Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mooc-rr
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
335f5f369755e7a506491c0327a7d5ee
mooc-rr
Commits
08345ce0
Commit
08345ce0
authored
Nov 29, 2020
by
335f5f369755e7a506491c0327a7d5ee
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
plotting logistic regression
parent
0b8182eb
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
185 additions
and
234 deletions
+185
-234
exo5_fr.ipynb
module2/exo5/exo5_fr.ipynb
+185
-234
No files found.
module2/exo5/exo5_fr.ipynb
View file @
08345ce0
...
...
@@ -40,7 +40,7 @@
},
{
"cell_type": "code",
"execution_count":
1
,
"execution_count":
23
,
"metadata": {},
"outputs": [
{
...
...
@@ -261,33 +261,33 @@
"</div>"
],
"text/plain": [
"
Date Count Temperature Pressure Malfunction\n",
"0
4/12/81 6 66 50 0\n",
"1
11/12/81 6 70 50 1\n",
"2
3/22/82 6 69 50 0\n",
"3
11/11/82 6 68 50 0\n",
"4
4/04/83 6 67 50 0\n",
"5
6/18/82 6 72 50 0\n",
"6
8/30/83 6 73 100 0\n",
"7
11/28/83 6 70 100 0\n",
"8
2/03/84 6 57 200 1\n",
"9
4/06/84 6 63 200 1\n",
"10
8/30/84 6 70 200 1\n",
"11
10/05/84 6 78 200 0\n",
"12
11/08/84 6 67 200 0\n",
"13
1/24/85 6 53 200 2\n",
"14
4/12/85 6 67 200 0\n",
"15
4/29/85 6 75 200 0\n",
"16
6/17/85 6 70 200 0\n",
"17 7/29/85 6 81 200 0\n",
"18
8/27/85 6 76 200 0\n",
"19
10/03/85 6 79 200 0\n",
"20
10/30/85 6 75 200 2\n",
"21
11/26/85 6 76 200 0\n",
"22
1/12/86 6 58 200 1"
" Date Count Temperature Pressure Malfunction\n",
"0 4/12/81 6 66 50 0\n",
"1 11/12/81 6 70 50 1\n",
"2 3/22/82 6 69 50 0\n",
"3 11/11/82 6 68 50 0\n",
"4 4/04/83 6 67 50 0\n",
"5 6/18/82 6 72 50 0\n",
"6 8/30/83 6 73 100 0\n",
"7 11/28/83 6 70 100 0\n",
"8 2/03/84 6 57 200 1\n",
"9 4/06/84 6 63 200 1\n",
"10 8/30/84 6 70 200 1\n",
"11 10/05/84 6 78 200 0\n",
"12 11/08/84 6 67 200 0\n",
"13 1/24/85 6 53 200 2\n",
"14 4/12/85 6 67 200 0\n",
"15 4/29/85 6 75 200 0\n",
"16 6/17/85 6 70 200 0\n",
"17
7/29/85 6 81 200 0\n",
"18 8/27/85 6 76 200 0\n",
"19 10/03/85 6 79 200 0\n",
"20 10/30/85 6 75 200 2\n",
"21 11/26/85 6 76 200 0\n",
"22 1/12/86 6 58 200 1"
]
},
"execution_count":
1
,
"execution_count":
23
,
"metadata": {},
"output_type": "execute_result"
}
...
...
@@ -295,6 +295,8 @@
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import statsmodels as sm\n",
"from statsmodels.tools import add_constant\n",
"data = pd.read_csv(\"shuttle.csv\")\n",
"data"
]
...
...
@@ -313,147 +315,131 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Inspection graphique des données\n",
"Les vols où aucun incident n'est relevé n'apportant aucun information\n",
"sur l'influence de la température ou de la pression sur les\n",
"dysfonctionnements, nous nous concentrons sur les expériences où au\n",
"moins un joint a été défectueux.\n"
"## Regression logistique"
]
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 2
6
,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Date</th>\n",
" <th>Count</th>\n",
" <th>Temperature</th>\n",
" <th>Pressure</th>\n",
" <th>Malfunction</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>11/12/81</td>\n",
" <td>6</td>\n",
" <td>70</td>\n",
" <td>50</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>2/03/84</td>\n",
" <td>6</td>\n",
" <td>57</td>\n",
" <td>200</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>4/06/84</td>\n",
" <td>6</td>\n",
" <td>63</td>\n",
" <td>200</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>8/30/84</td>\n",
" <td>6</td>\n",
" <td>70</td>\n",
" <td>200</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>1/24/85</td>\n",
" <td>6</td>\n",
" <td>53</td>\n",
" <td>200</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20</th>\n",
" <td>10/30/85</td>\n",
" <td>6</td>\n",
" <td>75</td>\n",
" <td>200</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n",
" <td>1/12/86</td>\n",
" <td>6</td>\n",
" <td>58</td>\n",
" <td>200</td>\n",
" <td>1</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Date Count Temperature Pressure Malfunction\n",
"1 11/12/81 6 70 50 1\n",
"8 2/03/84 6 57 200 1\n",
"9 4/06/84 6 63 200 1\n",
"10 8/30/84 6 70 200 1\n",
"13 1/24/85 6 53 200 2\n",
"20 10/30/85 6 75 200 2\n",
"22 1/12/86 6 58 200 1"
"<matplotlib.axes._subplots.AxesSubplot at 0x7f68967aec18>"
]
},
"execution_count": 2,
"execution_count": 2
6
,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEKCAYAAAAB0GKPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAG3ZJREFUeJzt3XuUXWWd5vHvU0mRBIgmJsVlkpQJkmaMGiJ9DERUQFtWcJS0HR2TtoHFyGRQ6W7mgqBrBhB1da9ou7oZkRjpiLAa6JYQSM9wCd5ARDQVOoR7WxMuKUInoUgwwRBS1G/+2Lv0pHKqznuqatepU3k+a9Wqs9/97n1+u3ademrfFRGYmZlV01TvAszMrDE4MMzMLIkDw8zMkjgwzMwsiQPDzMySODDMzCyJA8PMzJI4MMzMLIkDw8zMkoytdwFDaerUqTFz5sx6l2Fm1jA2bNjwUkS0pPQdVYExc+ZM2tra6l2GmVnDkPRcal/vkjIzsyQODDMzS+LAMDOzJA4MMzNL4sAwM7MkDgwzM0tSWGBImiHpJ5KelPS4pL+s0EeSrpbULmmTpJPKxi2U9HQ+7rKi6gTo3LOPR7bsonPPviLfxsyGmD+7w6vI6zC6gP8eEQ9LmghskHRvRDxR1ucsYHb+dTJwLXCypDHANcCHgQ5gvaS1vaYdEndsfIFLV2+iuamJ/d3dLF88l7PnTRvqtzGzIebP7vArbAsjIl6MiIfz17uBJ4Hea3MRcENkHgImSToWmA+0R8TmiHgduCXvO6Q69+zj0tWbeG1/N7v3dfHa/m6+sHqT/1sxG+H82a2PYTmGIWkm8G7gl71GTQO2lA135G19tVea9zJJbZLaduzYUVNdHTv30tx04I+guamJjp17a5qPmQ0vf3bro/DAkHQksBq4OCJ+03t0hUmin/aDGyNWRkQpIkotLUm3Q/md6ZMnsL+7+4C2/d3dTJ88oab5mNnw8me3PgoNDEnNZGHxDxFxW4UuHcCMsuHpwNZ+2ofUlCPHsXzxXMY3NzFx3FjGNzexfPFcphw5bqjfysyGkD+79VHYQW9JAv4eeDIivtlHt7XARZJuITvo/UpEvChpBzBb0izgBWAJ8KdF1Hn2vGmcevxUOnbuZfrkCf6FM2sQ/uwOvyLPkjoVOAd4VNLGvO1LQCtARKwA7gQ+ArQDvwXOz8d1SboIuAcYA6yKiMeLKnTKkeP8y2bWgPzZHV6FBUZEPEDlYxHlfQL4fB/j7iQLFDMzGwF8pbeZmSVxYJiZWRIHhpmZJXFgmJlZEgeGmZklcWCYmVkSB4aZmSVxYJiZWRIHhpmZJXFgmJlZEgeGmZklcWCYmVkSB4aZmSVxYJiZWRIHhpmZJSnyiXurgI8C2yPinRXGXwJ8uqyOtwMtEfGypGeB3cAbQFdElIqq08zM0hS5hXE9sLCvkRHx9YiYFxHzgC8C90XEy2VdzsjHOyzMzEaAwgIjIu4HXq7aMbMUuLmoWszMbPDqfgxD0uFkWyKry5oDWCdpg6Rl9anMzMzKFXYMowYfA37ea3fUqRGxVdJRwL2Snsq3WA6SB8oygNbW1uKrNTM7RNV9CwNYQq/dURGxNf++HVgDzO9r4ohYGRGliCi1tLQUWqiZ2aGsroEh6c3AacAdZW1HSJrY8xo4E3isPhWamVmPIk+rvRk4HZgqqQO4AmgGiIgVebePA+si4tWySY8G1kjqqe+miLi7qDrNzCxNYYEREUsT+lxPdvptedtm4MRiqjIzs4EaCccwzMysATgwzMwsiQPDzMySODDMzCyJA8PMzJI4MMzMLIkDw8zMkjgwzMwsiQPDzMySODDMzCyJA8PMzJI4MMzMLIkDw8zMkjgwzMwsiQPDzMySODDMzCxJYYEhaZWk7ZIqPl5V0umSXpG0Mf+6vGzcQklPS2qXdFlRNZqZWboitzCuBxZW6fOziJiXf10FIGkMcA1wFjAHWCppToF1mplZgsICIyLuB14ewKTzgfaI2BwRrwO3AIuGtDgzM6tZvY9hLJD0iKS7JL0jb5sGbCnr05G3VSRpmaQ2SW07duwoslYzs0NaPQPjYeCtEXEi8L+B2/N2Vegbfc0kIlZGRCkiSi0tLQWUaWZmUMfAiIjfRMSe/PWdQLOkqWRbFDPKuk4HttahRDMzK1O3wJB0jCTlr+fntXQC64HZkmZJOgxYAqytV51mZpYZW9SMJd0MnA5MldQBXAE0A0TECuATwGcldQF7gSUREUCXpIuAe4AxwKqIeLyoOs3MLI2yv9GjQ6lUira2tnqXYWbWMCRtiIhSSt96nyVlZmYNwoFhZmZJHBhmZpbEgWFmZkkcGGZmlsSBYWZmSRwYZmaWxIFhZmZJHBhmZpbEgWFmZkkcGGZmlsSBYWZmSRwYZmaWxIFhZmZJHBhmZpaksMCQtErSdkmP9TH+05I25V8PSjqxbNyzkh6VtFGSH3BhZjYCFLmFcT2wsJ/xzwCnRcRc4CvAyl7jz4iIeakP9jAzs2IlPaJV0h8AlwBvLZ8mIj7Y1zQRcb+kmf2Mf7Bs8CFgekotZmZWH6nP9P4BsAL4LvBGAXV8BrirbDiAdZIC+E5E9N76MDOzYZYaGF0RcW0RBUg6gyww3lfWfGpEbJV0FHCvpKci4v4+pl8GLANobW0tokQzMyP9GMY/S/qcpGMlvaXna7BvLmkucB2wKCI6e9ojYmv+fTuwBpjf1zwiYmVElCKi1NLSMtiSzMysD6lbGOfl3y8pawvguIG+saRW4DbgnIj417L2I4CmiNidvz4TuGqg72NmZkMjKTAiYlatM5Z0M3A6MFVSB3AF0JzPbwVwOTAF+LYkyHZ7lYCjgTV521jgpoi4u9b3NzOzoZV6llQz8FngA3nTT8kORu/va5qIWNrfPCPiAuCCCu2bgRMPnsLMzOopdZfUtWRbB9/Oh8/J2w76g29mZqNTamC8JyLK/+v/saRHiijIzMxGptSzpN6Q9LaeAUnHUcz1GGZmNkKlbmFcAvxE0mZAZFd8n19YVWZmNuKkniX1I0mzgRPIAuOpiNhXaGVmZjai9BsYkj4YET+W9Ce9Rr1NEhFxW4G1mZnZCFJtC+M04MfAxyqMC7IL78zM7BDQb2BExBX5y6si4pnycZJqvpjPzMwaV+pZUqsrtN06lIWYmdnIVu0Yxr8H3gG8uddxjDcB44sszMzMRpZqxzBOAD4KTOLA4xi7gf9cVFFmZjbyVDuGcQdwh6QFEfGLYarJzMxGoNRjGBdKmtQzIGmypFUF1WRmZiNQamDMjYhdPQMRsRN4dzElmZnZSJQaGE2SJvcM5E/bS72tiJmZjQKpgfE3wIOSviLpK8CDwPL+JpC0StJ2SY/1MV6SrpbULmmTpJPKxi2U9HQ+7rLUhTEzs+IkBUZE3AB8AtgGbAf+JCJurDLZ9cDCfsafBczOv5aRPV8DSWOAa/Lxc4Clkuak1Hko6Nyzj0e27KJzT/VbedXSt9GM5mUrQvu23dzatoX2bbvrXYo1sFp2Kz0F7OyZRlJrRDzfV+eIuF/SzH7mtwi4ISICeEjSJEnHAjOB9vzJe0i6Je/7RA21jkp3bHyBS1dvormpif3d3SxfPJez500bdN9GM5qXrQiX3/4oNzz0+4/quQtauWrRu+pYkTWqpC0MSX9OtnVxL/B/gP+bfx+MacCWsuGOvK2v9kNa5559XLp6E6/t72b3vi5e29/NF1Zvqvgfdi19G81oXrYitG/bfUBYANzwi+e9pWEDknoM4y+BEyLiHRExNyLeFRFzB/neqtAW/bRXnom0TFKbpLYdO3YMsqSRq2PnXpqbDlxdzU1NdOzcO6i+jWY0L1sRNm7ZVVO7WX9SA2ML8MoQv3cHMKNseDqwtZ/2iiJiZUSUIqLU0tIyxCWOHNMnT2B/d/cBbfu7u5k+ecKg+jaa0bxsRZg3Y1JN7Wb9SQ2MzcBPJX1R0n/r+Rrke68Fzs3PljoFeCUiXgTWA7MlzZJ0GLAk73tIm3LkOJYvnsv45iYmjhvL+OYmli+ey5Qjxw2qb6MZzctWhOOPnsi5C1oPaDt3QSvHHz2xThVZI1N2zLlKJ+mKSu0R8eV+prkZOB2YSnb84wqgOZ9uhSQB3yI7k+q3wPkR0ZZP+xHgb4ExwKqI+FrKwpRKpWhra0vp2rA69+yjY+depk+eUPWPZC19G81oXrYitG/bzcYtu5g3Y5LDwg4gaUNElJL6pgRGozgUAsPMbCjVEhhJp9VK+gkVDjxHxAdrrM3MzBpU6nUY/6Ps9XhgMdA19OWYmdlIlRQYEbGhV9PPJd1XQD1mZjZCpe6SekvZYBPwh8AxhVRkZmYjUuouqQ38/qK6LuAZ4DNFFWVmZiNPtWd6fzIifgB8qOfeTmZmdmiqduHeF/PvtxZdiJmZjWzVdkl15qfUzpJ00NXWEXF2MWWZmdlIUy0w/gNwEnAj2UOUzMzsENVvYETE62TPqnhvRIzeW8GamVlV1Q56/zP5Fd7ZrZ8O5F1SZmaHjmq7pL4xLFWYmdmIV22XlK/mNjMzIP1K79nAXwFzyO4lBUBEHFdQXWZmNsKkPkDpe8C1ZFd5nwHcQHbmlJmZHSJSA2NCRPyI7PkZz0XElYBvbW5mdghJvZfUa5KagF9Lugh4ATiq2kSSFgJ/R/bkvOsi4q97jb8E+HRZLW8HWiLiZUnPAruBN4Cu1Ad8mJlZMVK3MC4GDgf+guxOtecA5/U3gaQxwDXAWWTHPpZKmlPeJyK+HhHzImIe2W1I7ouIl8u6nJGPd1iYmdVZ6vMw1ucv9wDnJ857PtDec9NCSbcAi4An+ui/FLg5cd5mZjbMql24d9D9o8pVuXBvGrClbLgDOLmP9zkcWAhcVD57YJ2kAL4TESv7q8XMzIpVbQtjAdkf/ZuBX5I9DyNVpb4HPRc89zHg5712R50aEVslHQXcK+mpiLj/oDeRlgHLAFpbW2soz8zMalHtGMYxwJeAd5IdvP4w8FJE3JdwUV8HMKNseDqwtY++S+i1OyoitubftwNryHZxHSQiVkZEKSJKLS0tVUoyM7OB6jcwIuKNiLg7Is4DTgHagZ9K+vOEea8HZkuaJekwslA4aBeXpDcDpwF3lLUdIWliz2vgTOCxxGUyM7MCVD3oLWkc2W3OlwIzgauB26pNFxFd+Sm495CdVrsqIh6XdGE+fkXe9ePAuoh4tWzyo4E1+Q0PxwI3RcTdqQtlZmZDTxF9HVYASd8n2x11F3BLRIzo//JLpVK0tbXVuwwzs4YhaUPqpQvVtjDOAV4F/gD4i7JbnAuIiHjTgKs0M7OGUu1utakX9pmZ2SjnQDAzsyQODDMzS+LAMDOzJA4MMzNL4sAwM7MkDgwzM0viwDAzsyQODDMzS+LAMDOzJA4MMzNL4sAwM7MkDgwzM0viwDAzsySFBoakhZKeltQu6bIK40+X9IqkjfnX5anTmpnZ8Kr6xL2BkjQGuIbsOeAdwHpJayPiiV5dfxYRHx3gtGZmNkyK3MKYD7RHxOaIeB24BVg0DNOamVkBigyMacCWsuGOvK23BZIekXSXpHfUOK2ZmQ2TwnZJkT3GtbfeDxB/GHhrROyR9BHgdmB24rTZm0jLgGUAra2tA6/WzMz6VeQWRgcwo2x4OrC1vENE/CYi9uSv7wSaJU1NmbZsHisjohQRpZaWlqGs38zMyhQZGOuB2ZJmSToMWAKsLe8g6RhJyl/Pz+vpTJnWzMyGV2G7pCKiS9JFwD3AGGBVRDwu6cJ8/ArgE8BnJXUBe4ElERFAxWmLqtXMzKpT9vd5dCiVStHW1lbvMszMGoakDRFRSunrK73NzCyJA8PMzJI4MMzMLIkDw8zMkjgwzMwsiQPDzMySODDMzCyJA8PMzJI4MMzMLIkDw8zMkjgwzMwsiQPDzMySODDMzCyJA8PMzJI4MMzMLIkDw8zMkhQaGJIWSnpaUrukyyqM/7SkTfnXg5JOLBv3rKRHJW2U5KcimZnVWWGPaJU0BrgG+DDQAayXtDYinijr9gxwWkTslHQWsBI4uWz8GRHxUlE1mplZuiK3MOYD7RGxOSJeB24BFpV3iIgHI2JnPvgQML3AeszMbBCKDIxpwJay4Y68rS+fAe4qGw5gnaQNkpb1NZGkZZLaJLXt2LFjUAWbmVnfCtslBahCW1TsKJ1BFhjvK2s+NSK2SjoKuFfSUxFx/0EzjFhJtiuLUqlUcf5mZjZ4RW5hdAAzyoanA1t7d5I0F7gOWBQRnT3tEbE1/74dWEO2i8vMzOqkyMBYD8yWNEvSYcASYG15B0mtwG3AORHxr2XtR0ia2PMaOBN4rMBazcysisJ2SUVEl6SLgHuAMcCqiHhc0oX5+BXA5cAU4NuSALoiogQcDazJ28YCN0XE3UXVamZm1Sli9Oz2L5VK0dbmSzbMzFJJ2pD/o16Vr/Q2M7MkDgwzM0viwDAzsyQODDMzS+LAMDOzJA4MMzNL4sAwM7MkDgwzM0viwDAzsyQODDMzS+LAMDOzJA4MMzNL4sAwM7MkDgwzM0viwDAzsySFBoakhZKeltQu6bIK4yXp6nz8JkknpU5rZmbDq7DAkDQGuAY4C5gDLJU0p1e3s4DZ+dcy4NoapjWrm849+3hkyy469+yr2rftmU6+ue5p2p7prNq3lvnW0rd9225ubdtC+7bdVfumKqrWomrwz2DwCntEKzAfaI+IzQCSbgEWAU+U9VkE3BDZY/8ekjRJ0rHAzIRpzerijo0vcOnqTTQ3NbG/u5vli+dy9rxpFfv+2XUP8UB7FhRX/7id9x8/hRsvOGXQ862l7+W3P8oNDz3/u+FzF7Ry1aJ31bLIw1ZrUTX4ZzA0itwlNQ3YUjbckbel9EmZ1mzYde7Zx6WrN/Ha/m527+vitf3dfGH1por/3bU90/m7sOjxs/bOilsatcy3lr7t23Yf8IcS4IZfPD+o/7KLqrWoGvwzGDpFBoYqtPV+gHhffVKmzWYgLZPUJqltx44dNZZoVpuOnXtpbjrwY9Pc1ETHzr0H9b3/1y9VnEel9lrmW0vfjVt2Vayhr/YURdVaVA3+GQydIgOjA5hRNjwd2JrYJ2VaACJiZUSUIqLU0tIy6KLN+jN98gT2d3cf0La/u5vpkycc1PcDs6dWnEel9lrmW0vfeTMmVayhr/YURdVaVA3+GQydIgNjPTBb0ixJhwFLgLW9+qwFzs3PljoFeCUiXkyc1mzYTTlyHMsXz2V8cxMTx41lfHMTyxfPZcqR4w7qW5o1hfcfP+WAtvcfP4XSrCkH9a1lvrX0Pf7oiZy7oPWAtnMXtHL80RNrXfTCay2qBv8Mho6y480FzVz6CPC3wBhgVUR8TdKFABGxQpKAbwELgd8C50dEW1/TVnu/UqkUbW1txSyMWZnOPfvo2LmX6ZMnVP2Atj3Tyf2/fokPzJ5aMSwGOt9a+rZv283GLbuYN2PSoP5QDketRdXgn0FlkjZERCmpb5GBMdwcGGZmtaklMHylt5mZJXFgmJlZEgeGmZklcWCYmVkSB4aZmSVxYJiZWZJRdVqtpB3Ac/Wuo5epQOV7RDQ2L1fjGa3L5uUanLdGRNJtMkZVYIxEktpSz3FuJF6uxjNal83LNXy8S8rMzJI4MMzMLIkDo3gr611AQbxcjWe0LpuXa5j4GIaZmSXxFoaZmSVxYAwhSc9KelTSRkk9t2m/UtILedvG/LbtDSV/1vqtkp6S9KSkBZLeIuleSb/Ov0+ud50D0ceyNfQ6k3RCWe0bJf1G0sWNvs76Wa6GXl8Akv6rpMclPSbpZknjR+L68i6pISTpWaAUES+VtV0J7ImIb9SrrsGS9H3gZxFxXf5Aq8OBLwEvR8RfS7oMmBwRl9a10AHoY9kupsHXWQ9JY4AXgJOBzzMK1hkctFzn08DrS9I04AFgTkTslfRPwJ3AHEbY+vIWhvVL0puADwB/DxARr0fELmAR8P282/eBP65PhQPXz7KNJh8C/l9EPMcoWGdlypdrNBgLTJA0luyflq2MwPXlwBhaAayTtEHSsrL2iyRtkrRqJGxW1ug4YAfwPUn/Iuk6SUcAR+eP0yX/flQ9ixygvpYNGnudlVsC3Jy/Hg3rrEf5ckEDr6+IeAH4BvA88CLZo6rXMQLXlwNjaJ0aEScBZwGfl/QB4FrgbcA8sl+Gv6ljfQMxFjgJuDYi3g28ClxW35KGTF/L1ujrDIB8F9vZwA/qXctQqrBcDb2+8oBbBMwC/h1whKQ/q29VlTkwhlBEbM2/bwfWAPMjYltEvBER3cB3gfn1rHEAOoCOiPhlPnwr2R/ZbZKOBci/b69TfYNRcdlGwTrrcRbwcERsy4dHwzqDXss1CtbXHwHPRMSOiNgP3Aa8lxG4vhwYQ0TSEZIm9rwGzgQe61nhuY8Dj9WjvoGKiH8Dtkg6IW/6EPAEsBY4L287D7ijDuUNSl/L1ujrrMxSDtxt0/DrLHfAco2C9fU8cIqkwyWJ7PfwSUbg+vJZUkNE0nFkWxWQ7eq4KSK+JulGsk3lAJ4F/kvPfslGIWkecB1wGLCZ7KyUJuCfgFayX/hPRsTLdStygPpYtqtp/HV2OLAFOC4iXsnbptDg66yP5RoNn7EvA58CuoB/AS4AjmSErS8HhpmZJfEuKTMzS+LAMDOzJA4MMzNL4sAwM7MkDgwzM0sytt4FmBUtP530R/ngMcAbZLcEgeziytfrUlg/JP0n4M78WhGzEcGn1dohZSTdPVjSmIh4o49xDwAXRcTGGuY3NiK6hqxAs168S8oOaZLOk/Sr/DkK35bUJGmspF2Svi7pYUn3SDpZ0n2SNvc8b0HSBZLW5OOflvQ/E+f7VUm/AuZL+rKk9flzEFYo8ymyC9H+MZ/+MEkdkibl8z5F0g/z11+V9B1J95LdRHGspG/m771J0gXD/1O10cqBYYcsSe8ku5XEeyNiHtku2iX56DcD6/KbSb4OXEl2y4ZPAleVzWZ+Ps1JwJ9Kmpcw34cjYn5E/AL4u4h4D/CufNzCiPhHYCPwqYiYl7DL7N3AxyLiHGAZsD0i5gPvIbsJZutAfj5mvfkYhh3K/ojsj2pbdgsfJpDddgJgb0Tcm79+lOyW012SHgVmls3jnojYCSDpduB9ZJ+rvub7Or+/hQzAhyRdAowHpgIbgLtqXI47IuK1/PWZwNsllQfUbLJbS5gNigPDDmUCVkXE/zqgMXuITfl/9d3AvrLX5Z+b3gcBo8p890Z+4DC/L9K3yO6Q+4Kkr5IFRyVd/H6PQO8+r/Zaps9FxI8wG2LeJWWHsh8C/1HSVMjOphrA7pszlT0X/HCyZxr8vIb5TiALoJfyOx0vLhu3G5hYNvws8If56/J+vd0DfC4Pp57nYE+ocZnMKvIWhh2yIuLR/C6hP5TUBOwHLiR7PGaqB4CbyB7gc2PPWU0p842ITmXPFH8MeA74Zdno7wHXSdpLdpzkSuC7kv4N+FU/9XyH7O6mG/PdYdvJgsxs0HxardkA5WcgvTMiLq53LWbDwbukzMwsibcwzMwsibcwzMwsiQPDzMySODDMzCyJA8PMzJI4MMzMLIkDw8zMkvx/GY+fU3UQosUAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFapJREFUeJzt3X+Q5HV95/Hna38Aq6CQZcMZdvfAwHFyChscFzHRmCJnwNS5SXGJYBKMOYujlMt5VXeBurozakzVhQuWR0CRcChYFUkiKiSFhz/ujBolMuiyC3jEOUB2wCzLCnEx67LLvO+P7v2md5id6R7mO709PB9VXdPfz/fT335/+tszr/n+6G+nqpAkCWDZsAuQJB06DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1Vgy7gEEde+yxdcIJJwy7DEkaKXfdddfjVbVmrn4jFwonnHAC4+Pjwy5DkkZKku/208/dR5KkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkRmuhkOT6JI8luecg85PkyiQTSbYkOaOtWgB2PrWHu7c9yc6n9rT5NAtmkHpHbWz9WqrjasvE9l18cnwbE9t3DbuUBed7YfG0+eG1jwFXATceZP65wMnd25nAh7s/F9wtmx/h0pu3sHLZMvZOTXH5eafxpg3Ht/FUC2KQekdtbP1aquNqy7s/s5Ub73i4mb7wrPW8b9MrhljRwvG9sLha21Koqi8D35+lyybgxuq4Azg6yUsWuo6dT+3h0pu38KO9U+zas48f7Z3id27ecsj+xzFIvaM2tn4t1XG1ZWL7rgMCAeDGrz+8JLYYfC8svmEeUzge2NYzPdlte5YkFyUZTzK+Y8eOgZ5k8ondrFx24DBXLlvG5BO7Byx3cQxS76iNrV9LdVxt2bztyYHaR4nvhcU3zFDIDG01U8equraqxqpqbM2aOa/ndIC1x6xi79TUAW17p6ZYe8yqgZazWAapd9TG1q+lOq62bFh39EDto8T3wuIbZihMAut6ptcCjy70k6w+8nAuP+80jli5jKMOX8ERK5dx+XmnsfrIwxf6qRbEIPWO2tj6tVTH1ZaTjjuKC89af0DbhWet56TjjhpSRQvH98LiS9WM/5wvzMKTE4C/rKqXzzDvF4FLgDfSOcB8ZVVtnGuZY2NjNZ+rpO58ag+TT+xm7TGrRuINNUi9oza2fi3VcbVlYvsuNm97kg3rjl4SgdDL98Jzl+Suqhqbs19boZDkE8DrgWOB7cDvAisBquqaJKFzdtI5wD8Ab6uqOf/azzcUJOn5rN9QaO2U1Kq6YI75BbyzreeXJA3OTzRLkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqthkKSc5Lcn2QiyWUzzH9xkr9IcneSe5O8rc16JEmzay0UkiwHrgbOBU4FLkhy6rRu7wTuq6rTgdcDVyQ5rK2aJEmza3NLYSMwUVUPVNXTwE3Apml9CjgqSYAjge8D+1qsSZI0izZD4XhgW8/0ZLet11XAy4BHga3Av6+qqRZrkiTNos1QyAxtNW36F4DNwE8AG4CrkrzoWQtKLkoynmR8x44dC1+pJAloNxQmgXU902vpbBH0ehvwqeqYAB4E/vn0BVXVtVU1VlVja9asaa1gSXq+azMU7gROTnJi9+Dx+cCt0/o8DJwNkOQ44BTggRZrkiTNYkVbC66qfUkuAW4HlgPXV9W9SS7uzr8G+D3gY0m20tnddGlVPd5WTZKk2bUWCgBVdRtw27S2a3ruPwq8oc0aJEn98xPNkqSGoSBJahgKkqSGoSBJahgKkqSGoSBJahgKkqSGoSBJahgKkqSGoSBJahgKkqSGoSBJahgKkqSGoSBJahgKkqSGoSBJahgKkqSGoSBJahgKkqSGoSBJahgKkqSGoSBJahgKkqSGoSBJahgKkqSGoSBJahgKkqSGoSBJahgKkqSGoSBJarQaCknOSXJ/kokklx2kz+uTbE5yb5K/arMeSdLsVrS14CTLgauBfwlMAncmubWq7uvpczTwIeCcqno4yY+3VY8kaW5tbilsBCaq6oGqehq4Cdg0rc9bgE9V1cMAVfVYi/VIkubQZigcD2zrmZ7stvX6Z8AxSb6U5K4kF7ZYjyRpDq3tPgIyQ1vN8PyvBM4GVgFfT3JHVf3tAQtKLgIuAli/fn0LpUqSoM9Q6B4f+EXghN7HVNUHZnnYJLCuZ3ot8OgMfR6vqh8CP0zyZeB04IBQqKprgWsBxsbGpgeLJGmB9Lv76C+A3wRWA0f13GZzJ3BykhOTHAacD9w6rc8twGuTrEjyAuBM4Nt91iRJWmD97j5aW1WnDbLgqtqX5BLgdmA5cH1V3Zvk4u78a6rq20n+F7AFmAKuq6p7BnkeSdLCSdXce2OS/AHwxar6XPslzW5sbKzGx8eHXYYkjZQkd1XV2Fz9+t1SuAP4dJJlwF46B5Grql70HGqUJB1i+g2FK4CzgK3Vz6aFJGkk9Xug+TvAPQaCJC1t/W4pfA/4UpLPAnv2N85xSqokacT0GwoPdm+HdW+SpCWor1CoqvcCJHlh94NmkqQlqK9jCknOSnIf3Q+WJTk9yYdarUyStOj6PdD8QeAXgJ0AVXU38Lq2ipIkDUffV0mtqm3Tmp5Z4FokSUPW74HmbUleA1T3Oka/jdcokqQlp98thYuBd9L5PoRJYEN3WpK0hPR79tHjwK+1XIskachmDYUkf8SzvxinUVW/veAVSZKGZq4tBS9HKknPI7OGQlXd0Dud5EWd5trValWSpKHo98NrY0m20vkynHuS3J3kle2WJklabP2ekno98I6q+gpAkp8BPgoM9G1skqRDW7+npO7aHwgAVfVVwF1IkrTEzHX20Rndu99I8hHgE3TORnoz8KV2S5MkLba5dh9dMW36d3vu+4U7krTEzHX20c8tViGSpOHr9+yjFyf5QJLx7u2KJC9uuzhJ0uLq90Dz9XQOLP9q9/YDOmcfSZKWkH5PSf3JqjqvZ/q9STa3UZAkaXj63VLY3f1sAgBJfhrY3U5JkqRh6XdL4WLgxp7jCE8Ab22nJEnSsMwZCkmWAadU1endax9RVT9ovTJJ0qKbc/dRVU0Bl3Tv/8BAkKSlq99jCp9P8h+TrEvyY/tvrVYmSVp0/R5T+C06n2B+x7T2ly5sOZKkYep3S+FU4GrgbmAz8EfAv5jrQUnOSXJ/kokkl83S71VJnknyr/usR5LUgn5D4QbgZcCVdALhZd22g0qynE6QnEsnVC5IcupB+v0BcHv/ZUuS2tDv7qNTqur0nun/k+TuOR6zEZioqgcAktwEbALum9bv3wE3A6/qsxZJUkv63VL4VpJX759Icibw13M85nhgW8/0ZLetkeR44JeBa2ZbUJKL9l93aceOHX2WLEkaVL+hcCbwtSQPJXkI+Drws0m2JtlykMdkhrbpl9v+IHBpVT0z25NX1bVVNVZVY2vWrOmzZEnSoPrdfXTOPJY9CazrmV4LPDqtzxhwUxKAY4E3JtlXVZ+Zx/NJkp6jvkKhqr47j2XfCZyc5ETgEeB84C3Tlnvi/vtJPgb8pYEgScPT75bCwKpqX5JL6JxVtBy4vqruTXJxd/6sxxEkSYuvtVAAqKrbgNumtc0YBlX1m23WIkmaW78HmiVJzwOGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSp0WooJDknyf1JJpJcNsP8X0uypXv7WpLT26xHkjS71kIhyXLgauBc4FTggiSnTuv2IPCzVXUa8HvAtW3VI0maW5tbChuBiap6oKqeBm4CNvV2qKqvVdUT3ck7gLUt1iNJmkOboXA8sK1nerLbdjD/BvjsTDOSXJRkPMn4jh07FrBESVKvNkMhM7TVjB2Tn6MTCpfONL+qrq2qsaoaW7NmzQKWKEnqtaLFZU8C63qm1wKPTu+U5DTgOuDcqtrZYj2SpDm0uaVwJ3BykhOTHAacD9za2yHJeuBTwG9U1d+2WIskqQ+tbSlU1b4klwC3A8uB66vq3iQXd+dfA7wbWA18KAnAvqoaa6smSdLsUjXjbv5D1tjYWI2Pjw+7DEkaKUnu6uefbj/RLElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqtBoKSc5Jcn+SiSSXzTA/Sa7szt+S5Iw265Ekza61UEiyHLgaOBc4FbggyanTup0LnNy9XQR8uK16pPnY+dQe7t72JDuf2jNn3/EHd/KBz93P+IM7F2yZg/Sd2L6LT45vY2L7rjn7DqKtetuowdfguVvR4rI3AhNV9QBAkpuATcB9PX02ATdWVQF3JDk6yUuq6nst1iX15ZbNj3DpzVtYuWwZe6emuPy803jThuNn7Pvr193BVyc6YXDl/57gtSet5uNvf/VzWuYgfd/9ma3ceMfDzfSFZ63nfZteMeiQF63eNmrwNVgYbe4+Oh7Y1jM92W0btI+06HY+tYdLb97Cj/ZOsWvPPn60d4rfuXnLjP+ljT+4swmE/b4ysfNZWwyDLHOQvhPbdx3wxxDgxq8//Jz/W26r3jZq8DVYOG2GQmZoq3n0IclFScaTjO/YsWNBipNmM/nEblYuO/DXY+WyZUw+sftZfb/8ncdnXMb09kGWOUjfzduenPH5D9ber7bqbaMGX4OF02YoTALreqbXAo/Oow9VdW1VjVXV2Jo1axa8UGm6tcesYu/U1AFte6emWHvMqmf1fd3Jx864jOntgyxzkL4b1h094/MfrL1fbdXbRg2+BgunzVC4Ezg5yYlJDgPOB26d1udW4MLuWUivBv7e4wk6FKw+8nAuP+80jli5jKMOX8ERK5dx+XmnsfrIw5/Vd+zE1bz2pNUHtL32pNWMnXhg2yDLHKTvSccdxYVnrT+g7cKz1nPScUfNZ+it19tGDb4GCyedY7ztSPJG4IPAcuD6qvr9JBcDVNU1SQJcBZwD/APwtqoan22ZY2NjNT4+axdpwex8ag+TT+xm7TGr5vwlHH9wJ1/+zuO87uRjnxUI813mIH0ntu9i87Yn2bDu6Of8x3Ax6m2jBl+Dg0tyV1WNzdmvzVBog6EgSYPrNxT8RLMkqWEoSJIahoIkqWEoSJIahoIkqWEoSJIahoIkqTFyn1NIsgP47rDrmOZYYOYL4Iy+pTo2xzV6lurYFmtc/7Sq5rxO0MiFwqEoyXg/HwoZRUt1bI5r9CzVsR1q43L3kSSpYShIkhqGwsK4dtgFtGipjs1xjZ6lOrZDalweU5AkNdxSkCQ1DIV5SPJQkq1JNicZ77a9J8kj3bbN3e+SGClJjk7yyST/N8m3k5yV5MeSfD7Jd7o/jxl2nYM6yLiWwvo6paf+zUl+kORdo77OZhnXUlhn/yHJvUnuSfKJJEccauvL3UfzkOQhYKyqHu9pew/wVFX94bDqeq6S3AB8paqu635b3guA/wx8v6r+W5LLgGOq6tKhFjqgg4zrXYz4+uqVZDnwCHAm8E5GfJ3tN21cb2OE11mS44GvAqdW1e4kfwbcBpzKIbS+3FIQAEleBLwO+J8AVfV0VT0JbAJu6Ha7Afil4VQ4P7OMa6k5G/h/VfVdRnydTdM7rqVgBbAqyQo6/5w8yiG2vgyF+Sngc0nuSnJRT/slSbYkuX7Ym4Dz8FJgB/DRJN9Kcl2SFwLH7f/e7O7PHx9mkfNwsHHBaK+v6c4HPtG9P+rrrFfvuGCE11lVPQL8IfAw8D0630n/OQ6x9WUozM9PV9UZwLnAO5O8Dvgw8JPABjor/Ioh1jcfK4AzgA9X1U8BPwQuG25JC+Jg4xr19dXo7hJ7E/Dnw65lIc0wrpFeZ90Q2wScCPwE8MIkvz7cqp7NUJiHqnq0+/Mx4NPAxqraXlXPVNUU8MfAxmHWOA+TwGRV/U13+pN0/phuT/ISgO7Px4ZU33zNOK4lsL56nQt8s6q2d6dHfZ3td8C4lsA6+3ngwaraUVV7gU8Br+EQW1+GwoCSvDDJUfvvA28A7tm/Urt+GbhnGPXNV1X9HbAtySndprOB+4Bbgbd2294K3DKE8ubtYOMa9fU1zQUcuItlpNdZjwPGtQTW2cPAq5O8IEnovBe/zSG2vjz7aEBJXkpn6wA6uyb+pKp+P8nH6WzWFvAQ8G/37yccFUk2ANcBhwEP0DnbYxnwZ8B6Om/qX6mq7w+tyHk4yLiuZMTXF0CSFwDbgJdW1d9321Yz+utspnEthd+x9wJvBvYB3wLeDhzJIbS+DAVJUsPdR5KkhqEgSWoYCpKkhqEgSWoYCpKkxophFyAtlO6pmF/sTv4T4Bk6l7iAzgcMnx5KYbNI8lvAbd3PU0hD5ympWpIOpavWJlleVc8cZN5XgUuqavMAy1tRVfsWrECph7uP9LyQ5K1JvtG9Dv+HkixLsiLJk0n+e5JvJrk9yZlJ/irJA/uv15/k7Uk+3Z1/f5L/0udy35/kG8DGJO9Ncmf3OvrXpOPNdD6M9afdxx+WZDLJ0d1lvzrJF7r335/kI0k+T+fifiuSfKD73FuSvH3xX1UtRYaClrwkL6dzWYTXVNUGOrtNz+/OfjHwue4FDp8G3kPn8gO/AryvZzEbu485A3hLkg19LPebVbWxqr4O/I+qehXwiu68c6rqT4HNwJurakMfu7d+CvhXVfUbwEXAY1W1EXgVnQszrp/P6yP18piCng9+ns4fzvHOJWdYRecSCgC7q+rz3ftb6VzOeF+SrcAJPcu4vaqeAEjyGeBn6Pz+HGy5T/OPl0MBODvJfwKOAI4F7gI+O+A4bqmqH3XvvwF4WZLeEDqZzmUSpHkzFPR8EOD6qvqvBzR2vuik97/zKWBPz/3e34/pB99qjuXuru4Bu+51fK6ic3XWR5K8n044zGQf/7gFP73PD6eN6R1V9UWkBeTuIz0ffAH41STHQucspXnsanlDOt/1/AI618T/6wGWu4pOyDzevcLueT3zdgFH9Uw/BLyye7+333S3A+/oBtD+7zVeNeCYpGdxS0FLXlVt7V6d8gtJlgF7gYvpfBViv74K/AmdL3n5+P6zhfpZblXtTOd7ou8Bvgv8Tc/sjwLXJdlN57jFe4A/TvJ3wDdmqecjdK6qubm76+oxOmElPSeekirNoXtmz8ur6l3DrkVqm7uPJEkNtxQkSQ23FCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktT4/7lARqE18wLBAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"data = data[data.Malfunction>0]\n",
"data"
"data['problem'] = np.where(data['Malfunction']>0, 1, 0)\n",
"data.plot(x=\"Temperature\",y=\"Malfunction\",kind=\"scatter\")\n",
"data.plot(x=\"Temperature\",y=\"problem\",kind=\"scatter\")"
]
},
{
"cell_type": "markdown",
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Optimization terminated successfully.\n",
" Current function value: 0.441635\n",
" Iterations 7\n",
" Logit Regression Results \n",
"==============================================================================\n",
"Dep. Variable: problem No. Observations: 23\n",
"Model: Logit Df Residuals: 21\n",
"Method: MLE Df Model: 1\n",
"Date: Sun, 29 Nov 2020 Pseudo R-squ.: 0.2813\n",
"Time: 20:53:49 Log-Likelihood: -10.158\n",
"converged: True LL-Null: -14.134\n",
" LLR p-value: 0.004804\n",
"===============================================================================\n",
" coef std err z P>|z| [0.025 0.975]\n",
"-------------------------------------------------------------------------------\n",
"const 15.0429 7.379 2.039 0.041 0.581 29.505\n",
"Temperature -0.2322 0.108 -2.145 0.032 -0.444 -0.020\n",
"===============================================================================\n"
]
}
],
"source": [
"Très bien, nous avons une variabilité de température importante mais\n",
"la pression est quasiment toujours égale à 200, ce qui devrait\n",
"simplifier l'analyse.\n",
"#data[\"Malfunction\"] = data[\"Malfunction\"].astype('category')\n",
"\n",
"Comment la fréquence d'échecs varie-t-elle avec la température ?\n"
"y = data[\"problem\"]\n",
"\n",
"# on ne prend que les colonnes quantitatives\n",
"x = data[\"Temperature\"]\n",
"# on ajoute une colonne pour la constante\n",
"x_stat = sm.tools.add_constant(x)\n",
"# on ajuste le modèle\n",
"model = sm.api.Logit(y, x_stat)\n",
"result = model.fit()\n",
"print(result.summary())"
]
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count":
4
3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[9.99969558e-01 9.99951569e-01 9.99922951e-01 9.99877426e-01\n",
" 9.99805006e-01 9.99689811e-01 9.99506599e-01 9.99215256e-01\n",
" 9.98752098e-01 9.98016125e-01 9.96847468e-01 9.94993835e-01\n",
" 9.92058981e-01 9.87425318e-01 9.80141989e-01 9.68773521e-01\n",
" 9.51220648e-01 9.24569286e-01 8.85115205e-01 8.28844843e-01\n",
" 7.52713482e-01 6.56742588e-01 5.45991136e-01 4.30493132e-01\n",
" 3.22094054e-01 2.29968258e-01 1.58049102e-01 1.05538936e-01\n",
" 6.90440720e-02 4.45405463e-02 2.84673270e-02 1.80846183e-02\n",
" 1.14441228e-02 7.22401354e-03 4.55293511e-03 2.86663594e-03\n",
" 1.80377025e-03 1.13453604e-03 7.13423407e-04 4.48547518e-04]\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uID
MuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAFaNJREFUeJzt3X2QZXV95/H3p2cGGASFwGZiMSAQWFdKCWALGtxkiMRCqxzWwgfYSjRGnWwJlTImRuK6hLCmaiUxJlaIOroaYUuRh1Vnd3ERNK3REmHUCY/BzCJCgwHFUWkY5oH+7h/3zvFOd0/37aHPvUz3+1XVNfec+zvnfvvL4X76PNxzU1VIkgQwMuwCJElPH4aCJKlhKEiSGoaCJKlhKEiSGoaCJKnRWigk+XiSh5Pcvofnk+SDSTYnuTXJKW3VIknqT5t7Cn8PnDXL868Aju/+rAM+1GItkqQ+tBYKVfVV4MezDDkbuLw6bgIOSfLstuqRJM1t+RBf+wjg/p7p8e68H0wdmGQdnb0JVq5c+cIjjzxyIAU+VZOTk4yMeNqmlz2Zzp5MZ09m9lT68t3vfvdHVfVv5ho3zFDIDPNmvOdGVa0H1gOMjo7Wxo0b26xrwYyNjbFmzZphl/G0Yk+msyfT2ZOZPZW+JPl+P+OGGcXjQO+f/KuBB4dUiySJ4YbCBuAN3auQXgz8tKqmHTqSJA1Oa4ePknwaWAMcnmQc+FNgBUBVfRi4DnglsBl4HHhTW7VIkvrTWihU1XlzPF/A+W29viRp/jy9L0lqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqtBoKSc5KcneSzUkunOH5o5L8Q5LvJLk1ySvbrEeSNLvWQiHJMuAy4BXACcB5SU6YMuw9wFVVdTJwLvB3bdUjSZpbm3sKpwKbq+qeqtoOXAmcPWVMAc/sPn4W8GCL9UiS5pCqamfFyWuAs6rqLd3p3wZOq6oLesY8G/gicCjwDODMqvrWDOtaB6wDWLVq1QuvvPLKVmpeaBMTExx00EHDLuNpxZ5MZ0+msyczeyp9OeOMM75VVaNzjVu+V2vvT2aYNzWBzgP+vqren+QlwBVJnl9Vk7stVLUeWA8wOjpaa9asaaPeBTc2Nsa+Uuug2JPp7Ml09mRmg+hLm4ePxoEje6ZXM/3w0JuBqwCq6hvAAcDhLdYkSZpFm6FwC3B8kmOS7EfnRPKGKWPuA14GkOR5dELhhy3WJEmaRWuhUFU7gQuA64G76FxldEeSS5Ks7Q77Q+CtSf4J+DTwO9XWSQ5J0pzaPKdAVV0HXDdl3kU9j+8ETm+zBklS//xEsySpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqthkKSs5LcnWRzkgv3MOZ1Se5MckeST7VZjyRpdsv7GZTk+VV1+3xWnGQZcBnwm8A4cEuSDVV1Z8+Y44E/AU6vqi1JfnE+ryFJWlj97il8OMnNSd6W5JA+lzkV2FxV91TVduBK4OwpY94KXFZVWwCq6uE+1y1JakFfewpV9dLuX/W/C2xMcjPwiaq6YZbFjgDu75keB06bMubfAiT5OrAMuLiq/u/UFSVZB6wDWLVqFWNjY/2UPXQTExP7TK2DYk+msyfT2ZOZDaIvfYUCQFX9S5L3ABuBDwInJwnw7qr6nzMskplWM8PrHw+sAVYD/9g9VPWTKa+9HlgPMDo6WmvWrOm37KEaGxtjX6l1UOzJdPZkOnsys0H0pa/DR0lOTPIB4C7gN4BXVdXzuo8/sIfFxoEje6ZXAw/OMObzVbWjqr4H3E0nJCRJQ9DvOYW/Bb4N/EpVnV9V3waoqgeB9+xhmVuA45Mck2Q/4Fxgw5QxnwPOAEhyOJ3DSffM71eQJC2Ufg8fvRLYWlVPAiQZAQ6oqser6oqZFqiqnUkuAK6nc77g41V1R5JLgI1VtaH73MuT3Ak8Cbyzqh55ir+TJGkv9RsKNwJnAhPd6QOBLwK/OttCVXUdcN2UeRf1PC7gHd0fSdKQ9Xv46ICq2hUIdB8f2E5JkqRh6TcUHktyyq6JJC8EtrZTkiRpWPo9fPR24Ooku64eejbw+nZKkiQNS78fXrslyb8Dnkvn8wf/XFU7Wq1MkjRwfX94DXgRcHR3mZOTUFWXt1KVJGko+r0h3hXALwOb6Fw6Cp1PJxsKkrSI9LunMAqc0L2EVJK0SPV79dHtwC+1WYgkafj63VM4HLize3fUbbtmVtXaVqqSJA1Fv6FwcZtFSJKeHvq9JPUrSZ4DHF9VNyY5kM79jCRJi0i/t85+K3AN8JHurCPo3OFUkrSI9Hui+XzgdOBn0PnCHcDvU5akRabfUNjW/Z5lAJIsZ/q3qEmS9nH9hsJXkrwbWJnkN4Grgf/VXlmSpGHoNxQuBH4I3Ab8Hp3vSNjTN65JkvZR/V59NAl8tPsjSVqk+r330feY4RxCVR274BVJkoZmPvc+2uUA4LXALyx8OZKkYerrnEJVPdLz80BV/TXwGy3XJkkasH4PH53SMzlCZ8/h4FYqkiQNTb+Hj97f83gncC/wugWvRpI0VP1efXRG24VIkoav38NH75jt+ar6q4UpR5I0TPO5+uhFwIbu9KuArwL3t1GUJGk45vMlO6dU1aMASS4Grq6qt7RVmCRp8Pq9zcVRwPae6e3A0QtejSRpqPrdU7gCuDnJZ+l8svnVwOWtVSVJGop+rz768yRfAP59d9abquo77ZUlSRqGfg8fARwI/Kyq/gYYT3JMSzVJkoak36/j/FPgXcCfdGetAP5HW0VJkoaj3z2FVwNrgccAqupBvM2FJC06/YbC9qoqurfPTvKM9kqSJA1Lv6FwVZKPAIckeStwI37hjiQtOv1effSX3e9m/hnwXOCiqrqh1cokSQM3555CkmVJbqyqG6rqnVX1R/0GQpKzktydZHOSC2cZ95oklWR0T2MkSe2bMxSq6kng8STPms+KkywDLgNeAZwAnJfkhBnGHQz8PvDN+axfkrTw+v1E8xPAbUluoHsFEkBV/f4sy5wKbK6qewCSXAmcDdw5Zdx/BS4F/qjfoiVJ7eg3FP5P92c+jmD3u6iOA6f1DkhyMnBkVf3vJHsMhSTrgHUAq1atYmxsbJ6lDMfExMQ+U+ug2JPp7Ml09mRmg+jLrKGQ5Kiquq+qPrkX684M86pn3SPAB4DfmWtFVbUeWA8wOjpaa9as2YtyBm9sbIx9pdZBsSfT2ZPp7MnMBtGXuc4pfG7XgyTXznPd48CRPdOrgQd7pg8Gng+MJbkXeDGwwZPNkjQ8c4VC71/7x85z3bcAxyc5Jsl+wLn8/Et6qKqfVtXhVXV0VR0N3ASsraqN83wdSdICmSsUag+P51RVO4ELgOuBu4CrquqOJJckWTu/MiVJgzDXieZfSfIzOnsMK7uP6U5XVT1ztoWr6jrguinzLtrD2DV9VSxJas2soVBVywZViCRp+ObzfQqSpEXOUJAkNQwFSVLDUJAkNZZMKDwysY1/uv8nPDKxbdilSNK8PTKxja07nmz9PWxJhMLnNz3A6e/7Mr/1sW9y+vu+zIZNDwy7JEnq2673sO/98LHW38MWfSg8MrGNd117K0/smOTRbTt5Ysckf3ztre4xSNon9L6HPVnV+nvYog+F8S1bWTGy+6+5YmSE8S1bh1SRJPVv0O9hiz4UVh+6kh2Tk7vN2zE5yepDVw6pIknq36DfwxZ9KBx20P5ces6JHLBihIP3X84BK0a49JwTOeyg/YddmiTNqfc9bFnS+ntYv1+ys09be9IRnH7c4Yxv2crqQ1caCJL2Kbvew27+xtf4+tqXtvoetiRCATppaxhI2lcddtD+rFyxrPX3sUV/+EiS1D9DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSY1WQyHJWUnuTrI5yYUzPP+OJHcmuTXJl5I8p816JEmzay0UkiwDLgNeAZwAnJfkhCnDvgOMVtWJwDXApW3VI0maW5t7CqcCm6vqnqraDlwJnN07oKr+oaoe707eBKxusR5J0hyWt7juI4D7e6bHgdNmGf9m4AszPZFkHbAOYNWqVYyNjS1Qie2amJjYZ2odFHsynT2Zzp7MbBB9aTMUMsO8mnFg8lvAKPDrMz1fVeuB9QCjo6O1Zs2aBSqxXWNjY+wrtQ6KPZnOnkxnT2Y2iL60GQrjwJE906uBB6cOSnIm8J+BX6+qbS3WI0maQ5vnFG4Bjk9yTJL9gHOBDb0DkpwMfARYW1UPt1iLJKkPrYVCVe0ELgCuB+4CrqqqO5JckmRtd9hfAAcBVyfZlGTDHlYnSRqANg8fUVXXAddNmXdRz+Mz23z9peSRiW2Mb9nK6kNXcthB+7e+3GJmT4Zr80OPsuXxHWx+6FGOW3XwsMtZcloNBQ3G5zc9wLuuvZUVIyPsmJzk0nNOZO1JR7S23GJmT4bros/dxuU33ccfvmAnf/CBr/KGlxzFJWe/YNhlLSne5mIf98jENt517a08sWOSR7ft5Ikdk/zxtbfyyMTs5+z3drnFzJ4M1+aHHuXym+7bbd7l37iPzQ89OqSKliZDYR83vmUrK0Z2/8+4YmSE8S1bW1luMbMnw7Xp/p/Ma77aYSjs41YfupIdk5O7zdsxOcnqQ1e2stxiZk+G66QjD5nXfLXDUNjHHXbQ/lx6zokcsGKEg/dfzgErRrj0nBPnPEG6t8stZvZkuI5bdTBveMlRu817w0uO8mTzgHmieRFYe9IRnH7c4fO+YmZvl1vM7MlwXXL2C3jDi4/mtm/dxI1/8GIDYQgMhUXisIP236s3sL1dbjGzJ8N13KqDGT9whYEwJB4+kiQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUqPVUEhyVpK7k2xOcuEMz++f5DPd57+Z5Og265Ekza61UEiyDLgMeAVwAnBekhOmDHszsKWqjgM+ALyvrXokSXNrc0/hVGBzVd1TVduBK4Gzp4w5G/hk9/E1wMuSpMWaJEmzWN7iuo8A7u+ZHgdO29OYqtqZ5KfAYcCPegclWQes605OJLm7lYoX3uFM+V1kT2ZgT6azJzN7Kn15Tj+D2gyFmf7ir70YQ1WtB9YvRFGDlGRjVY0Ou46nE3synT2Zzp7MbBB9afPw0ThwZM/0auDBPY1Jshx4FvDjFmuSJM2izVC4BTg+yTFJ9gPOBTZMGbMBeGP38WuAL1fVtD0FSdJgtHb4qHuO4ALgemAZ8PGquiPJJcDGqtoA/HfgiiSb6ewhnNtWPUOyzx3yGgB7Mp09mc6ezKz1vsQ/zCVJu/iJZklSw1CQJDUMhQWS5N4ktyXZlGRjd97FSR7oztuU5JXDrnPQkhyS5Jok/5zkriQvSfILSW5I8i/dfw8ddp2DtIeeLNltJclze37vTUl+luTtS3k7maUnrW8nnlNYIEnuBUar6kc98y4GJqrqL4dV17Al+STwj1X1se5VaAcC7wZ+XFX/rXtPrEOr6l1DLXSA9tCTt7PEtxVobo/zAJ0Pup7PEt5OdpnSkzfR8nbinoJak+SZwK/RucqMqtpeVT9h99ubfBL4D8OpcPBm6Yk6Xgb8v6r6Pkt4O5mityetMxQWTgFfTPKt7m05drkgya1JPr6Udn+7jgV+CHwiyXeSfCzJM4BVVfUDgO6/vzjMIgdsTz2Bpb2t7HIu8Onu46W8nfTq7Qm0vJ0YCgvn9Ko6hc5dYc9P8mvAh4BfBk4CfgC8f4j1DcNy4BTgQ1V1MvAYMO0W6kvMnnqy1LcVuofS1gJXD7uWp4sZetL6dmIoLJCqerD778PAZ4FTq+qhqnqyqiaBj9K5c+xSMg6MV9U3u9PX0HlDfCjJswG6/z48pPqGYcaeuK0AnT+ovl1VD3Wnl/J2sstuPRnEdmIoLIAkz0hy8K7HwMuB23dt0F2vBm4fRn3DUlX/Ctyf5LndWS8D7mT325u8Efj8EMobij31ZKlvK13nsfthkiW7nfTYrSeD2E68+mgBJDmWzt4BdA4PfKqq/jzJFXR28wq4F/i9XcdIl4okJwEfA/YD7qFz9cQIcBVwFHAf8NqqWjI3QtxDTz7IEt5WkhxI5zb6x1bVT7vzDmNpbycz9aT19xRDQZLU8PCRJKlhKEiSGoaCJKlhKEiSGoaCJKnR2jevSYPWvYTxS93JXwKepHNLCeh8mHD7UAqbRZLfBa7rfn5BGjovSdWi9HS6Q22SZVX15B6e+xpwQVVtmsf6llfVzgUrUOrh4SMtCUnemOTm7j3o/y7JSJLlSX6S5C+SfDvJ9UlOS/KVJPfsuld9krck+Wz3+buTvKfP9b43yc3AqUn+LMktSW5P8uF0vJ7OB5E+011+vyTjSQ7prvvFSW7sPn5vko8kuYHOzfSWJ/mr7mvfmuQtg++qFiNDQYtekufTuSXAr1bVSXQOm57bffpZwBe7NzPcDlxM59YTrwUu6VnNqd1lTgH+Y5KT+ljvt6vq1Kr6BvA3VfUi4AXd586qqs8Am4DXV9VJfRzeOhl4VVX9NrAOeLiqTgVeROcmjEftTX+kXp5T0FJwJp03zo1JAFbSuX0AwNaquqH7+Dbgp1W1M8ltwNE967i+qrYAJPkc8FI6///sab3b+fmtTwBeluSdwAHA4cC3gC/M8/f4fFU90X38cuB5SXpD6Hg6t4OQ9pqhoKUgwMer6r/sNjNZTufNe5dJYFvP497/P6aefKs51ru1uifsuvew+Vs6d0N9IMl76YTDTHby8z34qWMem/I7va2qvoS0gDx8pKXgRuB1SQ6HzlVKe3Go5eXpfLfygXS+Eezr81jvSjoh86Pu3XTP6XnuUeDgnul7gRd2H/eOm+p64G3dANr1nb4r5/k7SdO4p6BFr6puS/JnwI1JRoAdwH8CHpzHar4GfIrOF5xcsetqoX7WW1WPpPO9zLcD3we+2fP0J4CPJdlK57zFxcBHk/wrcPMs9XyEzt1DN3UPXT1MJ6ykp8RLUqU5dK/seX5VvX3YtUht8/CRJKnhnoIkqeGegiSpYShIkhqGgiSpYShIkhqGgiSp8f8B+Q9eu+sB8EwAAAAASUVORK5CYII=
\n",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uID
IuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl8VPW9//HXJwuLgIKAqRIiKIhLBYoRRCsqbmAVbrVVUMFaLeWqV7DeunS39Xd7tbXXHUVL3cWqqLhUW23dqlWCAgoWRVSIKAiiIiAk5PP74ztJJvsk5ORMZt7Px+M8Zs4yZ94JZD5zzvme79fcHREREYCcuAOIiEj6UFEQEZEqKgoiIlJFRUFERKqoKIiISBUVBRERqaKiICIiVVQURESkioqCiIhUyYs7QHP16tXL+/XrF3cMEZF2Zf78+WvdvXdT27W7otCvXz9KSkrijiEi0q6Y2QepbKfTRyIiUkVFQUREqqgoiIhIFRUFERGpoqIgIiJVVBRERKSKioKIiFSJrCiY2SwzW2Nmbzaw3szsWjNbZmaLzGxYVFlEANZ9uYWFKz9j3ZdbWuX127u/1szWXMtWb+CBkpUsW71hu/fV1tklWlHevHYbcD1wRwPrxwIDE9MIYEbiUaTVPbLgQy5+cBH5OTmUVVRw5UmDGTe0T4tff/IBhfx5fmmL99ea2ZrrFw+/wR3/WlE1P3lkEb8ev3+L9tXW2SV65u7R7dysH/CYu3+9nnU3A8+6+72J+aXA4e7+UWP7LC4u9hbf0fzYY/DqqzWX5eXBL34Rns+ZAwsX1lzfpQtcdFF4Pns2/PvfyT8E9OgB558f5u+6C957r+b6XXaBKVPC/G23wapVYblZWNa3L5x2WvX6desgJ6d6m379YPz4sP7OO2HjxrC+curfH444Iqx/8EEoL4fc3PBz5eZCUREMGRLWv/BCWJafH9bn50Pv3lBQAO6wdi106gQdO4Z1lRnbuXVfbuGQK/7OV2UVVcs65efwz4tH07Nrxxa9vrbm7K81szXXstUbOOr/nq+z/OkLRjGgoFuz9tXW2WX7mNl8dy9uars4u7noA6xMmi9NLKtTFMxsCjAFoKioqOXv+OSTcOONNZd17FhdFB5+OHzwJuvVq7oo3Hdf2CZZ//7VReG22+CZZ2quHzy4uijMmFG3KB1ySHVRuPJKeOutmuuPPba6KPz0p7ByZc313/lOdVE46yz4/POa6888E2bNCs+POAK2bau5/vzz4ZprYMuWUMAqmYXfzaWXht/P+vXh9V27hkLZtWuYJkyAsWPhyy/D76dnT9h55/BYOeXnE6fS9ZvJz8nhK6o/vPJzcihdvzmlD6/6Xl9bc/bXmtmaa8HKzxpc3tyi0NbZpW3EWRTq+xpa72GLu88EZkI4UmjxO15/fZgacscdYWrIQw8lh6r5CPDUU3XXJ3vxRaioqPna5G/j8+aFD2336u3ykv6JXnstHAlUVFRPnTrVfH1ZWdhHeXl47Nmzev1f/xrWl5WF9WVlMGBAWJeTA9ddF4rDV1+Fxy1bYPjwsL6iIhy1fPllKDwffhieH3xwWL9iBZx9dt2f+aab4Ic/hHfegenTw5FL377hsagoFM3u3ev9dbeWwh6dKauo+YFeVlFBYY/OLX59bc3ZX2tma66hfev/XTe0vDFtnV3aRpxFoRTomzRfCKyKKUvzVX6YJ3+o5+Y2/pqmvjF36dL4+l69Gl8/cGDj60ePbnhdhw5w3nkNr+/Zs+5RUrK99oL334dPPw2nwNatC89HjQrrP/88nDp75ZWwrtKjj8Lxx4cjqBkzwqmuwYPD1NTPm6KeXTty5UmDuajWue9Uv83W9/qTiwv5c0lpi/bXmtmaa0BBNyaPLOKOl2teU2juUQK0fXZpG3FeU/gWcB5wHOEC87XuPrypfW7XNQVJD5s2hdNgK1fCN74RCs4DD4SitHp19Xa77QbPPhuK3aZN0Lnzdl3nWPflFkrXb6awR+cWfXDVfv327q81szXXstUbWLDyM4b27d6igpCsrbNLy6R6TSGyomBm9wKHA72A1cAvgXwAd7/JzIzQOmkMsAk4092b/LRXUchwq1fDokVhWrgQbr45FIMf/zhcyB8zJkxHHx2uXYhISmIvClFRUchSjz4Kd98drousXx+ugYwdG1qUiUiT2kPrI5HUnXBCmMrLwwX1J58MF78hXJD/yU9g3Dg46KCMaUorEgcdKUj7t2JFuDD9+eehtdS0aaGpbocOcScTSRupHimo7yNp/4qKoLQ0NDf+7LNw30f//nVvRBSRJqkoSGbo2hXOPTfc/Pf44zByZGgmC+FIoon7DEQkUFGQzJKTA8cdF5q4du4cbrA79FA48kh4992404mkPRUFyWxduoRuOl57LVx3uPZaHTWINEJFQTKbWegTavFiOPzwcBH6sMNCs1YRqUNFQbJDYWG4p+H220OvsBH3tyTSXqkoSPYwg8mTw/UGs9Bi6dvfhg3bP9CMSKZQUZDstXhxuFP62GPrdjkukqVUFCR7HXss3H8/lJSEvpR0nUFERUGy3Le/HUasW7gQjjqqZrfeIllIRUHkhBPCWBGdOzc9JoZIhlNREIHQ4+oLL4RWSZs3wyefxJ1IJBYqCiKVKntXnTQpjBj3UZ3hwkUynoqCSG3nnx9GhTvssNBsVSSLqCiI1DZqVBjM5+OPwxgNW7fGnUikzagoiNTn4IPhzjvh9ddD30kiWUIjr4k0ZPx4+O1v4fjj404i0mZUFEQac8kl1c+3btVobpLxdPpIJBU//CGcfHIYD1okg6koiKRi773hkUdg5sy4k4hESkVBJBXTpsExx8AFF4QhP0UylIqCSCpycsJYDF27wsSJsGVL3IlEIqGiIJKqr30NZs2CDz4I3W6LZCC1PhJpjuOPh/fe08htkrF0pCDSXN27h1ZIM2bAmjVxpxFpVSoKIi2xfDlMnw4//WncSURalYqCSEvsuSf853/Cn/4ES5fGnUak1URaFMxsjJktNbNlZnZJPet3MrNHzWyhmS02szOjzCPSqn7yE+jUCX7+87iTiLSayIqCmeUCNwBjgX2BiWa2b63NzgWWuPsQ4HDgKjNTPwLSPuyyC1x4YRjnef78uNOItIoojxSGA8vcfbm7bwVmA+NrbeNANzMzoCvwKVAeYSaR1nXhhXD44bpvQTJGlE1S+wArk+ZLgRG1trkemAusAroBp7h7RYSZRFrXjjvCP/4RdwqRVhPlkYLVs6x2b2LHAguA3YChwPVmtmOdHZlNMbMSMyv5RGPnSjr6/HO48UZ1mCftXpRFoRTomzRfSDgiSHYmMMeDZcB7wN61d+TuM9292N2Le/fuHVlgkRabMwfOPRfmzo07ich2ibIozAMGmln/xMXjCYRTRclWAEcCmFkBMAhYHmEmkWhMmgSDBoUWSdu2xZ1GpMUiKwruXg6cBzwFvAX82d0Xm9lUM5ua2Ow3wMFm9gbwDHCxu6+NKpNIZPLy4PLLYckSuPvuuNOItJh5OzsHWlxc7CUlJXHHEKnLHQ48ENauDTe0dewYdyKRKmY2392Lm9pOdzSLtBazMKbzvvvC+vVxpxFpEfWSKtKajj46TCLtlI4URKKwfLlaIkm7pKIgEoWLLgotktatizuJSLOoKIhE4Ve/gi++gFtuiTuJSLOoKIhE4etfh9Gjw0A8um9B2hEVBZGonHsurFgBjz0WdxKRlKkoiERl3DgYODBcdBZpJ9QkVSQqeXnhDuc8/ZlJ+6EjBZEoVRaEVbX7ghRJTyoKIlH75S9hn31gw4a4k4g0SUVBJGpjx4bmqXfdFXcSkSapKIhEbcQIGDYMbrhBg/BI2lNREImaGZx3HixeDM8/H3cakUapKIi0hQkTYOeddYezpD21lRNpC507w+OPhzudRdKYioJIWznooLgTiDRJp49E2tITT8ARR8DWrXEnEamXioJIW8rJgWefhQcfjDuJSL1UFETa0jHHwIABcP31cScRqZeKgkhbysmBc86Bl16C11+PO41IHSoKIm3te9+DHXYIN7OJpBm1PhJpaz16wG9+A7vvHncSkTpUFETi8KMfxZ1ApF46fSQSl1Wr4J574k4hUoOKgkhcZs2C006DDz6IO4lIFRUFkbicfnp4VJfakkZUFETi0q8fHHoo3HmnutSWtKGiIBKnSZNg6VIoKYk7iQigoiASr+9+N9yz8MorcScRASJukmpmY4BrgFzgVnf/33q2ORy4GsgH1rr7YVFmEkkr3bvDhx+GR5E0EFlRMLNc4AbgaKAUmGdmc919SdI23YEbgTHuvsLMdokqj0jaqiwIFRWhGwyRGEX5P3A4sMzdl7v7VmA2ML7WNqcCc9x9BYC7r4kwj0j6mjSpujWSSIyiLAp9gJVJ86WJZcn2AnqY2bNmNt/MJkeYRyR9de8Oc+bAZ5/FnUSyXJRFwepZVrvdXR5wAPAt4Fjg52a2V50dmU0xsxIzK/nkk09aP6lI3CZNgi1b4IEH4k4iWS6lawqJ6wPfAvolv8bd/9DIy0qBvknzhcCqerZZ6+4bgY1m9jwwBHg7eSN3nwnMBCguLlaDbsk8Bx4Ie+0V7lk4++y400gWS/VI4VHge0BPoFvS1Jh5wEAz629mHYAJwNxa2zwCHGpmeWa2AzACeCvFTCKZwwwmT4bnn4f33487jWSxVFsfFbr74Obs2N3Lzew84ClCk9RZ7r7YzKYm1t/k7m+Z2ZPAIqCC0Gz1zea8j0jGmDQJ8vOhW1Pft0SiY57C7fVmdgXwjLv/NfpIjSsuLvYS3f0pItIsZjbf3Yub2i7V00f/Ah4ys81m9oWZbTCzL7YvoojU8dVXoTvtJUua3lYkAqkWhauAkcAO7r6ju3dz9x0jzCWSnb76Cr7/fZgxI+4kkqVSLQrvAG96KueaRKTluneHceNg9mwoK4s7jWShVIvCR8CzZnapmf2ocooymEjWmjQJ1q6FJ5+MO4lkoVSLwnvAM0AHUm+SKiItMWYM9OoV7lkQaWMpNUl198sAzKxL4kYzEYlKfj5MmAAvv6xO8qTNpfS/zcxGmtkSEjeWmdkQM7sx0mQi2ez3v4d581QQpM2l+j/uakLfROsA3H0hMCqqUCJZr2PHcJdzeXncSSTLpPw1xN1X1lq0rZWziEiy+++HggJQJ5DShlItCivN7GDAzayDmf036qNIJFp77w2ffhqKg0gbSbUoTAXOJYyHUAoMTcyLSFT23x/22w/uvTfuJJJFUioK7r7W3U9z9wJ338XdT3f3dVGHE8l6EyfCiy/CihVxJ5Es0WiTVDO7jroD41Rx9/NbPZGIVJs4EX72s3CH80UXxZ1GskBT9ymoO1KROO2xB1x1FRx9dNxJJEs0WhTc/fbkeTPbMSz2DZGmEpFqP1KPMtJ2Ur15rdjM3iAMhvOmmS00swOijSYiVZ59Fh55JO4UkgVSHXltFnCOu78AYGbfBP4ENGs0NhFpocsvD8N0jhsXbmoTiUiqTVI3VBYEAHd/EdApJJG2MnEivPsuaNRBiVijRcHMhpnZMOBVM7vZzA43s8MS/R492yYJRQROPDF0lKd7FiRiTZ0+uqrW/C+TnmvAHZG20qMHHHcc3Hcf/O53kJsbdyLJUE21PjqirYKISBMmToSXXoL33oMBA+JOIxkq1dZHO5nZH8ysJDFdZWY7RR1ORJKceCKsWqWCIJFK9ULzLMKF5ZMT0xeE1kci0lby8yEvLwy8U1ERdxrJUKkWhT3d/ZfuvjwxXQbsEWUwEanH229D//7wxBNxJ5EMlWpR2Jy4NwEAMzsE2BxNJBFpUP/+sHEj3HNP3EkkQ6V689pU4I6k6wjrgTOiiSQiDcrPh+98B+68MxSHLl3iTiQZpskjBTPLAQa5+xDCHcyD3f0b7r4o8nQiUtfEibBpEzz6aNxJJAM1WRTcvQI4L/H8C3f/IvJUItKwQw+FwkK46664k0gGSvX00d8SQ3DeB2ysXOjun0aSSkQalpMDV14ZbmgTaWWpFoXvE+5gPqfWcrVAEonDxIlxJ5AMlWrro32BG4CFwALgOmC/pl5kZmPMbKmZLTOzSxrZ7kAz22Zm30kxj4i8+y5cfXXcKSTDpFoUbgf2Aa4lFIR9EssaZGa5hEIyllBUJprZvg1sdwXwVOqxRYQnn4QLLoCFC+NOIhkk1aIwyN3Pdvd/JKYpwKAmXjMcWJa42W0rMBsYX892/wU8CKxJObWIwIQJoYnq7Y1+PxNpllSLwutmdlDljJmNAP7ZxGv6ACuT5ksTy6qYWR/g28BNje3IzKZU9rv0ySefpBhZJMP17AknnAB33w1lZXGnkQyRalEYAbxkZu+b2fvAy8BhZvaGmTV0v0J9w0PV7m77auBid9/W2Ju7+0x3L3b34t69e6cYWSQLnHEGrFkTTiWJtIJUWx+NacG+S4G+SfOFwKpa2xQDsy0ML9gLOM7Myt394Ra8n0j2GTsW+vaFZcviTiIZIqWi4O4ftGDf84CBZtYf+BCYAJxaa7/9K5+b2W3AYyoIIs2Qnx9aIeXnx51EMkSqRwrN5u7lZnYeoVVRLjDL3Reb2dTE+kavI4hIiioLgvpCklYQWVEAcPcngCdqLau3GLj796LMIpLRzjwTliyBV16JO4m0c6leaBaRdLb//vDqq/Dvf8edRNo5FQWRTHDaaZCbq3sWZLupKIhkgoICGDMG7rgDtjXawlukUSoKIpnijDNg1Sp45pm4k0g7pqIgkilOOAFuuQWGD487ibRjkbY+EpE21KkTnH123CmkndORgkgmKS+HG2/UUJ3SYjpSEMkkublw3XXQq1c4nSTSTDpSEMkkZuGC84svhu4vRJpJRUEk05x+ehjH+Y9/jDuJtEMqCiKZprAQxo+HmTNh06a400g7o6IgkommT4dBg+Djj+NOIu2MLjSLZKJRo+CfTQ2OKFKXjhREMtmaNRqAR5pFRUEkU1VUhLubp02LO4m0IyoKIpkqJyeMs/DEE7B0adxppJ1QURDJZFOnQocOcO21cSeRdkJFQSSTFRTAqafCbbfB+vVxp5F2QEVBJNNNnw6bN8PTT8edRNoBNUkVyXRDhsAHH0DfvnEnkXZARwoi2aCyIJSVxZtD0p6Kgki2mDYNjjwy7hSS5lQURLLFHnvACy/AvHlxJ5E0pqIgki3OPBO6dYNrrok7iaQxFQWRbLHjjnDWWXDffbBqVdxpJE2pKIhkk//6L9i2LQzZKVIPNUkVySZ77AF33QWjR8edRNKUioJItjn11LgTSBrT6SORbPTaa+FoYe3auJNImlFREMlGHTvCc8/Br38ddxJJM5EWBTMbY2ZLzWyZmV1Sz/rTzGxRYnrJzIZEmUdEEvbbD37wA5gxQ91qSw2RFQUzywVuAMYC+wITzWzfWpu9Bxzm7oOB3wAzo8ojIrVcdhl07gwXXRR3EkkjUR4pDAeWuftyd98KzAbGJ2/g7i+5e2V/vv8CCiPMIyLJCgrg0kth7txwp7MI0bY+6gOsTJovBUY0sv1ZwF/qW2FmU4ApAEVFRa2VT0SmT4cePWBEY3+akk2iPFKwepZ5vRuaHUEoChfXt97dZ7p7sbsX9+7duxUjimS5zp2rR2fzev88JctEWRRKgeQO3AuBOvfWm9lg4FZgvLuvizCPiDTk8cfD0cKmTXEnkZhFWRTmAQPNrL+ZdQAmAHOTNzCzImAOMMnd344wi4g0ZqedQu+pV10VdxKJWWRFwd3LgfOAp4C3gD+7+2Izm2pmUxOb/QLoCdxoZgvMrCSqPCLSiG9+E046Ca64Aj76KO40EiPzdnYesbi42EtKVDtEWt2778I++8DkyXDrrXGnkVZmZvPdvbip7XRHs4gEe+4ZelGdNQve1tncbKUO8USk2s9+BocdBgMHxp1EYqIjBRGp1qMHjBsHZvDpp3GnkRioKIhIXY8/DrvvDq++GncSaWMqCiJS18iR0LMnfPe7sE63D2UTFQURqWvnneGBB+Djj2HSJKioiDuRtBEVBRGpX3ExXH01/OUv8D//E3caaSNqfSQiDZs6FV5+GcrK4k4ibURFQUQaZga33x4eJSvo9JGINK6yIDz3XOgKQ0cNGU1FQURS8/HHMGcOXFJnZF3JICoKIpKaU04J3WD84Q/w4INxp5GIqCiISOp+//sw7sLpp4dhPCXjqCiISOo6dIDHHoPBg+Ghh+JOIxFQ6yMRaZ5eveDvfw8FAmD9eujeXS2UMoSOFESk+bp0gfz8UBAOPBCmTdNdzxlCRUFEWm6nneA//gOuuw4mToQtW+JOJNtJp49EpOVycsLF5699DX78Y1i7Nlxr2HHHuJNJC+lIQUS233//d7jz+bnn4Ec/ijuNbAcdKYhI65g8Gfr0gSFDwvynn4YL0Dn67tme6F9LRFrPkUeG1knucOKJMGoULFoUdyppBhUFEYnG974HS5fCsGFw4YWwYUPciSQFKgoi0vrMqovCWWfB//0f7L03LFgQdzJpgoqCiERn553h5pvDmAzFxTBwYFi+Zk04xSRpR0VBRKI3YgQ88ki46a2iIswPGwYzZsDnn8edTpKoKIhI2yovh4svDs/POQd22y2cYlq8ON5cAqgoiEhb69AhDPP52mvw6qtw6qlw332wfHlYv24dfPBBvBmzmIqCiMTDLPSbdMstsGoVjB0bll99NfTrB3vuCT/4AcyeDatXxxo1m+jmNRGJX3K3GKefDr17h55Y778fbr0VunYNne/l5cHChdCpUygaefoIa22RHimY2RgzW2pmy8yszhh+FlybWL/IzIZFmUdE2oFBg+D88+Hhh8OppHnzQmGoLABnnhmat3bpEsZ1mDAhtHCqtG1bPLkzRGRl1sxygRuAo4FSYJ6ZzXX3JUmbjQUGJqYRwIzEo4g0Yt2XWyhdv5nCHp3p2bUjJe+t4/l31jJqYC+K+/ess772/LLVG1iw8jOG9u3OgIJuje679nxTWRrbd3P3v25zOaUFAyjce396Vi685ZZwUXrxYliyJBQNgB/+MDwWFYXCsNtuoduNPn3g6KPhpJPC+tdfD91v9OgRjlDUDUcNUR57DQeWuftyADObDYwHkovCeOAOd3fgX2bW3cx2dfePIswl0q49suBDLn5wEfk5OZRVVFC0c2feXr0RgGv/voxBBV344NPNVetPLi7kzyWlVfPFu/fgxWXrqvY3eWQRvx6/f737PvmAQv48v/q1V540mHFD+zSYpbF9N3f/tbetWnfAAWFKVjmWw7Zt4TrEhx+G6xQrV8K//gWdO4ei8NVXoSlspZyc0P33xReH6Ysvwk13XbrADjuExy5dwvWOgw8O6+fOhY4dw9ShQ3jce2/YdVfYvBnefz+MNZGXF6b8/PAenTqFfFu3Qm5umHJy0m5wIvOIbiAxs+8AY9z97MT8JGCEu5+XtM1jwP+6+4uJ+WeAi929pKH9FhcXe0lJg6tFMtq6L7dwyBV/56uy1h3Q5ukLRtGjS4cm990pP4d/Xjy66ht+KlmevmAUAwq6pbR95f6BOtsmv3ezuYcP37IyePzxcH0ieTr2WDjhhHBB+6ijYONG2LQpPG7cCFddBRdcAG+9BfvuW3f/N98MU6ZASUm4eF7bPfeE8Sb+8Q8YPbrmOjN49FH41rdCtlNOCcsqC0ZOTlh/yCHN/7lrvI3Nd/fipraL8kihvvJXuwKlsg1mNgWYAlBUVLT9yUTaqdL14QjgK1q3KCxY+RkDC7o1ue/8nBxK12+mZ9eOKWdZsPIzBhR0S2n7yv1XPk/eNvm9m63y23h+fhgUqCEFBfDGGzWXuVcfiey5J7z9dvi2v2VL9bTXXmF9//5w773hXozy8lCEysvD3dwAe+wBv/1tOGKoqAiP27bBgAFhfb9+obluRUX1+7qHXG0kyqJQCvRNmi8EVrVgG9x9JjATwpFC68YUaT8Ke3SmLIJhL4f27U6PLh2a3HdZRQWFPTo3K8vQvt1T3j55/7W3TV7XpszCqR4Ip4squ+qoT8+e4cJ3Q3bfHS6p0+am2n77hUGLYhTlFZZ5wEAz629mHYAJwNxa28wFJidaIR0EfK7rCSIN69m1I1eeNJhO+Tl065hHp/wcBhV0qbHNoIIuNdZPHllUY/7QAT1rbD95ZBEDCrrVu+/ar73ypMFV39Tr276hfTe0fUP7r2/b5PeW6ER2TQHAzI4DrgZygVnu/v/MbCqAu99kZgZcD4wBNgFnNnY9AXRNQQSyqPVRE+8tqUv1mkKkRSEKKgoiIs2XalFQA10REamioiAiIlVUFEREpIqKgoiIVFFREBGRKioKIiJSRUVBRESqtLv7FMzsE6ClY/X1Ata2YpzWpGwtk87ZIL3zKVvLtNdsu7t776Z20O6KwvYws5JUbt6Ig7K1TDpng/TOp2wtk+nZdPpIRESqqCiIiEiVbCsKM+MO0Ahla5l0zgbpnU/ZWiajs2XVNQUREWlcth0piIhIIzK2KJhZXzP7h5m9ZWaLzWxaYvnOZvY3M3sn8dgjhmydzOxVM1uYyHZZumRLyphrZq8nxtFOm2xm9r6ZvWFmC8ysJM2ydTezB8zs34n/dyPTIZuZDUr8viqnL8xsejpkS+S7IPF38KaZ3Zv4+0iXbNMSuRab2fTEsliymdksM1tjZm8mLWswi5ldambLzGypmR2b6vtkbFEAyoEL3X0f4CDgXDPbF7gEeMbdBwLPJObb2hZgtLsPAYYCYxIjz6VDtkrTgLeS5tMp2xHuPjSp6V26ZLsGeNLd9waGEH5/sWdz96WJ39dQ4ADCgFYPpUM2M+sDnA8Uu/vXCQNyTUiTbF8HfgAMJ/x7Hm9mA2PMdhthQLJk9WZJfNZNAPZLvOZGM8tN6V3cPSsm4BHgaGApsGti2a7A0phz7QC8BoxIl2yEsbKfAUYDjyWWpUu294FetZbFng3YEXiPxHW6dMpWK88xwD/TJRvQB1gJ7EwYM/6xRMZ0yPZd4Nak+Z8DF8WZDegHvNnU/y/gUuDSpO2eAkam8h6ZfKRQxcz6Ad8AXgEKPDEOdOJxl5gy5ZrZAmAN8Dd3T5tshCFULwKSR05Pl2wO/NXM5pvZlDTKtgfwCfCnxGm3W82sS5pkSzYBuDfxPPZs7v4h8HtgBfARYZxmO1BfAAAE+ElEQVT2v6ZDNuBNYJSZ9TSzHYDjgL5pkq1SQ1kqi22l0sSyJmV8UTCzrsCDwHR3/yLuPJXcfZuHw/lCYHjiUDV2ZnY8sMbd58edpQGHuPswYCzhlOCouAMl5AHDgBnu/g1gI/GeYqvDzDoA44D7485SKXEOfDzQH9gN6GJmp8ebKnD3t4ArgL8BTwILCael2wOrZ1lKTU0zuiiYWT6hINzt7nMSi1eb2a6J9bsSvqnHxt0/A54lnPdLh2yHAOPM7H1gNjDazO5Kk2y4+6rE4xrCefHhaZKtFChNHPEBPEAoEumQrdJY4DV3X52YT4dsRwHvufsn7l4GzAEOTpNsuPsf3X2Yu48CPgXeSZdsCQ1lKSUc1VQqBFalssOMLQpmZsAfgbfc/Q9Jq+YCZySen0G41tDW2XqbWffE886EP4x/p0M2d7/U3QvdvR/hVMPf3f30dMhmZl3MrFvlc8K55zfTIZu7fwysNLNBiUVHAkvSIVuSiVSfOoL0yLYCOMjMdkj8zR5JuECfDtkws10Sj0XAiYTfX1pkS2goy1xggpl1NLP+wEDg1ZT22NYXb9rwgsw3CYdLi4AFiek4oCfhIuo7icedY8g2GHg9ke1N4BeJ5bFnq5XzcKovNMeejXDefmFiWgz8NF2yJXIMBUoS/64PAz3SKNsOwDpgp6Rl6ZLtMsKXojeBO4GOaZTtBUJxXwgcGefvjVCQPgLKCEcCZzWWBfgp8C7hYvTYVN9HdzSLiEiVjD19JCIizaeiICIiVVQURESkioqCiIhUUVEQEZEqeXEHEGktZlbZPA/ga8A2QtcTAMPdfWsswRphZt8HnvBwn4NI7NQkVTKSmf0K+NLdf58GWXLdfVsD614EznP3Bc3YX567t5fuFqSd0ekjyQpmdoaFMSwWmNmNZpZjZnlm9pmZ/c7MXjOzp8xshJk9Z2bLzey4xGvPNrOHEuuXmtnPUtzv5Wb2KqFvq8vMbF6ib/6bLDiFcMPbfYnXdzCz0qS73Q8ys6cTzy83s5vN7G+ETvfyzOwPifdeZGZnt/1vVTKRioJkvERng98GDvbQCWEeoQsPgJ2Av3roZG8r8CtCVwvfBX6dtJvhidcMA041s6Ep7Pc1dx/u7i8D17j7gcD+iXVj3P0+wp32p3gY76Cp01vfAE5w90nAFELHhcOBAwmdAxa15PcjkkzXFCQbHEX44CwJ3evQmepuhTe7+98Sz98gdN1cbmZvEPqur/SUu68HMLOHCd2o5DWy362EDvsqHWlmPwY6Ab2A+cBfmvlzPOLuXyWeHwPsY2bJRWggoS8hkRZTUZBsYMAsd/95jYVmeYQP70oVhFHxKp8n/33UvvjmTex3sycu2CX64r8eGObuH5rZ5YTiUJ9yqo/ga2+zsdbPdI67P4NIK9LpI8kGTwMnm1kvCK2UWnCq5RgLYzDvQOj//5/N2G9nQpFZm+jl9aSkdRuAbknz7xOGzKTWdrU9BZyTKECV4zB3bubPJFKHjhQk47n7G2Z2GfC0meUQepmcSor9yye8CNwD7AncWdlaKJX9uvs6M7ud0AvoB4QRACv9CbjVzDYTrlv8CrjFzD6m8a6ObwaKgAWJU1drCMVKZLuoSapIExIte77u7tPjziISNZ0+EhGRKjpSEBGRKjpSEBGRKioKIiJSRUVBRESqqCiIiEgVFQUREamioiAiIlX+P2v+Ip9ndlGGAAAAAElFTkSuQmCC
\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
...
...
@@ -464,6 +450,52 @@
"output_type": "display_data"
}
],
"source": [
"X1= range(20,100,2)\n",
"X1_test = sm.tools.add_constant(X1)\n",
"ypred = result.predict(X1_test)\n",
"print(ypred)\n",
"ax1 = data.plot(x=\"Temperature\",y=\"problem\",kind=\"scatter\")\n",
"ax1 = plt.plot(X1, ypred ,'r--')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Inspection graphique des données\n",
"Les vols où aucun incident n'est relevé n'apportant aucun information\n",
"sur l'influence de la température ou de la pression sur les\n",
"dysfonctionnements, nous nous concentrons sur les expériences où au\n",
"moins un joint a été défectueux.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data = data[data.Malfunction>0]\n",
"data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Très bien, nous avons une variabilité de température importante mais\n",
"la pression est quasiment toujours égale à 200, ce qui devrait\n",
"simplifier l'analyse.\n",
"\n",
"Comment la fréquence d'échecs varie-t-elle avec la température ?\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"pd.set_option('mode.chained_assignment',None) # this removes a useless warning from pandas\n",
...
...
@@ -500,78 +532,9 @@
},
{
"cell_type": "code",
"execution_count":
4
,
"execution_count":
null
,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<table class=\"simpletable\">\n",
"<caption>Generalized Linear Model Regression Results</caption>\n",
"<tr>\n",
" <th>Dep. Variable:</th> <td>Frequency</td> <th> No. Observations: </th> <td> 7</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Model:</th> <td>GLM</td> <th> Df Residuals: </th> <td> 5</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Model Family:</th> <td>Binomial</td> <th> Df Model: </th> <td> 1</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Link Function:</th> <td>logit</td> <th> Scale: </th> <td> 1.0000</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Method:</th> <td>IRLS</td> <th> Log-Likelihood: </th> <td> -2.5250</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Date:</th> <td>Sat, 13 Apr 2019</td> <th> Deviance: </th> <td> 0.22231</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Time:</th> <td>19:11:24</td> <th> Pearson chi2: </th> <td> 0.236</td> \n",
"</tr>\n",
"<tr>\n",
" <th>No. Iterations:</th> <td>4</td> <th> Covariance Type: </th> <td>nonrobust</td>\n",
"</tr>\n",
"</table>\n",
"<table class=\"simpletable\">\n",
"<tr>\n",
" <td></td> <th>coef</th> <th>std err</th> <th>z</th> <th>P>|z|</th> <th>[0.025</th> <th>0.975]</th> \n",
"</tr>\n",
"<tr>\n",
" <th>Intercept</th> <td> -1.3895</td> <td> 7.828</td> <td> -0.178</td> <td> 0.859</td> <td> -16.732</td> <td> 13.953</td>\n",
"</tr>\n",
"<tr>\n",
" <th>Temperature</th> <td> 0.0014</td> <td> 0.122</td> <td> 0.012</td> <td> 0.991</td> <td> -0.238</td> <td> 0.240</td>\n",
"</tr>\n",
"</table>"
],
"text/plain": [
"<class 'statsmodels.iolib.summary.Summary'>\n",
"\"\"\"\n",
" Generalized Linear Model Regression Results \n",
"==============================================================================\n",
"Dep. Variable: Frequency No. Observations: 7\n",
"Model: GLM Df Residuals: 5\n",
"Model Family: Binomial Df Model: 1\n",
"Link Function: logit Scale: 1.0000\n",
"Method: IRLS Log-Likelihood: -2.5250\n",
"Date: Sat, 13 Apr 2019 Deviance: 0.22231\n",
"Time: 19:11:24 Pearson chi2: 0.236\n",
"No. Iterations: 4 Covariance Type: nonrobust\n",
"===============================================================================\n",
" coef std err z P>|z| [0.025 0.975]\n",
"-------------------------------------------------------------------------------\n",
"Intercept -1.3895 7.828 -0.178 0.859 -16.732 13.953\n",
"Temperature 0.0014 0.122 0.012 0.991 -0.238 0.240\n",
"===============================================================================\n",
"\"\"\""
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"outputs": [],
"source": [
"import statsmodels.api as sm\n",
"\n",
...
...
@@ -593,6 +556,15 @@
"estimations avec des pincettes.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data[\"Success\"]"
]
},
{
"cell_type": "markdown",
"metadata": {},
...
...
@@ -605,22 +577,9 @@
},
{
"cell_type": "code",
"execution_count":
5
,
"execution_count":
null
,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEKCAYAAAAcgp5RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAGyFJREFUeJzt3X2UVPWd5/H3pxuQBhEjkhkFDWSWtHF9ABRQWZ3WqGhORLPrE2vGMRNCdmeMk83Knng2E43Rc2YHd2I26zgy6jgxiUo8iiSHCahjT2Y8PoCCILAIY4g2JEGND7Q2Snd/9497u6kuqunqpvqhfnxe5/Tpurd+de/3V7fvp27fuvUrRQRmZpaumsEuwMzM+peD3swscQ56M7PEOejNzBLnoDczS5yD3swscT0GvaR7Je2U9HI390vS/5G0VdI6SdMrX6aZmfVVOUf09wEX7Of+C4Ep+c8C4M4DL8vMzCqlx6CPiF8Av9tPk4uBH0TmWeBwSUdVqkAzMzswwyqwjAnA6wXTTfm8Xxc3lLSA7KifkSNHnnLsscdWYPVDU3t7OzU16b4FknL/Uu4buH/V7pVXXnkzIsb35jGVCHqVmFdyXIWIWAwsBqivr4/NmzdXYPVDU2NjIw0NDYNdRr9JuX8p9w3cv2on6Ve9fUwlXvaagGMKpicCOyqwXDMzq4BKBP0y4Or86pvTgHcjYp/TNmZmNjh6PHUj6QGgAThSUhNwIzAcICL+FlgOfBbYCnwAfLG/ijUzs97rMegjYl4P9wfwZxWryMyqwp49e2hqamL37t2DXUoXY8eOZdOmTYNdxgEbOXIkEydOZPjw4Qe8rEq8GWtmB6GmpibGjBnDpEmTkEpdkzE4du3axZgxYwa7jAMSEbz11ls0NTUxefLkA15eutcgmVm/2r17N+PGjRtSIZ8KSYwbN65i/y056M2szxzy/aeSz62D3swscT5Hb2ZVq7a2lhNPPLFzeunSpYwbN24QKxqaHPRmVrXq6upYu3Ztl3m7du3qvN3a2sqwYY45n7oxs6T86Ec/4rLLLuOiiy7i/PPPB2DRokXMmDGDk046iRtvvLGz7a233kp9fT3nnnsu8+bN47bbbgOgoaGB1atXA/Dmm28yadIkANra2li4cGHnsu666y5g77ALl156KccddxxXXXUV2ZXnsGrVKs444wxOPvlkZs6cya5duzjzzDO7vEDNnj2bdevW9dtz4pc6Mztg3/7pBjbueK+iyzz+6MO48aJ/v982LS0tTJ06FYDJkyfz6KOPAvDMM8+wbt06jjjiCFauXMmWLVt4/vnniQjmzp3LL37xC0aPHs2DDz7ImjVraG1tZfr06Zxyyin7Xd8999zD2LFjWbVqFR9++CGzZ8/ufDFZs2YNGzZs4Oijj2b27Nk8/fTTzJw5kyuuuIKHHnqIGTNm8N5771FXV8f8+fO57777uP3223nllVf48MMPOemkkyrwrJXmoDezqlXq1A3AeeedxxFHHAHAypUrWblyJdOmTQOgubmZLVu2sGvXLj7/+c8zatQoAObOndvj+lauXMm6det4+OGHAXj33XfZsmULI0aMYObMmUycOBGAqVOnsm3bNsaOHctRRx3FjBkzADjssMMAuOyyy/jOd77DokWLuPfee7nmmmsO7InogYPezA5YT0feA2306NGdtyOCG264ga985Std2tx+++3dXsI4bNgw2tvbAbpcyx4RfP/732fOnDld2jc2NnLIIYd0TtfW1tLa2kpElFzHqFGjOO+883jsscdYsmRJ52mi/uJz9GaWtDlz5nDvvffS3NwMwPbt29m5cydnnXUWjz76KC0tLezatYuf/vSnnY+ZNGkSL7zwAkDn0XvHsu6880727NkDwCuvvML777/f7bqPO+44duzYwapVq4DsjeLW1lYA5s+fz3XXXceMGTM6//voLz6iN7OknX/++WzatInTTz8dgEMPPZQf/vCHTJ8+nSuuuIKpU6fyiU98gjPPPLPzMddffz2XX345999/P+ecc07n/Pnz57Nt2zamT59ORDB+/HiWLl3a7bpHjBjBQw89xFe/+lVaWlqoq6vjiSee4NBDD+WUU07hsMMO44tfHIBxICNiUH4+9alPRcqeeuqpwS6hX6Xcv5T7FlG5/m3cuLEiy6m09957r0+Pu/HGG2PRokUVrqZ727dvjylTpkRbW1u3bUo9x8Dq6GXe+tSNmdkA+8EPfsCsWbO49dZbB+RrD33qxswMuOmmmwZsXVdffTVXX331gK3PR/Rm1mcRJb8e2iqgks+tg97M+mTkyJG89dZbDvt+EPl49CNHjqzI8nzqxsz6ZOLEiTQ1NfHGG28Mdild7N69u2IBOZg6vmGqEhz0ZtYnw4cPr8i3H1VaY2Nj56dgLeNTN2ZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeLKCnpJF0jaLGmrpG+UuP9YSU9JWiNpnaTPVr5UMzPrix6DXlItcAdwIXA8ME/S8UXNvgksiYhpwJXA31S6UDMz65tyjuhnAlsj4tWI+Ah4ELi4qE0Ah+W3xwI7KleimZkdCPX0De6SLgUuiIj5+fQfAbMi4tqCNkcBK4GPAaOBcyPihRLLWgAsABg/fvwpS5YsqVQ/hpzm5mYOPfTQwS6j36Tcv5T7Bu5ftTv77LNfiIhTe/OYcr4cXCXmFb86zAPui4j/Lel04H5JJ0REe5cHRSwGFgPU19dHQ0NDb2qtKo2Njbh/1SnlvoH7dzAq59RNE3BMwfRE9j018yVgCUBEPAOMBI6sRIFmZnZgygn6VcAUSZMljSB7s3VZUZvXgM8ASPo0WdC/UclCzcysb3oM+ohoBa4FVgCbyK6u2SDpZklz82b/HfiypJeAB4BroqeT/2ZmNiDKOUdPRCwHlhfN+1bB7Y3A7MqWZmZmleBPxpqZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWuLKCXtIFkjZL2irpG920uVzSRkkbJP24smWamVlfDeupgaRa4A7gPKAJWCVpWURsLGgzBbgBmB0Rb0v6eH8VbGZmvVPOEf1MYGtEvBoRHwEPAhcXtfkycEdEvA0QETsrW6aZmfVVj0f0wATg9YLpJmBWUZtPAUh6GqgFboqInxcvSNICYAHA+PHjaWxs7EPJ1aG5udn9q1Ip9w3cv4NROUGvEvOixHKmAA3AROBfJJ0QEe90eVDEYmAxQH19fTQ0NPS23qrR2NiI+1edUu4buH8Ho3JO3TQBxxRMTwR2lGjzWETsiYhfApvJgt/MzAZZOUG/CpgiabKkEcCVwLKiNkuBswEkHUl2KufVShZqZmZ902PQR0QrcC2wAtgELImIDZJuljQ3b7YCeEvSRuApYGFEvNVfRZuZWfnKOUdPRCwHlhfN+1bB7QC+nv+YmdkQ4k/GmpklzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeLKCnpJF0jaLGmrpG/sp92lkkLSqZUr0czMDkSPQS+pFrgDuBA4Hpgn6fgS7cYA1wHPVbpIMzPru3KO6GcCWyPi1Yj4CHgQuLhEu+8AfwXsrmB9ZmZ2gIaV0WYC8HrBdBMwq7CBpGnAMRHxM0nXd7cgSQuABQDjx4+nsbGx1wVXi+bmZvevSqXcN3D/DkblBL1KzIvOO6Ua4LvANT0tKCIWA4sB6uvro6Ghoawiq1FjYyPuX3VKuW/g/h2Myjl10wQcUzA9EdhRMD0GOAFolLQNOA1Y5jdkzcyGhnKCfhUwRdJkSSOAK4FlHXdGxLsRcWRETIqIScCzwNyIWN0vFZuZWa/0GPQR0QpcC6wANgFLImKDpJslze3vAs3M7MCUc46eiFgOLC+a961u2jYceFlmZlYp/mSsmVniHPRmZolz0JuZJc5Bb2aWOAe9mVniyrrqxqxSlq7ZzqIVm9nxTgtHH17Hwjn1XDJtwmCXZf3A23rocNDbgFm6Zjs3PLKelj1tAGx/p4UbHlkP4ABIjLf10OJTNzZgFq3Y3Lnjd2jZ08aiFZsHqSLrL97WQ4uD3gbMjndaejXfqpe39dDioLcBc/Thdb2ab9XL23pocdDbgFk4p5664bVd5tUNr2XhnPpBqsj6i7f10OI3Y23AdLwJ5ysx0udtPbQ46G1AXTJtgnf2g4S39dDhUzdmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOH9nrJmVJSJoaw/aA9oj8h9oa49u72tvL9Eugvb20svYp13RMtoj8mloi6L15u02vbaH15/9Vba89qAtStS+T61BW3vpPnZMd3df5DV31Fiq9s52HevrspyCdlG0vKK+tkfftp2D3gZN4Y7dJRwiiPaCnaI4GPLbe3f0vfdFqeX1cud8eUcrv3uxqcdgiYKAKL1Tlg6P0kGwd3n7C7G2gvW2t5doV+r5KgqSDz7YzSHPPLnf9RSHS1tfE2awbHy57KYS1ErUSNTUQI1ErYQENTUdt0WNoLZmb7u9j8nuqylaRo0K5teI2hoxvOPxUr4sAFFbky1b+bq7PK5omWv68HSUFfSSLgC+B9QCd0fEXxbd/3VgPtAKvAH8SUT8qg/19Nk+r/qljgAKjhpKvcruEzzFO0vnEUL2uP0dtaz/TSvvvbRjnzCIotvdBl3Rq3rbfu7b35HBPvOLQ6rLkcq+Ry7dHYE1N3/AyFVPdd7X2ZcSwVNYb9fneyD/Qnpp3UsH9PDC8FBhQOThURwEtTXZziyU7/D7Pr62RojC8MkeO6y2hkOG7Q2cjmDqWEbn8vL17vztbzn6qCP3CaWOdvvczutUPr+wPqlrqGX9UNewLFFDTan11AhREKI1RcuVgL3PRZdw7QjfGvHsM88we/YZBbUL1RQ9FwXPrfLlVotb+vCYHoNeUi1wB3Ae0ASskrQsIjYWNFsDnBoRH0j6r8BfAVfsb7nbm9s596//uXQQlArtff716Ro8Q9Lavrz2ltbxh93lFb9oR+g86ug4AqnpLmz2hkoWGnuPHrJ1lA6O2jwUJHizpoWjfv/wLjt58Tpqa9Sl9pJHPwV9KWyX9TN7LHmfawtrrum6jNqa7LkR+4ZNjYAuobdvUBTWvnrV85x+2qx9gqXrkV/R9ig6EhzK4dHY2EhDw8mDXUa/+djIGj4+ZuRglzGklHNEPxPYGhGvAkh6ELgY6Az6iHiqoP2zwBd6WujwGlH/e2M6d8CSQdBNKOzdWfNQoGvoFR/xFP6bpOLbRUc1xUddxQGyN/T2hlvx0UiNxIurVzNr1oyCYN7fkR37HAWpKJiGmiwspg12Gf2iaXQNnxg3erDLMKuYcoJ+AvB6wXQTMGs/7b8E/GOpOyQtABYAjB8/nssmvFdmmX0Q+U8FteU/5RirD2ja+EJlCxhCmpubaWxsHOwy+kXKfQP372BUTtCXOpwsGaGSvgCcCvxhqfsjYjGwGKC+vj4aGhrKq7IKZUe8DYNdRr9JuX8p9w3cv4NROUHfBBxTMD0R2FHcSNK5wP8E/jAiPqxMeWZmdqDK+cDUKmCKpMmSRgBXAssKG0iaBtwFzI2InZUv08zM+qrHoI+IVuBaYAWwCVgSERsk3Sxpbt5sEXAo8BNJayUt62ZxZmY2wMq6jj4ilgPLi+Z9q+D2uRWuy6zXlq7ZzqIVm9nxTgtHH17Hwjn1APvMu2TahAGtoT/X1xvfXLqeB557na+dsIcv3bCcebOO4ZZLThzssmwA+JOxloSla7ZzwyPradmTXRe1/Z0WFv7kJRDsaYvOeTc8sh6gX8K3VA39ub7e+ObS9fzw2dc6p9siOqcd9unzoGaWhEUrNncGbIc97dEZ8h1a9rSxaMXmAauhP9fXGw8893qv5ltaHPSWhB3vtPRL20rU0F/r6422bsab6G6+pcVBb0k4+vC6fmlbiRr6a329UdvNp6u7m29pcdBbEhbOqadueG2XecNrxPDarkFWN7y2803agaihP9fXG/NmHdOr+ZYWvxlrSeh4s3Mwr7rprobBfiMW9r7h2nFOvlbyVTcHEQe9JeOSaRNKhupABm13NQwFt1xyIrdcciKNjY3821UNg12ODSCfujEzS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBJXVtBLukDSZklbJX2jxP2HSHoov/85SZMqXaiZmfVNj0EvqRa4A7gQOB6YJ+n4omZfAt6OiH8HfBf4X5Uu1MzM+qacI/qZwNaIeDUiPgIeBC4uanMx8A/57YeBz0hS5co0M7O+GlZGmwnA6wXTTcCs7tpERKukd4FxwJuFjSQtABbkkx9KerkvRVeJIynqf2JS7l/KfQP3r9rV9/YB5QR9qSPz6EMbImIxsBhA0uqIOLWM9Vcl9696pdw3cP+qnaTVvX1MOadumoBjCqYnAju6ayNpGDAW+F1vizEzs8orJ+hXAVMkTZY0ArgSWFbUZhnwx/ntS4F/ioh9jujNzGzg9XjqJj/nfi2wAqgF7o2IDZJuBlZHxDLgHuB+SVvJjuSvLGPdiw+g7mrg/lWvlPsG7l+163X/5ANvM7O0+ZOxZmaJc9CbmSVuQIJe0khJz0t6SdIGSd/O50/Oh0zYkg+hMGIg6ukPkmolrZH0s3w6pb5tk7Re0tqOS7skHSHp8bx/j0v62GDX2VeSDpf0sKT/J2mTpNNT6Z+k+ny7dfy8J+lrCfXvv+WZ8rKkB/KsSWnf+/O8bxskfS2f1+ttN1BH9B8C50TEycBU4AJJp5ENlfDdiJgCvE02lEK1+nNgU8F0Sn0DODsiphZcn/wN4Mm8f0/m09Xqe8DPI+I44GSy7ZhE/yJic77dpgKnAB8Aj5JA/yRNAK4DTo2IE8guFrmSRPY9SScAXyYbneBk4HOSptCXbRcRA/oDjAJeJPt07ZvAsHz+6cCKga6nQn2amD/h5wA/I/sAWRJ9y+vfBhxZNG8zcFR++yhg82DX2ce+HQb8kvzChNT6V9Sn84GnU+kfez+RfwTZFYQ/A+aksu8BlwF3F0z/BfA/+rLtBuwcfX5qYy2wE3gc+DfgnYhozZs0kW24anQ72QZoz6fHkU7fIPuU80pJL+TDWAD8XkT8GiD//fFBq+7AfBJ4A/j7/NTb3ZJGk07/Cl0JPJDfrvr+RcR24DbgNeDXwLvAC6Sz770MnCVpnKRRwGfJPpja6203YEEfEW2R/fs4kexfkU+XajZQ9VSKpM8BOyPihcLZJZpWXd8KzI6I6WQjmP6ZpLMGu6AKGgZMB+6MiGnA+1ThaYye5Oep5wI/GexaKiU/N30xMBk4GhhN9jdarCr3vYjYRHYa6nHg58BLQOt+H9SNAb/qJiLeARqB04DD8yEToPTQCtVgNjBX0jaykT3PITvCT6FvAETEjvz3TrLzuzOB30o6CiD/vXPwKjwgTUBTRDyXTz9MFvyp9K/DhcCLEfHbfDqF/p0L/DIi3oiIPcAjwBmkte/dExHTI+Issg+jbqEP226grroZL+nw/HYd2QbaBDxFNmQCZEMoPDYQ9VRSRNwQERMjYhLZv8b/FBFXkUDfACSNljSm4zbZed6X6TrsRdX2LyJ+A7wuqWNEwM8AG0mkfwXmsfe0DaTRv9eA0ySNyodF79h2Sex7AJI+nv8+FviPZNuw19tuQD4ZK+kksvHqa8leXJZExM2SPkl2FHwEsAb4QkR82O8F9RNJDcD1EfG5VPqW9+PRfHIY8OOIuFXSOGAJcCzZDndZRFTlQHaSpgJ3AyOAV4Evkv+dkkb/RpG9afnJiHg3n5fE9ssv1b6C7JTGGmA+2Tn5qt/3ACT9C9l7fnuAr0fEk33Zdh4Cwcwscf5krJlZ4hz0ZmaJc9CbmSXOQW9mljgHvZlZ4sr5cnCzAZVfPvZkPvn7QBvZMAUAMyPio0EpbD8k/QmwPL8u32xI8eWVNqRJuglojojbhkAttRHR1s19/wpcGxFre7G8YQVjspj1G5+6saoi6Y+VfbfBWkl/I6lG0jBJ70haJOlFSSskzZL0z5JelfTZ/LHzJT2a379Z0jfLXO4tkp4HZkr6tqRV+Rjhf6vMFWTDbz+UP36EpKaCT4OfJumJ/PYtku6S9DjZQGrDJP11vu51kuYP/LNqqXPQW9XIx+f+PHBGPkDeMPZ+Ef1YYGU++NpHwE1kH4m/DLi5YDEz88dMB/6zpKllLPfFiJgZEc8A34uIGcCJ+X0XRMRDwFrgisjGfu/p1NI04KKI+CNgAdmgeDOBGWSDxh3bl+fHrDs+R2/V5FyyMFydDW1CHdlH+wFaIuLx/PZ64N2IaJW0HphUsIwVEfE2gKSlwH8g2w+6W+5H7B0CAuAzkhYCI4EjyYbF/cde9uOxiNid3z4f+LSkwheWKWQfbTerCAe9VRMB90bEX3SZmY1UWHgU3U72rWYdtwv/zovflIoeltsS+RtZ+Zgx/xeYHhHbJd1CFviltLL3P+biNu8X9elPI+JJzPqJT91YNXkCuFzSkZBdndOH0xznK/uO2FFkY5k/3Yvl1pG9cLyZj+j5nwru2wWMKZjeRvbVfRS1K7YC+NOOYXWVfcdrXS/7ZLZfPqK3qhER6/PRCp+QVEM2ot9/oXfjjf8r8GPgD4D7O66SKWe5EfGWpH8gG6b5V8BzBXf/PXC3pBay9wFuAv5O0m+A5/dTz11koxCuzU8b7SR7ATKrGF9eaQeN/IqWEyLia4Ndi9lA8qkbM7PE+YjezCxxPqI3M0ucg97MLHEOejOzxDnozcwS56A3M0vc/wcowwoTqhaBUgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"outputs": [],
"source": [
"%matplotlib inline\n",
"data_pred = pd.DataFrame({'Temperature': np.linspace(start=30, stop=90, num=121), 'Intercept': 1})\n",
...
...
@@ -648,17 +607,9 @@
},
{
"cell_type": "code",
"execution_count":
6
,
"execution_count":
null
,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.06521739130434782\n"
]
}
],
"outputs": [],
"source": [
"data = pd.read_csv(\"shuttle.csv\")\n",
"print(np.sum(data.Malfunction)/np.sum(data.Count))"
...
...
@@ -705,7 +656,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.
7.3
"
"version": "3.
6.4
"
}
},
"nbformat": 4,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment