diff --git a/module2/exo1/toy_document_fr.html b/module2/exo1/toy_document_fr.html new file mode 100644 index 0000000000000000000000000000000000000000..6e9f59002ff6443782832e3271105a7642f22ca7 --- /dev/null +++ b/module2/exo1/toy_document_fr.html @@ -0,0 +1,462 @@ + + + + +
+ + + + + + + + + +Mon ordinateur m’indique que \(\pi\) vaut approximativement
+pi
+## [1] 3.141593
+Mais calculé avec la méthode des aiguilles de Buffon, on obtiendrait comme approximation :
+set.seed(42)
+N = 100000
+x = runif(N)
+theta = pi/2*runif(N)
+2/(mean(x+sin(theta)>1))
+## [1] 3.14327
+Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si \(X \sim U(0,1)\) et \(Y \sim U(0,1)\) alors \(P[X^{2} + Y^{2} \le 1]= \pi /4\) (voir méthode de Monte Carlo sur Wikipedia). Le code suivant illustre ce fait:
+set.seed(42)
+N = 1000
+df = data.frame(X = runif(N), Y = runif(N))
+df$Accept = (df$X**2 + df$Y**2 <=1)
+library(ggplot2)
+ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
+Il est alors aisé d’obtenir une approximation (pas terrible) de π en comptant combien de fois, en moyenne, \(X{2}+Y{2}\) est inférieur à 1:
+4*mean(df$Accept)
+## [1] 3.156
+