From 8acfd992bc5d092df407a5862596243860bada85 Mon Sep 17 00:00:00 2001 From: 34ea1ee296fc8711adf020d9cc2cb571 <34ea1ee296fc8711adf020d9cc2cb571@app-learninglab.inria.fr> Date: Sun, 29 Mar 2020 13:47:51 +0000 Subject: [PATCH] fait --- module2/exo2/exercice.ipynb | 87 +++++++++++++++++++++++++++++++++++-- 1 file changed, 84 insertions(+), 3 deletions(-) diff --git a/module2/exo2/exercice.ipynb b/module2/exo2/exercice.ipynb index 0bbbe37..4330c1b 100644 --- a/module2/exo2/exercice.ipynb +++ b/module2/exo2/exercice.ipynb @@ -1,5 +1,87 @@ { - "cells": [], + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Traitement d'une série\n", + "Soit la série de données suivante :" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9, 12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0]\n" + ] + } + ], + "source": [ + "data = [14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0]\n", + "print(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Nous voulons récupérer les 5 nombres caractéristique suivant :\n", + "* minimum\n", + "* maximum\n", + "* moyenne\n", + "* écart type\n", + "* médianne\n", + "\n", + "Pour ce faire nous allons utiliser la librairie python `numpy`" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Minimum : 2.8\n", + "Maximum : 23.4\n", + "Moyenne : 14.113000000000001\n", + "Ecart type : 4.334094455301447\n", + "Médianne : 14.5\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "# Traitement\n", + "minimum = np.min(data)\n", + "maximum = np.max(data)\n", + "moyenne = np.mean(data)\n", + "ecart_type = np.std(data,ddof=1) #ddof=1 pour avoir l'écart type corrigé à la place de l'empirique\n", + "medianne = np.median(data)\n", + "\n", + "# Affichage\n", + "print(\"Minimum : {}\".format(minimum))\n", + "print(\"Maximum : {}\".format(maximum))\n", + "print(\"Moyenne : {}\".format(moyenne))\n", + "print(\"Ecart type : {}\".format(ecart_type))\n", + "print(\"Médianne : {}\".format(medianne))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], "metadata": { "kernelspec": { "display_name": "Python 3", @@ -16,10 +98,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 } - -- 2.18.1