{ "cells": [ { "cell_type": "markdown", "metadata": { "hideCode": false, "hidePrompt": false }, "source": [ "# Étude sur l'usure de mes crayons à papier\n", "## 1 présentation des données\n", "\n", "La présente étude porte sur les crayons à papier retrouvés dans les quatre tiroirs de mon bureau lors de son dernier rangement en date.\n", "\n", "Elle a pour objectif d'évaluer l'état général du stock et de fournir des indications sur l'usure relative des crayons.\n", "\n", "Le paramètres pris en compte est la **longueur** du crayon de graphite, exprimée en millimètres.\n" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "hideCode": false, "hidePrompt": false }, "outputs": [], "source": [ "# chargement des bibliothèques\n", "import numpy as np\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Taille des crayons trouvés :" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "hideCode": false, "hidePrompt": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[160 132 136 108 54 77 77 79 92 104 160 160 160 160 160 115 128 129\n", " 144 129 132 140 160]\n" ] } ], "source": [ "# création du tableau\n", "t = np.array([160, 132, 136, 108, 54, 77, 77, 79, 92, 104, 160, 160, 160, 160, 160, 115, 128, 129, 144, 129, 132, 140, 160])\n", "print (t)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "L'histogramme ci-dessous montre comment se distribuent mes crayons selon leur taille" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAD8CAYAAABXe05zAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAADQtJREFUeJzt3W2MpQdZh/Hr7y4tbYUU6BQRGKcYaEJMpM1IQCIJLWKxpPjBD23EgGImMZGAUXEJiQnfWjS+fDCYDS82giWktkgoIPUFCYkUt69u2TYUWOjSwm5DkLekpXD74ZyaYXvOzjPd88zhnrl+yWTmnPPsnPue7V49+8w5s6kqJEl9/NSyB5AkbY/hlqRmDLckNWO4JakZwy1JzRhuSWrGcEtSM4Zbkpox3JLUzP4xPul5551Xa2trY3xqSdqVbr311oeqamXIsaOEe21tjUOHDo3xqSVpV0rylaHHeqpEkpox3JLUjOGWpGYMtyQ1Y7glqZktw53kwiR3bHr7dpK37MRwkqTH2/LpgFV1L/AigCT7gK8BN448lyRpju2eKrkU+GJVDX6+oSRpsbYb7iuB68YYRJI0zOBXTiY5A7gCeNuc2zeADYDV1dWFDCdJT8TagZuWcr9Hr758R+5nO4+4Xw3cVlXfmHVjVR2sqvWqWl9ZGfRye0nSE7CdcF+Fp0kkaekGhTvJ2cCvAjeMO44kaSuDznFX1feBZ4w8iyRpAF85KUnNGG5JasZwS1IzhluSmjHcktSM4ZakZgy3JDVjuCWpGcMtSc0YbklqxnBLUjOGW5KaMdyS1IzhlqRmDLckNWO4JakZwy1JzRhuSWrGcEtSM4Zbkpox3JLUzKBwJzk3yfVJ7klyJMlLxx5MkjTb/oHH/Q3wiar6zSRnAGePOJMk6RS2DHeSpwIvB94AUFWPAI+MO5YkaZ4hp0qeB5wA3pfk9iTvTnLOyQcl2UhyKMmhEydOLHxQSdLEkHDvBy4G3lVVFwHfAw6cfFBVHayq9apaX1lZWfCYkqTHDAn3MeBYVd0yvXw9k5BLkpZgy3BX1deB+5NcOL3qUuDzo04lSZpr6LNK3gR8YPqMki8BvzPeSJKkUxkU7qq6A1gfeRZJ0gC+clKSmjHcktSM4ZakZgy3JDVjuCWpGcMtSc0YbklqxnBLUjOGW5KaMdyS1IzhlqRmDLckNWO4JakZwy1JzRhuSWrGcEtSM4Zbkpox3JLUjOGWpGYMtyQ1M+gfC05yFPgO8EPg0aryHw6WpCUZFO6pV1TVQ6NNIkkaxFMlktTM0HAX8MkktybZGHMgSdKpDT1V8rKqeiDJ+cDNSe6pqk9vPmAa9A2A1dXVBY8p6YlaO3DTUu736NWXL+V+94JBj7ir6oHp++PAjcCLZxxzsKrWq2p9ZWVlsVNKkv7fluFOck6Spzz2MfAq4PDYg0mSZhtyquSZwI1JHjv+H6vqE6NOJUmaa8twV9WXgF/cgVkkSQP4dEBJasZwS1IzhluSmjHcktSM4ZakZgy3JDVjuCWpGcMtSc0YbklqxnBLUjOGW5KaMdyS1IzhlqRmDLckNWO4JakZwy1JzRhuSWrGcEtSM4Zbkpox3JLUjOGWpGYGhzvJviS3J/nomANJkk5tO4+43wwcGWsQSdIwg8Kd5DnA5cC7xx1HkrSVoY+4/xp4K/CjeQck2UhyKMmhEydOLGQ4SdLjbRnuJK8BjlfVrac6rqoOVtV6Va2vrKwsbEBJ0o8b8oj7ZcAVSY4CHwQuSfL+UaeSJM21Zbir6m1V9ZyqWgOuBP69ql43+mSSpJl8HrckNbN/OwdX1aeAT40yiSRpEB9xS1IzhluSmjHcktSM4ZakZgy3JDVjuCWpGcMtSc0YbklqxnBLUjOGW5KaMdyS1IzhlqRmDLckNWO4JakZwy1JzRhuSWrGcEtSM4Zbkpox3JLUjOGWpGa2DHeSJyf5XJI7k9yd5B07MZgkabYh/8r7w8AlVfXdJE8CPpPk41X12ZFnkyTNsGW4q6qA704vPmn6VmMOJUmab9A57iT7ktwBHAdurqpbxh1LkjTPkFMlVNUPgRclORe4MckvVNXhzcck2QA2AFZXVxc+6G62duCmpdzv0asvX8r9Sjo923pWSVV9C/gUcNmM2w5W1XpVra+srCxoPEnSyYY8q2Rl+kibJGcBrwTuGXswSdJsQ06VPAu4Nsk+JqH/UFV9dNyxJEnzDHlWyV3ARTswiyRpAF85KUnNGG5JasZwS1IzhluSmjHcktSM4ZakZgy3JDVjuCWpGcMtSc0YbklqxnBLUjOGW5KaMdyS1IzhlqRmDLckNWO4JakZwy1JzRhuSWrGcEtSM4Zbkpox3JLUzJbhTvLcJP+R5EiSu5O8eScGkyTNtn/AMY8Cf1RVtyV5CnBrkpur6vMjzyZJmmHLR9xV9WBV3Tb9+DvAEeDZYw8mSZptW+e4k6wBFwG3jDGMJGlrQ06VAJDkp4F/At5SVd+ecfsGsAGwurq6sAGlRVo7cNNS7vfo1Zcv5X6XaVlf671g0CPuJE9iEu0PVNUNs46pqoNVtV5V6ysrK4ucUZK0yZBnlQR4D3Ckqv5y/JEkSacy5BH3y4DfBi5Jcsf07ddHnkuSNMeW57ir6jNAdmAWSdIAvnJSkpox3JLUjOGWpGYMtyQ1Y7glqRnDLUnNGG5JasZwS1IzhluSmjHcktSM4ZakZgy3JDVjuCWpGcMtSc0YbklqxnBLUjOGW5KaMdyS1IzhlqRmDLckNWO4JamZLcOd5L1Jjic5vBMDSZJObcgj7r8HLht5DknSQFuGu6o+DXxzB2aRJA2wf1GfKMkGsAGwurr6hD/P2oGbFjXSthy9+vKl3O8yLetrvRf5tdYiLeybk1V1sKrWq2p9ZWVlUZ9WknQSn1UiSc0YbklqZsjTAa8D/gu4MMmxJG8cfyxJ0jxbfnOyqq7aiUEkScN4qkSSmjHcktSM4ZakZgy3JDVjuCWpGcMtSc0YbklqxnBLUjOGW5KaMdyS1IzhlqRmDLckNWO4JakZwy1JzRhuSWrGcEtSM4Zbkpox3JLUjOGWpGYMtyQ1MyjcSS5Lcm+S+5IcGHsoSdJ8W4Y7yT7gb4FXAy8ErkrywrEHkyTNNuQR94uB+6rqS1X1CPBB4LXjjiVJmmdIuJ8N3L/p8rHpdZKkJdg/4JjMuK4ed1CyAWxML343yb2nM9hpOg94aDu/INeMNMl4tr1jU3thz72wI+yBPXPNae34c0MPHBLuY8BzN11+DvDAyQdV1UHg4NA7HlOSQ1W1vuw5xrQXdoS9sede2BH2xp47teOQUyX/DTw/yQVJzgCuBD4y7liSpHm2fMRdVY8m+QPgX4B9wHur6u7RJ5MkzTTkVAlV9THgYyPPskg/EadsRrYXdoS9sede2BH2xp47smOqHvd9RknSTzBf8i5JzbQPd5Jzk1yf5J4kR5K8NMnTk9yc5AvT909b9pynK8kfJrk7yeEk1yV5cvc9k7w3yfEkhzddN3enJG+b/tiFe5P82nKm3r45e/759L/Zu5LcmOTcTbe123PWjptu++MkleS8Tde12xHm75nkTdNd7k7yzk3Xj7NnVbV+A64Ffm/68RnAucA7gQPT6w4A1yx7ztPc8dnAl4Gzppc/BLyh+57Ay4GLgcObrpu5E5Mft3AncCZwAfBFYN+ydziNPV8F7J9+fE33PWftOL3+uUye2PAV4LzOO57i9/IVwL8CZ04vnz/2nq0fcSd5KpMv5HsAquqRqvoWk5fkXzs97FrgN5Yz4ULtB85Ksh84m8lz6VvvWVWfBr550tXzdnot8MGqeriqvgzcx+THMfzEm7VnVX2yqh6dXvwsk9dHQNM95/xeAvwV8FZ+/EV7LXeEuXv+PnB1VT08Peb49PrR9mwdbuB5wAngfUluT/LuJOcAz6yqBwGm789f5pCnq6q+BvwF8FXgQeB/q+qT7LI9p+bttJt/9MLvAh+ffrxr9kxyBfC1qrrzpJt2zY5TLwB+JcktSf4zyS9Nrx9tz+7h3s/kry3vqqqLgO8x+ev1rjI9z/taJn/d+lngnCSvW+5UO27Qj17oJsnbgUeBDzx21YzD2u2Z5Gzg7cCfzbp5xnXtdtxkP/A04CXAnwAfShJG3LN7uI8Bx6rqlunl65mE/BtJngUwfX98zq/v4pXAl6vqRFX9ALgB+GV2354wf6dBP3qhkySvB14D/FZNT4qye/b8eSYPNO5McpTJHrcl+Rl2z46POQbcUBOfA37E5OeyjLZn63BX1deB+5NcOL3qUuDzTF6S//rpda8H/nkJ4y3SV4GXJDl7+n/yS4Ej7L49Yf5OHwGuTHJmkguA5wOfW8J8C5HkMuBPgSuq6vubbtoVe1bV/1TV+VW1VlVrTCJ28fTP7K7YcZMPA5cAJHkBkydJPMSYey77u7QL+C7vi4BDwF3TL+DTgGcA/wZ8Yfr+6cuecwF7vgO4BzgM/AOT71S33hO4jsk5+x8w+YP9xlPtxOSv3l8E7gVevez5T3PP+5ic/7xj+vZ3nfecteNJtx9l+qySrjue4vfyDOD90z+btwGXjL2nr5yUpGZanyqRpL3IcEtSM4Zbkpox3JLUjOGWpGYMtyQ1Y7glqRnDLUnN/B+2cCTqW8CZogAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "plt.hist(t)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2 calculs\n", "### 2.1 nombre total de crayons" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "23\n" ] } ], "source": [ "print (t.size)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "soit une taille totale en millimètres de :" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2896" ] }, "execution_count": 44, "metadata": {}, "output_type": "execute_result" } ], "source": [ "t.sum()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2.2 Sur les plus petits crayons\n", "Taille du plus petit crayon et nombre de crayons ayant cette taille" ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "54\n" ] }, { "data": { "text/plain": [ "1" ] }, "execution_count": 45, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.amin(t)\n", "cp = np.amin(t)\n", "print (cp)\n", "np.sum(t==cp)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2.3 Sur les plus grands crayons\n", "Taille du plus grand crayon et nombre de crayons ayant cette taille \n", "(correspond à un crayon encore neuf)" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "160\n" ] }, { "data": { "text/plain": [ "7" ] }, "execution_count": 46, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.amax(t)\n", "cg = np.amax(t)\n", "print (cg)\n", "np.sum(t==cg)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2.4 taille moyenne des crayons" ] }, { "cell_type": "code", "execution_count": 47, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "125.91304347826087" ] }, "execution_count": 47, "metadata": {}, "output_type": "execute_result" } ], "source": [ "t.mean()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "soit en pourcentage de la taille du crayon neuf :" ] }, { "cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "78.69565217391305\n" ] } ], "source": [ "cm = t.mean()\n", "pcm = (cm/cg*100)\n", "print (pcm)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "La quantité de crayons de taille supérieure ou égale à la taille moyenne est : " ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "15\n" ] } ], "source": [ "ncm = np.sum(t>=cm)\n", "print (ncm)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "soit en pourcentage du nombre total de crayons :" ] }, { "cell_type": "code", "execution_count": 50, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "65.21739130434783\n" ] } ], "source": [ "ntc = (t.size)\n", "pgc = (ncm/ntc*100)\n", "print (pgc)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Conclusion\n", "Bon, ça va, j'ai encore de quoi écrire. " ] } ], "metadata": { "hide_code_all_hidden": false, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }