 21385 13882 28888 38 25 \n", + "1730 199117 7 13462 8877 18047 24 16 \n", + "1731 199116 7 14857 10068 19646 26 18 \n", + "1732 199115 7 13975 9781 18169 25 18 \n", + "1733 199114 7 12265 7684 16846 22 14 \n", + "1734 199113 7 9567 6041 13093 17 11 \n", + "1735 199112 7 10864 7331 14397 19 13 \n", + "1736 199111 7 15574 11184 19964 27 19 \n", + "1737 199110 7 16643 11372 21914 29 20 \n", + "1738 199109 7 13741 8780 18702 24 15 \n", + "1739 199108 7 13289 8813 17765 23 15 \n", + "1740 199107 7 12337 8077 16597 22 15 \n", + "1741 199106 7 10877 7013 14741 19 12 \n", + "1742 199105 7 10442 6544 14340 18 11 \n", + "1743 199104 7 7913 4563 11263 14 8 \n", + "1744 199103 7 15387 10484 20290 27 18 \n", + "1745 199102 7 16277 11046 21508 29 20 \n", + "1746 199101 7 15565 10271 20859 27 18 \n", + "1747 199052 7 19375 13295 25455 34 23 \n", + "1748 199051 7 19080 13807 24353 34 25 \n", + "1749 199050 7 11079 6660 15498 20 12 \n", + "1750 199049 7 1143 0 2610 2 0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 24 FR France \n", + "1 24 FR France \n", + "2 27 FR France \n", + "3 22 FR France \n", + "4 19 FR France \n", + "5 25 FR France \n", + "6 21 FR France \n", + "7 26 FR France \n", + "8 29 FR France \n", + "9 34 FR France \n", + "10 48 FR France \n", + "11 29 FR France \n", + "12 33 FR France \n", + "13 25 FR France \n", + "14 29 FR France \n", + "15 26 FR France \n", + "16 26 FR France \n", + "17 30 FR France \n", + "18 22 FR France \n", + "19 23 FR France \n", + "20 17 FR France \n", + "21 18 FR France \n", + "22 13 FR France \n", + "23 14 FR France \n", + "24 26 FR France \n", + "25 24 FR France \n", + "26 14 FR France \n", + "27 17 FR France \n", + "28 16 FR France \n", + "29 15 FR France \n", + "... ... ... ... \n", + "1721 42 FR France \n", + "1722 38 FR France \n", + "1723 39 FR France \n", + "1724 29 FR France \n", + "1725 37 FR France \n", + "1726 36 FR France \n", + "1727 45 FR France \n", + "1728 39 FR France \n", + "1729 51 FR France \n", + "1730 32 FR France \n", + "1731 34 FR France \n", + "1732 32 FR France \n", + "1733 30 FR France \n", + "1734 23 FR France \n", + "1735 25 FR France \n", + "1736 35 FR France \n", + "1737 38 FR France \n", + "1738 33 FR France \n", + "1739 31 FR France \n", + "1740 29 FR France \n", + "1741 26 FR France \n", + "1742 25 FR France \n", + "1743 20 FR France \n", + "1744 36 FR France \n", + "1745 38 FR France \n", + "1746 36 FR France \n", + "1747 45 FR France \n", + "1748 43 FR France \n", + "1749 28 FR France \n", + "1750 5 FR France \n", + "\n", + "[1751 rows x 10 columns]" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = raw_data.copy()\n", + "data" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "def convert_week(year_and_week_int):\n", + " year_and_week_str = str(year_and_week_int)\n", + " year = int(year_and_week_str[:4])\n", + " week = int(year_and_week_str[4:])\n", + " w = isoweek.Week(year, week)\n", + " return pd.Period(w.day(0), 'W')\n", + "\n", + "data['period'] = [convert_week(yw) for yw in data['week']]" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "sorted_data = data.set_index('period').sort_index() " + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "periods = sorted_data.index\n", + "for p1, p2 in zip(periods[:-1], periods[1:]):\n", + " delta = p2.to_timestamp() - p1.end_time\n", + " if delta > pd.Timedelta('1s'):\n", + " print(p1, p2)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsfXm4HUWZ/vudc5fs+0JWEkJYQlgTAwgomxIEBQRGcETGwR/KoAPqOALqiCNxYEZBcQYUAVlc2AWURUNYwhpIQkJCFhJIIPu+3Cx3O6d+f3RXd3X1V9XVZ7lLbr/Pc597Tp3qquruqvrq20kIgQwZMmTIkEFFrr0HkCFDhgwZOh4y4pAhQ4YMGWLIiEOGDBkyZIghIw4ZMmTIkCGGjDhkyJAhQ4YYMuKQIUOGDBliyIhDhgwZMmSIISMOGTJkyJAhhow4ZMiQIUOGGGraewClYtCgQWLMmDHtPYwMGTJk6FSYM2fOZiHE4KR6nZY4jBkzBrNnz27vYWTIkCFDpwIRfehSLxMrZciQIUOGGDLikCFDhgwZYsiIQ4YMGTJkiCEjDhkyZMiQIYaMOGTIkCFDhhgy4pAhQ4YMGWLIiEOGDBkyZIghIw4ZOg3e29CAt1Zube9hZMjQJdBpneAydD18+paZAICVN57VziPJkGHfR8Y5ZMiQIUOGGDLikCFDhgwZYsiIQ4YMGTJkiCGROBBRNyJ6k4jmE9G7RPRjv/x6IlpDRPP8v88o11xLRMuJaCkRnaGUTyKiBf5vtxIR+eX1RPSgXz6LiMZU/lYzZMiQIYMrXDiHJgCnCiGOBHAUgKlEdJz/2y1CiKP8v6cBgIgmALgIwGEApgK4jYjyfv3bAVwOYLz/N9UvvwzANiHEgQBuAXBT+beWIUOGDBlKRSJxEB52+V9r/T9hueQcAA8IIZqEECsALAcwhYiGAegjhHhdCCEA3AfgXOWae/3PjwA4TXIVGTJkyJCh7eGkcyCiPBHNA7ARwHQhxCz/p28Q0TtEdDcR9ffLRgBYpVy+2i8b4X/WyyPXCCFaAewAMJAZx+VENJuIZm/atMnpBjNkyJAhQ3o4EQchREEIcRSAkfC4gInwRETj4Ima1gH4uV+dO/ELS7ntGn0cdwghJgshJg8enJjIKEMGvLZ8MzY2NLb3MDJk6HRIZa0khNgO4EUAU4UQG3yiUQTwWwBT/GqrAYxSLhsJYK1fPpIpj1xDRDUA+gLIXGEzlI0v3jkL5/3fa+09jAwZOh1crJUGE1E//3N3AKcDWOLrECTOA7DQ//wkgIt8C6Sx8BTPbwoh1gFoIKLjfH3ClwE8oVxzqf/5AgDP+3qJDBnKxprte9t7CBkydDq4hM8YBuBe3+IoB+AhIcRfieh+IjoKnvhnJYCvAYAQ4l0iegjAIgCtAK4UQhT8tq4AcA+A7gCe8f8A4C4A9xPRcngcw0UVuLcMGTJkyFAiEomDEOIdAEcz5ZdYrpkGYBpTPhvARKa8EcCFSWPJkCFDhgxtg8xDOkOnxL/+6W3c/8aH7T2MDBn2WWTEIUOnxJPz1+KHjy9MrpghQ4aSkBGHDBkyZMgQQ0YcMmTIkCFDDBlxyJChDPzu1RV4dM7q5IoZMnQyZJngMmQoAz/+yyIAwPmTRibUzJChcyHjHDJkyJAhQwwZcciQIUOGDDFkxCFDhgwZMsSQEYcM+yyy8FwZMpSOjDhkyJAhQ4YYMuLQQbFk/c4sD0GZyBiHDBlKR0YcOiim/uJlnHTTC+09jAwZMnRRZMShA6OptdjeQ+jUyBiHDBlKR0YcMmTIkCFDDBlxyLDPIrNW6jxYs30vHpu7OntnHQgZcciQIUO746dPLca3H5qP1duylK4dBRlxyLDPIjuDdh7M+XAbAKClkOnZOgoSiQMRdSOiN4loPhG9S0Q/9ssHENF0Ilrm/++vXHMtES0noqVEdIZSPomIFvi/3UpE5JfXE9GDfvksIhpT+VvN0NWwL0koCkWBMdc8hV889157D6Wq2IdeWaeHC+fQBOBUIcSRAI4CMJWIjgNwDYAZQojxAGb430FEEwBcBOAwAFMB3EZEeb+t2wFcDmC8/zfVL78MwDYhxIEAbgFwUwXurWJ4a+XW4GSTIUN7oLXonahve+H9dh5JdeAdEzM9UUdCInEQHnb5X2v9PwHgHAD3+uX3AjjX/3wOgAeEEE1CiBUAlgOYQkTDAPQRQrwuvBlwn3aNbOsRAKdJrqIj4MJfv47zb3+tvYeRISXEPnQODfbMDrMqKgt5Wxlt6Dhw0jkQUZ6I5gHYCGC6EGIWgKFCiHUA4P8f4lcfAWCVcvlqv2yE/1kvj1wjhGgFsAPAwFJuKEOGfRn7KG2APAsWM+LQYeBEHIQQBSHEUQBGwuMCJlqqc/NXWMpt10QbJrqciGYT0exNmzYlDTtDF8e+dArdl+7Fhn2J2+vsSGWtJITYDuBFeLqCDb6oCP7/jX611QBGKZeNBLDWLx/JlEeuIaIaAH0BbGX6v0MIMVkIMXnw4MFphp6hnbBxZyMaWwrtPYxOgebWIp6Yt4aVu8tNs+MIW6uDYmas1GHgYq00mIj6+Z+7AzgdwBIATwK41K92KYAn/M9PArjIt0AaC0/x/KYvemogouN8fcKXtWtkWxcAeF50QM3UfzyxENv3NLf3MDoVpvx0Bi6/f45T3euffBf3v76yquPpyPjFc+/hqgfmYcbijbHfOt5qqCwChXTGOXQYuOSQHgbgXt/iKAfgISHEX4nodQAPEdFlAD4CcCEACCHeJaKHACwC0ArgSiGEPDpeAeAeAN0BPOP/AcBdAO4nouXwOIaLKnFzlcZ9r3+I1qLAT887vOQ29jYXsGLzbkwY3qeCI+vYmPmemwjwntdWAgAuOX5M9QbTAbF5VxM27mzCxoYmAMDW3fEDSNGnDrSPah1Ca6X2HUeGEInEQQjxDoCjmfItAE4zXDMNwDSmfDaAmL5CCNEIn7h0dLSW6aRz1QNv4++LNmDB9Z9G7261FRpV14KrmKqzbDRTfzETm3c146KPedLYVkYr20lupWwUO8tL6wLIPKRToty5O/cjz1+isSUTrpaKvy/a0N5DqCg27/I4hXzOOz4XGMG78Iv2VZ2D5Igy2tBxkBGHlCh/7spFkK2CUtGtxm3adjb5dU1AHCwK6TYdUdtBEr2Mc+g4yIhDSpQ7d3OB4i1DqehWm0+u1AmRz3nLkRMrySLpD/DWyq342d+WttnYqo3ACa5dR5FBRUYcUqLc02h2QiofrsShsz3imjzPObQWilixeXek7MJfv47/fWF5m42t2pBEL+OoOw5crJUyKCh37may1fJR7yhW6mzI+Rukzjn89OkluPvVFQD2XbGSRLYuOg72zVVWReTK1AiSg1gp86Www/UVdLZ9xqRzeO39ze0xnDaFfKVZ+IyOg4w4pERtvjzikHNgn3//xodl9bGvw/V02dlEFNJaidM5BNhXWYcsKmuHQ0YcUqKmTOIgka2B0rGvPjpJHIoW4rCP04aMc+hAyIhDStTkyntk8vKuQByqdQp0bbezPeLQYsdCHPZVRwcfnc38eF9GRhxSQsqFS4VUSHcFa6Vq3WIln938Vdsx5pqnsHzjrqBs1gdbsHZ72+cyzuW6rrFCKG5t54FkCJARh5SoyZfJOWR+DmXj/Ntfd6rnstE8Mc8LDPzi0jDY3RfueAOn/fylksZmwsz3NuFv766Pld/1yorgsxQnWVUO+yjjkJl4dzxkpqwpUTbnQF2Ic2jvAZSBvRUOM/7lu98EAKy88axI+W9eCtN+/ny6lx+6K4tWusCy6DTIOIeUKJM2dKl0iJxuYNXWPbhjZvXyIDc0tmDWB1sAAMs3NlStn0qB4wRsc2MfZRy6lLi1syAjDm2McDMwL4J9eX1cctcs/PTpJdi8q6kq7V/1wDx84Y43sHV3s5P4qVJimjkfbsXN/sk/DTi/GZu1UktBoKXMyMAdES7+PxnaFhlxSIlyJ69LrtzOuEA2NjTixmeWRDY27j52NXnimmqdEJeu97iF3U2tVWnfhPNvfx23zliW+jqn/LgKdjW14hP//ULqfjoLMj+HjoOMOKRExQLv2YhDJ1wf//7IO/j1S+/jjRVbgjLrfVTpHmVojabWdKfr9nrmnGlq0ljW7WhU6nbCyWLB6m17cefLH7T3MDIgU0inRtmB9/ZR2Wqzvxkn3Va1rW3qfOLQ7Egc2luGzz2PNHNDiH3DgkkSyf944l0AwGePHI6hfbq155C6PDLOISXKDrznwjl0QsESdz/tcR+1vqmxq1y+vZ80r5BOQRwqOJaOBGsIkQxtgkTiQESjiOgFIlpMRO8S0VV++fVEtIaI5vl/n1GuuZaIlhPRUiI6QymfREQL/N9uJf+4QET1RPSgXz6LiMZU/lYrg8rpHPZNhbS613H3Ue24/TL2VXMnUdpyOaHTPJtyxUrLN+7CrjbWz3DQn4JNKZ+hbeDCObQC+I4Q4lAAxwG4kogm+L/dIoQ4yv97GgD83y4CcBiAqQBuIyIZgP92AJcDGO//TfXLLwOwTQhxIIBbANxU/q1VB5XSOVj7KK+LDo1qJ5KXYqUmxzSsbSGR2dnYYu4/pSlrpXH6zS/hH3/7Rtt1aID+HPY1sWtnRCJxEEKsE0LM9T83AFgMYITlknMAPCCEaBJCrACwHMAUIhoGoI8Q4nXhHXfuA3Cucs29/udHAJwmuYqOhjZJ9tMFFkba5+h6Qq6r8c4hTa3pnNgqJQLjxrlzr4U4MGWpdA7ONc2Yv3oHW75sQwNO+dmL2La7+iHk9dXOpUrN0LZIpXPwxT1HA5jlF32DiN4horuJqL9fNgLAKuWy1X7ZCP+zXh65RgjRCmAHgIFpxtZZkNtHTVm5zZUXK5VG811k0K8s24z3/RhJja6cQ4WPIOw9Wzrh/BzSiZVSVE6JXz2/HCs278ZL722qXic+9HmRcQ5xrN2+F1vbgFBLOBMHIuoF4FEAVwshdsITEY0DcBSAdQB+LqsylwtLue0afQyXE9FsIpq9aVP1JyyLshXSMqGLefNq74XRUijitheXpz59A6ianMblkXzprllY4wfMa6xw+AtXcMO0PhLmxz/O+girt+1x7K96c6XVn6OVClNvQ1ysVPUuOx0+fuPzmHzD9Dbrz4k4EFEtPMLwByHEYwAghNgghCgIIYoAfgtgil99NYBRyuUjAaz1y0cy5ZFriKgGQF8AW/VxCCHuEEJMFkJMHjx4sNsdVhjlztk6f6G1FDquQvre11biv59dGgkK5wyhfqzcPabdBB+ftyZd+xV65hxht3EnpsyC3/zT2079VXOuyDk6Y/HGqociiSmk23sRdFC0JdF0sVYiAHcBWCyEuFkpH6ZUOw/AQv/zkwAu8i2QxsJTPL8phFgHoIGIjvPb/DKAJ5RrLvU/XwDgedFBvXvKHZbMB2EztWzLGy8UBf7lD3MiEUOljNzVV8AEXsTi/1aBtmx4eVn7pNZkTXpLiJXUEUJkSLn/n99eg9Nvnlm1fr742zdieg8LY52hjeDiBHcCgEsALCCieX7ZdQAuJqKj4K3zlQC+BgBCiHeJ6CEAi+BZOl0phJA8/hUA7gHQHcAz/h/gEZ/7iWg5PI7hovJuKz1eWLoRk/fvj97daq31yiVZtQ5OWm1JFjfsbMTTC9Zj0dqdOOOw/QAALf6mUFtKePIECUSHtDKoILgTr+0UbOIqOsLm2FYE6rX3t8TKMs6h/ZFIHIQQr4Bf009brpkGYBpTPhvARKa8EcCFSWOpFrbsasJXfvcWTho/CPdfdqy1buXESh1g9SO8n7VKSAZJuOpSEAfeCc5Wv2Ms/rYwirPdqkms5Pp0ynmMSe+g1SL61LFwzQ4cNrxPxZ5nZq3U/sg8pBEuxPmrtifXLZdz8DfcZpvOoQ0FS9wGIQmX9BkAvOxoH27ZndieanXCtV3q5tFBaEkiuBNvKRudeyrU0h9MUhetjuzL9EUbcPavXsEjc1YnV3ZExjm0P7LYSggXSYODp2i5G7fMJNdik+e34boI1qDSpyQOqljpC3d4jlJ6spq2QrUJZqVa5/Y020Zn4hzK6c/52gq1vXKzd2iQEXErgYxzaH9knAPCxasuhk/f8lJVzMZqHcRKA3vVVbxfE7gNoLnVKyzXhNEuVkrZVpX2ikoLlSqlc2iLg3MSd+JKt2S9QgUHvS/RhqbWAsZd9zQem1s5zqotkBEH8Iv3vQ27sHlX3OGkbLFSToqVzMSh3vfyHT2gR3mdOSAgjMpWLjeNvOPusHR9A2atiFkeW62V0qLae0Wl9jWumVJyQruKVcoZdqWead6PCVNJgrYviZW272lBoSjwX88sae+hpEJGHNB2LOxL720KgpzZrJXkwmiLACIn/+xFAOkVyirO+EV6M8f0nEPn2CwE81pt86t8hbTNl0Tg0TmrsaeZF5dW6pHmHIJJpsW+FHgvjCfWue4p0znAvkhWbY16qpb6ghtbCrjUTzIP2J3g5LpoS7PPyGiUjrftbka+VPGS1c+hYy2UShFi7r6sYiVTOxXgHN5csRXfeXg+3lyxFTddcARzbYJYyXEGOsULS4l9iDYExLOT0YaMcwDsJ/WTtJSMpb5f/fRodYILxtNOXgHKUI/+yXQc85+l6V4q6yFdXVTOQ5opsxn9mDgHx/HY6u32OYaNDY3s75W4ZyEEVm72DlCmDf2tlVsx9Rcz2ZAmJg6hkvqL9oZ8w51NVJYRB4Qbt4vlSCnvt7m1iPNuezVSZiMOAbFK31XJYM1O/f9pEq+8u5aP8Bm26Z+inFv08Baj06gIKh54r0Kcg3OHrhXdsWFno7cmHJ7NUwvW4e5XV3hDMdznT/66CEvWN2AJY81kejb7klhJorPdUkYckE6MU4o45KOte/Dehl2RMrvOAe4D6mC44anFwWebQjrNKWpPcysuu3e2c32XnBnVArcB/GX+2nhhAtpCPs11sX5HI4796QzcPH2p8bq9zQWMueYp3PXKCizfGM5r05CDvN4c52C4prOdsm2Q97hjbwt2d4DESq7IiAPCiVgtzoFjp23WSu3CObRxm2me4/2vf5iq31J8ByqWz4Fp505LAEPTUF3FKlx/u5paI9ndTC1x125qaAIAvLh0k3H+bdvjWfHd+fIH6FUfqi1NG7p0pvzCHW9ggR5DyXDNvuTnoBL6p95Z144jSYeMOECZoFXajfcyxKEj5PpRJ23bH9Sq12GuPVmHSukuHKOrcO9t4o/+hok/+lvitaUGVlS77FGnEge+vjTNBhCIoMJrDGKlfYc2RJ7X9r1tl4+hXGTEAarOIbluKXOWi1FjzyHdNgrpai9Amx4jDTHKp9zsXf0zOJQrzqnUM3U9ObvUMj2Nm6e/F69L/GdTu2r4LZOeQH1/+rw33ee+JVYK76XUZFftgYw4INyoXF7cH2d9VNE+ObSVKWu15dpc65Lgpem5Ji1xSFG/0os1STy1ZVeTUzvOYiWHeqYaa7fzVkxeu07dR+Hg7a0TgzQ6h9eWb8bjb6fL09ERoN5Kx0x+zCMjDkjHOZQCNoWmZRNpKyc4syy6eijFrC8t51DOcyuXXiYd+Cfd8BwWrrFbdAGVkbnPX2XvJzF8hgPhVOuY65vFl6YxcPf/xTtn4eoH5zG100NVpFcbnZUL6vLE4av3zsb3H18AoIpiHM723YFzqDaS5my5j6NSepW0OoS0xASoYPgMraGnF8QVkMuUrGqmkbY6hnS3DfuXM5ZF+mhqLeDROauDMZZ7y67X2zgHExGs5n76wpKNOP3ml9qMC4lyDp2HdejyxOG5xRuwcM1OANU7qXPz3L5xisQ6lUD1I53a9Cru7aQWK6V4kXrVsjdMrYF3VidzCRxcDwguz1FWufnv7+E7D8/HjMUb/T4s7wdu68FFR6H2ovdpuk8b5/SjJxZib3PpOcLf2+AR5ySfnEpBveXbX3y/TfqsBLo8cVBRLZrOxi2yLMxihU52SUgyEeWG+P6mMtnxEsJnpNULlHM6S6OHWbxuJ3N99PuvX6ruZpDmOW7Y6ekYGpq8NLDlBkYkuD1r9ZnGiUN6hfS9r3+IP8xKZ97cnlDvZbOjzqkjICMOCqrF8nET3UUhbduotu1uxgW3v4Yx1zwVxNOPtVMUWLI+voEBniOT6rDmivU7zErMGCokVkrL4ZSS3bQUXHD7a7Ey9V2vMLwXF2LnbGZcwglCtpckC69cvKkQcYV0adZK5cjx21qy0zk1DhlxiKB6Cuk4bJPbhXO47s8LMPvDbQCA+av5DHZ3vbICU3/xMub49aJjMre+0s/4xi2iNI+ItVZKcX2pKMuU1bHewjU7sJsRbajX//M9b7HXVnJzKmfjUafgy8s2ab+5tUyGzyas2b438t1srZTUb/kPsa30xPusQpqIRhHRC0S0mIjeJaKr/PIBRDSdiJb5//sr11xLRMuJaCkRnaGUTyKiBf5vt5J/VCeieiJ60C+fRURjKn+ryagW58AtNOthUCRXUj1gTeN+x7eKWb1tD/u7jqseeBsA8PZHyelSS4UcazUXTJoosi8s2Rj57jqss3/1Cluu3peLk5np3VXVYowJYbJ0fQNaCkVs39MS1kstzuPL1Wf63oZdEe7BGHivilYZbe1r0NlCdUu4cA6tAL4jhDgUwHEAriSiCQCuATBDCDEewAz/O/zfLgJwGICpAG4jIukieTuAywGM9/+m+uWXAdgmhDgQwC0AbqrAvaVGR+EcXKxJ1BARpQyb6/6JeQ4xgFJ0VilrpSF9urlXBlCXQq7EBYMrB+p9lZtJL21/iXUTrv3eI+/gH++cBcD9oDTnozhXmgQ16KRpHVQqS50NbbVlf+fhd9qop8oicRUJIdYJIeb6nxsALAYwAsA5AO71q90L4Fz/8zkAHhBCNAkhVgBYDmAKEQ0D0EcI8brw3vx92jWyrUcAnEbVOsZb0ZbmSubqLjqHUsw1o32UtjTSnLo40VXgIZ2iz7RiojolXIMrQoJc3pahvrMPt/Acm5sSV61vqVfCeOU71OfAk0qAQCGEhRMIr1OdQk1zwxau3sQhVJVzaOOdZf6q6nHi1UQqnYMv7jkawCwAQ4UQ6wCPgAAY4lcbAWCVctlqv2yE/1kvj1wjhGgFsAPAQKb/y4loNhHN3rRpk/5z2agW55A2r7CLziHCOZQwbtfYPdVCNVnt9rQkd7mrtOOrFAcWc0BTPpdyFlurGSeYmvhIS5ilJroqVedQCXRSaU+bwZk4EFEvAI8CuFoIwZvA+FWZMmEpt10TLRDiDiHEZCHE5MGDBycNOTWq5ufAmbI61LdNXlVyYjqxuZjLpkWaZ2QzlUzTe9qRbmwo3VywfA/pyuw4rhxBKb1xaSurSVD13CXqd9Mc7axK3H0JTsSBiGrhEYY/CCEe84s3+KIi+P+lZm81gFHK5SMBrPXLRzLlkWuIqAZAXwBVyu5iRimhnlXMWLwBY655Ch9uiZow8joHcztFBxFHGs6BOxW2xeLjrZX82Eop+k/LZbSnAtCl64jjWIn9fP6YEcmVEpAkukrLTZhEnXqpqqg3xZBKmp9pElCZ0NFS1XY0uFgrEYC7ACwWQtys/PQkgEv9z5cCeEIpv8i3QBoLT/H8pi96aiCi4/w2v6xdI9u6AMDzooor/IxbZuIeLXQwUP7p6THfHX++5hXLWiu5iJUsTyBNSAm9LyGEE9terimrfUwVaohBe546Xfp283Ow/x7mJS79XiNiJeb3N97fkqo9V0/2iEJaYSpOPjiUBiRFD0nrNc9hzba9zoEQuyJcOIcTAFwC4FQimuf/fQbAjQA+RUTLAHzK/w4hxLsAHgKwCMCzAK4UQkiD8CsA3AlPSf0+gGf88rsADCSi5QC+Dd/yqRpobi1i6YYGXP+XRbHfytaB+6tNb4XVR1vWtFwYtjpJ9uXzV23HX5nEIi8v24Sx1z6NhQ6hAz7YFHfiSiUOSgjP4Hpd2u3vlEOGRL737lbD1uOJdvhZcoIfpPAKl9e7xkYqFfmAOJTeRiSUNFHsMGBKSGXqs8ZgJaavq2aDtVKNJbS3DtM7TYO/L9qAydOeK7udfRWJT1gI8QrMB8bTDNdMAzCNKZ8NYCJT3gjgwqSxVAJbd3vJNriTh402HD6iLxZYomk2NLYEoSVi8XpYPwfz5C84aIuTNoVz/u9VtlwGgnPxZdAdloB0uX2tOocEJWvkGSp1Txo/CC8v22ztd8KwPngMYVA102tVbyXQ8yidycB1cz/ajgMG97L2qbfTWGIiHVfkUpiShPfGlwPcnE0/JtfTfGtEIa0Sh/CmkuZZC5MjxRUqscpUG2Z0OQ9pKePk9As2ncOxYwfEyoQQAYv8hd+8EdjM6+1wE9C2/0t5qotFE5BOSby7yWPiutcmm3s+NjcetdI1z0ASbFzFAdc9jSv/OJf97ZyjRmD/gT1S9WV0NEu4Fxk0T1eo2iCJC5caNhxPcjtNrUXr+KgCnEOpCmlTn66ct3q9SgNU58WkM4jp2Xz34fn4r6fThYUxhTnp6uhyxMFmz26b27kc4Z9PGIveSs7c6598F+O/70nGFilB2JzESrZ8DsVknUOUcLgv7T3Nnmd1t9rSXn2l7M+TmlFz7arPqhTBn/5efzvzA5x326uRNyA/c888jfJTVrVFDY2IBC039AdLYqk0jn6cdRIANDSWluzeNHdN5fo9qgcMdT7VKpxH0iHE9EoenrMav5n5gfVa/ZG3VXTWzobyBXedDDYzUdvGQ+T9qZvyvX5UU33R6Sco1pTVMvflZuQa8joN59DkiztM8uEklKrsfW7RBgzsVadkgitNPOUWRjpaSb9kmn+ydL2VNPoDORdsnIMrVlnCnkgRjstz1O9TPp/1OxvVwug1JYRbd32eKkFQ104+hVgp0ZqpUHSe4z3q0jtNdgV0Oc5BgptaNrFSngg5cjNLjecIiF9lm/sFB87h74s2mH90QYmbfBo9q9rFV++bjfNuU6KYlsiAOBGH2DWm+EXhIGTie25YjS1FXHD7a3htuV3XoV7fZNE5VMKfRm585YTPUGX/+pBs89P0k0nUo99v0cQ5RMRK0bZ0YpHEwf6cyY9tQvfajn9GXrTW5lpWHXQ54iDnHHvysImViJAjMoTftk87DxttAAAgAElEQVRkfs1EC//05keBEjkgDoax7NjbEvmuD9tF9FOqdMiFcyhaOJ9SwmdEOIcSBEumK9R2ZcA5boNbvW0PZn+4Dd99JDlGTlv5WMiN1KU3fXO+4a+L8K0H50WshnJEkWdrCxpoukfTreuHrkjgPeUaNZikLlbS513SY7aFrNCfR7UiI1QSMkFRW6Ljk8wqgZtcNs4hR94JlNtU9bIWh5j1+jXXPrYg+JzEOXzmly9HvusnYxcFaqmbmMtlLi2Xc+JNWsv6a1S/PzY3jODiLlZKLwLT2+5Zl1dCfJe/G0nLHpf3qFfZ2NCEP2spMvVnpoe8iLRnKDcdOHTjh6JBrLRlV7NSbu+zkqaulTKyqCbaI9Jc1+McLFuX7fnncp4duItZqsuCfX7JRmO9UAHK/66bmOrj1kUavId04hBZuG1GZuLGhYtO06cL4TO9x8aWAr790PywXeb5cqNqSRGISj5X/f4mjujL1ldP6zGi5v+2ZXfcUavGwjkM7FnnONrKwlWPpM49dWNWZf8696tPl6QN3RaYshROu71RbvSGkvps8x7bGVbHskSxkptyOWliS5hOZy46Bxu272lOrFOqYtnlqiCqLPNbKbGVVJQSNkHe6o3PLImUS7Nerq6KNJuHKdy6OrdMBPaOSyaz5Zt3xd+nzafA+G5tc9/8U7wZU/OOj0nd2E1WXTExUuwAZu8jzfSuJnGQXNLXPzmurHYy4tAGsE2DvMWzKEew6Byi3/W5ZjpRmXwNknQOOoiAF5duxLMLPfPPLbuTiUOphMflOhvhWbhmp99Oig1X+dxSKCba0+u/y81okxYq4b+eCe3hp4yJ+7FIpBEr7fZNheMhS8LPpr3oUxOGOvVx0vhB2K9vt1i7APDXd9Zi254W5io70u096SaPTbms6hnUekl6uzTOmDr09VFN4iC5zrqa8rbatkp9q6LrEQfLplRrSc7iiZVMOofylGc6Qs7B/cJ/+t1b+Prv5+LdtTtwzaNRxSnXTqmcQ6nioNhvKfpUm3HxjI3Z1Rue5w5lE+3bo9Y4MFMYCQ7/fM9sthkR+VzeZvTjzx2mEMBoW9/449tltW1DEkdrTtzDtwNEfS3UtZW0XyeJlUw/P/72Gvzq+eXG8VQacr7Wl0kc2iO9TdcjDpbfbKx6jij4Xbd7v+qBedE+YsTCfSybGprQ6p82SpmyV/x+Lt7bkBwLqFQlnJtYyYHzKXE9lhSzyO9L3wQ+VMR6tsdRyuYR8y1QPtuac9kDPMsivh/rmCwPvdmB6C72HT1NNV2Jhjr3mloLbD19fiZx57GxMKNsaGzBDU/FvaerShx8/V8ap0UOmVipDWBbTHMt8YZyFFJ/XeH73OKoz0FMrJRiBX9s2nNYuFaKXtyuUftLstIITHkNC2JZgskcF+HV1Idt/OlOz2Hd1qJItlbSvofhSKLlyzeqRFQStPi4kpTgp2qB/tT2gjGZdA4xJXQyckqQPNNTPOvwYQ4thRjQoy6xc1NcrPFDemFgzzqL57T2XWkgKm4TbB2vjeR5p0KKL4O2iwKHX/93bGaisFbTWkmKlepLjEgg0R7mtl2OOKhTdcw1T8V/NUyUHFFAHJISx8eVaYaRGH6Q7bsSFbVez7o4cbj3tZWxMpN45lO3zEzoK/qdozHSO9galrxEZzqnOEcGu3qbnNpG0JL6/PHnDjO2FwxJ2Xltr9XlhEiU7O9x4JBe6Nu9NrGtNAhycWgz+lMThvrRAwwXxsRK/E/79emu1LFzDkmn/TXb92Kukt/aJg5No1NKC7nOutXkMaJfd4wd1LOkdtKE6K8UuhxxSNpvTZ6tOSLU+wpkm/crwGxCRrFSgtzU+qvSX0LFuR9t107JCERXaaGPmVuk0lzUNqw0y/EHjy8MPpeykOW9lnpCTHrf3H6u96TWsW1UrsQh6Eeon8MvNTnC8H7d4QoXTs7EOXjPlUoSK8mPv/unj+FHn5ugXKOPL4rbXnw/cbyfVzzyXZJrVQNSrFRbQzh0WG+ngJccMrFSGyBpGkjTukG96iPlOQrlhqqclIOrtVLSnGxobGXZYKalxBovvRfNuV1qyOM45xBvR57YbIsujahNtS5x8TngQkEUi/YER0L7r6KpJT0hjXEOEeJgvi6SJc6wH0TFSryIpiafiweAtG6Q5t90xIhDQfhiDzexkjw8FYoCNz3rmRcfP24g+nSrxRNXnhCpE/ZZ3gZeSqyoSkBynTW5HIioZFOE9nDi7nrEIeHt7DEETMvlKJAbJnIOjgppF+gJd9gcC+rp0XH6JYnGTNDvhSUATjqH0tDS6n7CBYA+vg6mtSjs1lOB4168Tilclmznf794NGZ+9xSMU/JB2MbhLlaSbSl9KnVqcpQy50MKzkHnHoXwxEqGx2Q6UNz2wvJY3SNH9cP+A3s4i2ZdYSeM1aMO0tKt1ifWpRK5SgRyTIsuRxySUPBP1LrlkmqtlCTvjCuk+Xou00QPrX3Cjc/H2xH852id6A9pchTY2uGehVxsds4hua/F6+LBxlw2alUe//WTPeejQlGUvAmUZK3k/x/Qow6jB/bA9886NPzN/3FTQxPeXBFNle5srcSIeCKJc/IU00uUuweG+b+j5cWiAIGMBxPTYel9JcOeet85IuiMbbljr8ZBxQVSDFpXIyMspG+jubWIy++fU+GRJaPLEYdkOb/3u67/8RakV5i0ySRZWpjqcaivSZZRRqw8EurKsdhyBVivj20M8ToyhpB1QTrc+5Pz18bKWovCicfu5/st1PrH59Zi0brJ28RKZZmy+mNV36N8B/945xux63TOYaMaVls2SWHD6tyKEodcKgsX4fBYTYSrtSisCmkXUaRKyHLE1HF4Bet2xLlqW5/h+Kqoc1A4hxyZCagNLhEPqoFE4kBEdxPRRiJaqJRdT0RrtJzS8rdriWg5ES0lojOU8klEtMD/7Vbyd1oiqieiB/3yWUQ0prK3GEXSPAisVrTy2jwpSd3tbbg6wbnMSRfzaLWZOR9uM9arBDiRgrFuFU5rE4fzMYpUEAFP/+tJ+N1XPhYx+bQSB4MobL8+3bByizkInbG94JBhjmvFtavXnvLTGbE6JtGTOvZaL1KkP5ZkuHBVJt+KQlGw0QNWbt6NxpYChBD43JHD8cK/nexfH+8rp3EOMZ2Dw13c9oJZSW27upo6h4hYyWbRZYEeJ6qtIv+6cA73AJjKlN8ihDjK/3saAIhoAoCLABzmX3MbEckj0+0ALgcw3v+TbV4GYJsQ4kAAtwC4qcR7cUIicQDww8cXYt2O6Ilt3JBeweJIWkhvfBAVFSxZX3osdhfpTymROXWM7N8dR4/ul7od+2m8skrA31wyCRdPGZVYjwAM79cdpxw8JCToRXtcJtMvJoMAdcFy3qvy/rhtXM6ftHnMgzpKPZNIsXtdPthwbdkPuWuN/Zp0DkWB2jxFLMlaC0Wc/LMX8Y0/zoWA5yMkLXW416A+w3wuTmi48b2wZGPk+/1vfBirI0/u9pS7xp/KhtTt1eZzqMnljOLchWt2GONM6YeBtooTmEgchBAzAWxNqufjHAAPCCGahBArACwHMIWIhgHoI4R4XXgz9T4A5yrX3Ot/fgTAaVRFX3GXEwg3yXrU5QMFX1EAMzXrHxXPa5N2mYPHsgkuJ7pKHCRq8zmneDVOCmlDXRUu70Fve9zgXqnDCKhRYO2cg/ebbolmIigqQR7etxtO0xzhAuJgIRxc5FAXe3bVQ1qF+ry61+adOV2AJ459NIdKE3dVEAI1+VxEHySf28xlmyFEGLhSHafajHo/RBQ7FHHj+8o9b/E3o+DlZd46FZZDVrnhTGyQG36Pujx6davB7qZ4atYde1pw9q9ewbcenBf7zRtfFG0VRbYcncM3iOgdX+zU3y8bAWCVUme1XzbC/6yXR64RQrQC2AFgYBnjsiJZrBRW+M6nDsLg3p5Ja10+pyR1F2wYZRNaiwJHjuoXC+7msmhdiINLpNKkBZAjNz8AFz+HoG6ZCulSoSs3gWSxksTVD/ALVEdkYyPCdYrC2ftdxMYS/GbhHNRToolMqPovk0K6e13emdNVx6Tii8fuH/luirZbKArU5Ij1QSG/fy/NrtTZxftXn1M+x+jtEu7B9G4lkbHmbK/iXNyjEof6mkigQQl5IJn9IX8Gj/mJdHDicDuAcQCOArAOwM/9cm4+C0u57ZoYiOhyIppNRLM3bTKf3MuB2vHAXvWBb4NUKAHeZHJRFEsUhUCfbjXYf2APra/KcAWrLIlZXJE3LO6k8dgmaqUdj+QGkhw+I6rclP2NH9LLcEWI2Y46G334+kZvFyt5/7kowC5KZMqpGfXCgahD6l6bNzqtceDq6GORfekbdWtRoCZPkUOKfL9E/gZAiIm5VKgclmetFK2znlHMq9i5l49EG3jHt5PSQZrGd6/No0ddHo0tccMIG9H0yqM/7G0js9aSiIMQYoMQoiCEKAL4LYAp/k+rAahC4ZEA1vrlI5nyyDVEVAOgLwxiLCHEHUKIyUKIyYMHDy5l6M4KacAzIw2cWPIUmdxpPBaLAqwDTKU4h0roHEzhyJP6sl9T5qLTLmdPEUljVizMhlk8hk3NuFr8xJSG0e61vsycw3EHJDPNqs4h0q4iOsnn4tZ1dgMBbsOOfi8Gp3C9XMTk6XIDbGwpYlNDE4hCg44gjazxmVNsA/3c/75qHjyA7QpxGKMcwsJ7bx/OocnfyOtr88H7NnECrnk4jvnJdFY8VWmURBx8HYLEeQCkJdOTAC7yLZDGwlM8vymEWAeggYiO8/UJXwbwhHLNpf7nCwA8L6qojk86rauTslttHmMGerFQVBluUSR7SUc7FdZNptyJ6yYOsiNnCEee1E6pnEOlCCOLiFhJdmjv09RXjWIuZnOUq9G4gLCO2VqJ0zn87MIjzYP0oR5MZDeFosAvZywLyvM55TCT2KLXjk4M4opQflMvFAXmrdqOl5dtxsaGRr9utA4h1KckMahcUq0kUcqe5nCzrFXemQvnUE3rH9l/jUKs9XsJwrsYBskVbzdwSpVEYqJVIvoTgJMBDCKi1QB+BOBkIjoK3rxbCeBrACCEeJeIHgKwCEArgCuFEHIXvQKe5VN3AM/4fwBwF4D7iWg5PI7hokrcmAlJ8+A/ngjj+HSrzeE3l0zC26u2oV+PuohyM42HcVF4C81kul2u+KUSJ59cDii2OPSldWYb36K1ZiutUpSAcnGRtjnG02uGyCWw7BImkVpNjiCtzJuCgIje9wsnjcRlJ40FkI5zCKyVmPwh3Rxi73BRWf8yfy3ufnVFtE7gtCYidTlwv5nPM2YZ+NsfbccZh+0X23CTxEoq8rk45yDx3TMOxvKNu2I5sNUmVYIeKr/blnPYursZ3WpzwcHNI9a8gUBSYEg+wVgV2R0ficRBCHExU3yXpf40ANOY8tkAJjLljQAuTBpHpZD0SGcpHqu1+Rz696zDqYd4GbpyCpue5tUUfc7BFHa4VKWu2n4SkqrkiRwV21HYTG1/9OS7JY+HqyM3qzSEWdU5lEKQVNGPrkwc2b8HDtmvT6wegOBB2aRS+QTRpOk+1aiscn40aGPLK+EznDhCpo5uaWWaZ6MGhGIcGeYhJlcHRdaPDfkcGT3h+3SvRc/6OAFVm6xTiK5Lyt1qhM845ifTAYR5sTlrLQm57kwSAJfsk9VA1/OQTvFUazUPNJXy29rRFZ+BzsHAOZQqmgnqVODok7Oc1lTo97Bo3Y6S+nPJeWEajRpnhj3xRix+lA3Jcnt9uvPnpJ1KpjIpU+eayed1zkHExiKhKmslRvaP60PufGVFrCy4TuMc9CRI+Vycc7BxJS4bpAyAqFa97MSxuObMQ4Lvr7+/xW8vem1dTS7GxZk2w97daiMZ4iLjLAp2Y1QJfw0jVmqLzZSDtFbKUchdmnQORpVDO429yxGHNNDThqqU37aPch6NOYKRFb7ntZXGtlw2/sqYsroppPU633pwfuI1HP727vpwbEKwwQz1vuRmGiEOnOULc00CbXDUgUT7VDf3UqyVVJl+GgMHzs9Bd67iRE/9e5jzO7jsP1/34/uo8+2Ug4dEiM6GnVLnEG2xviYXEcsC5qx+vbvVmImDgWtXu1PXn0ucLy7H9QNvfpQYf8wUDI/j+KIGAtHfZD9e7KW4Pw439LYwZ+1yxCHNI9U5h3By2yebvlkXE6ybfqfIinW4KJtLMUHVkWcsRKqJ6YvC7Hl3zPwAh/zwWedrG1OJldy4vTR3Lutyuo2gjiQOrLVS/Leox7W9f04hrYdgV2Xc8rXqSnMAOHPiftGGLJAEXN389K16v77d/D514hB3yjPN2171NdjdzBOHgpFzCFEbESuBHU/kWu2nh+eswjWPLcCdL5vX5e/f+BCH/PBZrN8RN7HlTE2JyKhzkeuOQPjV88sx7rqnI9ZI3NhdDoTlousRhxTPNE4cQrbQ9m70TVYqpJnRAEgI6+Aw3jQRVk3tdavLR8at57NIM5600DkqE2Tf0c0pjogTXCB35zcVADh4aO9Ucmduc9dFNiEBCSs9e/VJwVgAnXNQxpxAHTxTVsUMC/GNNq9wDnLA+kbeu1sN/vOciUErOj+yw2ARY5tv3DsCPOOOgPP251mLYd4TzPPMK4//qL4/9VnIw5Vd5xD9vm1Pi//fHPDujpkfAOCfkYnbNxlHyPVPBPzpzY8i7e7Y24J/f/SdWFsZ51AVuD/Ug4b2jnzPKXz6+xvNITH0xVMUgpUvhCco82Jz2bRcEvckiadqc7rjEV+/FOVdqcnVTToaWx0AWL0tjM6p6hxMIyfGdNI6LoM+4dLj9w9Sc3J6hQMG9fLHHL8+wjlY+n7zutOQy4XbeMg5aGIlxVEuFIdF2+pWmw/l4Mz8MIk7bQYBso//fnZppLye0TmY5r2nn+NfSEEINhKwWl3No27zqXjle6d4v8UMRfxxsCPwIJ8BR8dNhz2TQtq2Nm97cXksrLvXR2kh99OgyxEH102gV31NTHegvlybniAWQMvnHMYN7qkXAyhfIe0yUZK4CyJg+57wFGTqt5TzSskpSYW+aN16f25xKLJS5e6my2vy6TJ0mdpRNzWOuwjFCtHv3mc3/cOQPt0i7cqh6Bny8jmKKUC556nyH86Jomycg9/GO2u2R8rrFY/tQOdQQiDEQtFkdeaV3XDuRBw6rE+kvjouFTI0TvwQkkwd5EGKE42Z1rMp5L9KvPWxmERv1cx7LdH1iEMZ17razG/Z3YyGRnWj9RTSd136MQCIBWnjFslhw/sE1ybBZaIkZa/TV4JpI1aLXVlbrtrphw6JFyaA3xLipccrXsahnNtsypq3nFRtYPUJ2qdoKI/o/MkZOAeXfBV64h1OrARE+4tbiPHRXZPgYkqsnwc8hTT5Dm5eZ+ZNFMaFKgziQVm2/8Aekcdnc4JT5wY7DsuLUFOd6jAdhkx+DpzSXL4X0zPKdA5VQDkyc/3kY8N//mVR8FnqHMYM6oklP5mKzx8zMjIW+aK/eOxovHndafjzv3wc13/uML+Oi1gpebEmpRnUzfTN3pph+W9mJid5N2FgT16noUIfgW1TUHH+pDBSi2pEYD/xJw4ngOn9q5saxzno80f97chRYbh0F7slnTC98cGWyPdcTs0Wx5+edze3hgH84O4MpnIOsVN3MKejc1LGIlM98Y1iJZg5uUKRpxuyTQJFHo484T+zcF2k/gGDesbEbvo92GDzTTCtHZNYSX5tai3GYkipz1FyOl7d6sdX6oLEoXTqkHTSUKFOEBmVEvDkvKFIIHr66Ne9FkP6dMPRo/ujm7+YXCQyLqeIJKsnfbNxeUxzLUHqkp5RpYIOcuDENba28jkvQ9dfmMxzKuQzenKeV+/+1z+M/q5satN90VaUOIQbMRDdJH702Qmxflwgn/O7mjd6nuJ6CX2aNLYUIwTEhSNYvG4nNjeEitoYAff/6/u+THerBtU7YiSfP0SadHIoGDmHkOCq71+urYdnr47U//OVJyTODdt7CDmH+DMzEwde8mBbK+pzVCUOu5sy4lBxVFqsNGn//pE6lx6/v1c+JiwXgg/FbNuwXLiUn5zjcRcunIM8ub32/hb2d52FNvWrKs9s0SGTNnb1GRotU4xbTxLiVkDyfvQcBbJOsQh8809vW1u90OdINjV44dr1hFDqpvbY3DX+SMhYRxUFqVF+XXweorZKcQggdgjhnrPLXJQY0rseZ/7yZdzy3HvGOrIdfdOU90cUvoue9bzjoe3uTeJBWeIJ08IW5HzVOeO+3WsT15htHAHnwCw9q7gMYELQmPtRn6NqwLCrqfqxlboecXDcX2ypDNXJ9PvLjo3UMcXZj4iUHeS8LvoN+RtHHI4aFT2VJbGh+n7kopDeY8hc5V1vf9Auojld9OQqVuJO654pq2A9lr0Tvzsno3tDh+3EN2u9O9XZsJRNSa9keow96vKKpZYsjVcOuZn4b//7xaMj3y+aMprtR4VsZ8ygqPFFXU3IOYScjPmZm8VKdp2DJlUKuBTdLB2Ic3IScvM20einF6wLDkatxSKWb2zAVQ+8HYjJzNZKdp0DB7WtpUpGyV0Z51B5uFpkcLU4D0d9AkkZoayys7EF63Y0auamyctftc8P2taIgFR6qyfQiSP6BP2PVmLeJIkM9NPqd884mK2nzmNTWkNv3NbunIj0oN4acUi+BIDmIa30p56mI/XJbTzynmoZZzJTO3p3asTRpE3EhkAhbXgq3RjrIE5EqVtQqRjmO7SZ8D8XHIHJGucsh/MxLbFVfUAcws3XZMJpex9FgSBScj/F41vN2a0+vYCgG8Ii20RYJvzLH+aG4ykCVz84D0/MW4tF67zN2yhWYtY09x1QTLCVttTD2FmHD4tdU2l0OeLA4Z3rP407LpkUKbOdSNXJpC/kphYZ9N6r87/PLwfAO3rZCBUXpOzlZZsjdaTjlepMtHhdQ/D5P84O5dictVKNxULmxPGD2HGp49En9aBedbj69PHsb6Z2GhpbsHRDA1snbnrJ1PGf4ePK89UTx8hrheDJsitxkH2ZNpocxTkQfZ8nReZutG830IYfnu2ml/j1lyZF6wj5z7IJsfNdEYVqm2hdTQ4XTh4V48RkDf3e5MldVUib9GDEPEeJohC4/BMHAAAmjY6Kbr37iT4bW+6McDzaPJPjcDjEtRaLccuxRJ2D+7xW21IlBAN61iWOrVx0PeLAvIg+3WpRW6PF42cqcmyhPueCsM7+d+7EbhIr1Slj4MRK+onkH/00jipHoY5nuJLcpqmlGFncBw3thbe+f3o4Jm2MpvwTsoUl63fGQgf8w+RRgWxZvTc9A576u3oK06FvMDZierWSfzeikFY9pOGJlYZrJ2JXsZKswoXa9htiNtlo3ZocBfeVhnPo36MWl5041jimSJFhs+MJgKxjnu/ys7qp1RscG03hweXcVnUORkWw5bdCUaB7XR4TR/SJ9CFjdRFRhGDJe1Yjx6rgckdwlmYm/NPvwjzWshkTR22KreQa96ktzFdVdDniYHq8LnJeTuegL2QZ3Mzm9aj3JVlEeSJS+/KC0hWwaO1OPDo3anEhNylVrKTKVicM74O/f+sTOGx4HzQXihpRI/RXTh9xWTwjm/dX7cadjZj6i5cjEUv1cd//xsqgTCpwVchnuHidOefD9Yo5sAm8klU98ao6B++u9BNrLse3c/wBAyMOVXLMvXxF6tA+UbEXgWITTH+sXjhqr5Lp9MeLvjTFtv9fAHjpvWjKXP3k65IJjvOV0RlLdXMyEUjZjL7hSS/5XC70KTH6ycQfY4DADBhhOy2FIu7zLcfIoHMwZdgjxJNcBR7whjHokKEu5HhWbtnN1jPFVnLd89vC8U1F1yMOpvmos8dMPe40r172swuPxJWnHOhdz/xu6qsmTxgzsAd61IXWGyoLev2Ti/CZW1/GMwvXR9vx/6vsps4+HzS0N7rV5tHUWrAStRhp4MYN795tp33Z7k+fXhKUcYrrUsxUefY7DtI2NcD3c/B/G9I7zjlwp7drzjwEx44NZeeyhiSqt/zDUbF+Y2Ilrc0aJTT6YcP7MqN39XMIudhL734z8puqnAXMHtJA+L44n4N+3esi9dQDD5f/GjCHq6itobAdAwGR4Iis3j4pVW58JpxrOdKslSz3Dnhrzxa+xgUf+TncZQ+m9kxGJq75Gq44eVzJYywFXY84GGadviBtm07UkzG88oJJIwP2WX+5nMwzkFEWBBOqQyqkgHmrtuuXRuqooRMk56C2JjNrqUPS17Y+PE60IWXqOxvNZnQcUeFOyKXEaCqFoIT3Ia1cKHavZNiL4qHX5X/vQw/NFJMTh+jPMZ/LobXo+RTM+sBgVsw++/iYAX4+6yffYNxsX95/TmQxWhUHksY5GOSOodmsgXNwsdZiiKxE6OwW3tfslWrsIYrMwdAyim0OPZkIsCFxdeUd5HXyvvjfzU5w3DvUxgJgYBvoGVR0PeJg5BySr5ULfY+WdUuNk6+bx0kRxL8oVF/ZrgB4Si09nLJKiExx64KFzYiV1NuUJ351Uvao1TY2AycRvTe7pzHAE5W/fPNE/PGrUZNfV+Lw9ILQs3V4v7j1DJvPQdU5RE5rIriHaH23/Nm6eMaFyOiPoybnnVT/529L8MFmT/zw3Lc/EanD77sGsRLHTQUy86iOjLeK8ZAUCkW1MgLihPPRKz7u9SHtMbTra1VrJeH1Z5TNwzzHCuHNBX3o4c7PO3pE8D3kZPgGe9ebc0ekIw3hmEuNrRRti+HybInoq4BE4kBEdxPRRiJaqJQNIKLpRLTM/99f+e1aIlpOREuJ6AylfBIRLfB/u5X8J0VE9UT0oF8+i4jGVPYWozAtgZhlgkWs9KHPRko8/52TMf1b3gLXLZrkpn/V6QeFfQV1vP+FoojJcOVEEIJn4f/6zRODyaaayUr2PTZuETVlvPViz4b9mjMPwY2fP5wVK835wel4+SIyW/UAACAASURBVHun4kvHjcavvzTJl/Oan6EAv7GN6NcdHz8wav1kow0/u/DI4LMqwurXI35y4pqJOBxKIlsMdQ6xJEKGAenya1mDi43ktROP0bSfpvyuyXs6hwVrwgx6Bw6JRv9Nvy1FoUmVrJnG5BwyKTulHwMhmkZWJw6T9u+PQ/brHRx4jDoH8p7Rdx+ej8fn8R7pJk4OUMRKiK8xWT60T/jMTXGlJHrW18TEniUyDqznu4o0fg5cE0lpZSsNF87hHgBTtbJrAMwQQowHMMP/DiKaAOAiAIf519xGRNJL5nYAlwMY7//JNi8DsE0IcSCAWwDcVOrNuMAYZCtGGzj5rPd/l3bS6N+zDuP98N76ia6xtYDaPLHJXGQPLQURY9NVFpTT/U0c0TdoS42/wpnf5XJeO3e98kFQJjetr39ynOfcxIiVBvaqR6/6Gtxw7uGYOnG/gN232YW7nm5sB9WkCN/79bHb30d0DsqzFgIxzuHAIb08ixV7l2Ej4GMjye+ynW61OVz+iQMins9AqHOwKReH9I7HneL6UoYUHaY2Prmps2Il/7/ptDvz30/BjO980j/xm4mDhBphVEVoyuq185hjDo94+/FnH11bxNY3bdi1eYo7kZYiv1Qu0/s6yTcLl8Pk8r0ktQnERcHVRmJ3QoiZAPSA4ucAuNf/fC+Ac5XyB4QQTUKIFQCWA5hCRMMA9BFCvC68mXufdo1s6xEAp5H+hisIM+eg1bOcsvRE81wdSVw2NzTF8hnoG3ihaNE5CC8GjglCRENt84pkT847xxILycnxipLXjeuLsxGY0QN6Gn8DgKevOklphxtDOArOtlz1/zh4aG9frBRvaL8+3XDZiWNx2PA+GNizLqbcjHEOFHr/SkKkY+WWPXhi3lpsaIhnEJP4leaZzEOeQs3PMdz4fc9dRlEqx6hukE//60l4xn/Gg3rVY9zgXiCiCEHjaIN6//qGJ+c3EbEhJ6LjNkfJrVF0arKK0bQYyZZatflczNxciq5eXb6Zu8SI0AorWn7bPx4DwObn4MY5VHFbZFEqLRoqhFgHAP5/GRFqBIBVSr3VftkI/7NeHrlGCNEKYAcA3u6sEnCkDry4wvtvi3Cqcg7vb9qFh+esxm6DbDWIsVMsRpKiA+GiLQhhzMhl619vS8BuJ61fx3EActHa6INtAn/9k6HeRS6Qzbui2bZ+9NkJsXhVAHD2EaFHaETBzS6i8HPECQ4CBMLx4wYGYjUiXsa99IapGNirHiP798BT/3oSBvaqi218JoIqw0rbCO6qrXuNvw1gxGec2A/g56l8tgP88CPda/NYv6MxsHZ78PLjlHa8htTT7IThfSImvLI/1QSYt+ZTR2QQreTsBE32pdbYtrsZB/i5UL439ZBg3JxTYtxMNM45yHD4gEcc9HUhN/e3VpoPUxxMVlhB6JAgv4Z+HUMcpGJfeRKDDdkZq4VKMyrcahCWcts18caJLiei2UQ0e9OmTVyVRJitlVxOzvzLVRFsRgCWm7LFaQu7UOTESsknQ8CT5ydBKlxtSseY2IKpEzgMMc0csl9vfOm4/WMbosyMBiASasE0lAOH9GLLxw6ycxMq1BHI4TQ0tuCh2atjOqEcUeTEK6GLg1TvZ5NYSYbNXrllTyyeVrkwvh/mOcp7+fepXgiUUw8dEjkFH6vZ/HuiyYQNG1GFtFSm6+0UhcehmLITch7JXF+yyoadjTj6J9PxwabdOPuIYcF8Uuuojya+8Xr/1eJLjx8TfNZNWV9YuhG/fqm0UPQy77Pu4yT3FqOfQ0JmOwkpSm4rlEocNviiIvj/N/rlqwGMUuqNBLDWLx/JlEeuIaIaAH0RF2MBAIQQdwghJgshJg8ePLjEofOI6Rw4awFFD5DUzqvLN2PaU4v5OkEf3v8WxpRVKp+KRWFN1DNYk0/LzVklNjl/Jdnk3Fz00Fgdn8hwrTx79Scwol/32Ib4c0W5rKI0qS7XTrylaPgM7//1T3oOdTKSqrrBF4pFMyFXoMvT9XuVzox7mlt94hB/iKcekpzkyCQajNYxU54TfeV/t9o8BvWqQ1HYRS8EB2ulHCHJB0sqm6f8dAYembPaWEftamT/7lh541nagMKxrt0ecliqeNYk4oxvvIzOQXkUtfkcmpUb+4ri8ZwWX71vtt9XtFyuRc7PYWdjC15hxFeVWh/loFTi8CSAS/3PlwJ4Qim/yLdAGgtP8fymL3pqIKLjfH3Cl7VrZFsXAHhelJN0IQFGU1a9HldHWnY4eCq+vGxz4BxjakeiUBSxqJHqRNK5iv8+/wilXrTtw0f2xf87aSx+edFRSh1vQdrSdbqIMwlmzksft0RdDT/FhBCs57QJppOtfJ9qFNqoQtr7slVLFh9u8IQXlm6ypr6U9XSFo/4eZbiSYtF7b9wG/tWTxlr7AXgu1vR+9PdRm6cglagcd5HRaanIEaOUjY2Jz12g1ykKYOvuZnMdim7UvM5I/iYi712dS2rIE/U5680l6xzKd4JT0dhSwK3PL4uU5QJ9S3RMAPCNP77Nx10zjPvJb5yAv139iVj9asDFlPVPAF4HcDARrSaiywDcCOBTRLQMwKf87xBCvAvgIQCLADwL4EohhBS4XwHgTnhK6vcBPOOX3wVgIBEtB/Bt+JZP1YL6sM8/ZiQWXP9pAPGFbJap2hPnpNMZCfz6pfexYM2O2OIlJSbQxVqo5O515tj/OSJ8/6wJGNk/dGAivx1J0z5xUJzrivs58BuUEAlKUMf7LwqBaU/Fw2McMzqubwCANdvMMnq934hYyf+vxwJSnalc4N17dMHGHdy8/3J+8KI5r1QPvRHtLLlI5z4lfqMFkMznPDGOyWkN8AivHidLR44okbvw9ABxnH9MKDRQiay5He//is27cfcrK4JyGWjSq2QQK/ljlKH0H/KT/KiiHrV+TS6ucygHd8z8IPKcPqmsNU4hvcwUdNLQ/hEj++Hg/XTT5+qAz7ahQAhxseGn0wz1pwGYxpTPBjCRKW8EcGHSOCoF9aH3qs+jdzdfhumwS9hCDUg46S7kWETo+m/WOcRFAlMn7herp7cdKfMXpDz5cRuFE+dA5SmkVRQN6R5NCWC2G5TyNg4PCJ9PXU0OUBgV+Qi4OP8cVCWpXNxxJzivQD5nTqwkS/br2x0bdvKck+2Ur44HADbvirZx6iFDI99zvnWQ7mSpY7bFkk32l0wc+IPDSUqE37ymc7CFqz7vttcixhiPzFkdpM/1uNiwXwlZpkcVNg2ds1YqB3reFNV4wiUroURg9VaxkaVHF/SQVk4QKU3DgnAVFrGSixKSszTRrZVM+o2Txg+KbGhuRM1rR4rDuM0ndjJl2pX+APrk7lVfE6njAte8GkF9w4p6bG5ctq0OIdDBaAT27COG4ysnjMG1nznEqX8pTwfM1kr54PDAEw8gFDHYNiTO2cnE2a3fYRfNSR8X+c7HMBFyXUAunAMcTJ1dxEr+repWeqoJOanUgYmlpMM032rzZBW3poWNCLvoLEO0v9ah6xEH5bNJFGECZxMer+PCOcRPECbOoaiJcTgxktY4MyavLzkp+c0ncdiBP4A6uWddd1ogmmPHY0ClOHk9Iimg6xz46+pqcvjRZw9jva45SHk6kOwBKzdRzhw45zCHuP0l9pr970mMT17b1H9mMBBIAiHZoonLZwFEN2ZdIc3nmOBx7ZmHKHXCvp7z83X7DcawdXczfvHcsvgPkNZK/H3FEhlpOOeo4TGDkFqb4j/B2lE1MZZTbPqiDXzlNkCiWGlfg7quuTALNoScg02slAxOMRXTOSh1ihYi4iKCkItWLgKeK3ATh3niqXBAQzVvZVdmLK3NgWlD5nxO9CQ1Xn+puotDladLzkEn6P5GLZMv8c8ieQ6lId5JHumelVGo2I3I7VPAyQSVks0ydT+HNO/la4qfjMlaidt4/+3h+ZHv6obuWSvx7yJpLtfkcrH1rksAVHCcg3q9asbdxqkbWHQ5zgGRU4xa7rLJev9tYqU0kipVSWbzc/iFktDdRESC71z4jMBayWy5YVJ4RvvyNkibeKFanINpE+G8x9UhuI4nCTlFnm7SOYScg1nnIK+xipUcCT4AFBIs5/K+OMw2JhcQJVvpmTK46e9j595QPGRLQJQ0Hnmpms6U618VT/3uKx/DyQeH5sS1+Zzxvrh1rhK22jzFxqqvYzWdZ5Lvkvpu0opdq4GMc/DhKlYBKiFW8qCy6XpY7nCjiS6gWIA+XRbN7uq+tRJn851m3P4GaTtBOo3HH0Mltm2Wc2DGk2ap3X/ZFLbNJA9p+V2GKWF1DhWaQ9Ksc4/FW1/2VyiKwOvX5u8AxCPEqu24OK/pm/3YQT1x1uHDwzpEWsj3EuciKEasofV/8ZRRmLF4Y8Q/4pSDo34mNp0DdwhSi/I5is0BlaDo/htqGH7Am7trFSuxCHFof9rQ9TgH9ZmrLLnLRuXCOQAOhMb/XTWJXbI+atJmUl7FN6SEvuQ1wu7n4AJOrBTvy62ttJNfry/74eTgnBOca3//9PExOGk8b+ob85DW6sg96P9eeN//3SwekpyDGsrBBr2tekkcFCXtWUfEk87ncp61knz3SVyJtN7j4KJzUBfYgUN64YV/O1lLf2vezNNA7Uo10NANTopCxFIAq6jJ5dBS4INJcvdb0Lh9/WnKoIlc5AJdnPzzvy+N/q4M0xYHra3Q9YiD8r4PV9zR5YZiWztheONkZyD773H28qrTxsf64kwDTeInW9/eiS48PXLr0UWxLW3Ut+1xT/ajmqaqst60OgedzT77iOHGdtQhpJWiGGX7ioxbbhBxEV8y16RavB0wqCee+teT4pUcxiWJgxq3S829IZHPRblGm78DYJ67uVw8LAQ3xkbFlJNrK42fQxJkO/2U+z5yZOgMKZXxdRZuSSqQOULAmaxHiEM+F3vnPes9nc6dl06OXSvf/VL/ILhdW0fqGvzB4wvR3uhyxEHijksm4TOKPFC+lqSTVY6AlgS7aFcTWXXujWNiCumWHUBcAenSl0ywYkuZGLH4MEA3Q+TrRMejOrUdOaofHvra8Thp/KCydQ5C+68iKi5MRx1MfipqKtHWYKONLh9dkWzbiFsKxUQRT7T/KGTsJzVhDqdPkBtkq4GgxfoxPC89nwN/rRcLyTaeHEU3Yp64u4g4QwOBYhE4/dChWHnjWZG86J4DIFBvUcJLrqO1IGI+ChyHrHL7Xzx2dOz3wLmSOxj40+Xn098Lxhf5XbsmiRhXG12OOMgT6BgtkJt8mUkKOy/UQLLs1fq7FCspHAi3kegLCYgrBfXLOLGAtFayybnVUB9f+8QBbARIQnQzPvnguPhFfX5csLwpYwegvibnaOsdQq/NyZuDcWoKUL4FHsbXr3AO8kSZpP/JM5YrgSNlURjzMPPjirZdF3AOoViJ3Yx9D2kTtxMfn7k8OVtclCvgniURRZTxrgrpv3zjxGgdIHghpiCHnvWUYDkqCfk8WopFnPnLlyO/2cRKPzjrUIwb3CsW98zkPQ/ELbn0d6pfY8pQ11boesRBUnatXJ5WkhaPzfRNIonAyF/VZniv5XjMGz1rlRzv2EE98f3PHIrvnnEw22GxGMpBjx1rj4h+zZmHsCfIhqZWzP0olIVyuaHV2zA/BjLGHjLCwDms2roXza1FI0GW5XpocPPIeKgJgUyncH2v50xS1To2m/gkyGvV+aBnnQNCRbJOHKaMGYCrT/dEmV/75AFBfSPnQMlOcECyXiJPUQUwF46eG8HhI6MRSWvzFGzMXD4U2VdBiCB0OQfVa/mDTWGk2XyOj7lU1MRzuoe6SR8FILZvxD3so9/ThOqvBrqetZL/X38RLuaDAFBfm8PeBAuRJNZB9qUuEm5N5Shu1aKzvnJy1+YJ/+8TB4CDrDN2UE+s2rqHDf42ZewAvLnCC4Zr2iAaGlsjpxk9iZHaF5Cw0QqRKqaNrnNQxRGPzV1tdG5Ma7ppqv7GB2GgYMm9mYIlSrAEX3kqSfJ/FZ85fL/IdzmH1FP4P318TOw6KVYqaKKwh75+PDsO05CI7DHFvGujhxmek6mAQQeAYX27B/O1KATr7yHjSnW3iJVMYbRr87wYLUk8J6P7cmtIN1+O6ay0FdPYmrDPVBldkHMIyEOkXJ7EkqQd3IaoI2luy4n825fDtJ079sZPtly0TP30JuegTUQhLURaCgKjB/ZkJ+4VJ49jrrSDi0ukNm0iMlL88Jf50RzCqoXHv2jjiekclO/XPLYAb38UmgKriyytQjqJmER9BqK/xcKuWzykgeR4RyquOPnAyHdpsKBuONz78BTJ9k0tH8nBbNI5uMVWUuerSSGfqLNz0Dn07laDvS0FfLRlD97ftJuPY0XkR8j1xn3uUcNjdUwJeGrzOYMpq4hcp0Oe9rl714lDkuVhk+LD088iGqsWuhxxkDBxDkmWSKpZ3q8u5tM5Jm1I8qS2cM3OoIw7peSI0NwaLdcnrJxgNpollanb9jQbRRkuRE8Hp1Dt3S05zpKM96NiUK+6SPrPYZopoP507L4W4Wf9uSbmU0h4d82FIlqKwneAsi9u7vmo16RRSPM6KYqIKrjnnfc9pG8xKEGBqPiLDNPAJSprjvRUovz9N1jS7HLgcobX5Dzd32X3evkXNjFpV/M5j9uRB8L/YUKHcJnwAG89cDo6GWa+1kDYpQc6d++Tx3jGGTIib1IonOZCyDk8esXH2f6qia4nVjLoHOQpLonllSaEtXnCZ4+Mn0S8tpOUfvHfuYWnn8S4enKtWzmHHLBhZxM27GzCIEOqwTQiDgnupDq4V7iQjadQijtUjejXPZI1Lmk4Ng5P3YB1Mdz/ffEYa7tJ766xpWiUcSfGvUL04OAqyjTVzWvKXY5TyxFhY0NjELSOe88qkTJxTkTRuafmzwjqIEqMuaZmMrGwuL5UDOwV123J+R5mX4u3I/UtJqdFr8z7Hxcr5VgHS0mMtu3hdVg2nUO32jwm7d8f3Wq9sd/96orI70TAcQcMCESYknN44PLjMG4wnyGxmuhynAOXIASIn+K4PMYAUFdjPhlIJK15bqFz/eW0xQ/ET8Jc5jcd6r3qCjQJm6OQCVdqog5AS8hikl+D2dy1yvomrS9eGwlXr1TlzfU1uUguDPbahHfX1FJAS6HInhz1OZFkZmsLFz5ucNTSy6TcTkrSE885wcvmJcx6oijncP4xI2J1ZizZGPnuou/5wuRRiXW4MevrleMkpfgyCIRoEHMB0YivEhw3L8Osm+affB+me1f9ZXQQUSR+lFS415ewNiuBrkccjJxDWDJ6QA/84avHstfL9ey6GXPgrj1seDw/bD5HEVNFgOEc/La4zSMYj3U0HlzESlPGDgg+f+2TB6AvIwd19djW10fcuS/6u8mUlW1fuXj/geEm65QnIeH3gHNgREJ6+1zmtKjOwdzb8eOiFmV8hNf44YEbkyrq4eaJWmbb0NW552JKkPS4Jwzrg+vOOjRWHg9PHod81oFYiJkPuqiY56y8/5fc9WakvKVQtBpMmN6dLbilHENRCKMPg3qZJA6mbIrVRtclDgadAwAcNLS3MXqlXEi2jUb/5dmro16wSZE0g3oUN2eLxqVRxUo2Tia5P5ekN1MPCy1mjMRE6cq0f+shFID46Ugfsr6WTG2rOg8JGe3S9BzuUrxZTY9KmnsWhUBza5G9f/1aLqBbxFrJonOwEXu1jkuimnVq/J4kzsGkJ/LNQiUqEfvnh2dPiIgSgzHo35lB6ZszJ5YNQqwUeD8Ite0126OZBpsL3iEgrSd/oqMgvLmsGqNw4wFCkah0eGxrdD3i4P/XxRZqqF2rcteFOGg/HbJfNH6Oy8KXfb2zekek7PgDtBOlFCtZNhoXWuSiHFXbMRETl8iSXBA3/XtM9u8qVmJ+CBO885ecduhQHOA77Jl0Dof677AoBJpai6ivTRYrcbmU1So2ayUXH5CGptZE5e7zmqiHg/ruzSfeaARYFyfGpBrcM+TGwL03nThwRFISwpaCsIh5+HKpT3Tx7VAhfSNMB8AcEZpaCvgvPwOkDo5zaC+xUpdTSEvoc0KdbC7ZnGzxhWwx3QF3RaRe7fVrT8VAzaEnjAnlJuYy9e0iVlKvNbG6aus22aoucdENAZL2RnPGrzjkuG0cm+zPtjnK9ptbi+xpTn+2nMFClDiUx+1VCmpftk00LedQqlm4C+cgvc/lT9yJPcjMVyxadQA6Hvra8Zj94dagXe7gbro3OQ7T2yMCthqU2d54wiubO7POgYhWEtECIppHRLP9sgFENJ2Ilvn/+yv1ryWi5US0lIjOUMon+e0sJ6JbKW1AnBQwsYkRi40yF6266NXsThKud6f3Naxv99imLLuy60Di9XW4iJXU12Kqr9Yx7Q1E8fegJqHX2wEQs9YwLU7u/YacQ/J7NS9qCvptai0kipXOO3oEhjOROdUxWMVKVdgPbv4HPgucOndsm1prgs6hZ4KyX0c3I+cQHYUL52BTNrcWBZtdT62j4pjR/YL20zhqAi4KafviV38OOYfOK1Y6RQhxlBBCCm6vATBDCDEewAz/O4hoAoCLABwGYCqA24hI3vXtAC4HMN7/m1qBcbEwvWr1pdkkLC76AjmxLp4yCsceEA9V4SrGdCFEoZ+DhTgoS9400VxCOUQ4B0N9dRhrNTmuWkd9BI9e8XFcPCVqtaJujjedfzimnXd45HfTI7StZZsoJLg3kymn/39XUyueW7wRi9btjNWJ+Ask9YOkrGGVPx+Z5og6p82mrFH9BkeE7/hyNBJp0jSvy/NzUR8CyznkQmINGMxU5QZfMHMOXHFNPhdID0zJlEwi02SFNG92G/yufA50DgYiWm1Uo9dzANzrf74XwLlK+QNCiCYhxAoAywFMIaJhAPoIIV4X3oy7T7mm8jAopCOsdQplMwe56Mtd4LqSjIObQjr8bFK0J4nCgOjmp4biVqESIj0OVDieqM7hqFH9YhvAwUNDPc0nDxoSM0E1cYDcop3v6230EMkcTE9RvksZHsFWBzDrDIYoYcvLsXgrBab5GOEcTJua9p2bR2mHbNQ5aN9tnAPniyAhzy+txfQ6h5oglDe/k5vFStIyiv+dyJxcyKsQftyxpwV1+VxJDqqVQLm9CgB/J6I5RHS5XzZUCLEOAPz/0iV1BIBVyrWr/bIR/me9PAYiupyIZhPR7E2bkp1p+AHzfg7qN5vC2OXU7yLGSAvpVakjMGW1bDRq5MjudfwrdwoLonQxekAPvo7DjNKDuHEjV8UAnEjAtHn2qi8tzIBsL0nnYHuj0RO4uR/57Fx0W5WEiRhFrZWSOcJTDh6ML3ws7p8QWzcJi6V/j7hzG9+3mXPY4iv9OR1YyDkIqxUWh7xBrDSyvycqPHH8IPY6qTszGTbkKPSVAIAzDhtqHM+a7Xsxon93Z+vGSqNc4nCCEOIYAGcCuJKI+ByDHrg7FJbyeKEQdwghJgshJg8eHA8X7QJjVFalwLbRJgUfA8JTh6kd3UtZTyeoY0jverz6vVPZ31yc4LbsDifj0aN45760YiWTeMplGucoJFhHjOxrtOEP+mUW8E3nHx4rIwIeVgLKpUEgVbLEFpJ9JLXhfTZXlLJ2u86hCpyDA3EwQSUal514gCGOU7SdRLGSSdGqPTtuyemElQtlE+oc0imkgTA8hk4cjhjZFwcO6cX6JQGhEtl4ONC+3/j5I3Dp8fvjuAMGRMYMeGvExOm3BcoiDkKItf7/jQD+DGAKgA2+qAj+f2lLtxqAetwYCWCtXz6SKa8KAlNWi1zTShwcFFTStd+0P3Svy+OfTxgLAPjUhKF8Ja2+SeyzcI0nMlHzMehQ7+0n5040jDkdcTDVd81FLRV3asIlFWrzXF/D+saVvf9+xiFsDgkXJFsrRWXcHNRx2mLqvbfBE03ZQkmoz9HFCerVa/jDQ2R8DmIlE9QqaswfUx2gdF8IfZycrkifE6qzo17HxjnI5zxIC9Ehr9V1Di0FwRLG31/mOc1u8GM82YJORr7nCD8+ZyIeuPx4/zq1r6I1i121UTJxIKKeRNRbfgbwaQALATwJ4FK/2qUAnvA/PwngIiKqJ6Kx8BTPb/qipwYiOs63Uvqyck3FEXIO5ocuN1wOLsRBnsJt4ikZE2bjznjAMInPH+1J1/pZ2O9ZftjiuUpUUh3qKExmcW6beljHdOp19ZCWijvTxuRKrFX0qi/9lCXng6knOZzvPDzf2EbaDHR63vBoW97/Myfuh/duODOxLS5nsQ7Tc3RJOqSuFz0YpESlxKg6F8u1m4agNReKRhGerKPTHzm/WxT9wPKNuzB90QYsVowR5FiH9/NiismcEGaxYvR7PGx3iObWopMVYbVQjp/DUAB/9hdBDYA/CiGeJaK3ADxERJcB+AjAhQAghHiXiB4CsAhAK4ArhRDyCHIFgHsAdAfwjP9XFYQ6B3Md2yncJQGHi1393xatBxAqSznI6weUGa5X3ajKWcAqsTNu6sr01i2Q1DGEqTaTT1iuxKGcMANyXnBhMfTxmOCSy8IVOQdOJXWbRuKQfK16+6ZkV/ozWmA5ZNkQM9dmxmd6T9x4mlqKRrGprLNFc1gMrJWUw+CzC9fFrq+vyaOl0Io+3Wt9z3+v3BZ0Mtq/+feWQiclDkKIDwDEDKeFEFsAnGa4ZhqAaUz5bAC8vKPCMOkcInUsv9kIh4SUV9o2FJdY/nLjdFXcmaCy5eWIstV5ahq/esvHj+OVdpGN3+hpzde3oZyFJB+RmeglQ730b++uj5nfpkFgqumY3tQFJqMDF85BnfdHjYxHZPXaqQznoI+zVM5BjqeptWDmdA23roqkJHQCAnic+K4mb/706V4bWMSZzKb1YdtyOry1chsmDItGV2hLdNnwGWUf7SyQE9E2f10UwPKkZxMruUBEiEPpNx4R9RjGrzb/2SOS9Qm1FeQc0iodVcgTn2mj1It//aVJ1v5d05KaIJuyVULg+wAAEnJJREFUETzdcTAJJs5qiyFSrwoZn+mY0f0weqDBUq1Ca0q/ZzaplMMCltzp3I+2Y9VW3izcJP4LneBCLmnNtngbF08ZDQDoUZePxInqz6TQ5cYdEytp4+H8adoKXY44SLhMrlIhX7htU3M55UoxTk8HWbptA4yYjZbDOaQUKxmVck6Kbb7fUuDCpUkCaqLZ+nzhktanNTn8ARORNGjLv2fbPDGJ7Uww6Ztc/D8kbOPR32WPlB7TQR/KOGtyhGnnxYUKSaHKAeCjLclcvtGUNfBziHuFq/qd73z6ICz5yVT0rK9x04Noj0/vv4pn1tToesTBQYhbrpyvNoj7YhErpcoCljwe25jVdVSOc1XEu9d44k9uRx2C6TlE9CSOm64pV4PLs5bJW0xiLn3VujgNJuGTB5nNsd3CoqR7lybiYPJZ4TCyv7muvtFdOCkdZyOhipVuOHcia5nW5BCN1uSEqcJkxFDL6BwKRYG6fA5/+1ZosU9EgbnpxoZkDkw/ZCSJmdSIwW2NLkccTKasKlxixFz/2QnG3xr8sNq2Pc3llCHllrU1yXVtxMElgiYAXHbiWNxgMHUFtE3dqHNIp7hNsiJJA1MK0N9cEhcB6ZCOSS4KciD5VOzyfl3CZ9iSMLk8IxfflNMdzKkl/u2Mg5zHU+pBRCXyJs7SpBRXsac5OR2pmrlQhexX5VBaiwIThvdBL0N0gIbG5P5sJvQAYiHMD2iHDHASXY84OCikbaejoB3Lb2+t3AYAWM3IKCWcRB3+f1O+2kh7ltOxa9jhH549AV86bn/j7y52/G6mrOFn183YpU0TgTxpvLvDpEmEpZcmOSe56ElcuAKTTkatY4PqyVyJpDHcKV4iJiIpkUlVc0abnuMABz3cV3xfIhtMIlu5nqKcQ7GkdLoqkt7Z6IE9MEDRV5QqmqsEuiBx4MNnqLCdnsN2kvuyndhdFNIyW5SLWMRGbFw5hySoG6fRQzot52CM7ppubHcmsN9fPHY0PnP4fsbfjxjpebza4vCrSNpo3TgHG0Ev+nXK4xy+d8YhweceZfiBcEmUdOjxtji93rc/ZeY8JPp0D9sxHRJM4StUHLxf78Rw16b3yEVlbSmIVOJgDuo7U4mgCjVnS3t6SHe5fA5hsh8z+jDZqXR88uDk06gtXpHLyTIQKznIt2XMF1s75SIasrsyVk+V4hySzDF/mmBWeuCQXnhn9Q5jQD99OMMMC1vCRSdhe68yRo+tjktEXnUz61lX+nKfdd1piRyoHhaGG9Y3Tz0QN09/z9qOetCxBdbr060GOxNEOXLM/2zgIszEwQ+fUfCywT27cD2aW4tGkZIr5DubOKIP/vrNk9g66lzrnhGHtoMpTagKm3XM4v+ciqbWgpN5qW1TlicCLkZQeL3337YRf+WEMfjdqytZ00oJuUD+aMiL7QqXAG0uUDdgYxjpEsRK5UCecm05KCROP3SokcPoWZfH7uYCbjr/iMQ+badxaV9vC58gx2S7d5eQJy7o4UBY9PZPPjiuA3KZN+p8tzmduuRakHXGDeHDqugHuCNHeT4cQfiMYhGPz1uDbz3oecbbjAhcIO/MtseoRL+cQ1i56HrEwf9vM2W1RRbtXpc3WsXocNCZWfUbcvPY1WQ+Pf3grAm4+rSD0NfiRS3XULnRHSvlrKnmNC4nDIeKck2Tg7Vqyl6ntG9bsHU1OexuLuDIUXxgNhW2JC5SEeqitLZtuK4E4asnjg1ybVcCy6edWbJFl3o/XMwkCWmNdO5R8Yx7OkYZ1pna1yNfPx7HjPYCU9YqpqwblSiqldI52NaifGf/v71zj7GiuuP457cPUNkFynt5rLuC8lpfsEV5KFYEQY1o1EaKgNpUNDRoGxOltenLGuzDVMVGSYW0ttXG1FasVGONmrS2FTb1BYivGEWJtlUBHwiLp3/Mmb2ze+/MnXtn7tyZ3d8n2exw7tlzv/zu3Pmd8zvn/M7h9bUVSd0elj475xD0LIm6rv58mxPpUFDe9hB8uX0cowcdxkmtQ3zr1NZIoGOA3NxF1B2scd2on3t6fFFWPXWvH0lSbg7Jp51u+y5CTBIH3UPXL5rEpFGNgXpyzqF4DzNw5BDSMDecM4WL7YauOIhjqS/kp7QuxMI2/7kklzBZBvrV1eSlwO/skXjv8RBncgfhmiXoc3FfquZ8A/RB5+ASGFaK+BCdYR/mQT1DN5YYFD6Z3DSQp9fMo21M8V5oEG6a8aiJ0eLK83MoVFiptDbDLG0MYr976pZPDNpru6B5ALdWkHO7cu54HrkmKLu9Z84hxJkPgcefxpTSolqE6STMnlB8ctrvSFIvhZZYl3pMKMCpAaEnd9I+6BnjOg6/s1eSos85hzBLWaM+RN2Mq36npQGsveA4Vp8+IXBUEBddYaWIzwl37qL9yMJnQpTaDviHaMJ8BltvOKPr+kCITVFBfGYnPv16a933eBTv9UXNieTG2r0rd/Lfyx05ZNsBlIs7P9B4WPEFJGHOYfaO0nJLWUu/r4L2QDXaZ8KwxsKHd0Hu86zmZDT0RefgcxKcl6gP0UXHNjGsoT/LZvrvGRje2J9vLpiYSM8urrCSm2cmcjuH4pmQ9q6OCZNOIYjxNt4+2mcdf7e9GYEhky7vEIlxQxwdE0f5J15zNWXNNYhE/44BPHDVrFDpzCHcyMHr9N3rgz5nSAcRtHFtv+3E+M2BQG4PUVDnMgn63IR0GKI+/MYMPrxbr7bauD31qD3MQyXsuwjC+yD3C9GUKjXqyOHaBRM5Y/JIjh3rF8LLCfJb7gpw0/lt3LR5h2/itbCs+tIE5h4znBPGFc6ACrlRzsGIc1tJs/37C4vWOX7soMANd+B8T8N+V/uH6IV7l0PnViuZwHPDS8X9Dg0NuD/c7+nwBv/RRRL0OecQJqxUzRUClSSqc+jsGoFEG3B65wfCJN4L1WZE51BfW8MXW/xDfF6Z9215i7U+S1UXTB3FgqnFJ0jD6DmxOTh812BXs+0/mC3nEGa1359WzY71PUseOdTm5hzu79jl9yfduHtFO+986J8VATyHCwUMLbucQ0DoKQn6YFjJoZc+/wvyi6XTuHRWS9EVMsVwY6DFNoAVw5s0zW+jYJj0IgBn27TgUcNKxUhjh6GUTW0XlpkEr1qISKw2D9qQWoi6rpHD54wcGO4hPW/ySJbNbAms4859BHXU3A5Tz02FSdPnRg6L2kZxzMiGUBNUvYWWYQP43rlTI7dzUusQfnLhcV0P5HLxPsj9eke1NcIba88u2tas8UN5+PndjA5xTGYUvF/loDQcSVJbI6w89SjmTQ5e7hnGjnFxycnNNPSPdnJhJQjjaPrX54eVbtr8Urc6937t5Eg6Vs49ir37D7L0JP/5SHdkVe3+SJ9zDkcOHRC4saZtTPVOXko7IsJF7aWdIVAIbwgo6lrur8xoZkrTwKIhmKh4e3rrlkyr6HuVwpqz/M+EqAY3nlf+6XfV4sFVs9m951NGNOZGxIXmwiaNamTm+KF55aXQeFg9P1gcnLutaZCjo9od2NQ4BxFZCNwK1AK/NMasTVrDyzcuimUVRV9n/bLpgbttV887mpX3dMTyXiJSccfgvE/uOut7B5TuHD9ucNeyWJeec2E3ntcWmLE4TpbMaObTA4dYMaslkffzIxXOQURqgTuA+cAuYIuIbDLGbE9SRxwpjRWKTsieaV+P68zhJHAnNAcX2Y2upIsnrj2Nd/fuL16xCLMijhhKob62hpVzxyf2fn6kwjkAM4BXjTGvA4jIfcBiIFHnoCTHw6vnVH3CrRTcQ2GiZuVUkqV12ABah/mHkcMStGmtt5KWO30M8Jbn37uAaClElVQzdXS0lCBJM/DwOq5bOIn5UwqfNqf0Pt5YezYHOj/nzfc/ZmCIXdi9jbQ4h0LxhbyFwCJyBXAFQHNzfEnCFKUYIsJVp1V/qK8kS7+6GiaMiLYEPKukJci+C/AugxkLvNOzkjFmvTGm3RjTPnx4tLzqiqIoij9pcQ5bgKNFpFVE+gEXA5uqrElRFKXPkoqwkjGmU0S+DjyKs5R1gzFmW5VlKYqi9FlS4RwAjDGbgc3V1qEoiqKkJ6ykKIqipAh1DoqiKEoe6hwURVGUPNQ5KIqiKHlI0KlWaUZE9gE7fV5uBt4s0sQgYE+K6qRNc9h6adOtmqPXibMttXUydSC87lHGmOI7+4wxmfwBtga89p8Qf78+ZXVSpTmrulVzop99qnT3Zc2l6A56dnp/emtY6cMQdR5KWZ20aQ5bL226VXP0OnG2pbZOpg7EpxvIdlhpqzGmvdTX0koWNUM2davm5Mii7ixqhvC6w9bL8shhfZmvpZUsaoZs6lbNyZFF3VnUDOF1h6qX2ZGDoiiKUjmyPHJQFEVRKkQmnIOIbBCR90TkRU/Z8SLyDxF5QUQeEpGBtryfiGy05c+JyGmev5luy18VkdtEpKLnVMao+0kR2Skiz9qfip04IyLjROQJEdkhIttE5GpbPkREHhORV+zvL3j+Zo216U4ROdNTnoi9Y9aciK1L1SwiQ239j0RkXY+2EruvY9adVlvPF5EOa9MOETnd01aabR2ku3Rbh1nSVO0f4FRgGvCip2wLMNdeXw780F6vAjba6xFAB1Bj//0MMBPncKG/AIsyovtJoD0hWzcB0+x1I/AyMAX4MXC9Lb8euNleTwGeA/oDrcBrQG2S9o5ZcyK2LkPzAGAOcCWwrkdbid3XMetOq61PBEbb6zbg7YzYOkh3ybau6IcSs6Fa6P6Q3UtuzmQcsN1e3wFc4qn3OM4Z1U3AS57yJcBdaddd7gcbo/4Hgfk4Gw6bPDftTnu9Bljjqf+o/fJUxd5RNFfT1sU0e+pdiuchW007R9GdBVvbcgH+h9ORyISte+ou19aZCCv58CJwrr2+iNxJcs8Bi0WkTkRagen2tTE4J8657LJlSVOqbpeNdjj4nUoOZb2ISAtOb+RfwEhjzG4A+9sdlhY6/3sMVbJ3RM0uido6pGY/qnZfR9TtknZbXwD82xjzGdmytVe3S0m2zrJzuBxYJSIdOEOuA7Z8A86HthX4OfA00EnIc6oToFTdAEuNMccCp9ifZZUWKSINwB+Aa4wxe4OqFigzAeUVIwbNkLCtS9Ds20SBsorf1zHohpTbWkSmAjcDK92iAtVSZ+sCuqEMW2fWORhjXjLGLDDGTAfuxYkbY4zpNMZ8wxhzgjFmMTAYeAXnwTvW00TBc6pTqBtjzNv29z7gdzhhsoohIvU4N+NvjTEP2OJ3RaTJvt4EvGfL/c7/TtTeMWlO1NYlavYj8fs6Jt2ptrWIjAX+CCw3xrxmi1Nvax/dZdk6s87BnW0XkRrgBuBO++8jRGSAvZ4PdBpjttvh1z4ROdkOqZbjxPBSrduGmYbZ8nrgHJzQVKX0CXA3sMMYc4vnpU3ACnu9gpztNgEXi0h/Gw47GngmSXvHpTlJW5ehuSBJ39dx6U6zrUVkMPAwzrzU393Kabe1n+6ybZ3UZErEiZh7gd3AQRzv/VXgapzZ+5eBteQmeVtwJmx2AH8FjvS0026N8hqwzv2bNOvGWe3RATwPbANuxa6sqZDmOThD5eeBZ+3PWcBQnEnyV+zvIZ6/+ba16U48qzeSsndcmpO0dZma3wDeBz6y99OUpO/ruHSn2dY4nbaPPXWfBUak3dZ+usu1te6QVhRFUfLIbFhJURRFqRzqHBRFUZQ81DkoiqIoeahzUBRFUfJQ56AoiqLkoc5BUSqAiFwpIstLqN8inuy9ilJt6qotQFF6GyJSZ4y5s9o6FCUK6hwUpQA20dkjOInOTsTZtLgcmAzcAjQA/wUuNcbsFpEncfJhzQY2iUgj8JEx5qcicgLOTvgjcDZPXW6M+UBEpuPk1PoE+Fty/ztFKY6GlRTFn4nAemPMcTip1lcBtwMXGic31gbgR576g40xc40xP+vRzq+B62w7LwDfteUbgdXGmJmV/E8oSjnoyEFR/HnL5HLU/Ab4Fs4hKo/ZjMe1OOlRXH7fswERGYTjNJ6yRb8C7i9Qfg+wKP7/gqKUhzoHRfGnZ26ZfcC2gJ7+xyW0LQXaV5TUoGElRfGnWURcR7AE+Ccw3C0TkXqbO98XY8we4AMROcUWLQOeMsZ8COwRkTm2fGn88hWlfHTkoCj+7ABWiMhdOBkwb8c5UvQ2GxaqwzmYaVuRdlYAd4rIEcDrwGW2/DJgg4h8YttVlNSgWVkVpQB2tdKfjTFtVZaiKFVBw0qKoihKHjpyUBRFUfLQkYOiKIqShzoHRVEUJQ91DoqiKEoe6hwURVGUPNQ5KIqiKHmoc1AURVHy+D9NRVUqFOk7aAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sorted_data['inc'].plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXl0JFd977+3urqrd+3SaDSa0az2eAYvM+PxGGMDMcaOSWITIM9AbPNCYsIhCUl47yVkeyzxS3gvCYlPwIQEgjEE40CCWWyCbQx4w/aMt/HM2GPNKo00Wlvqtbprue+Pure6em9Jval1P+foqFXd1Sq1qup3v7+VUEohEAgEAoETqdkHIBAIBILWQxgHgUAgEBQgjINAIBAIChDGQSAQCAQFCOMgEAgEggKEcRAIBAJBAcI4CAQCgaAAYRwEAoFAUIAwDgKBQCAoQG72ASyX3t5eOjIy0uzDEAgEglXFoUOHZimlfZVet2qNw8jICA4ePNjswxAIBIJVBSHkTDWvE24lgUAgEBQgjINAIBAIChDGQSAQCAQFCOMgEAgEggIqGgdCyDAh5DFCyDFCyBFCyEfZ9k8QQs4RQl5kXzc69vk4IWSUEPIaIeR6x/a9hJDD7Lm7CCGEbVcIId9k258hhIzU/k8VCAQCQbVUoxx0AB+jlO4EcADARwghF7HnPkspvZR9PQgA7LlbAOwCcAOAzxNCXOz1dwO4A8B29nUD2/5BABFK6TYAnwXwmZX/aQKBQCBYLhWNA6V0klL6PHscA3AMwFCZXW4CcB+lNE0pPQVgFMB+QsgggDCl9GlqjZ/7KoCbHfvcwx5/C8C1XFUIBAKBoPEsKebA3D2XAXiGbfodQsjLhJAvE0K62LYhAGOO3cbZtiH2OH97zj6UUh3AIoCepRybQCAQrAZiqoYHXjzX7MOoSNXGgRASBPBtAL9PKY3CchFtBXApgEkAf8tfWmR3WmZ7uX3yj+EOQshBQsjBmZmZag9dIBAIWoaHDp/HR+97EZOLqWYfSlmqMg6EEDcsw/B1Sul/AACldIpSalBKTQD/DGA/e/k4gGHH7hsATLDtG4psz9mHECID6AAwn38clNIvUkr3UUr39fVVrP4WCASClkPVDQBAKmM0+UjKU022EgHwJQDHKKV/59g+6HjZOwG8wh5/F8AtLANpM6zA87OU0kkAMULIAfaetwF4wLHP7ezxuwH8mMUlBAKBoK3QDOvWljHMJh9JearprXQVgFsBHCaEvMi2/QmA9xJCLoXl/jkN4EMAQCk9Qgi5H8BRWJlOH6GUchP5YQBfAeAD8BD7Aizjcy8hZBSWYrhlZX+WQCAQtCYaMwoZfZUbB0rpEygeE3iwzD53ArizyPaDAHYX2a4CeE+lYxEIBILVjr5KjIOokBYIBIIGkuFuJWEcBAKBQMDhyiHd4jEHYRwEAoGggayWmIMwDgKBQNBANOFWEggEAkE+QjkIBKuYZ07O4ZVzi80+DEEboq+SOgdhHASCInzye0fxtz96rdmHIWhDVotyqKYITiBYcyQzOqKqq/ILBYIlopmWckjrq7x9hkCwFklpBmKq1uzDELQhmi6Ug0CwalE1Ey6iN/swBG2IbgrjIBCsWlKaAdMUvR8FtYensrZ6EZwwDgJBHoZJkdFNaIYJ06SQJDGUUFA7VktAWsQcBII8eKCQUiCREa4lQW3RRRGcQLA6cQ5hianCOAhqS0YoB4FgdZLSShuHqaiK07OJRh+SoI2wA9ItHnMQxkEgyEPVshdtPJ2bzvqp7x3FjXc9joOnC6bYCgRVoenCrSQQrEpUh3KI5imHuUQayYyBD/zrc0JBCJaFtkpSWYVxEAjyUMu4lRJpA+s7vIindTx/NtLoQxO0AXa2knArCQSrC2fMIV5gHHQMdvoAAOkWX/kJWhOerdTq548wDgJBHrnZSrkxh3haR0/AAyBXYQgE1SLqHASCVYqqOwPShcqhJ6hYr9Na++IWtCZi2I9AsEpRS9Q5mCZFImMI5SBYESLmIBCsUlRWIe11S4g63EpJZgxCXhkel2S/TiBYCqJCWiBYpfCYQ19IyQlIJ5iLKaDIUNwS0sKtJFgilFJRIS0QrFZ4tlJfUMlxK/H4Q1CR4XW7Wn5Yi6D1MBydfoVbSSBYZaiaCY9LQofPjZijQtqpHLxuCapmQtUM3PD3P8Ozp0TFtKAyPBgNCOUgEKw6VM2A1y0h5HXnuJWcykGRXVA1A9PRNF49H8PRicVmHa5gFcGroz0uqeWVpzAOAkEelnFwIeiVc9xKibR1MQdt5WAgqVnPt3pBk6A14CNCA4oLmkFbeqCUMA4CQR4pzYDP40KowDhwt5ILXtkFVTNtgyFqHgTVoDNj4PdYc9ZaOe4gjINAkEcqY8DndiHsdSNjmLb8zw9Iq7phZza1uotA0BrwOENQEcZBIFh1qLoJxe2yL2CuHvID0mnNRDIj3EqC6uHKIaC4ALR2UFoYB4EgDzVjwOeWEPJaxiHuMA6EAH6PCwpXDhp3KwnlIKgMr44OcOWwmo0DIWSYEPIYIeQYIeQIIeSjbHs3IeRhQsjr7HuXY5+PE0JGCSGvEUKud2zfSwg5zJ67ixBC2HaFEPJNtv0ZQshI7f9UgaA4Ryei+O17D9kXqqpbbqV85RBPGwh4ZBBC4JVdTDlwt1LrXuSC1sE2Dp42MA4AdAAfo5TuBHAAwEcIIRcB+GMAj1JKtwN4lP0M9twtAHYBuAHA5wkhLvZedwO4A8B29nUD2/5BABFK6TYAnwXwmRr8bQJBVfzbs2fwwyPnMRZJArBiDl63C/1hLwDgfFQFYCkH7g6ws5UyQjkIqofXOQTaIeZAKZ2klD7PHscAHAMwBOAmAPewl90D4Gb2+CYA91FK05TSUwBGAewnhAwCCFNKn6aUUgBfzduHv9e3AFzLVYVAUE8opXjs1RkAwEIyA4BlK7ld2NTtBwCcmbMmvsUzun1R8zqHlIg5CJaAbmRTWYHVrxxsmLvnMgDPABiglE4ClgEB0M9eNgRgzLHbONs2xB7nb8/Zh1KqA1gE0LOUYxMIlsOJmTjOLaQAAPMJqxpa1ayAdKffjbBXxmlmHBJp3XY1ed0S0rpwKwmWRr5yaOXzpmrjQAgJAvg2gN+nlEbLvbTINlpme7l98o/hDkLIQULIwZmZmUqHLBBUhKsGAIgw5aAy5UAIwUhvAGfmLHdTIq3bvmKv2wXdpHY8QriVBNWQjTm0iXIghLhhGYavU0r/g22eYq4isO/TbPs4gGHH7hsATLDtG4psz9mHECID6ABQ0KyGUvpFSuk+Sum+vr6+ag5dICjLT45PY4iN/YwkHG4lj3VpbOz228YhnjbsFZ/XbT3PDUorrwAFrYNu5mUrreaYA/P9fwnAMUrp3zme+i6A29nj2wE84Nh+C8tA2gwr8Pwscz3FCCEH2HvelrcPf693A/gxi0sIBHXlxbMLuHZnP9wugkhSg2aYMEwKr2yt7EZ6Aji3kIJmmMytxAPS1nfbOAjlIKiCjM7cSqsgW0mu4jVXAbgVwGFCyIts258A+GsA9xNCPgjgLID3AACl9Agh5H4AR2FlOn2EUsqvnA8D+AoAH4CH2BdgGZ97CSGjsBTDLSv8uwSCisTTOhIZA0OdPnT5PYgkMnbdgo/J/k09fhgmxblIimUrMeXAjMdcXCgHQfUUKIcWPm8qGgdK6RMoHhMAgGtL7HMngDuLbD8IYHeR7SqYcREIGsUUS1EdCHst45DM2LEDrgw29QQAAKfnEog7AtJKvltJKAdBFfCYg59nKxmte96ICmnBmoUbh/6wgq6AGwtJDWrGuni5cRjpsdJZT8wkkNbNnFRWAIiwDCehHATVYGcrrQK3kjAOgjXLdDQNIKsc5pMOtxIzDn0hBT63C0cnrAS9/IA0DyiKbCVBNWjtWucgELQT0zGmHEIKOv0eLOS4laxLgxCCTT1+PH82AgAFAWmOUA6CatDzlEMrnzfCOAjWLFPRNPweq4dSd8CNSFKzi9p8jpv/Oy8bwqlZqxAuqxxyjYNuUrv6VSAoRUHjvRY+Z4RxEKxZpqIqBsJeEELQ5ffAMClm4paryevJ3vzvuGYL7rhmCwCgN6hYz7sLL51WXgUKWoNshbR1fqVbeEhUNamsAkFbMh1Noz9k3ey7/B4AwARrpcFTVQHLtfTxX7wQ77xsCBcMhAqe7/C5sZjSWMC6UUcvWI1w5eBxSZAlIpSDQNCKTMVUu/NqV8ANAHj21DwIAdZ3enNeSwjBzsEwJMnK6na6lboDlmERQWlBJXTDBCGASyLwyFJLB6SFchCsSSilmI6mMZCnHB5/fQY714XRyX4uhSJn11WdfsuwCLeSoBTTMRWPH59FxqBwSxIIaX3jIJSDYE0SS+tIaQYGuHJgxkAzKK7cWrkhcI5yYPuKOdKCUjzwwgQ+9u8vYTqmwu2y1KfHJYyDQNByTDsK4ICscQCAA1sqG4dc5cDdSq17oQuaC8+Cm1xQIbusc0dxSy29oBDGQbAmmXIUwAFAyCvDJRFIBNi/ubvi/hLzGQNAN4tXiBYaglKozAicj6pwM+MQVNyIp/VmHlZZhHEQrEns1hks5iBJBJ0+N3at70CHz13Ve3iZcei03UpCOQiKw5MVJhdTtlupwydjMaU187DKIgLSgjXJ2LyVssqVAwC8/8AmbO0LVP0eXrcLUVW3XVIiW0lQCu5yVDXTVg4dPrddXNmKCOMgWJMcOhvBBQMhu1IVAP7wuh1Leg8elLbdSkI5CErgjC3ItnJwt7RyEG4lwZrDMCmePxPBvpGuFb2PkudWEspBUApnJbSHKYewVxgHgaClePV8FPG0jstHKgeey8GVQ5eIOQgq4Fw4OJWDqpktm7EkjINgzfHcKWs8+eVVZCWVg/dX6hJuJUEFnOeGHXNgxZPRVGtmLAnjIFhzPHcmgvUdXgx1+lb0Pl63CxKx3AOAcCsJSuM8N9xSNiANoGVdS8I4CNYcB0/PY98KXUqANQ3O75Ht2INQDoJSqA7XkVu23EphYRwEgtYhpmqYiqZx0frwit/L65bg87hACIEit3a1q6C5OKvn5TzlEG1R4yBSWQVrinOsJfdKXUoAcMXmbjsorchSS/fmFzSXtG6AEIBS5NQ5AK2rHIRxEKwpzkWYcehauXG49coR3MoeK26XUA6CkqiaiYGQl7XPyGYrAa1rHIRbSbCm4MphQw2UgxOvWxKN9wQlUTUDG9iCZLUoB2EcBGuKcwspeFySPe6zViiyUA6C0qR101arvM7B7ZLg97iEcRAIWoFzkRQGO732RLda4XWLmIOgOKZJkdFNrGdqlVdIA63dQkMYB8Ga4txCqibB6HwU2ZWTrigQcHiKc9jrRpffDZ8nOyiqlVtoiIC0YE1xLpLCm3f01fx9RbaSIJ+YquHsfBLrO6zFiNct4V9uvzxnPnmHz92yqaxCOQjWDGndwHQsXZNMpXy8bpcoglvDGCbFx//jZYxOx+1tX3riFN5191NIsepoRXZh76YuDHZkz7+wcCsJBM3n/KI14Kc+biVJtM9Yw5yPqvjGs2P4ryPn7W1n5pJQNRNz8QyAbC8uJ0I5CAQtgF3jUCfjIJTD2iWVsZrn8VRpAJhgj2fi1qKEF0w6EQFpgaAFGF+oXQFcPl5RBLemSWWshcGEwzhMMqU6E7PmlZdSDomMAc1ovYWFMA6CNcPYfBKEIMfnWyuCijUPOCPUw5qExxW4OqWU2m5MbhwUuZhysHKCWtG1VNE4EEK+TAiZJoS84tj2CULIOULIi+zrRsdzHyeEjBJCXiOEXO/YvpcQcpg9dxchhLDtCiHkm2z7M4SQkdr+iQKBxcHTEexaH4ZHrv2a6MCWHqiaiWdOzdX8vVuJxZSGJ16fbfZhtBxJh1uJUoq5RAYZpgbKKgd/61ZJV3OVfAXADUW2f5ZSein7ehAACCEXAbgFwC62z+cJIdxc3g3gDgDb2Rd/zw8CiFBKtwH4LIDPLPNvEQhKomoGDp2N4MDmnrq8/1XbeqHIEh49Nl2X928V7nv2LG798jOYjaebfSgtBU9GSGYMLKY0TC6o9nMz8dLKoSdgVerPsqB1K1HROFBKfwZgvsr3uwnAfZTSNKX0FIBRAPsJIYMAwpTSpymlFMBXAdzs2Oce9vhbAK7lqkIgqBUvji0go5s4sKU+xsHnceHq7b14+OgUrFO8PZlcVEEpcMKRsimwjAJnPJLC5GI29lBOOQyErZqH6Zha8FyzWYm+/h1CyMvM7cQntQ8BGHO8ZpxtG2KP87fn7EMp1QEsAih6BRNC7iCEHCSEHJyZmVnBoQvWGj8/OQdCVj4atBzX7hzAuYUUXpuK1e13NBt+Ezsxk2jykbQWKUca88RCyg5GA1lVUEw5DIQt5TAVbT0ltlzjcDeArQAuBTAJ4G/Z9mIrflpme7l9CjdS+kVK6T5K6b6+vtpXuQral6dPzGHX+rDdCbMevPWCfgDAU6PtG3eYZjexkzNCOThJOZTDuYUUJhZTcLsIPC7JoRyKp7J6ZAnT0TZRDpTSKUqpQSk1AfwzgP3sqXEAw46XbgAwwbZvKLI9Zx9CiAygA9W7sQSCimiGiRfGFuoWb+D0Bj0AgJjamgPja8E0u9GdEMYhB24cPLKEc5EUJhdUrOvwIuyTEU9b50MxtxIhBP0hBVNljINpUvzjj1/HYrKxQetlGQcWQ+C8EwDPZPougFtYBtJmWIHnZymlkwBihJADLJ5wG4AHHPvczh6/G8CPaTs7bQUNZyFppZhu6vHX9ffILgmyRNq23oFSKtxKJUhpBtwugg1dPkwspnB+UcVghw8hb1apFnMrAVbcgRvdYrw2FcPf/Og4fnhksubHXY6KjfcIId8A8BYAvYSQcQD/G8BbCCGXwnL/nAbwIQCglB4hhNwP4CgAHcBHKKX8SvkwrMwnH4CH2BcAfAnAvYSQUViK4ZZa/GECASeqWiuucB1dSpx27rEUS+tQNRMhRcZ4JAlVM4q6StYiyYz1WQx1+nAuksJcIoO9m7rsLCaJwJ4Al89AWMFr50vHqXgNxHSD4xIVjQOl9L1FNn+pzOvvBHBnke0HAewusl0F8J5KxyEQLBd+cTXCOFhtNNpTOfCb0/7N3Xj01WmcmUvignWhJh9Va6BqBvweFzZ0+XH/iTGYlOKXLl7v6KvkQqkkzP6QF48fL107EmVuynLqoh6ICmlBS5HRTbxe42wffnGFvY0xDu06LpS7lHg6sIg7ZElpBnxuF37r6s349Ss24qqtvbjuon6EvNb6WylTeNkfVhBL63YhXT62cmhwuqswDoKW4rOPHMeNdz2OuSUWWS0mtZKFWbz6lLcqqCdKG7uVeNbNFVusdGCRsZQlmTHg88jY0hfEJ2/aja/95hXYu6nbNg7l3G8DIVbrUMJtFGNu0RmhHARrFVUzcN+zZ6EZFIfORIq+5mP3v4T/+8NXC7Z/4ntH8KF7DxXdx3YrNUg5pNu0dTe/OW3qDqAvpGA8kqqwx9pB1Qz4imQj8YB0WePACuFKZSwJt5JgzfPQK5OIsHS9gw7j8KMj53FkYhEA8NL4Al4eXyzYdyqq4vRs8QyaRgak21k5TMfS8MgSwj4ZXf7WbTXdDCzlUGgAqnUrAcBUiZt/1q2Ubmj1vTAOgpbh3qfPYEtvAHs2duK501apSzyt43e/8QL+5fFTAKwVWqrIyjyZMTCXyBRtfRxN6fC4pLIXaK1o56E/01EV/SEFhBB0+jxYaHDefSuTyhjwuQvdllw5KFW5lSzlcHQiilfOZRdAfHGT0U1EU42roRHGoUU4t5DCJ757BAvJ1mvA1Qgyuonnzy7gHRcPYv/mHrxybhGqZuDRY1NI66YdrLMeFzMO1vPF4g5RVUPYJ5fMFqkl7Tz0ZzqWRn/IWuV2+N1YqLFyGJ2O46tPn67pezYKVSuvHLxlFiZhnwxFlmy30V/+4Cg+9f2j9vNOg9DIoLQwDi3A4fFF3PSPT+IrT53Gz0+uzeLw+YRlFNd1eHH5SBc0g+KlsQV8/2Wr8IdnAKmaYU/dcsINRrGgXjSlNSTeALR3nYNlHKxVbqfPjcUaL2T+84Vx/MUDR1Zl48JkxoC/iDoIVxFzIIRgIOy1Yw4LSS1nvkMsrUFi65pGxh2EcWgBPvX9I7Y7hN8k1xp8xd8bVLB3k9XH8Z6nT+Onr1kNFrmrJq0VVw68fQG/eCil+IdHXsf5RRVRVUeoAfEGoN3rHFTbP95ZB+WQZgsAzWgd4/Cz4zMlkyOcpEooh3AVMQcA6A547Gs/kdFzzvFoSsdwt1XdL5TDGoJSilfPx3D9rgEAwHyi9bozNoKscfCg0+/BbVduwoOHzyNjmOgOeKDqJgyTImOYOU3OOIkMz+iwLp7xSAqffeQ4vvvSOURTWl0b7jlRZJd9k2sndMNEVNXRHbD6R3X6PUhmjJoaQj4cp5VGZn7ye0fwucdGK74ulSleLV5NtpL1OtnuyRVXc2seoqqGbX1BAI2tkq5/4regLDPxNGKqjp2DYQQVGXNrVjlYf3dv0FqZfuqm3bjtyhEcm4zi+y9P4Mxc0h7BmdQMUErtGIJhUtvtxC8enkkzsaAiqmrYUIe50cVQ3O2pHPiNixtZ/n0xpaE/VJsWGvz/m9FNsBk4TYVSiokF1U41LYVumMgYJvzlYg5F0lzzX8fbfMfTOiRHfCya0jDY6YXP7RJupbXEiWkr/XJbfzBHWq41eNFbTzB7V9jWH8QvX7IeXrcLqmbYriXDpDmuB2f2Er94uHE4t5CyYg4NUg7eNlUOi3m1Ip18vGUNM5a4cWgV5bCY0pDSjIoxJJU97yuqHLhbqbwBDSoy4qoOzTCR1k2kNAOGSUEpRVTVEfa60R9WGmochHJoMrwFwda+tW0cZuNpeN0SAkVWX17ZBVUzoTpW5KmMYc+CdkrwGeZWso1DJIVoSm9YQNpSDq1xc6slPJ2SK4ZOn+VeitTQOKSZUci0iHGYYKM+KylBfv4Vz1bibqXy6/Cg4kY8rSORzp7LKc2ARKzFUNjnRn9IaejcB6EcmsyJmTj8HhcGO7zoCXjsRl1rjbl4Br1BpWi6qdctIaUZOT2LkprjIsqUVg6n5xLIGCbCDWidAViBx4xhwjRbJ6haC3g6JVdgXDnUMvU6qxxa47M7H7UqwDOVlEOmtHLwyBJu2LUOl4+Un0AY8lpzH5xpq0nHz2GvG/0hb9m5D7VGGIcmMzodx9a+IAgha1o5zMTTOS4lJ9yt5FzBObM5EmnrccgrF8Qc+OsaphyY+6Dd1EO2ytwysrZxqDJj6eXxBTx1onTnUaD13EpZ5VD+ePhCpZhyAIAv3LoXb9+1rux7cPfTlCMbKZ7Wcz733UMdOD2XxMRCY9qWCOPQZE7OJLC1LwAA6A5axmE15nmvlLl4Bn1sklo+vCWFUyHkPGYX50hPALPxNEyTFrR2aFjMgbkP2i0oXRhzsP5X1cQcMrqJD3/tefzpf75S8XXO781mctG6CVeKIfFzsZRxqIagYhmH847Z08mMkdMX7O0so/Hho1PL/j1LQRiHJpLM6Di3kMJWlqbWE/AgY5j2WMG1xGw8jZ4SKSr8hht1jN90Kgf+eKQ3AN2kmE9mCo2Dt1FupTZVDqncmEPA44IsESykKivdbz8/jnMLKYxHkjDKuNsyLRZz4NlDlQw9T4go5laqFh6bcBqHhEM5hLwytvYFsaUvIIzDWuBVNv1pW79lHLrZzXGtuZZMk2IukUFvqLhy8LIbrtO/7cxQ4m6lETYGdCqqYjGl5aQWNko58GKndstYiqoaXBKxP1NCiFUIV0E5aIaJzz02ColYsYRyPnPbrdQihnWSuZXKKZkXxxbs869YKmu1BNniZbJAOeTGet5+0Tr8/ORcQ+ZJC+PQJMbmk/jofS8gpMjYwyqCe1iBUb1rHVrN+CymNBgmLaMcXPbrOM4WGk63EmAFpaMpDdv6g3bbgUZmKwHIyaxqB6yMr9z+VB2+ylXSPz85h/FICu/dvxGAdd6XotUC0rZbqYRxGJtP4ubPPYn7nj0LYGXKgbuVnMYzkdHtWQ78/H37rgHoJsVjr00v+3dVizAOdeKhw5PY9Rc/xDvuehw/KfKP/KNvv4zFpIav/eYVdpENrz6dr2PG0uh0HHv/8mG8NLZQt9+xVOzq6FB5t5JztVQsIL2ZxW6mFi3l0B3wYB37bBtVIc1VTrsph8UitSKdfk/FFeyhMxEQAtxyOTMOZWZAtFKFNKXUXsXrJoVe5Jhm2Hn79Mk5AJWroMsRspVD9vNJpg3blcqfv3RDJ26/chNGegPL/l3VIoxDnXj29Dw0k+LsXBLfeeFcwfNjkSSu3TmAS4Y77W22cajjyn4skgSlwJkyK7hGk62OLuFWYhedc5WaLBKc3twTgESACWYcwl43hlhldKhRMYc2DUhH1cIWJJ0+d8WYw6EzEVwwEMIF60IgBDhbhXJohXhNJKkhrZv24qJYHCTObtz8XFyJW4mfnzkxh4yOaEqDIkv2NSBJBJ+8aTcuddw36oUwDnVibD6FzT0B7BoKF10txVS94IbVw26Os3Xsr8QDi7XuqLkSnE33isGVg9O/nSoSkA773BgIezGxkMIi66e0vtOXc3HVm3YOSOe75joqxBxMk+LFswvYs6kLHlnCYNiL8TLGId1Cqaw8XXQTi2MVizvkJ47UIltpOpaGzHyhyYzB2s03RvXmI4xDnRibT2K424fhLn+Bn5VSWtQ4+D0yvG6prm4lbhxaaVDLXCXjIPOYQ/Zzyc1W0qHIElwSwfpOH8YjSbvZ3k2XrsdtV26q49HnwgPS7Tbwx3Ir5Z6vnb7ybqXXp+OIpXXs2WjF1DZ0+zEWKaccrM+sFYwDX8HzOFYxYx9Xc42Dt0KLjHIEPDIIsVxYnX433C5iZSulCu8TjUIYhzpAKcVYJIkNXX4Md/sxHUvn3CySGatvSrEgaU9AKepW+trPz+DWLz2z4mPjPsxat1teLi+PL+Cep88gqMjoLLFCUvIC0i6J5GQrJTOGLenXd/rw+lQcJrXiDL9w4QD+9B0X1fmvyMIVStspB7WwBUmn341YWi95M3/+rNXqmrdgtxZKKfz7wTH81UPHCl7fSjFcp8lrAAAgAElEQVSHWNo61wZYi/JiMSSeZgpY6laSlj9MSpIIgh7LCAQUGX6PjERaZynexd2t9UYYhzown8ggmTGwsduP4W7L5+0cxp7NXS68GXYHPEWzlZ47PY8nRmdXfOEstpBySOsG3v/Pz0DVDPzzbftKXlxOt5JLIggqck62UiKjw88urPWdXvvza1QQ2omdytpuMYcibc/t5nslFhrPn4mgO+CxU4yHu32Yiqn49PeP4v7nxgpebxfBtUC2Uoq1xOAunWL/T+5WGuzwrihTicPTWQMeGUFFRiJjYMYxYKnRCONQB3iMYbjbj+EuP9uWldO8/XGxfj+9QQ9OzSYKsiPm4hlQavnnF5Ma7n9uDF/46QmcW2IpvR1zqKJ4qd4sJjXE0jo+8tZtuHJrT8nXOQPSXlmCz+0qCEjbyqEj25q7Gb5aOyDdRtlKKutMmv95drEq6UiJBIrRmTguXBey01+Hu/yg1FIhCyx9maMbJviPrVAhzZUprwQv5VYKeFy4fKTb/ixWAo87BL0y/B4Xkhkd07E0+kpk8dUbYRzqAI8xDHf77AlOzkBcrIxyeM++YZydT+LLT57K2c6DtucXVXzx8RP4X99+GX/90Kt2jnW1cNXSCsohP02vFHadQ1KD1+2yLpwybiVOc5SDdRztFHOw+/uUSqAoESOLJDI5/bL4tSBLBJTmFjU6s4Fawa3ElWmnrRyKB6SDXhl/8csX4Yu37Vvx7+TKIajI8CsyZmMZxNO6PX2v0QjjUAe4Shju8qMvqMAjSzkZS7zqsdhN8Rd3r8Pbdg7g7x4+jnGH2uAX4FRUxem5JDZ2++H3uIpORSuH7VZqgZhDfoFPKfhw9oxhQpEl+PL+7mSeW4nTDOOQ7a3U/Btcrciv0uXwBIK5Etl1c4lMjr981/owrr2wH7/95q0AclO2nWqhFSqkU5oBl0QQYKv5Ym6lmKojqMjoDSp2l4OVwBeLQUVGwOPC6Tlr1otwK7URY/MpdAc8CCgyJIlgQ5cvJ2MpWuamSAjBH91wAVTNxFOjVnGNYVJ7fOhUNI3x+SQ29fjZvOKlXUj8Qi/lJ24ksSUqB/6YS+5DZ+Zx8PR8jnIYcioHf+ONg8fVhsbB7gya+3naFf1FlINmmIipeo67JaDI+NIHLrddiHOljENLKAcTfrfLUbdSeEyxtI5gDSvvQ0puQJq3n2+WW0kM+6kDY/NJDDvGUg53+XOKf7g7pVQzOC6/eQXmQjJj+2PPR1WMR1J4+/owjk/FluyfXbTrHLScUZvNIGscKigHh3FQ3C74PDIWUxo++b2j0AwKVTPgZxdWh8/NjIfRsGZ7TmSXBFkibRWQdnYGddLp94CQbCqykwhzGXUXKWwsVuzpvPm2REBaM+D1uOwEg6J1DqpW03PMjjkoLiQz2XO+X8Qc2oexSBIb2A0esGIPY1XGHADrZmjNJrByrZ0+3dOzCcwlMtjQ5beG2S/xJsRXgRnDzEkHbQYxR8fJcrgkArfLMmJetwSfW0Iqo+PUTAKj0zFEUxr87mxDuPWdPjurqRkospQzmGi1s2h3ZM39PF0SQbffyq57/mwEl3zyR/Y5y2/83UUCtcV6iLVazEHVDPjcrrJFjfG0XtNzLBtzcNtuUkAYh7bBGkqeyhloP9zlR1TV7Ysspupwu0jZ0YH9oey8WL4yk4jVjgAANnT54GFTx5ZybNGUZvuKmx2UrtatBGQLjBRZgt8j41wkxXLsrY6ufiW70lrf6StoEtdIvO6lG+1WJqt0i9TlBK3phc+fiWAxpeHIZBRA1jh0BQr34RlAzmJP58q8JbKVMtw48Oyz0jGHWsGvg4DissflyhKpSSbUchDGocaomgnNoPaMXQB2tgG/yUdTGkJed9mbV3/IaxsH7l7a0he0tw13WzGHpVxI8bQOk2ZbAjTfOGggxMrrrgQvhPO6XfB5XEjkBeKdfW2u2d6La3b01fZgl4AiS22Vymq7lYoE+K26nLRdx3N61gqicuNQrNOuR5YQ8sq26wnIVQutoBzy3UqlUlmDdXArhbyy7SbtCykrKq5bCRWNAyHky4SQaULIK45t3YSQhwkhr7PvXY7nPk4IGSWEvEYIud6xfS8h5DB77i7C7oyEEIUQ8k22/RlCyEht/8TGwisrnScNz5pxKodKvsr+sIJpNjKQB/x2rw/bz3PlsJTAJ18BbmQur2oGtdSTKFt5VXPy+zzWqeqVXbYLyYlThv/m1VvwD7dcVrsDXSJ8cl27EE/rkCVStD9VT1DBXDxjG4czc5b7NFJGOQCWa6lUQLoVhv1YykGy3Ur5izDTpIhn9IrxsqWQVQ6yrRya5VICqlMOXwFwQ962PwbwKKV0O4BH2c8ghFwE4BYAu9g+nyeE8DPqbgB3ANjOvvh7fhBAhFK6DcBnAXxmuX9MK8D7rYQUp3GwVARPH42qWsWTqj+kYCaWBqUUs3GrGdf2gRAAa2XaF1SWnK3E++DwgHcjBoaUI1akJUMpuFvJ65ZsleCSCLawNt0r6YhZa6yYQ/u4ldKaWbJxYW/Ag9l42k675umX8wnr3CrlErHmpWcD2bnZSq0RkPaVyVZKagYozb3OVwq/JwQUp3JoThorUIVxoJT+DMB83uabANzDHt8D4GbH9vsopWlK6SkAowD2E0IGAYQppU9Ta0DyV/P24e/1LQDXkmam0KwQPlsgoBQqh6hDOVTys/eFFKiaiVhax1w8g+6AB4Md1omyocsHQgg88tJWqDwYvclWDs02DlrVTcX4zUmRXfAyQ7Chy4c3DHUAaDHj0GbKQdWNkvGxnqCCqKrb2XhcOcwn0gh7ZbhdxffrDig5KbBpo/XqHPwe2ZGanGvseTJFLd1KvIBzsMObVQ5NKoADlh9zGKCUTgIA+97Ptg8BcDZNGWfbhtjj/O05+1BKdQCLAIr2UiCE3EEIOUgIOTgzM7PMQ68vtlvJYRx4Dxru44+phe2P8+GFL9PRNGbjafQGFbu3/AbWkmOpMQdunDa2TMyh+o6T/ObkdUu2W2mkJ4AL1llqyl9F3KJRWIqufZSDqhm2eyUfnpaazBgIKjLG5pPQDRPzSc1+rvh+7qJFcBJpHbeS1+2CxDLl8o099xDUMiB96XAnHv9fb8WF68L2+dzqbqWlUGzFT8tsL7dP4UZKv0gp3Ucp3dfX17yAYzniRTJw8mMO1bTh5SfFdEzFbCKDnqAH/cw48GZ+niXehPjvHwh54XFJBTGHp0Znl1xxvRJi6cruNY7XEZDmF87m3gB2rrPiMAGlhZTDMooTW5m0ZtrulXycA5oObOmGblJMLKiYT6QrGAcFkWQGliMhaxwCitwSAWlVM+w4lyK7ChZhsXT1mXZLgbt8g46AdLNYrnGYYq4isO98DuY4gGHH6zYAmGDbNxTZnrMPIUQG0IFCN9aqIcF6sjjdSm6XhIDHlascKrR24HJyJpbGHFMO6zu98Lol7OCxB9cSlQMzXB0+Nzr8bltJAMDxqRje9y/P4IEXC6fW1YulKAe+clVYthIAjPT48abtvfiTGy/EG7f21u04l4oiu1ZNttJiUrP7dpUirRslZxU4eyddtc36H5yaS2A+UV459AQ80Axq32T5eRxS5NZIZWUxB6C4Eiy2CKwlPJDPvQTNYLnG4bsAbmePbwfwgGP7LSwDaTOswPOzzPUUI4QcYPGE2/L24e/1bgA/pnw5sQopJTc7/R4spDLQDROJjFFFzCHfreSB3yPjkT98sz2sXXEvMSCdslJHQ15rdoLTrfT467MAULRdeL1YjltJkSVbJWzqDcDtknDHNVsbNumtGrxuCeoqcSt94ntH8Nv3Hir7GlUzS8YcnAbg6u2WcTgzl0AkkSmbn58/L527klpBOVBKC40DM/aGSXHvz8/YBjWo1KdFy671HfjmHQdwzfbmLXoqXpmEkG8AeAuAXkLIOID/DeCvAdxPCPkggLMA3gMAlNIjhJD7ARwFoAP4CKWUXyUfhpX55APwEPsCgC8BuJcQMgpLMdxSk7+sSZSSm2GftVKPp6trGRH2yvDIEk7NJaBqpr1Cc64kPEtVDinNTh3tzBvx+NTorP2aWvKZH76Ksfkk/vF9e3K2W9PwludWOrClB7937Xa8sUyb72aympTD5GIKk465xcVQNaNMtpJ1Xoa8Mrb2BeFzu3BqNoH5RKZo6wxOt6NKeqQ3kOdWau7aMK2boBR24oMzweCFsxH8+XdewWUbrRnOtQxI53PFluae3xX/Mkrpe0s8dW2J198J4M4i2w8C2F1kuwpmXNqBRFqHSyJ28QyHr9RjFfoqcQgh6A8p+P5LlvftAuZKcqIssRI36giEd/g8dvqhZpj4+ck5+zW15MhEFC+ejRT0cUrrVrHgsgLSHhl/eN2Omh5nLVmqomsm8bRecUGg6kZJN2jYJ0OWCDZ0+UEIwdb+AB5/fRYZwyzaOoOT31+JG4egImMmVr8Z6tXA425cOTgXYVxZv3B2AUD93EqtgKiQrjFxVtiVn43b4XNjMaXZQeFqVsz9IStN8PKRLrzlgsIA/HKUAw+O94U8ds+ml8YW7Ipj3rW1VqiaYQ13ycuMKjcNrxh2ncMK5vQ2itWUrRRXdcQzOkyz9Gpd1cyCxQ6HEIKeoMduF3PbgRGMTscBoEJAmhsHyxBk3UqupruVeM8xv60csv9P5wwKoLrq/tWKMA41JlaiGVen342FlFZ2Clw+PJ31z3/poqKtNhRZgklRMDWuFFGHj783qGA+kYZhUjw5OgdCgC19gZorB96T5hQrjgKs+QvVKiiOXedQph9Vq+B1rx63UkzVQWnWHVqMtF7arQQAn/yV3fidt24DALxr7wbsGLBmG5QzDjwLhy9QuNIKeOSmp7Jy4+DNCUhbx+Rc5AQ8Lria1NqiEbT+lbbKSJQwDlw5lJvlkM9vvGkz/s8734CLN3QWfd5Tpu9LMZIZ3c6i6g0qMKnVWvnYZBRbegPY2O2v+ZwH3p2U99x55uQcLv3Uw/j6z60Jdkt2K60C5RBUrBvcaqiS5kahnGupXEAaAG7YvQ6XDFvnqEsi+LN3XARFlrClr/QAnPzOwxndhMclQXFLzVcOeW4lxVFsGklq4PagnvGGVkAYhxrDRwfm0+F3I6ObODnDpztVzl/ev7kb77tiY8nny/WaL0YyY9hpoLwz60wsjcmoyjqZumsekOZy/PRsAuORJD789eeR0U1872UrlrKcgHSr02uPz2yu77wSad2wz51yirFcEVwxrtnRh1c+eT029wbKvs7ZeTijm/DIEtwuqWkB6dHpOD52/0v2Z8GvFY+j2HQhaY0+vWgwXNO+Sq1Ie5u+JhBXdbslsRPepfXg6Xl0+Nw1KW7xlOk1X4xUxrCri503sKlFFTv6e+F1u+xaiFrBlcOpuST+6qFXoekm9mzsxPNLDOhlu7K2/nrGHp8ZzzQ1T70Sccf/ulysqVxvpVKUapvhxNl5OGMYWePQpGD+d1+awLefH8dFrMFlsTqHSDKDLr8bf/5LF7XENMV6IoxDjYmn9aI3BB4IPngmgh0DwZrMGliOcuBBNm6cpqJpTMdUrOvwwqQUi6naTojj+f6vTkYxHknhV/cMYedg2GEcqg1IZ6tVW52eCrOVW4W4I85QSjkYJrVnd9eavpCCF8es84C7ldwuKafPUiM5OrEIwKrTAErHHDp9HnvUaTsjjEONKTUdivdXWkxpdnfVlZKNOVTn205lsuM0e5lxODYZhUmBdR1exFUdhkmRzBg5Fd4rgfvdX2cZLNfvWmc3GAOqVw6DHdZ0t95QcwafLAU+6Ww21tyW6JWI5SiH4saBLzzq4c6z3EoqKKW2W8njItAMsykjbI9MWIOKTrPmgdyt5KxbWUhq9jyUdqf1Nfoqo9QAkA5HnviO/tKBuqWwlIC0ZpjIGKbtVgopVpHd4XPWamld2JvtHlujjCVKKVTNtA1A2CvjwJYebO0LoDeogBAgWGUq4FXbevD0H/8CBjt8lV/cZLhbaXZVKYfibiXVztyp/a2iP5ztPJwxsjEHSi3F0kjmExm7GPAsUw5+Z8zB4AHp8pXf7YQwDjXENCkSJVbdOcahRsqh3JSqfJI8A8OTnbXcF1RwlK2W1nV47UKnWvlS+XHx5njX7hyAR5ZACMGBLd0Ie91VT7kihNiNB1sdn8ca89gKykHVDPzH8+Mo1pEmXzk8dWIW//bM2dz99dy0zlrCU7VnYmnbrcQXPI0OSvPrAIA9uCi3fYYBSqnlVioxwKjdEMahhvCme8UGgHT4sydUrd1K1cQceHqes7V1b9Bjrx7Xhb12em2tCuG4cbhsUycCHhfetSfbe/GPbrgQd723edPa6k1vSGmJmMPDR6fwh/e/ZLtMnMTT2UVAVNXwlSdP4/88eCzHkPCEgnooBx73mo6mkXZkKwHZorjFpNaQgsIjLN7QE/BAZ6rFWVuT1k2kNAMZw8wZAdzOCONQQ/iNtphbKaTIcEkEXX53TpvjlWCPMKwigJdkhss5FIdfnB6XhO6Axy7Mq1U6Ky+A29jtxyufvB5vcjQRG+72481NnPNcb3oCnpxhNs2CV/TyVilOeLaSIkuIpnScW0ghntZxPprttcRvzPVIBHC2pbdTWfMWPO+8+0l87rETNf/d+RyZiGKo04dtzOVLSFaZK7ILuknt/2eXXygHwRJJpAvbdXMIIQh7ZWzvD9Us0Ga7laootsp3KwFZ3/hAhwJCSM1jDnzVqciuhgcXm01PUMFsPI0zcwnc/ZMTRd06jYDHEs4tFDbX488NdfoQVTVMLFjuFN7+AqivcshxK7GMKI/LOk94IdzEQso+rnryysQidg6Gbdelz509Z7lCn2JGs1iqejsijEMNiRWZH+3k2p0DuPEN62r2++xU1iqUQ36/GCBrHAbDVpCXu5VqFXPI+qvX3mnWG1QwG8/gaz8/g8/88FU8zRobNhquAs9FCm+w8bQOt4ugN6hgKqoiwlpD5BoH9j+sg3II+6ykCGfMgbuVNMOEaVoJDak6V5ofm4zi5EwCV27twQBTMz5HjIVfZ+dt4yCUg2CJlHMrAcDfvOcSfOCqzTX7fXa2UhV9fLiqyTUO1gpoHZtNzbOKahVzqOeNpdXpDXown0jbefxfzwv0NgquAoutvnmTyLDPjdfOx+ztxYyDUoeANE+KmObGQXYGpE07ZqXWeTrhvz1zFh5Zwrv2DNlDtrw5xsF6PBW1YkgiW0mwZPgNuJZzZctRLubw3Ol57P30w3b746IBabZK4sZBdkkIKnLN3UqroeVFrekJeGBSq7Wz20XwX6+cb0oraq4CJxaLK4eQ142wT7ZvxB5ZaphbCbDSWadjak4qKwBkdGrHyeqpHJIZHd954Rze8YZBdPo9GGBuJeciSslzK4mYg2DJxOowdLwcnjIxh0eOTmEuYTXVA7Ixh5yANHMrrXOkiIa9cu3cSnXMkW91uOHVTYo7rtkC3aT49vPjDT8OrgKLuZViqjX8ydkEcv9IN07MZI1DPQPSgBWUzklldWQrcaOQrKNyePDwecTSut3DjCdpOGNz+TGHDmEcBEsl3nDlUDrm8PzZCADgzLyVpZLUCgPSm/sC8Lol7B7qsLeF2VCizz02andSXS7pOlbXtjo9gWzvrHdeNoTeoGK3ZWgkXAXOJTIFXWJjrGCT17e4JII3buvBbDxjZzml66wc1oW9OBdJIZkxcpSD5uhqW8/utk+dmEVPwIN9m7oAwFYO3mIxh0UVfo9rVbRwqQXCONSQctlK9aBUzCGjm3hp3MrbHmPGIWWnsmaPrT/kxSufuB77N3fb28I+N54cncX/+6/X8MCLEys6PttfXYe+PK1OH2vzEVRkbOkNwueRbBdNI4mmNHvmQH7cIZ7WEVJke6bGurAXF66zanC4a6meRXAAcNW2XiQyBhZTGjMOLFtJN5HKWJ9XPd1Kh85EsHdTl52Z1F8kIM0Xe6+ej62ZeAMgjENNWUhq8Lld9k273sgSgUQKlcPRyaidJ36W9YlJ5vWot98jr3tm2Ou2L8ZIcmV5+qpW3xtLK8OVw+6hMCSJwCu77LhPI4mqOrb2Wa2zz+UZhxgb/sSVw/pOL7b1WcaBt5av9//wmh19dnafMyCdMcxszKFOn9tMLI0zc0nsG+mytwUVGX6PK+c6uXxzN962cwCLKW3NZCoBwjjUlJl4uiatuKuFEJLTa55z6IzlUtq1Ppx1K2UMKLJUcXKVc0Ldio0DO67VML2t1nT43Ah5ZewfsVSZz+OyV+GNglKKaErDhax9STHlEPRmYw7rO312ts50zPKv2wHpOi14vG4XrrtoAACg5KSyUnuRUi/lcOjMPABg76asciaE4MJ1IQx3Z3t4uV0S7v71Pbj1wCZcv6t2qeitjujKukLG5pM4M5fEm7b3Yjaerln1c7V4XIXD7J8/E8FQpw+Xj3TjW4esvjrJjJ4TjC7FznVhbO1bgEd22cPfl0t6DSsHSSJ48PeuthcLzVAOKc2AblLsGAhCIoWFcFYqq9teEAx1+uwJbdnxnQZcEilQmLXkly4ZxH+8cC5XOegmuCCu1+d28HQEHlnC7qFwzvZv3HEArryiTbdLwqdv3l2X42hV1t6SrsZ8/iej+NC9B0EpxUysscoBsPLP843DkYlFXDLcgY3dfsTTOiJJjc1yqLwW+K1rtuDhP3gz1oWV2rmV1kgAL5/hbn92gp3HZSupevL3jxzHY69NA8hmKnUHFAywwC9HZX2CQnnKAbAK+ObYwkDVzLqpBs6btvXhrRf0Ye+m7pyANFcMuknrMjr04JkILtnQURBgVmRXXY3hakF8Aivk3IJqB9Rm4xm76rhRWMohd2U1l8igP+TFxm6r7/yZuYQ1y6EK5QBYq96ugAeRxMpSWtO6CYnADjKuZbyss2c9MUyKf/zxKD7+7cNQNSM7r9wn48J1ITxzag4mayrHM+tCXhnbB4J47/5hXLuzH4BVozHLajJUzai78vPIEv71v+/HlVt77HPFijlkP69au5Z0w8SRiUVctrGr8ovXKMI4rJBJ5scdm09hPpFpgnLIjTkYJkVM1dHhc9tDSc7OJ3OmwFVDt9+zYrcSnz281voqFcPncdW9DcRUVIVuUpyPqvi3Z87arTPCXjduunQI45EUnjs9j1OzCTx1wmrnEVRkKLILf/WrF9uzMnqCHrujrLqMEaErweNUDg7jUOsq6XMLKWgGxba+2sxWaUdEzGGFnGcDQvjQnOYoh6xx4DeETr/bHld6di6JVMbIqXGoRFfAg5RmLHk/J9aNRaw/AMu1Vs98fSA7h6DD58bnfzKKT99k+cjDPjf2jXTB73Hhn352Ei+OLdiGv1hNTm9QwcHTVlJDWjcamlBgt8/QzZzPq9aFcKdYDc9Ib6Cm79tOiCt3BcRUDTEmz18et3roNCPm4FQOC8w4dPjc8Hlc6A8pODOfRCKjVxVz4HSzUZcriTs0wiWxWvB5ah+QHp2O496nT9s/87bcd1yzBbPxDJ45ZWXjhL0y/B4Zv7h7ED9+dRqabuLTN+/GB944ggNFZiH3BBXMJzPQDROqZja06KtYthJQe7fSGZbiPdK7NkZ+LgdhHFYAVw0A8PJ4c5SDkhdzWHQoBwAY6QksTzmwYp+VuJZUvbEuiVZGcUs1D0j/+6Ex/PkDR7DIuqly5fC2nVZq6HOnmXFgdQzvP7ARnX43PvvfLsWtBzbhE7+yK6d1Bqc36AGlQIQN2mmk+nMO+6lnzOHUbAIBj8tuISMoRBiHFTDhMA7Hp6yulv1Njjnwtgd8NsNIrx8nZxNWzGEJN+paKYe1WB1dDB9TeMuZjfzQ4Un8/SPHC7bzbKTj09a5Nx5Joj+kYHt/ED63y+6rxbvt7tnYhUN/dh3exuoKSsEL+OYSaUv9NVQ5sIB0nlup1jGH03MJbOoJiHhYGcSVuwLOs06Xgx1ee7RgM2IOzgrpRdutZN3cN/cGMRtPYz6RWVJbj242J3dFykG4lWz457CckZf/+cI5fOmJUwXbeTYSX5iMR1LY0OWDJBHsWBeCSa2eSE63UKUiSCDbyn02lml43IgQAkWWoLJ4F6cebqXNIt5QFmEcVsDkogpCgEuHOwFYwb3lBm+Xi+KWcnorLTpiDgDsCyBjmMtyK0VWYBzSughIc3itwHLiDrPxNGKqXtBKnXcBPn7eaRwsH/pO1iOJnwdLoSeYVQ6WW6mx53Sn341IMoOUZkBmxqyWAWndMDE2nxTxhgqIK3cFTC6o6A0qdj1Bo6ujgSLKIVncOABYklupw+cGIcB8cvm1DmmWyirIdsNdTtyBVyvnt7/gmWnHp+IwTIqJBUs5AMAFzDgUiylUwlYO8QwLSDf2NtHl99iFm13MvVlL5TAeSUE3KTb1COVQjhX91wkhpwkhhwkhLxJCDrJt3YSQhwkhr7PvXY7Xf5wQMkoIeY0Qcr1j+172PqOEkLvIKnEETkZVDHZ4MciG5TQ6UwmwUv+cymEhpcHvyTb/29TjB/80l6IcZJeEDp97RcpBpLJm4avv5SiHubhVc1BgHBxupfOsxmGYLVRs47AM5RD2uiFLBLPxdFNcg11+DxaSVovxbqZga5kGfJq1ThdupfLU4sp9K6X0UkrpPvbzHwN4lFK6HcCj7GcQQi4CcAuAXQBuAPB5Qgg/6+4GcAeA7ezrhhocV92ZXEhZxoG1HWiGcVBkV0HModNxQ/C6XVjPipuWksoKsEK4lQSkm+CSaFX457DUm1wqYyDBDEp+b6SYqkMiVkX8S2wcKVcOvNleuMTI2nJIErEK4ZplHAJuRJIaUpqBLhb7qmUa8AnWcXZEKIey1GNZdxOAe9jjewDc7Nh+H6U0TSk9BWAUwH5CyCCAMKX0aUopBfBVxz4tzflFFYMdPvvm2+hgNMCVQ/bCWUhqBatFvkJaSoU0ANZCY4UBaeFWArD8gPRsPDtatJhbiRuBBw9PAoAdc+gOeA785tcAABVmSURBVDDU6Vv2OdkTUDAXz0DVzYZ31e1kyiGVMezYV63cSmfnkvjcY6PY3h9siht4NbHS/zoF8CNCyCFCyB1s2wCldBIA2Pd+tn0IwJhj33G2bYg9zt/e0vACuMEOL9Z3MrdSE4yDIufGHKJFes5z47DUYHnXCltoCLdSFp/tVlpazGGmhHFI6wbSumnPIvj+y5PY0OXDUGe21fQ9v7Ef//OGC5Z1vD1BD2bi1vjORhv4Lr/bjjkEFBmKLNVEOZgmxR33HoRhUvzTrXtFGmsFVnrlXkUp3QPgFwF8hBByTZnXFvtP0DLbC9+AkDsIIQcJIQdnZmaWfrQ15Cybk7Chy4+eoIK/ec8l+LXLhxt+HB5ZgmZQu6HaQipTkKHCWwQElupWCrhXVOfQjEyXVoUbyUpupaiq4cNfO2QXWPIGeCFFzjEOPFNpW38QN75hHT7wxhH84Hevzhk0ta0/iP6QF8uhN6jg6IRVJxFQGh9zMEyK2XjaGrxTo75UE4spvHo+ho+9fQe2iJ5KFVmRcaCUTrDv0wD+E8B+AFPMVQT2fZq9fByA8+65AcAE276hyPZiv++LlNJ9lNJ9fX19Kzn0FcN7s2xhU7bevXeDPX+2kfAV6ZefPIW0brCYQ65c3rXecj3wQS7V0h1QMJ/ILKtdMqW0KZkurYqtHCrc5F4ZX8RDr5zH916yLgGeqbR7qAMTjpiDs6ne59+/F5/4lV01HXx/5ZYebOzx40PXbMG79zZ20dPJXEmaQeFzW1PZaqEcTs9aC7rt/aEVv9daYNlXLiEkQAgJ8ccA3g7gFQDfBXA7e9ntAB5gj78L4BZCiEII2Qwr8Pwscz3FCCEHWJbSbY59WpaTLRLUeueeIVyxuRt/+YNj+LuHj2MhqRXcJA5s6cFP/+dbsGNgaRfFJRs6oBkUL7Jg51JI21PghHIAqg9I8zqVJ0ZnAWRjDhdv6LAykpihjjLl4JzcV0t+7fJh/Phjb8HHb9xpV8s3Cl6ACVifW62UA89SEvUN1bGSZd0AgCcIIS8BeBbADyilPwTw1wCuI4S8DuA69jMopUcA3A/gKIAfAvgIpZT/xz8M4F9gBalPAHhoBcfVEE7NJrC+w9vword8+kNefPNDV+KqbT340ZEppHWzaOHTcnK637i1FxIBHn99dkn7qZqBBVYfIdxKFks1Ds+emkdaNzAbT6PD58ZIbwCGSTHN3ExO5dBucOUAWHGy2imHBLxuCQPLdLWtNZa97KCUngRwSZHtcwCuLbHPnQDuLLL9IICWnMEXUzX83x++htNzCRzY0oOPvHUbAODkTLyl/JYHNvfgbx+2+u8spyq2GB1+Ny4Z7sTjr8/gD6/bUfa1i0kNLhdBUJHxe994AaPTcQAQAWlGNuZQ3kXHaxdSmoEXzi5gNp5GT9BjT2mbWEhhfafPjjmE2tA4dDmMg58bh5oohyQ2dQcgVdFCRCAqpCvyzz87iXt/fgavnY/hc4+NIqOboJTi5GyipYpo9m/ODknPz1ZaCVdv78NLYwt25XUp7rj3IP78O68AAE7OJnCSxWREKquFt8qYw2JKg0QAiQBPjs7a0wWHWEbcGGvL7Zzy1m50+evjVjozl7AHYAkqI4xDGRaTGv71ydP4xd3r8OmbdyOZMfDC2Qhm4xnEVN0ORrcClwx32lO0aqUcAOCa7b0wKfDkifKupTNzSdsgzDnSL4VbycLtkiBLpCq3Uqffg0uGO/HosWnMxtPoCyrY2B1AT8CDBw+fB9DebqWw1w2+uK9VQNo0Kc7Mi2Z7S0EYhyJQSvHk6Cz+9DuHEUvr+L1rt+PKrT1wSQRPjM7amUqtdKJ53S67AWB+ttJKuGS4E71BD77w0xN2MDQfSinmkxnMxtLQDRORpIYQ6wArspWyVOMeWUzpCHtl/OqeDTg6GcWp2QR6gx54ZAnv3b8Rjx6bwth8EjFVh0siSy5sXA1IErEXOD6mHJbTPiOSyODoRBSUUkxGVWR0U/RTWgLiyi3C0yfm8P5/eQY/ODyJ267chJ2DYYS9blyyoQM/e30WJ2csf/rWFoo5AFnXUi2Vg9sl4ZO/shsvjy/in352suhrkhkDGd3ETCxtF8395tVbcPOl63Hpxs6aHctqR3G7KsYcFlMaOnxuvGfvBvQErKE7vMr5fVdsBCEEX3/mLKKqhpBXbttCLt5wjwekl9OV9c++8wpuvOtxvOOuJ/B9lhosMpWqRxiHInC/7sN/8GZ86qZsnPxN2/tweHwBjxybgscl2UHCVuH9Bzbio9dux3B3bY/rHRcP4sY3rMM/PPJ60RUcNwgZw7RdSzsGgvj7Wy5rSkuRVsXrzm11UozFlNX+xOt24bYrRwAAvaxn1/pOH67bOYB/PzhmtUlpQ5cShwelfR4XvMsISKuagR+/Oo19m7oQSWbwVw+9CqD5qeerCWEcijAVtXzm+TdZ7n9/5Ng03rS9t6rBKY1ksMOHP7huR11Wk2/e0YeMYWKuSDsNZ4uNV9n0sd4mNCFsdapxK0WZcgCA29+4CW+/aAAHtmTnPP/Czn7MJTJ4YSxiT3hrR3hQ2ud2wb8Mt9LTJ+aQ0gz87rXb8Y3fOoDeoAdet4R1TShUXa2079m1AqZjKrr87oJZBHs3deGfbt2Lzb0BbO9vLZdSvXEO/xnKU0zOzq2vsalkPQ0unFoNeN2Vb3JO49Dp9+CLt+3LeX7/iOU6HJtP4cot7esi4bUOPCCtGRSaYdozpivxo6NTCHhcOLClG4rswr//9htxajYu0liXgDAORZiKpov2pCGE4Ppd65pwRM2HV8k6VcJvfOU57NnYmeNeOzbJjINwJxVQSTlQSu2YQyk29fjRG1QwG0+3ZRorx1YOrLcSYKUBV2McTJPi0WNTePMFffYCb3NvoKUSSFYDwq1UhOlYesl9iNodHiDkjfhiqobHXpvG0yfncgzG8akYPC5pWXME2h3FLZUNSCczBnSTlh3QQwjB5awTazsWwHH44sLvNA5VBqVfGItgOpbGdRcN1O341gLCOBRhOqouu5tlu8IncnFDcHh8EZRa7o35RAayRCBLBMmMgZ6gp22zaFaCr4JbKX/+dykuZ66ldg5I/9q+YXzh1/cg5HXbn8dClSNrv/38OfjcLlx30dpU+bVCGIc8TJNiJpbGgFAOOYR9VmESH/7zAmvGN7GQwmw8ja6ABz1seEqPGKJSlEoxhyUbhzZ2K3UHPLhh9yCAbCqvs7iyFKpm4PsvTeCG3esQVNr382kEwjjkMZ/MQDcp+kW2TQ4uiaDTMTaUd2rVTYpjkzF0+z32mNSegPjsilEp5lCtcdg5GMKvXLIeV2/vrenxtSp8YttMFcbhx69OI6rq+NU9LT8vrOURpjWPaZbG2i9S3gro8rsRSWig1Grj3R9SMB1L49XzUezd1GW3yhC1DcXxVog5VGscZJeEu957WU2PrZXJKofKg6d+cHgS/SEFb9y6NgxnPRHKIY+pmDVQRbiVCukOWGNDJxdVzMTSuPENluzXDIqegGKPSRWzeYvjrdBArlrjsNYIe92QJYK5RGXlcGwiij0bu1quBmk1IoxDHjNcOYiAdAFdfg8iyQxeYi6lG98wCB537gq4s24lYRyK4pVdyOimPdI1n3ZuprcSJImgO+DBbKy8clA1A6fnEtixTkx6qwXCOOQxzZRDn4g5FMCVw7HzMUjEmk7GB6d0+z22/Bcxh+LwlEw+JS+faEoDIWjryufl0htUKiqHEzNxmNRq3SJYOcI4wMq44ZJ+KmpN3hKtpgvpCljK4fWpGDZ2++F1u7ChyyqA6w5kA9KidUZxvKxDbSnX0mLK6mYrqngL6Ql67HnapXh9ymqIudRxuILirHnjYJoU77r7Kdz5g6MALOUg4g3F6fZ7oBkUL5xdwHZ2AXLj0BXwYM+mLuzb1IXd68PNPMyWhbeEmFxMFX1+MVU4/1tg0ceqwstxfCoGWSKiuV6NWPPG4ehkFJOLKo6yhnGlWmcIslXS56Oq3VtquNvq79MTUDDU6cO3PvxG0TqjBFdsseoTnhwtPjipUuuMtUxP0FMxW+n4VAxb+gLwiBkiNWHNf4o/PT4DADgxnYBpUpyYiYtRgiXoDmRvXNuZX3e4y8+eE0HoSgx2+LC9P4jHXy80DsenYnjyxBwuGBCqqxg9QQUpzUAirZd8zfGpuK1oBStnzUe+uHFIaQYOnY0gpurYOSgu0GI4B79v77cuwhsvHkQyo2PnoLgoq+Hq7X34+jNnoGoGvG6XPY/89+97ESFFxsdvvLDZh9iSOGsdAkUqn5MZHWfnk3jXng2NPrS2ZU0rh6iq4fkzEexh08r4tChhHIrD1QEh2Sl4QUXGB67aLHopVcnVO3qR1k08d3oeAPDR+17EtX/7U7x6Poq/ftfFooCwBDw9erZIxtKhMxF84MvPAYBYpNSQNW0cnhqdg25S/MabNgMAHnzFGt5+gciTLgqPOQx3+e20TMHSuGJzNzwuCT99bQaLSQ0/ODyJmy9dj8f+x1tEF9Ey8ALL2ViucaCU4ve/+QJOzyXwJzdeiLftFJ9hrVjTbqWfHp9BUJFx/a51CHllzMTS2NTjFw27ShBSZMgSEXnkK8DvkXHVth784PAkLh7uhGFS3HrlJjH4vgJcOeRPInxxbAFj8yn8v3dfjPfsG27GobUta1Y5UErxs+MzuGpbD9wuyXaTXChUQ0kIIbh+97o1O/CoVvzqng2YXFTx9w8fR4fPjUuHu5p9SC0Pd2nmd2b97ksT8MgSrt8tzslas2aNw4mZOM4tpPDmHf0Asj50EW8oz+fet0es0FbIdRcNIKTIODmbwNUtOIu8FVFkF8JeOacQzjApvv/yJN56QZ9oOVIH1qxx+MlrVpbSNTus7o1b+y1ZL4yDoN543S67aeFbLuhv8tGsHrYPhPDAi+cwOm1VQj8xOouZWBq/fMn6Jh9Ze7ImjYNhUjxybArb+oPYwPL0D2zpQW9QwWUsc0kgqCf//U0j2L+5G2/bKYxDtfzdr10Cl0Rw+5efxXRMxRd+cgIDYUUE8usEobR4h8hWZ9++ffTgwYNL3u/RY1O488FjODmTwEev3Y4/uG5HHY5OIBDUg1fOLeLdX3gKQ50+nJhJ4E9v3InfumZLsw9rVUEIOUQp3VfpdWtOOSQyBhTZhc+/fw9+79rtzT4cgUCwBHYPdeAz77oYJ2YS6PC58b4rNjb7kNqWNZez+UtvGMQvXzwoirYEglXKTZcOQdUMdAeUotXSgtqw5j5Z0Q5Z8P/bu/dQSec4juPvT3uW2tbd2o7rKpewybJEyKXEKinUkuwityL2P0uKQiHkkqxTVu7klkXZJOQSOcKy7Y1N7bKxtPYakq8/nt/JdJ5zcM48zzzPM/N51TQzv3nOr+/323S+8/xm5jfWfLOP9hlD2WqzrCTpDEkrJH0jaX7V8ZiZ9bJaNAdJE4CHgFnAocAFkg6tNiozs95Vi+YAHAN8ExGrI+IP4Dng7IpjMjPrWXVpDnsBa1rur01jZmZWgbo0h5HeJc59AUPSFZIGJQ2uX7++A2GZmfWmujSHtUDrhj17Az8MPygiBiJiZkTMnDJlSseCMzPrNXVpDp8CB0raX9J2wPnAoopjMjPrWbX4nkNE/CnpGmAxMAFYGBFLKw7LzKxnNXZvJUmbgRXp7k7AxgKnL3q+3YH8r8qPX53zde3qNZ/r175uqeFQHvtFxH+vy0dEIy/AYMvtgYLnLnq+wYLnq22+rl3t5nP9XMNx5VGX9xza9VrN5ytanfN17eo1X9Hqnm/d6wcNybnJy0qD8T+2na2DJsVaN65de1y/9nVLDceaR5PPHAaqDmAMmhRr3bh27XH92tctNRxTHo09czAzs/I0+czBzMxK4uYwDpL2kfSOpGWSlkq6Lo3vKuktSavS9S5p/DRJn0n6Kl2f2jLX7ZLWSNpSVT6dVFTtJE2S9Iak5WmeO6rMq1MKfu69KenLNM+CtDty1yuyhi1zLpL0dadzKVXRH/vqhQvQDxyZbu8ArCTbavwuYH4anw/cmW7PAPZMt6cD37fMdWyab0vVeTWpdsAk4JR0ezvgfWBW1fk1pX7p/o7pWsBLwPlV59e0Gqaxc4BngK+rzq3QOlUdQDdcgFeB08i+lNefxvqBFSMcK+AXYPth4z3RHMqoXXrsfuDyqvNpYv2AiWQfh5xddT5NqyEwGfggNZeuag5eVmqTpGlkryw+AaZGxDqAdL3HCH9yLvB5RPzeqRjrqqjaSdoZOAt4u8x466aI+klaDPwEbAZeLDnk2imghrcC9wDbSg+2w9wc2iBpMtnp+LyI2PQ/jj8MuBO4suzY6q6o2knqA54FHoiI1WXEWkdF1S8iTid7lbw9kFtL72bt1lDSEcABEfFKqYFWxM1hnCRNJHtiPR0RL6fhHyX1p8f7yV6RDR2/N/AKMCcivu10vHVScO0GgFURcV/5kddD0c+9iPiNbBfknvn1xYJqeBxwlKTvyJaWDpL0bmcyKJ+bwzhIEvAosCwi7m15aBEwN92eS7aWObTs8QZwQ0R82MlY66bI2km6jWzTsXllx10XRdVP0uSWf4R9wJnA8vIzqF5RNYyIhyNiz4iYBpwArIyIk8vPoEOqftOjiReyJ0IAS4Av0uVMYDeyde9V6XrXdPxNwNaWY78A9kiP3UX2Y0d/petbqs6vCbUj+0GoAJa1jF9WdX4Nqt9Ust9RWQIsBR4E+qrOr0k1HDbnNLrsDWl/Q9rMzHK8rGRmZjluDmZmluPmYGZmOW4OZmaW4+ZgZmY5bg5mJZB0laQ5Yzh+Wtft6mmN1ld1AGbdRlJfRCyoOg6zdrg5mI0gbcj2JtmGbDPItnWeAxwC3Eu2G+fPwMURsS5tm/ARcDywSNIOZDvt3p324FlAts34t8ClEbFB0lHAQrJN2z7oXHZm/83LSmajOxgYiIjDgU3A1WTfJD4vIob+sd/ecvzOEXFSRNwzbJ4ngOvTPF8BN6fxx4BrI+K4MpMwGw+fOZiNbk38s5fOU8CNZD/28la2PQ8TgHUtxz8/fAJJO5E1jffS0OPACyOMPwnMKj4Fs/FxczAb3fC9ZTYDS//llf7WMcytEeY3qw0vK5mNbl9JQ43gAuBjYMrQmKSJaY//UUXERmCDpBPT0EXAexHxK7BR0glp/MLiwzcbP585mI1uGTBX0iNkO3U+CCwGHkjLQn3AfWS7mv6bucACSZOA1cAlafwSYKGkbWles9rwrqxmI0ifVno9IqZXHIpZJbysZGZmOT5zMDOzHJ85mJlZjpuDmZnluDmYmVmOm4OZmeW4OZiZWY6bg5mZ5fwNaa33xwGwdLsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sorted_data['inc'][-200:].plot() " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "first_september_week = [pd.Period(pd.Timestamp(y, 9, 1), 'W')\n", + " for y in range(1985,\n", + " sorted_data.index[-1].year)]" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "year = []\n", + "yearly_incidence = []\n", + "for week1, week2 in zip(first_september_week[:-1],\n", + " first_september_week[1:]):\n", + " one_year = sorted_data['inc'][week1:week2-1]\n", + " #assert abs(len(one_year)-52) < 3\n", + " yearly_incidence.append(one_year.sum())\n", + " year.append(week2.year)\n", + "yearly_incidence = pd.Series(data=yearly_incidence, index=year)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAD8CAYAAACLrvgBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGStJREFUeJzt3X+Q3GWd4PH3J5k48UeigIlLEiBsSbEGLFGmEvbc2xM9CaxbhK1VK0cWcrdccad45+5tHYQzV2xprkquttbdFKcHdagoArKslNxp1BjXWm6PS5gsuggxm7iwIRLNUOEkWJWBIZ/7o58xPWMy80zSPd09835Vdc23n/4+3/7Mk0x/vs+P77cjM5EkqcacTgcgSeodJg1JUjWThiSpmklDklTNpCFJqmbSkCRVM2lIkqqZNCRJ1UwakqRqfZ0OoNXe+MY35vLlyzsdhiT1lJ07dz6XmYsm22/GJY3ly5czODjY6TAkqadExD/W7OfwlCSpmklDklTNpCFJqmbSkCRVM2lIkqqZNKRZ7OALR/jg7Y9w8PCRToeiHmHSkGaxzdv28OjTh9j87T2dDkU9YsZdpzHbHXzhCB+59zFuu/rtLF4wv9PhqEudv3ELwyNHf/H87u37uHv7Pvr75rB70xUdjEzdzp7GDOOZo2o8fOOlXHnREubPa3wEzJ83hzUXLeHhmy4ds5/DVxrPnsYM4ZmjpmLxwvks6O9jeOQo/X1zGB45yoL+vl/qnTafhGz6nbd2KFp1E5PGDPHwjZey6eu7+NYTP+HIy0eZP28Oqy/4FT72vrd0OjR1qedeHGbdqnO4euXZ3LNjH0NNvQlPQnQiJo0ZovbMURp1+zUDv9jedNWFY17zJEQnYtKYQSY6c5SmwpMQnYhJYwaZ6MxRmipPQnQ8kZmdjqGlBgYG0lujS9LURMTOzByYbL+qJbcR8YcR8URE/CAi7o2I+RFxekRsjYg95edpTfvfHBF7I2J3RKxuKr84Ih4vr22OiCjl/RHx5VK+PSKWN9VZX95jT0Ssn0ojSJJaa9KkERFLgX8PDGTmhcBcYC2wAdiWmecB28pzImJFef0C4HLg0xExtxzuM8D1wHnlcXkpvw54PjPfDHwKuLUc63TgFmAVsBK4pTk5SZKmV+3FfX3AqyOiD3gN8CywBrirvH4XcFXZXgPcl5nDmfkUsBdYGRFnAgsz85FsjIl9YVyd0WM9ALyn9EJWA1sz81BmPg9s5ViikSRNs0mTRmb+GPgTYB9wAPhZZn4LeFNmHij7HAAWlypLgWeaDrG/lC0t2+PLx9TJzBHgZ8AZExxrjIi4PiIGI2JwaGhosl9JknSSaoanTqPREzgXWAK8NiJ+b6IqxynLCcpPts6xgsw7MnMgMwcWLZr0e9ElzSLeCqW1aoan/jnwVGYOZebLwFeAfwL8tAw5UX4eLPvvB85qqr+MxnDW/rI9vnxMnTIE9nrg0ATHkrqeH1bdwfuxtVZN0tgHXBIRrynzDO8BdgEPAaOrmdYDXy3bDwFry4qoc2lMeO8oQ1iHI+KScpxrx9UZPdb7ge+UeY9vApdFxGmlx3NZKZO6nh9WnXX+xi0s3/A17t6+j8zGrVCWb/ga52/c0unQetqkF/dl5vaIeAD4W2AEeAy4A3gdcH9EXEcjsXyg7P9ERNwPPFn2vyEzXymH+xDweeDVwJbyALgT+GJE7KXRw1hbjnUoIj4BPFr2+3hmHjql31hqM+/b1B28FUp7eHGf1GIHXzhywg8rb8MxvT724OPcs2Mfr5o7h5deOcq6lWd7t94TqL24z9uISC3mfZu6h7dCaT2ThnpSN3xD4UQx+GHVHbwfW+uZNNSTuuHLgSaKwQ8rzVTOaainjJ9kHjWdk8zdEEOtbuiRqTe09IaFUreo/W7rmR5DLZf9qtUcnlJP6YZJ5m6IYTIu+1W72NNQzxmdZH7ww+9k3apzGHpxeFbGMJFe6g2pt9jTUM/phknmbohhIr3QG1JvMmlIM5TLftUOrp6SJLl6SpLUeiYNqUd563V1gklD6lFeg6FOcCJc6jFeg6FOsqch9RivwVAnmTSkHjPTrsFwbqa3mDSkHtTtV6RPhXMzvcXrNCR1RC/dLXg28DoNSV2tdm7G4avuYtLQtPNDQFA/N+PwVXdxya2m3WTfuucXB80eE90fy6XF3ck5DU2b2jHsjQ8+zpd27GPdyrM79lWu6ryDLxxh09d38a0nfsKRl48yf94cVl/wK3zsfW/xZKINauc07Glo2jx846Un/BAAzyw11kxbWjxTOKehaTPZh4AXrWm8mbS0eKawp6Ex2j2fMNEYtmeWGq/bv+xqNjJpaIzJJqlP1WQfAn5xkNTdnAgXMLULrVzdJM08XtynKZnKfILr5qXZy6Qxy5zowrqa+YTzN25h+Yavcff2fWQ2Vjct3/A1zt+4Zbp/DXUJL9ScPt3S1iaNWWaiXsJkK1Vc3aTx7HVOn25pa+c0ZolW3RzuYw8+zj079vGquXN46ZWjXoDXRt08d+TNBqfPdLW1cxoao1W9BNfNt85kww3dcmZ5PPY6p0+3tbVLbmeJVl0D4br51jnR8uZeuDJ+Kv+furnH1Au67folk8Ys4jUQ3WGypDDZ7Va6Re3/p3Zf+zMbdNPfrnMampEmO7vt5NlvzY34ZsLckfMevcU5Dc1qk80HdHK+oGa4YSbMHXXbWLxaw+EpzSiTDf10y3zBZMMNM2HuqNvG4tUaVT2NiHhDRDwQET+MiF0R8esRcXpEbI2IPeXnaU373xwReyNid0Ssbiq/OCIeL69tjogo5f0R8eVSvj0iljfVWV/eY09ErG/dr66ZaLKz2245+739mgE2XXUhK5YsZNNVF45JEjPJdPSYuuWit9midnjqz4FvZOavAW8DdgEbgG2ZeR6wrTwnIlYAa4ELgMuBT0fE3HKczwDXA+eVx+Wl/Drg+cx8M/Ap4NZyrNOBW4BVwErglubkJI032dmtZ7/TazqSYzcvTZ6JJh2eioiFwG8C/xIgM18CXoqINcC7ym53Ad8FbgLWAPdl5jDwVETsBVZGxNPAwsx8pBz3C8BVwJZS54/LsR4Abiu9kNXA1sw8VOpspZFo7j2F31kz3GRDP920EkUnr1uGGmebmjmNXwWGgM9FxNuAncBHgTdl5gGAzDwQEYvL/kuB/9tUf38pe7lsjy8frfNMOdZIRPwMOKO5/Dh1pOOabD5gJswXaPJvglR71AxP9QHvAD6TmW8Hfk4ZijqBOE5ZTlB+snWOvWHE9RExGBGDQ0NDE4QmaaZwqLEzapLGfmB/Zm4vzx+gkUR+GhFnApSfB5v2P6up/jLg2VK+7DjlY+pERB/weuDQBMcaIzPvyMyBzBxYtGhRxa8kaSbolqXJs2kyftKkkZk/AZ6JiPNL0XuAJ4GHgNHVTOuBr5bth4C1ZUXUuTQmvHeUoazDEXFJma+4dlyd0WO9H/hONq46/CZwWUScVibALytlktQ1q9Bm02R87XUa/w74UkS8CvgH4F/RSDj3R8R1wD7gAwCZ+URE3E8jsYwAN2TmK+U4HwI+D7yaxgT46Bcx3Al8sUyaH6Kx+orMPBQRnwAeLft9fHRSXJI6bTZOxnsbEUk6STW3hOkV3kZEHTObxnc1u83GyXiThlpuNo3vSt0yGT9dHJ5Sy3hXU6l3OTw1Q3Xz0E+33NdJUvuYNHpMNw/9zMbxXc0M3Xwy1m28NXqP6JWlfd7XSb3Ibxes55xGj5hJS/ukblE7DzcbvufcOY0ZxqEfqfVq5+G6eVh4ujk81UMc+pFaa7KTsV4ZFp5OJo0e4i29pdab6GTM26//MpOGpFltopMxh4V/mUlDkibgsPBYrp6SjmM2rJaRmrl6SjoFrpaRjs/hKamJq2WkidnTkJp4/yxpYiYNqYmrZaSJOTwljeNqGenEXD0lSXL1lCSp9UwakqRqJg1JUjWThiSpmklDklTNpCFJqmbSkCRVM2lIkqqZNCRJ1UwakqRqJg1JUjWThiSpmklDklTNpCFJqmbSkCRVM2lIkqqZNCRJ1UwakqRqJg1JUrXqpBERcyPisYj4X+X56RGxNSL2lJ+nNe17c0TsjYjdEbG6qfziiHi8vLY5IqKU90fEl0v59ohY3lRnfXmPPRGxvhW/tCTp5Eylp/FRYFfT8w3Atsw8D9hWnhMRK4C1wAXA5cCnI2JuqfMZ4HrgvPK4vJRfBzyfmW8GPgXcWo51OnALsApYCdzSnJwkSdOrKmlExDLgfcD/aCpeA9xVtu8Crmoqvy8zhzPzKWAvsDIizgQWZuYjmZnAF8bVGT3WA8B7Si9kNbA1Mw9l5vPAVo4lGknSNKvtafwZcCNwtKnsTZl5AKD8XFzKlwLPNO23v5QtLdvjy8fUycwR4GfAGRMcS5LUAZMmjYj4beBgZu6sPGYcpywnKD/ZOs0xXh8RgxExODQ0VBmmJGmqanoa7wSujIingfuAd0fE3cBPy5AT5efBsv9+4Kym+suAZ0v5suOUj6kTEX3A64FDExxrjMy8IzMHMnNg0aJFFb+SJOlkTJo0MvPmzFyWmctpTHB/JzN/D3gIGF3NtB74atl+CFhbVkSdS2PCe0cZwjocEZeU+Yprx9UZPdb7y3sk8E3gsog4rUyAX1bKJEkdcCrXaXwSeG9E7AHeW56TmU8A9wNPAt8AbsjMV0qdD9GYTN8L/AjYUsrvBM6IiL3Af6CsxMrMQ8AngEfL4+OlTJJmlIMvHOGDtz/CwcNHOh3KhKJxQj9zDAwM5ODgYKfDkKQp2fjg43xpxz7WrTybTb/z1ml//4jYmZkDk+3XNx3BSJKO7/yNWxgeObYw9e7t+7h7+z76++awe9MV1cc5+MIRPnLvY9x29dtZvGB+O0IFvI2IJHXUwzdeypUXLWH+vMbH8fx5c1hz0RIevunSKR1n87Y9PPr0ITZ/e087wvwFexqS1EGLF85nQX8fwyNH6e+bw/DIURb091X3FlrVU6llT0OSOuy5F4dZt+ocHvzwO1m36hyGXhyurtuqnkotexqS1GG3X3Ns/nnTVRdOqe6p9lSmyqQhST1utKdy9cqzuWfHPobauGzXJbeSpOolt85pSJKqmTQkSdVMGpKkaiYNSVI1k4YkqZpJQ5JUzaQhSapm0pAkVTNpSJKqmTQkSdVMGpKkaiYNSVI1k4YkqZpJQ5JUzaQhSapm0pAkVTNpSJKqmTQkSdVMGpKkaiYNSVI1k4YkqZpJQ5JUzaQhSapm0pAkVTNpSJKqmTQkSdVMGpKkaiYNSWqzgy8c4YO3P8LBw0c6HcopM2lIUptt3raHR58+xOZv7+l0KKesr9MBSNJMdf7GLQyPHP3F87u37+Pu7fvo75vD7k1XdDCyk2dPQ5La5OEbL+XKi5Ywf17jo3b+vDmsuWgJD990aYcjO3mTJo2IOCsi/ioidkXEExHx0VJ+ekRsjYg95edpTXVujoi9EbE7IlY3lV8cEY+X1zZHRJTy/oj4cinfHhHLm+qsL++xJyLWt/KXl6R2WrxwPgv6+xgeOUp/3xyGR46yoL+PxQvmdzq0k1bT0xgB/igz3wJcAtwQESuADcC2zDwP2FaeU15bC1wAXA58OiLmlmN9BrgeOK88Li/l1wHPZ+abgU8Bt5ZjnQ7cAqwCVgK3NCcnSep2z704zLpV5/Dgh9/JulXnMPTicKdDOiWTzmlk5gHgQNk+HBG7gKXAGuBdZbe7gO8CN5Xy+zJzGHgqIvYCKyPiaWBhZj4CEBFfAK4CtpQ6f1yO9QBwW+mFrAa2ZuahUmcrjURz76n80pI0XW6/ZuAX25uuurCDkbTGlOY0yrDR24HtwJtKQhlNLIvLbkuBZ5qq7S9lS8v2+PIxdTJzBPgZcMYEx5IkdUB10oiI1wF/CfxBZr4w0a7HKcsJyk+2TnNs10fEYEQMDg0NTRCaJOlUVCWNiJhHI2F8KTO/Uop/GhFnltfPBA6W8v3AWU3VlwHPlvJlxykfUyci+oDXA4cmONYYmXlHZg5k5sCiRYtqfiVJ0kmoWT0VwJ3Arsz806aXHgJGVzOtB77aVL62rIg6l8aE944yhHU4Ii4px7x2XJ3RY70f+E5mJvBN4LKIOK1MgF9WyiRJHVBzcd87gWuAxyPie6XsPwGfBO6PiOuAfcAHADLziYi4H3iSxsqrGzLzlVLvQ8DngVfTmADfUsrvBL5YJs0P0Vh9RWYeiohPAI+W/T4+OikuSZp+0TihnzkGBgZycHCw02FIUk+JiJ2ZOTDZfl4RLkmqZtKQJFUzaUiSqpk0JEnVTBqSpGomDUlSNZOGJKmaSUOSVM2kIUmqZtKQJFUzaUiSqpk0JEnVTBqSpGomDUlSNZOGJKmaSUOSVM2kIUmqZtKQJFUzaUiSqpk0JEnVTBqSpGomDUlSNZOGJKmaSUOSVM2kIUmqZtKQJFUzaUiSqpk0JEnVTBqSpGomDUlSNZOGJKmaSUOSVM2kIUmqZtKQJFUzaUiSqpk0JEnVTBqSpGomDUlStZ5IGhFxeUTsjoi9EbGh0/FI0mzV9UkjIuYC/w24AlgB/IuIWNGO9zr4whE+ePsjHDx8pCOv1+4jSZ3S9UkDWAnszcx/yMyXgPuANe14o83b9vDo04fY/O09HXm9dh9J6pTIzE7HMKGIeD9weWb+6/L8GmBVZn7kePsPDAzk4ODglN7j/I1bGB45+kvl/X1z2L3pira/XhODJLVTROzMzIHJ9uuFnkYcp2xMpouI6yNiMCIGh4aGpvwGD994KVdetIT58xrNMX/eHNZctISHb7p0Wl6v3UeSOq0XksZ+4Kym58uAZ5t3yMw7MnMgMwcWLVo05TdYvHA+C/r7GB45Sn/fHIZHjrKgv4/FC+ZPy+u1+0hSp/V1OoAKjwLnRcS5wI+BtcDVrX6T514cZt2qc7h65dncs2MfQ+Mmotv9eu0+ktRJXT+nARARvwX8GTAX+Gxm/pcT7XsycxqSNNvVzmn0Qk+DzPw68PVOxyFJs10vzGlIkrqESUOSVM2kIUmqZtKQJFUzaUiSqvXEktupiIgh4B9P8PIbgeemMZyT1QtxGmNrGGNrGOOpOyczJ706esYljYlExGDNOuRO64U4jbE1jLE1jHH6ODwlSapm0pAkVZttSeOOTgdQqRfiNMbWMMbWMMZpMqvmNCRJp2a29TQkSaeg55NGRHw2Ig5GxA+ayt4WEY9ExOMR8T8jYmEpnxcRd5XyXRFxc1Od70bE7oj4Xnks7lCMr4qIz5Xy70fEu5rqXFzK90bE5og43hdUdTrGdrbjWRHxV+Xf7omI+GgpPz0itkbEnvLztKY6N5f22h0Rq5vK29KWLY6xLW051Rgj4oyy/4sRcdu4Y3VFO04SY7e043sjYmdpr50R8e6mY7Xtb7vlMrOnH8BvAu8AftBU9ijwz8r27wOfKNtXA/eV7dcATwPLy/PvAgNdEOMNwOfK9mJgJzCnPN8B/DqNbzPcAlzRhTG2sx3PBN5RthcAfw+sAP4rsKGUbwBuLdsrgO8D/cC5wI+Aue1syxbH2Ja2PIkYXwv8BvBvgdvGHatb2nGiGLulHd8OLCnbFwI/bnc7tuPR8z2NzPxr4NC44vOBvy7bW4HfHd0deG1E9AGvBl4CXuiyGFcA20q9g8D/AwYi4kxgYWY+ko3/ZV8AruqmGFsVywQxHsjMvy3bh4FdwFJgDXBX2e0ujrXLGhonCcOZ+RSwF1jZzrZsVYytiKVVMWbmzzPzfwNjvhWsm9rxRDG200nE+Fhmjn7r6BPA/Ijob/ffdqv1fNI4gR8AV5btD3Ds62IfAH4OHAD2AX+Smc0flJ8r3df/PA3dwxPF+H1gTUT0RePbCi8ury2l8dW3o/aXsm6KcVTb2zEiltM4c9sOvCkzD0DjD5lG7wca7fNMU7XRNpuWtjzFGEe1tS0rYzyRbmrHyXRbO/4u8FhmDtOZv+2TNlOTxu8DN0TEThrdxpdK+UrgFWAJjaGAP4qIXy2vrcvMtwL/tDyu6VCMn6Xxn2aQxrcV/h9ghEa3dbx2L32baowwDe0YEa8D/hL4g8ycqKd4ojZre1u2IEZoc1tOIcYTHuI4ZZ1qx4l0VTtGxAXArcC/GS06zm5du6x1RiaNzPxhZl6WmRcD99IYJ4bGnMY3MvPlMqzyN5Rhlcz8cfl5GLiH9g8RHDfGzBzJzD/MzIsycw3wBmAPjQ/pZU2HWAY8O/64HY6x7e0YEfNo/IF+KTO/Uop/Wrr4o0MmB0v5fsb2gEbbrK1t2aIY29qWU4zxRLqpHU+om9oxIpYBDwLXZubo59K0/22fihmZNEZXR0TEHGAj8N/LS/uAd0fDa4FLgB+WYZY3ljrzgN+mMTQz7TFGxGtKbETEe4GRzHyydHMPR8QlpXt9LfDVboqx3e1Yfu87gV2Z+adNLz0ErC/b6znWLg8Ba8u48bnAecCOdrZlq2JsZ1ueRIzH1WXteKLjdE07RsQbgK8BN2fm34zu3Im/7VPS6pn16X7QOAM+ALxMI2NfB3yUxkqGvwc+ybGLGF8H/AWNSagngf+Yx1Ze7AT+rrz255QVLB2IcTmwm8ak2rdp3Hly9DgDNP7D/wi4bbROt8Q4De34GzS67X8HfK88fgs4g8bE/J7y8/SmOh8r7bWbphUp7WrLVsXYzrY8yRifprFQ4sXy/2NFF7bjL8XYTe1I48Tr5037fg9Y3O6/7VY/vCJcklRtRg5PSZLaw6QhSapm0pAkVTNpSJKqmTQkSdVMGpKkaiYNSVI1k4Ykqdr/B2XQJUGgWNs+AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "yearly_incidence.plot(style='*') " + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2009 842373\n", + "1992 832939\n", + "2010 829911\n", + "2016 782114\n", + "2004 777388\n", + "2003 758363\n", + "1999 756456\n", + "2008 749478\n", + "2007 717352\n", + "2013 698332\n", + "2014 685769\n", + "1997 683434\n", + "1998 677775\n", + "1994 661409\n", + "1995 652478\n", + "1993 643387\n", + "2011 642368\n", + "2022 641397\n", + "2006 632833\n", + "2005 628464\n", + "2012 624573\n", + "2001 619041\n", + "2000 617597\n", + "2015 604382\n", + "2019 584066\n", + "1996 564901\n", + "1991 553090\n", + "2017 551041\n", + "2018 542312\n", + "2002 516689\n", + "2021 376290\n", + "2023 366227\n", + "2020 221186\n", + "1990 0\n", + "1989 0\n", + "1988 0\n", + "1987 0\n", + "1986 0\n", + "dtype: int64" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "yearly_incidence.sort_values(ascending=False) " + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAEeVJREFUeJzt3X2QXXV9x/H3l0TbwGJEg4sN6lLHUh1XjazFhynuBm1FfGgdW6GoUB/ijFUzNp0pdXSoVcdMFUeHwXbSqtDCuNVoCwarMOriM7IB64KoUIiYoEGKRJdGwsq3f5yTugnJ3uw5N3vv/vb9mtnZe+6eh9/97tnP/u7vnofITCRJi98RvW6AJKk7DHRJKoSBLkmFMNAlqRAGuiQVwkCXpEIY6JJUCANdkgphoEtSIZYv5MZWrVqVQ0NDjZa99957Oeqoo7rboIJYn86s0dysz9x6WZ+tW7felZnHdppvQQN9aGiIycnJRstOTEwwOjra3QYVxPp0Zo3mZn3m1sv6RMQPD2U+h1wkqRAGuiQVwkCXpEIY6JJUCANdkgphoEtSIQx0SSqEgS5JhVjQE4sk9Y+hc6/YZ3rD8Azn7Pfc4bJt4+kLsp2lxh66JBXCQJekQhjoklQIA12SCmGgS1IhDHRJKoSBLkmFMNAlqRAGuiQVwkCXpEIY6JJUCANdkgphoEtSIQx0SSqEgS5JhegY6BHx0Yi4MyJumPXcIyLiqoi4uf5+zOFtpiSpk0PpoV8EvGC/584FvpCZTwC+UE9LknqoY6Bn5peBu/d7+qXAxfXji4E/6nK7JEnzFJnZeaaIIWBLZj65nr4nMx8+6+c/y8wDDrtExDpgHcDg4OBJ4+PjjRo6PT3NwMBAo2WXAuvTmTXa19SOXftMD66AnbsXZtvDq1cuzIa6qJf7z9jY2NbMHOk032G/p2hmbgI2AYyMjOTo6Gij9UxMTNB02aXA+nRmjfa1//1DNwzPcP7UwtxmeNtZowuynW5aDPtP06NcdkbEowHq73d2r0mSpCaaBvrlwNn147OBy7rTHElSU4dy2OLHgW8AJ0bE9oh4LbAReH5E3Aw8v56WJPVQxwGzzDzzID86tcttkSS14JmiklQIA12SCmGgS1IhDHRJKoSBLkmFMNAlqRAGuiQVwkCXpEIY6JJUCANdkgphoEtSIQx0SSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqhIEuSYUw0CWpEAa6JBXCQJekQhjoklQIA12SCmGgS1IhDHRJKoSBLkmFaBXoEfHWiLgxIm6IiI9HxG92q2GSpPlpHOgRsRp4CzCSmU8GlgFndKthkqT5aTvkshxYERHLgSOBO9o3SZLURGRm84Uj1gPvAXYDV2bmWQeYZx2wDmBwcPCk8fHxRtuanp5mYGCgcVtLZ306s0b7mtqxa5/pwRWwc/fCbHt49cqF2VAX9XL/GRsb25qZI53maxzoEXEM8CngFcA9wCeBzZl5ycGWGRkZycnJyUbbm5iYYHR0tNGyS4H16cwa7Wvo3Cv2md4wPMP5U8sXZNvbNp6+INvppl7uPxFxSIHeZsjlecBtmfnTzLwf+DTw7BbrkyS10CbQbweeGRFHRkQApwI3dadZkqT5ahzomXkNsBm4Dpiq17WpS+2SJM1TqwGzzDwPOK9LbZEkteCZopJUCANdkgphoEtSIQx0SSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqhIEuSYVYmNuTSNIs+98taaEsxjslzYc9dEkqhIEuSYUw0CWpEAa6JBXCQJekQhjoklQIA12SCmGgS1IhDHRJKoSBLkmFMNAlqRAGuiQVwkCXpEIY6JJUiFaBHhEPj4jNEfG9iLgpIp7VrYZJkuan7fXQPwR8LjNfHhEPBY7sQpskSQ00DvSIeBhwCnAOQGbuAfZ0p1mSpPmKzGy2YMTTgE3Ad4GnAluB9Zl5737zrQPWAQwODp40Pj7eaHvT09MMDAw0WnYpsD6d9WuNpnbs6nUTABhcATt397oV/attfYZXr2y87NjY2NbMHOk0X5tAHwG+CTwnM6+JiA8BP8/MdxxsmZGRkZycnGy0vYmJCUZHRxstuxRYn876tUa9uh3b/jYMz3D+lHelPJi29Wlz+7uIOKRAb/Oh6HZge2ZeU09vBp7eYn2SpBYaB3pm/gT4UUScWD91KtXwiySpB9q+v3ozcGl9hMutwJ+3b5IkqYlWgZ6Z3wY6jutIkg4/zxSVpEIY6JJUCANdkgphoEtSIQx0SSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqxKK5PcnUjl2c06M7u7S504gkLRR76JJUCANdkgphoEtSIQx0SSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqhIEuSYUw0CWpEAa6JBWidaBHxLKIuD4itnSjQZKkZrrRQ18P3NSF9UiSWmgV6BFxPHA68M/daY4kqanIzOYLR2wG3gscDfxVZr7oAPOsA9YBDA4OnjQ+Pt5oW3fevYuduxs3tZXh1St7s+F5mJ6eZmBgoNfN6Gv9WqOpHbt63QQABlfQs7+xxaBtfdrkyNjY2NbMHOk0X+N7ikbEi4A7M3NrRIwebL7M3ARsAhgZGcnR0YPOOqcLLr2M86d6cwvUbWeN9mS78zExMUHT2i4V/VqjXt0rd38bhmd69je2GLStz0LkSJshl+cAL4mIbcA4sDYiLulKqyRJ89Y40DPzbzLz+MwcAs4AvpiZr+xayyRJ8+Jx6JJUiK4MmGXmBDDRjXVJkpqxhy5JhTDQJakQBrokFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqhIEuSYUw0CWpEAa6JBXCQJekQhjoklQIA12SCmGgS1IhDHRJKoSBLkmFMNAlqRAGuiQVwkCXpEIY6JJUCANdkgphoEtSIQx0SSqEgS5JhTDQJakQBrokFcJAl6RCNA70iHhMRHwpIm6KiBsjYn03GyZJmp/lLZadATZk5nURcTSwNSKuyszvdqltkqR5aNxDz8wfZ+Z19eNfADcBq7vVMEnS/HRlDD0ihoA1wDXdWJ8kaf4iM9utIGIAuBp4T2Z++gA/XwesAxgcHDxpfHy80XbuvHsXO3e3aWlzw6tX9mbD8zA9Pc3AwECvm9Ha1I5dh23dgys46D7Uy9/x4XzN8zFXfdS+Pm32sbGxsa2ZOdJpvlaBHhEPAbYAn8/MD3Saf2RkJCcnJxtt64JLL+P8qTZD/s1t23h6T7Y7HxMTE4yOjva6Ga0NnXvFYVv3huGZg+5DvfwdH87XPB9z1Uft69NmH4uIQwr0Nke5BPAR4KZDCXNJ0uHVZgz9OcCrgLUR8e3664VdapckaZ4av3/IzK8C0cW2SJJa8ExRSSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqhIEuSYUw0CWpEAa6JBXCQJekQng1+z42nxsfbBie4Zwu3ShhMdzQQ9KD2UOXpEIY6JJUCANdkgphoEtSIQx0SSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqhIEuSYUw0CWpEK0CPSJeEBHfj4hbIuLcbjVKkjR/jQM9IpYBFwKnAU8CzoyIJ3WrYZKk+WnTQ/894JbMvDUz9wDjwEu70yxJ0nxFZjZbMOLlwAsy83X19KuAkzPzTfvNtw5YV0+eCHy/YVtXAXc1XHYpsD6dWaO5WZ+59bI+j8vMYzvN1OaeonGA5x703yEzNwGbWmyn2ljEZGaOtF1PqaxPZ9ZobtZnbouhPm2GXLYDj5k1fTxwR7vmSJKaahPo1wJPiIgTIuKhwBnA5d1pliRpvhoPuWTmTES8Cfg8sAz4aGbe2LWWPVjrYZvCWZ/OrNHcrM/c+r4+jT8UlST1F88UlaRCGOiSVIhFE+gREbO/S5L21deBHhHLImJ9RGwG/gIgHfTvmohYGxEn9Lod/cr6dGaN5rbQ9WlzYtFCeB7wh8AHgXPr68dcmpmezdZCfc2dceAe4IGIOC8zr+5xs/qG9enMGs2tV/Xp6x468Grgysy8Eng78GjgJb1t0uITEcdHxMNmPfUK4FOZeQrVTndmRDyrN63rvfnUZ6kO+bkPza1f6tPvgf4NYKh+fD1wM7Cm7qmrg4h4YkR8Fvgq8HcRsffiab8Ejqwff4Lq+hTPXGph1aQ+S23Iz31obv1Wn34P9FuBgYh4ZGburqehulyvDiAijpo1+TRge2YOAV8E3l8/fzdwX0QcnZl3Az8ABvn1P89izVGfL/Hg+gzU9bmZJVIfcB/qpJ/r0++BPgXcB5xaT/+Mqig/7VmL+lBEHBMRF0XEtcDGiDi27gk8Bfha3bO8HLgnIk6n2rmOBobrVdxMdSW5Pb1o/+E2R32G+XV9LuPB9XlKvYofUHB9wH2ok8VSn34P9B3AN4G31NM/pQr0X/SsRf3pFGAGeCHVVTDfBjyM6vd73KxhgouBPwO+RVXD0wAy8xvAWuDnC9vsBXOw+izD+uzlPjS3xVGfzOz7L+BS4ArgTuDNwPJet6lHdVgGvAG4muoa86vq5z8BvKV+fAKwsf75M6jG9pbVPxug+qe4DFgN3AS8CfgY8GHgyF6/RutjjaxP869+76HvdQ7Vf8THZeYFmTnT4/b0youojvJ5J/As4O/r568Cnl0//hHwFeC0zLyWqjcxBpCZ08A1wDMycwfwKqp3PD8B3p6Z/7tAr+NwsT6dWaO5Ler69Ptx6ABk5v3Af/W6HQth75EUEfEMqrduXwGuyMz7gN8Bbs3ML0bEbcD7IuIPgK3AH0fEqsy8KyJuBu6NiMcCFwCvjIhHUV2z/n+o3g6SmZPA5IK/yBasz6GzRgdW8j60WHroS8KsHe0U4KNUhz49D3hvPcsDwA8iYkVm3kb1du4pVGN1d1Ad+wrwK6q3fEcAn6K67OdZwEnApsx8YIFeUlfVrzsjYhTrc0AR8cj6+7OBi7BG+4iIh9b70HOphkGKqs+i6KGXLCKOpDqB6hTgSxFxEfB04B8z88KIOAa4OiLWUN0lag3VW7htVG/tXkJ19M9/AO+NiEuAxwErgTvqdzdfj4gXL+I/wqOpTs7YCbyGqgbWh306AX8CrAdmIuINVDdx/7A1goh4CPB6qg8ot0fE+VSHG/5DafWxh95DEXEcsAUYBf6V6kOWl1GN3c0AZObPgMuojvS5CngU8MR6FV8GngvsycwtwEeAzcCFVJ+23793W73e0VpaAfwG8PiIWAU8nqp3tOTrU4f5SuBPgQ9m5mhmfp+qp7h3niVdI6rrQK2luoRIUv2NraXqZZdVn8P5iatfHT9RXwGcPGv6HKoPYc4GvjXr+d+i6glAtXOOA8fUy38GeOyseVf1+nUdhjqdDbwPeAfwWuDFwLXW5/9f0xuBd9WP99605mXANdYoqV/fq+vHr6U6Uu4VJf6N2UPvrV8C35p1OvB3qAL+Yqre6HEAmXkHcGNEnJyZFwK3AP9G9fbwq5l5+94VZkEXLptVlyOA/wZuBNZm5meAEyJiEJZufWa5C/j9iDgL2BoRF1P1Pn+3fkez1Gv0n8DZEfFJ4G+BpwI3UN0T+Vgopz6OofdQ7u1S/Tq41gOfrh9/Fngr8NcR8Qjgh8CP65+9EzgRuCUzf7lwLV5Ye+tDdTLHGVTH+K6PiLdTHQa2DnjXUq3PLNdTDUmdTHVW9WnUwwTAayLi/cDDWaI1yswPR8QeqsMO11AdF/5yqvNaXh8RGymkPvbQ+0BmZkQcDxxH1ZuAqidBRGwBvkB14sLt9fz3Z+YNi2lHayoiBqh6oP8EfI7qiIOTgTOBYyLiMyzh+tRupwrv5VmNB2+pn9tCdYGoy7FGTwIm6t71x6g+g/k41ZBKMfWxh94/1lBdu+a2iHgd1Vu9t1GN9X0vM6/rZeN6aIYqlO6nuoTyr4C3ZeYU8JcR8Urgxsy8vodt7KnMvK/uZb67fuoIqg/WN2bm9Uu9RlFdnXU71ZFk/wLcS3WG5xsz87aS6rP3AxT1WER8DfhtqkOl7gDemZnf6Wmj+lB9IsfLgPHM/Emv29NPIuI9VPvQGuBK4Ly6x77kRcTjqY4V30NVo38H3p3VmZ3FMND7QH2c7HnAbcAlWZ2xplnqXtYD6Q47p4g4EfjhYhsqWAh1Z+AJwNezuhx3cQx0SSqEH4pKUiEMdEkqhIEuSYUw0CWpEAa6JBXCQJekQhjoklSI/wOMxhK9Ivd8EAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "yearly_incidence.hist(xrot=20) " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], "metadata": { "kernelspec": { "display_name": "Python 3", @@ -16,10 +2309,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 } - -- 2.18.1