# À propos du caclcul de pi ## En demandant à la lib maths Mon ordinateur m'indique que $\pi$ vaut *approximativement* ```{r} pi ``` ## En utilisant la méthode des aiguilles du Buffon Mais calculé avec la méthode des `aiguilles du Buffon`, on obtiendrait comme **approximation** : ```{r} set.seed(42) N = 100000 x = runif(N) theta = pi/2*runif(N) 2/(mean(x+sin(theta)>1)) ``` ## Avec un argument "fréquentiel" de surface Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2\leq 1] = \pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait : ```{r} set.seed(42) N = 1000 df = data.frame(X = runif(N), Y = runif(N)) df$Accept = (df$X**2 + df$Y**2 <=1) library(ggplot2) ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() ``` test commit 2