{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Incidence du syndrome grippal" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import isoweek\n", "import urllib\n", "import os" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Les données de l'incidence du syndrome grippal sont disponibles du site Web du [Réseau Sentinelles](http://www.sentiweb.fr/). Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période demandée. Nous téléchargeons toujours le jeu de données complet, qui commence en 1984 et se termine avec une semaine récente." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Voici l'explication des colonnes données [sur le site d'origine](https://ns.sentiweb.fr/incidence/csv-schema-v1.json):\n", "\n", "| Nom de colonne | Libellé de colonne |\n", "|----------------|-----------------------------------------------------------------------------------------------------------------------------------|\n", "| week | Semaine calendaire (ISO 8601) |\n", "| indicator | Code de l'indicateur de surveillance |\n", "| inc | Estimation de l'incidence de consultations en nombre de cas |\n", "| inc_low | Estimation de la borne inférieure de l'IC95% du nombre de cas de consultation |\n", "| inc_up | Estimation de la borne supérieure de l'IC95% du nombre de cas de consultation |\n", "| inc100 | Estimation du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n", "| inc100_low | Estimation de la borne inférieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n", "| inc100_up | Estimation de la borne supérieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n", "| geo_insee | Code de la zone géographique concernée (Code INSEE) http://www.insee.fr/fr/methodes/nomenclatures/cog/ |\n", "| geo_name | Libellé de la zone géographique (ce libellé peut être modifié sans préavis) |" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Position du fichier de données sur le disque dur. S'il existe alors je ne fais rien. Sinon je le télécharge sur le web." ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "data_filename = \"incidence-PAY-3.csv\"\n", "# Si les données ne sont pas disponible localement\n", "if not(os.path.exists(data_filename)):\n", " # Alors les télécharger depuis le site officiel\n", " urllib.request.urlretrieve(data_url,data_filename)\n", "# Vérifier que le fichier n'a pas une taille de 0 octet\n", "assert os.path.getsize(data_filename)>0" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "La première ligne du fichier CSV est un commentaire, que nous ignorons en précisant `skiprows=1`." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
02020123101257199.013051.01511.019.0FRFrance
1202011310204893969.0110127.0155143.0167.0FRFrance
2202010310497796650.0113304.0159146.0172.0FRFrance
32020093110696102066.0119326.0168155.0181.0FRFrance
42020083143753133984.0153522.0218203.0233.0FRFrance
52020073183610172812.0194408.0279263.0295.0FRFrance
62020063206669195481.0217857.0314297.0331.0FRFrance
72020053187957177445.0198469.0285269.0301.0FRFrance
82020043122331113492.0131170.0186173.0199.0FRFrance
920200337841371330.085496.0119108.0130.0FRFrance
1020200235361447654.059574.08172.090.0FRFrance
1120200133685031608.042092.05648.064.0FRFrance
1220195232813523220.033050.04336.050.0FRFrance
1320195132978625042.034530.04538.052.0FRFrance
1420195033422329156.039290.05244.060.0FRFrance
1520194932566221414.029910.03933.045.0FRFrance
1620194832236718055.026679.03427.041.0FRFrance
1720194731866914759.022579.02822.034.0FRFrance
1820194631603012567.019493.02419.029.0FRFrance
192019453101387160.013116.01510.020.0FRFrance
20201944378225010.010634.0128.016.0FRFrance
21201943394876448.012526.0149.019.0FRFrance
22201942377475243.010251.0128.016.0FRFrance
23201941371224720.09524.0117.015.0FRFrance
24201940385055784.011226.0139.017.0FRFrance
25201939370914462.09720.0117.015.0FRFrance
26201938348972891.06903.074.010.0FRFrance
27201937331721367.04977.052.08.0FRFrance
2820193632295728.03862.031.05.0FRFrance
29201935310102.02018.020.04.0FRFrance
.................................
181719852132609619621.032571.04735.059.0FRFrance
181819852032789620885.034907.05138.064.0FRFrance
181919851934315432821.053487.07859.097.0FRFrance
182019851834055529935.051175.07455.093.0FRFrance
182119851733405324366.043740.06244.080.0FRFrance
182219851635036236451.064273.09166.0116.0FRFrance
182319851536388145538.082224.011683.0149.0FRFrance
18241985143134545114400.0154690.0244207.0281.0FRFrance
18251985133197206176080.0218332.0357319.0395.0FRFrance
18261985123245240223304.0267176.0445405.0485.0FRFrance
18271985113276205252399.0300011.0501458.0544.0FRFrance
18281985103353231326279.0380183.0640591.0689.0FRFrance
18291985093369895341109.0398681.0670618.0722.0FRFrance
18301985083389886359529.0420243.0707652.0762.0FRFrance
18311985073471852432599.0511105.0855784.0926.0FRFrance
18321985063565825518011.0613639.01026939.01113.0FRFrance
18331985053637302592795.0681809.011551074.01236.0FRFrance
18341985043424937390794.0459080.0770708.0832.0FRFrance
18351985033213901174689.0253113.0388317.0459.0FRFrance
183619850239758680949.0114223.0177147.0207.0FRFrance
183719850138548965918.0105060.0155120.0190.0FRFrance
183819845238483060602.0109058.0154110.0198.0FRFrance
1839198451310172680242.0123210.0185146.0224.0FRFrance
18401984503123680101401.0145959.0225184.0266.0FRFrance
1841198449310107381684.0120462.0184149.0219.0FRFrance
184219844837862060634.096606.0143110.0176.0FRFrance
184319844737202954274.089784.013199.0163.0FRFrance
184419844638733067686.0106974.0159123.0195.0FRFrance
18451984453135223101414.0169032.0246184.0308.0FRFrance
184619844436842220056.0116788.012537.0213.0FRFrance
\n", "

1847 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low \\\n", "0 202012 3 10125 7199.0 13051.0 15 11.0 \n", "1 202011 3 102048 93969.0 110127.0 155 143.0 \n", "2 202010 3 104977 96650.0 113304.0 159 146.0 \n", "3 202009 3 110696 102066.0 119326.0 168 155.0 \n", "4 202008 3 143753 133984.0 153522.0 218 203.0 \n", "5 202007 3 183610 172812.0 194408.0 279 263.0 \n", "6 202006 3 206669 195481.0 217857.0 314 297.0 \n", "7 202005 3 187957 177445.0 198469.0 285 269.0 \n", "8 202004 3 122331 113492.0 131170.0 186 173.0 \n", "9 202003 3 78413 71330.0 85496.0 119 108.0 \n", "10 202002 3 53614 47654.0 59574.0 81 72.0 \n", "11 202001 3 36850 31608.0 42092.0 56 48.0 \n", "12 201952 3 28135 23220.0 33050.0 43 36.0 \n", "13 201951 3 29786 25042.0 34530.0 45 38.0 \n", "14 201950 3 34223 29156.0 39290.0 52 44.0 \n", "15 201949 3 25662 21414.0 29910.0 39 33.0 \n", "16 201948 3 22367 18055.0 26679.0 34 27.0 \n", "17 201947 3 18669 14759.0 22579.0 28 22.0 \n", "18 201946 3 16030 12567.0 19493.0 24 19.0 \n", "19 201945 3 10138 7160.0 13116.0 15 10.0 \n", "20 201944 3 7822 5010.0 10634.0 12 8.0 \n", "21 201943 3 9487 6448.0 12526.0 14 9.0 \n", "22 201942 3 7747 5243.0 10251.0 12 8.0 \n", "23 201941 3 7122 4720.0 9524.0 11 7.0 \n", "24 201940 3 8505 5784.0 11226.0 13 9.0 \n", "25 201939 3 7091 4462.0 9720.0 11 7.0 \n", "26 201938 3 4897 2891.0 6903.0 7 4.0 \n", "27 201937 3 3172 1367.0 4977.0 5 2.0 \n", "28 201936 3 2295 728.0 3862.0 3 1.0 \n", "29 201935 3 1010 2.0 2018.0 2 0.0 \n", "... ... ... ... ... ... ... ... \n", "1817 198521 3 26096 19621.0 32571.0 47 35.0 \n", "1818 198520 3 27896 20885.0 34907.0 51 38.0 \n", "1819 198519 3 43154 32821.0 53487.0 78 59.0 \n", "1820 198518 3 40555 29935.0 51175.0 74 55.0 \n", "1821 198517 3 34053 24366.0 43740.0 62 44.0 \n", "1822 198516 3 50362 36451.0 64273.0 91 66.0 \n", "1823 198515 3 63881 45538.0 82224.0 116 83.0 \n", "1824 198514 3 134545 114400.0 154690.0 244 207.0 \n", "1825 198513 3 197206 176080.0 218332.0 357 319.0 \n", "1826 198512 3 245240 223304.0 267176.0 445 405.0 \n", "1827 198511 3 276205 252399.0 300011.0 501 458.0 \n", "1828 198510 3 353231 326279.0 380183.0 640 591.0 \n", "1829 198509 3 369895 341109.0 398681.0 670 618.0 \n", "1830 198508 3 389886 359529.0 420243.0 707 652.0 \n", "1831 198507 3 471852 432599.0 511105.0 855 784.0 \n", "1832 198506 3 565825 518011.0 613639.0 1026 939.0 \n", "1833 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", "1834 198504 3 424937 390794.0 459080.0 770 708.0 \n", "1835 198503 3 213901 174689.0 253113.0 388 317.0 \n", "1836 198502 3 97586 80949.0 114223.0 177 147.0 \n", "1837 198501 3 85489 65918.0 105060.0 155 120.0 \n", "1838 198452 3 84830 60602.0 109058.0 154 110.0 \n", "1839 198451 3 101726 80242.0 123210.0 185 146.0 \n", "1840 198450 3 123680 101401.0 145959.0 225 184.0 \n", "1841 198449 3 101073 81684.0 120462.0 184 149.0 \n", "1842 198448 3 78620 60634.0 96606.0 143 110.0 \n", "1843 198447 3 72029 54274.0 89784.0 131 99.0 \n", "1844 198446 3 87330 67686.0 106974.0 159 123.0 \n", "1845 198445 3 135223 101414.0 169032.0 246 184.0 \n", "1846 198444 3 68422 20056.0 116788.0 125 37.0 \n", "\n", " inc100_up geo_insee geo_name \n", "0 19.0 FR France \n", "1 167.0 FR France \n", "2 172.0 FR France \n", "3 181.0 FR France \n", "4 233.0 FR France \n", "5 295.0 FR France \n", "6 331.0 FR France \n", "7 301.0 FR France \n", "8 199.0 FR France \n", "9 130.0 FR France \n", "10 90.0 FR France \n", "11 64.0 FR France \n", "12 50.0 FR France \n", "13 52.0 FR France \n", "14 60.0 FR France \n", "15 45.0 FR France \n", "16 41.0 FR France \n", "17 34.0 FR France \n", "18 29.0 FR France \n", "19 20.0 FR France \n", "20 16.0 FR France \n", "21 19.0 FR France \n", "22 16.0 FR France \n", "23 15.0 FR France \n", "24 17.0 FR France \n", "25 15.0 FR France \n", "26 10.0 FR France \n", "27 8.0 FR France \n", "28 5.0 FR France \n", "29 4.0 FR France \n", "... ... ... ... \n", "1817 59.0 FR France \n", "1818 64.0 FR France \n", "1819 97.0 FR France \n", "1820 93.0 FR France \n", "1821 80.0 FR France \n", "1822 116.0 FR France \n", "1823 149.0 FR France \n", "1824 281.0 FR France \n", "1825 395.0 FR France \n", "1826 485.0 FR France \n", "1827 544.0 FR France \n", "1828 689.0 FR France \n", "1829 722.0 FR France \n", "1830 762.0 FR France \n", "1831 926.0 FR France \n", "1832 1113.0 FR France \n", "1833 1236.0 FR France \n", "1834 832.0 FR France \n", "1835 459.0 FR France \n", "1836 207.0 FR France \n", "1837 190.0 FR France \n", "1838 198.0 FR France \n", "1839 224.0 FR France \n", "1840 266.0 FR France \n", "1841 219.0 FR France \n", "1842 176.0 FR France \n", "1843 163.0 FR France \n", "1844 195.0 FR France \n", "1845 308.0 FR France \n", "1846 213.0 FR France \n", "\n", "[1847 rows x 10 columns]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data = pd.read_csv(data_filename, skiprows=1)\n", "raw_data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Y a-t-il des points manquants dans ce jeux de données ? Oui, la semaine 19 de l'année 1989 n'a pas de valeurs associées." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
161019891930NaNNaN0NaNNaNFRFrance
\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n", "1610 198919 3 0 NaN NaN 0 NaN NaN \n", "\n", " geo_insee geo_name \n", "1610 FR France " ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data[raw_data.isnull().any(axis=1)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Nous éliminons ce point, ce qui n'a pas d'impact fort sur notre analyse qui est assez simple." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
02020123101257199.013051.01511.019.0FRFrance
1202011310204893969.0110127.0155143.0167.0FRFrance
2202010310497796650.0113304.0159146.0172.0FRFrance
32020093110696102066.0119326.0168155.0181.0FRFrance
42020083143753133984.0153522.0218203.0233.0FRFrance
52020073183610172812.0194408.0279263.0295.0FRFrance
62020063206669195481.0217857.0314297.0331.0FRFrance
72020053187957177445.0198469.0285269.0301.0FRFrance
82020043122331113492.0131170.0186173.0199.0FRFrance
920200337841371330.085496.0119108.0130.0FRFrance
1020200235361447654.059574.08172.090.0FRFrance
1120200133685031608.042092.05648.064.0FRFrance
1220195232813523220.033050.04336.050.0FRFrance
1320195132978625042.034530.04538.052.0FRFrance
1420195033422329156.039290.05244.060.0FRFrance
1520194932566221414.029910.03933.045.0FRFrance
1620194832236718055.026679.03427.041.0FRFrance
1720194731866914759.022579.02822.034.0FRFrance
1820194631603012567.019493.02419.029.0FRFrance
192019453101387160.013116.01510.020.0FRFrance
20201944378225010.010634.0128.016.0FRFrance
21201943394876448.012526.0149.019.0FRFrance
22201942377475243.010251.0128.016.0FRFrance
23201941371224720.09524.0117.015.0FRFrance
24201940385055784.011226.0139.017.0FRFrance
25201939370914462.09720.0117.015.0FRFrance
26201938348972891.06903.074.010.0FRFrance
27201937331721367.04977.052.08.0FRFrance
2820193632295728.03862.031.05.0FRFrance
29201935310102.02018.020.04.0FRFrance
.................................
181719852132609619621.032571.04735.059.0FRFrance
181819852032789620885.034907.05138.064.0FRFrance
181919851934315432821.053487.07859.097.0FRFrance
182019851834055529935.051175.07455.093.0FRFrance
182119851733405324366.043740.06244.080.0FRFrance
182219851635036236451.064273.09166.0116.0FRFrance
182319851536388145538.082224.011683.0149.0FRFrance
18241985143134545114400.0154690.0244207.0281.0FRFrance
18251985133197206176080.0218332.0357319.0395.0FRFrance
18261985123245240223304.0267176.0445405.0485.0FRFrance
18271985113276205252399.0300011.0501458.0544.0FRFrance
18281985103353231326279.0380183.0640591.0689.0FRFrance
18291985093369895341109.0398681.0670618.0722.0FRFrance
18301985083389886359529.0420243.0707652.0762.0FRFrance
18311985073471852432599.0511105.0855784.0926.0FRFrance
18321985063565825518011.0613639.01026939.01113.0FRFrance
18331985053637302592795.0681809.011551074.01236.0FRFrance
18341985043424937390794.0459080.0770708.0832.0FRFrance
18351985033213901174689.0253113.0388317.0459.0FRFrance
183619850239758680949.0114223.0177147.0207.0FRFrance
183719850138548965918.0105060.0155120.0190.0FRFrance
183819845238483060602.0109058.0154110.0198.0FRFrance
1839198451310172680242.0123210.0185146.0224.0FRFrance
18401984503123680101401.0145959.0225184.0266.0FRFrance
1841198449310107381684.0120462.0184149.0219.0FRFrance
184219844837862060634.096606.0143110.0176.0FRFrance
184319844737202954274.089784.013199.0163.0FRFrance
184419844638733067686.0106974.0159123.0195.0FRFrance
18451984453135223101414.0169032.0246184.0308.0FRFrance
184619844436842220056.0116788.012537.0213.0FRFrance
\n", "

1846 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low \\\n", "0 202012 3 10125 7199.0 13051.0 15 11.0 \n", "1 202011 3 102048 93969.0 110127.0 155 143.0 \n", "2 202010 3 104977 96650.0 113304.0 159 146.0 \n", "3 202009 3 110696 102066.0 119326.0 168 155.0 \n", "4 202008 3 143753 133984.0 153522.0 218 203.0 \n", "5 202007 3 183610 172812.0 194408.0 279 263.0 \n", "6 202006 3 206669 195481.0 217857.0 314 297.0 \n", "7 202005 3 187957 177445.0 198469.0 285 269.0 \n", "8 202004 3 122331 113492.0 131170.0 186 173.0 \n", "9 202003 3 78413 71330.0 85496.0 119 108.0 \n", "10 202002 3 53614 47654.0 59574.0 81 72.0 \n", "11 202001 3 36850 31608.0 42092.0 56 48.0 \n", "12 201952 3 28135 23220.0 33050.0 43 36.0 \n", "13 201951 3 29786 25042.0 34530.0 45 38.0 \n", "14 201950 3 34223 29156.0 39290.0 52 44.0 \n", "15 201949 3 25662 21414.0 29910.0 39 33.0 \n", "16 201948 3 22367 18055.0 26679.0 34 27.0 \n", "17 201947 3 18669 14759.0 22579.0 28 22.0 \n", "18 201946 3 16030 12567.0 19493.0 24 19.0 \n", "19 201945 3 10138 7160.0 13116.0 15 10.0 \n", "20 201944 3 7822 5010.0 10634.0 12 8.0 \n", "21 201943 3 9487 6448.0 12526.0 14 9.0 \n", "22 201942 3 7747 5243.0 10251.0 12 8.0 \n", "23 201941 3 7122 4720.0 9524.0 11 7.0 \n", "24 201940 3 8505 5784.0 11226.0 13 9.0 \n", "25 201939 3 7091 4462.0 9720.0 11 7.0 \n", "26 201938 3 4897 2891.0 6903.0 7 4.0 \n", "27 201937 3 3172 1367.0 4977.0 5 2.0 \n", "28 201936 3 2295 728.0 3862.0 3 1.0 \n", "29 201935 3 1010 2.0 2018.0 2 0.0 \n", "... ... ... ... ... ... ... ... \n", "1817 198521 3 26096 19621.0 32571.0 47 35.0 \n", "1818 198520 3 27896 20885.0 34907.0 51 38.0 \n", "1819 198519 3 43154 32821.0 53487.0 78 59.0 \n", "1820 198518 3 40555 29935.0 51175.0 74 55.0 \n", "1821 198517 3 34053 24366.0 43740.0 62 44.0 \n", "1822 198516 3 50362 36451.0 64273.0 91 66.0 \n", "1823 198515 3 63881 45538.0 82224.0 116 83.0 \n", "1824 198514 3 134545 114400.0 154690.0 244 207.0 \n", "1825 198513 3 197206 176080.0 218332.0 357 319.0 \n", "1826 198512 3 245240 223304.0 267176.0 445 405.0 \n", "1827 198511 3 276205 252399.0 300011.0 501 458.0 \n", "1828 198510 3 353231 326279.0 380183.0 640 591.0 \n", "1829 198509 3 369895 341109.0 398681.0 670 618.0 \n", "1830 198508 3 389886 359529.0 420243.0 707 652.0 \n", "1831 198507 3 471852 432599.0 511105.0 855 784.0 \n", "1832 198506 3 565825 518011.0 613639.0 1026 939.0 \n", "1833 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", "1834 198504 3 424937 390794.0 459080.0 770 708.0 \n", "1835 198503 3 213901 174689.0 253113.0 388 317.0 \n", "1836 198502 3 97586 80949.0 114223.0 177 147.0 \n", "1837 198501 3 85489 65918.0 105060.0 155 120.0 \n", "1838 198452 3 84830 60602.0 109058.0 154 110.0 \n", "1839 198451 3 101726 80242.0 123210.0 185 146.0 \n", "1840 198450 3 123680 101401.0 145959.0 225 184.0 \n", "1841 198449 3 101073 81684.0 120462.0 184 149.0 \n", "1842 198448 3 78620 60634.0 96606.0 143 110.0 \n", "1843 198447 3 72029 54274.0 89784.0 131 99.0 \n", "1844 198446 3 87330 67686.0 106974.0 159 123.0 \n", "1845 198445 3 135223 101414.0 169032.0 246 184.0 \n", "1846 198444 3 68422 20056.0 116788.0 125 37.0 \n", "\n", " inc100_up geo_insee geo_name \n", "0 19.0 FR France \n", "1 167.0 FR France \n", "2 172.0 FR France \n", "3 181.0 FR France \n", "4 233.0 FR France \n", "5 295.0 FR France \n", "6 331.0 FR France \n", "7 301.0 FR France \n", "8 199.0 FR France \n", "9 130.0 FR France \n", "10 90.0 FR France \n", "11 64.0 FR France \n", "12 50.0 FR France \n", "13 52.0 FR France \n", "14 60.0 FR France \n", "15 45.0 FR France \n", "16 41.0 FR France \n", "17 34.0 FR France \n", "18 29.0 FR France \n", "19 20.0 FR France \n", "20 16.0 FR France \n", "21 19.0 FR France \n", "22 16.0 FR France \n", "23 15.0 FR France \n", "24 17.0 FR France \n", "25 15.0 FR France \n", "26 10.0 FR France \n", "27 8.0 FR France \n", "28 5.0 FR France \n", "29 4.0 FR France \n", "... ... ... ... \n", "1817 59.0 FR France \n", "1818 64.0 FR France \n", "1819 97.0 FR France \n", "1820 93.0 FR France \n", "1821 80.0 FR France \n", "1822 116.0 FR France \n", "1823 149.0 FR France \n", "1824 281.0 FR France \n", "1825 395.0 FR France \n", "1826 485.0 FR France \n", "1827 544.0 FR France \n", "1828 689.0 FR France \n", "1829 722.0 FR France \n", "1830 762.0 FR France \n", "1831 926.0 FR France \n", "1832 1113.0 FR France \n", "1833 1236.0 FR France \n", "1834 832.0 FR France \n", "1835 459.0 FR France \n", "1836 207.0 FR France \n", "1837 190.0 FR France \n", "1838 198.0 FR France \n", "1839 224.0 FR France \n", "1840 266.0 FR France \n", "1841 219.0 FR France \n", "1842 176.0 FR France \n", "1843 163.0 FR France \n", "1844 195.0 FR France \n", "1845 308.0 FR France \n", "1846 213.0 FR France \n", "\n", "[1846 rows x 10 columns]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = raw_data.dropna().copy()\n", "data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Nos données utilisent une convention inhabituelle: le numéro de\n", "semaine est collé à l'année, donnant l'impression qu'il s'agit\n", "de nombre entier. C'est comme ça que Pandas les interprète.\n", " \n", "Un deuxième problème est que Pandas ne comprend pas les numéros de\n", "semaine. Il faut lui fournir les dates de début et de fin de\n", "semaine. Nous utilisons pour cela la bibliothèque `isoweek`.\n", "\n", "Comme la conversion des semaines est devenu assez complexe, nous\n", "écrivons une petite fonction Python pour cela. Ensuite, nous\n", "l'appliquons à tous les points de nos donnés. Les résultats vont\n", "dans une nouvelle colonne 'period'." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "def convert_week(year_and_week_int):\n", " year_and_week_str = str(year_and_week_int)\n", " year = int(year_and_week_str[:4])\n", " week = int(year_and_week_str[4:])\n", " w = isoweek.Week(year, week)\n", " return pd.Period(w.day(0), 'W')\n", "\n", "data['period'] = [convert_week(yw) for yw in data['week']]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Il restent deux petites modifications à faire.\n", "\n", "Premièrement, nous définissons les périodes d'observation\n", "comme nouvel index de notre jeux de données. Ceci en fait\n", "une suite chronologique, ce qui sera pratique par la suite.\n", "\n", "Deuxièmement, nous trions les points par période, dans\n", "le sens chronologique." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "sorted_data = data.set_index('period').sort_index()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Nous vérifions la cohérence des données. Entre la fin d'une période et\n", "le début de la période qui suit, la différence temporelle doit être\n", "zéro, ou au moins très faible. Nous laissons une \"marge d'erreur\"\n", "d'une seconde.\n", "\n", "Ceci s'avère tout à fait juste sauf pour deux périodes consécutives\n", "entre lesquelles il manque une semaine.\n", "\n", "Nous reconnaissons ces dates: c'est la semaine sans observations\n", "que nous avions supprimées !" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1989-05-01/1989-05-07 1989-05-15/1989-05-21\n" ] } ], "source": [ "periods = sorted_data.index\n", "for p1, p2 in zip(periods[:-1], periods[1:]):\n", " delta = p2.to_timestamp() - p1.end_time\n", " if delta > pd.Timedelta('1s'):\n", " print(p1, p2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Un premier regard sur les données !" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEKCAYAAAA1qaOTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXncHEWd/z/fuZ4z90UOSAKJyCFXsgFEEUUBT1ivxYussstvFXf97boqXovKDxdc11tgWQGDsiKiLChnuOSKIQkBchESyH0+SZ4kT54nzzEz9fujq3q6Z7q6q6d7ZnryfN+v1/OaeXqqq6urq+tb36OqSAgBhmEYholKqtEFYBiGYY4MWKAwDMMwscAChWEYhokFFigMwzBMLLBAYRiGYWKBBQrDMAwTCyxQGIZhmFhggcIwDMPEAgsUhmEYJhYyjS5APRk/fryYMWNGo4vBMAzTVCxbtmyPEGJCULphJVBmzJiBpUuXNroYDMMwTQURbTJJxyYvhmEYJhZYoDAMwzCxwAKFYRiGiQUWKAzDMEwssEBhGIZhYiFQoBDRrUS0m4hWOo6NJaKFRLROfo5x/PZVIlpPRGuJ6ELH8TlEtEL+9hMiInm8hYh+K48vJqIZjnPmy2usI6L5juMzZdp18txc9KpgGIZhomCiofwSwEVlx64C8JgQYjaAx+T/IKITAVwK4CR5zg1ElJbn3AjgCgCz5Z/K83IA3UKIWQB+COB6mddYAFcDOBPAPABXOwTX9QB+KK/fLfNgGIZhGkigQBFCPAVgX9nhiwEskN8XALjEcfxOIcSAEGIDgPUA5hHRZAAjhRCLhLXn8O1l56i87gZwvtReLgSwUAixTwjRDWAhgIvkb++Qacuvf8STLxRx15ItKBR562aGYZJFtT6USUKIHQAgPyfK41MBbHGk2yqPTZXfy4+7zhFC5AEcADDOJ69xAPbLtOV5HfH88rmN+PLvX8adSzY3uigMwzAu4nbKk8cx4XO8mnP88qosENEVRLSUiJZ2dXXpkjUNu3sGAAA9/fmAlAzDMPWlWoGyS5qxID93y+NbARztSDcNwHZ5fJrHcdc5RJQBMAqWiU2X1x4Ao2Xa8rwqEELcLISYK4SYO2FC4FI0iSdfsGRnJuUlVxmGYRpHtQLlPgAq6mo+gHsdxy+VkVszYTnfn5dmsR4iOkv6QC4rO0fl9WEAj0s/y8MALiCiMdIZfwGAh+VvT8i05dc/4ikUiwBYoDAMkzwCF4ckot8AOA/AeCLaCivy6joAdxHR5QA2A/gIAAghVhHRXQBWA8gDuFIIUZBZfRZWxFgbgAflHwDcAuBXRLQelmZyqcxrHxFdA2CJTPcdIYQKDvgKgDuJ6P8BWC7zGBYMSWd8Os1TiBiGSRaBAkUI8THNT+dr0l8L4FqP40sBnOxxvB9SIHn8diuAWz2Ovw4rlHjYUZAmryxrKAzDJAwe5jYZeaWhsEBhGCZhsEBpMorCEigpYoHCMEyyYIHCMAzDxAILlCZDKSY8T55hmKTBAqXJIDmvUwgWKQzDJAsWKE0GaygMwyQVFihNhnLFs4bCMEzSYIHSZHBwF8MwSYUFSpNR8qE0uCAMwzBlsEBpMtiHwjBMUmGB0mTYAoUlCsMwCYMFStNhSZQiSxSGYRIGC5Qmg53yDMMkFRYoTYYdNtzQUjAMw1TCAqXJKPlQki9S7n1xG2ZcdT+6ewcbXRSGYeoAC5Qmo5nChm99diMAYMPe3sYWhGGYusACpcloJg2F3T0MM7xggdJksA+FYZikwgKlySBqHpOXopnKyjBM9bBAaVKaoY/mEGeGGV6wQGkyuJNmGCapsEBh6kAz6FMMw0SFBQpTM1iZYpjhBQsUpmawXsIwwwsWKAzDMEwssEBpUnhiI8MwSYMFClNzmkD2MQwTAyxQmhRqgvjhZigjwzDxwQKFYRiGiQUWKEcgv/7LJpxz3eONLoYNW7wYZngQSaAQ0T8T0SoiWklEvyGiViIaS0QLiWid/BzjSP9VIlpPRGuJ6ELH8TlEtEL+9hOSthIiaiGi38rji4lohuOc+fIa64hofpT7aEb8nPLf+N+V2Lb/cB1L4w0bvBhmeFG1QCGiqQD+CcBcIcTJANIALgVwFYDHhBCzATwm/wcRnSh/PwnARQBuIKK0zO5GAFcAmC3/LpLHLwfQLYSYBeCHAK6XeY0FcDWAMwHMA3C1U3AxDMMw9SeqySsDoI2IMgDaAWwHcDGABfL3BQAukd8vBnCnEGJACLEBwHoA84hoMoCRQohFwhp23152jsrrbgDnS+3lQgALhRD7hBDdABaiJISGBc3k8OYoL4YZHlQtUIQQ2wB8H8BmADsAHBBCPAJgkhBih0yzA8BEecpUAFscWWyVx6bK7+XHXecIIfIADgAY55PXsKEp5qE0j8xjGCYGopi8xsDSIGYCmAKgg4g+6XeKxzHhc7zac8rLeQURLSWipV1dXT7FO/JoBqHDMMyRQxST1zsBbBBCdAkhhgD8AcCbAeySZizIz90y/VYARzvOnwbLRLZVfi8/7jpHmtVGAdjnk1cFQoibhRBzhRBzJ0yYUOWtNidJkScs2BhmeBBFoGwGcBYRtUu/xvkA1gC4D4CKupoP4F75/T4Al8rIrZmwnO/PS7NYDxGdJfO5rOwcldeHATwu/SwPA7iAiMZITekCeeyIh2C+Y2Oju3HiOC+GGVZkqj1RCLGYiO4G8AKAPIDlAG4G0AngLiK6HJbQ+YhMv4qI7gKwWqa/UghRkNl9FsAvAbQBeFD+AcAtAH5FROthaSaXyrz2EdE1AJbIdN8RQuyr9l6aCRFCTBSFQJo7dYZh6kTVAgUAhBBXwwrfdTIAS1vxSn8tgGs9ji8FcLLH8X5IgeTx260Abg1Z5CMGE8GSFEtTQorBMEyN4ZnyTUY4k1eDu3JWjhhmWMEC5QgmKRoKwzDDAxYoTYqJrEiKQElKORiGqS0sUI5gGm3yYosXwwwvWKA0KUY+lIRoBlEF29fvWYE/vew5zYhhmATBAqVJMYryqkM5/Ihr6ZU7Fm/G5/9neTyZMQxTM1igHMEUk6KiMAwzLGCB0qQ0k8mr4aoSwzB1gQXKkUzDp6GwW55hhhMsUI5gGh3lxTDM8IIFSpNisoJvMSHyJCHFYBimxrBAaVLMfCgNnofCFi+GGVawQDmCYc2AYZh6wgKlSeGlVxiGSRosUJoMZUZikxfDMEmDBUqTEUZGNFoxYM2EYYYXLFCalGbaYIthmOEBC5QjmEbPQ2GTF8MML1igNCkm2kdy5qEkpCAMw9QUFihNilmUVzI68oQUg2GYGsMCpckIM9pvdEeu1vJiecIwwwMWKM2KgbRotEBRJEVTYhimtrBAaTJU32xk8kqIbpCMUjAMU2tYoBzBNFoxsKO8IpSDtRuGaR5YoDQpRjPla18MI6JoSixPGKZ5YIHSZKgRu0knnZQtgKMUwzSabfv+w9VfhGGYWGCBEoL1u3vwx5e2N7oYxiREnkQTKAYn3/bsRrz5usexZsfB6i/EMExkMo0uQDPxzh88BQB4/6lTGlYG1b2addLJkChRSmFy7qLX9wIANu3twwmTR0a4GsMwUWANpUnx62jDrEhcS0gWJIpj3cRsp/JP8VIvDNNQWKA0GSZ9s+pXk7P0SoRzQ5xMvHgYwzQUFihNhnLGm0V5JUOi1FpTarQmxjCMRSSBQkSjiehuInqFiNYQ0dlENJaIFhLROvk5xpH+q0S0nojWEtGFjuNziGiF/O0nJIeaRNRCRL+VxxcT0QzHOfPlNdYR0fwo93Gk0uiOtqQv1DZsWCVh/YRhGktUDeXHAB4SQrwRwKkA1gC4CsBjQojZAB6T/4OITgRwKYCTAFwE4AYiSst8bgRwBYDZ8u8iefxyAN1CiFkAfgjgepnXWABXAzgTwDwAVzsFV61p5GS70kz5Zlp6JcK5RvdppWGLF8M0lqoFChGNBHAugFsAQAgxKITYD+BiAAtksgUALpHfLwZwpxBiQAixAcB6APOIaDKAkUKIRcLqGW4vO0fldTeA86X2ciGAhUKIfUKIbgALURJCNaeQBOeETxGULyEx81CinBtGQ2GBwjANJYqGciyALgC3EdFyIvoFEXUAmCSE2AEA8nOiTD8VwBbH+Vvlsanye/lx1zlCiDyAAwDG+eRVFwqN1FAaduXwxBFtFkYoEhu9GKahRBEoGQBnALhRCHE6gF5I85YGr7dd+Byv9hz3RYmuIKKlRLS0q6vLp3jmNFJDCbU4ZEKkT6SlV0zSJOQ+GWa4E0WgbAWwVQixWP5/NywBs0uasSA/dzvSH+04fxqA7fL4NI/jrnOIKANgFIB9PnlVIIS4WQgxVwgxd8KECVXcZiVJMHmZ+HGOhCivUGuWsYLCMA2laoEihNgJYAsRHS8PnQ9gNYD7AKioq/kA7pXf7wNwqYzcmgnL+f68NIv1ENFZ0j9yWdk5Kq8PA3hc+lkeBnABEY2RzvgL5LG6UCzW60peBPewSZmHEsNiw0Yn2075KNdhGCYyUZde+UcAdxBRDsDrAD4NS0jdRUSXA9gM4CMAIIRYRUR3wRI6eQBXCiEKMp/PAvglgDYAD8o/wHL4/4qI1sPSTC6Vee0jomsALJHpviOE2BfxXoxppA9FYTRyT0A5gWjlCKNl8cRGhmkskQSKEOJFAHM9fjpfk/5aANd6HF8K4GSP4/2QAsnjt1sB3BqmvHHRND6UmpakPoSpahYnDNNYeKZ8FSRBoPiRvLW8qs/DyFd0JEjOGvDilv2YcdX9vAozUzdYoFRB0k1eKnw2MSavWkd5gSc2evHgyh0AgCfW7g5IyTDxwAKlCoqN1FDUWl4mM8hrXZgAbKd8raO8hLre8JAo3b2DeO61PYHphkt9MMmBBUoI1Ag4CWHDJiREQanD0ivW53DRUObf9jw+/t+LMVRoaLghw1TAAiUEKdljNXSmvHB/+nEkLL0S5uRhIk9sn0i+YFY5jW4G+UIRC1fvSowJlqkdLFBCkFYCpaEmLwMS45RX5YiywVZwmnpN4BwqFPGvv3sJm/b21uV6OpQpazDvr6EkRWO74cnX8Pe3L8Xjr7Av50iHBUoIms7k1WAvSpgQZ20eYVZVrnEHunzzfty9bCu+eNdLtb1QEPI+B5vE5PV61yEAwIHDQw0uCVNrWKCEIJUEDcU2eYVZk6R5CaXc1Ph+W7PW69KfLwSkrC0pQ4GSEAXFLmcuc2R0N396eTtmXHU/dh7ob3RREseR8YTrhHqRk+Kb0JGYpVdiWHslzATOOG73YP8QunsHPX9rzVrb9/QPNVYzUCavoQCTl6LRvgtlmmvJpANSNgf3vLANALBy24EGlyR5RF16ZViRCA3FDhs2T9toIs1DCdEZxtFvnvKtRwAAG697b8VvGTmi6B9qrIZCphpKQlSUgfyRpaG0t1jdZu9gvsElSR5HxhOuE6lU4wUKbJOXQdJkyJOaz0MpaWS1vWGVe5AzvNao22yWKC/1vqSTIuEi0pGzNK3egcYOLJIIC5QQpJrOKd9o5Iz9CDmE6Qxrfb+qLI1+/kpwBglQnthYG9Kpxk8fSCosUEKQiHko9qe+DJQwX0/NJzba16mxhiLzjzqh8EDfEJ7fUP3i2KmEbfEchB0+noAhTqw0Sf3XExYoIbD3ak9AtKbJWl5JeX+j+VDCXKe2qPyjaiifWbAEH/2vRRioMlosbPh61Hr540vb0TtQvb/gSNOUjhDLXU1ggRIC2+TV0JnyIZzUDZYocax6HOrUGt+u0giGIgqUsDPdyzHVUOLo+FZuO4B//M1yfP2eFZHz4gH9kQ8LlBDYtlMfFeW51/bgf5dvq1kZwoTIJuUFjuZDMT+75k75mHwo6Yim05KGYpY+SrUozWT7/urnXCRpRH/dg6/gituXxpJXQl6vRMFhwyEohQ3r03z8vxcDAC45fWpNy+Jr8rJ9KDUtgjk1XnolhsuEyj+qQLEFQpUaimlUWxz9uL2nTQzdZxKa401/fq3RRTiiYQ0lBElYeiWUT6HBKkose8qHOLvWdxuXBqQ03XyV7UiFr5tuoxCLMIjh1hvdHuPiSPMJxQkLlBAkK7rGPPqp0dR6HkopbbQ7rtZJHpZ0xPlMxtGGMdiaUjHEd1BAObZ29+FAH6/zdSTAAiUE6uWqdmQZByZXLm1slRSnfIQorxql9SLISR5XdaoOttrwY/V8jaO8IpQ7jmdol0Nz/C3XP4EP3vhs5PzDEMfk1ESMKxMGC5QQhDU11AL1YjfVTPko59ZRQwnSPGMzeUVcwsc0ei5Ow0wkDUXl4VFgpRW+1lXfLQG2dPdVfW6SggySBguUECRhLS+Fv1NemebqVJgAaj2xMY7rAMH1FVd1lnwoVWoodW2H0ikfiw+l8lijlrFptPZ+pMICJQSJmIdikKZea1sFlyP60ith+tyodxvUycRVnyn51g1VPQ/F+jRth9H8H/Hl4SX/GjXoibLYQVJMykmEBUoIbKd8Aob+YZYkaTTRfCgmtj11naovA8BAQ4mpQqMGd5i2wzhMM7GEHstPr3bQqE45yuAgKMhgOMMCJQSqIZk45WsmdEw6zxgdqY0m3NIrtfWhxCWiRUQBGHq/mzg6zxjy8Cpvo5poHNpm879d8cMCJQRpWVsmjbFWjc2k0yyNCGtUCEPiWHrF7ELWR1QZHuyUj5Z/OdE1qqCJjdFH0nHMJfLTUBpllq2VT2i4wwIlBGGc8vXam8MLStR8mTouDhnxfoNOjy9s2PqM+nyMFZRIV5F5xNEBexxrlPU4Ke/GkQYLlBCEia6pVQROGHNJUt6Zmkd5xXSf9Qobjpqf6VlxaIhxLD3vJ0Ab50OJnkdCXq9EwQIlBGH2lG9kZ56U/VDiiBCq51pe9XLKm14vCNPOOA4NsVYmoka10Fh8KEkZsSUIFighSIVxyteosdkvuN8GW2VpG020pVdCzEOJ6pQPeK5xbQcQNezU9LQ4YpHUpaK1Jb0JtnE+lOgaV1LeryQRWaAQUZqIlhPRn+T/Y4loIRGtk59jHGm/SkTriWgtEV3oOD6HiFbI335C0rZERC1E9Ft5fDERzXCcM19eYx0RzY96HyakQ4QN10yg2GFeIdI2mEgj5BBpa73xWdI0lHqg2nEkp7xPB9w4H0oceTTBA6wzcWgoXwCwxvH/VQAeE0LMBvCY/B9EdCKASwGcBOAiADcQUVqecyOAKwDMln8XyeOXA+gWQswC8EMA18u8xgK4GsCZAOYBuNopuGpFmH0oGrmrY1JmylMMs6zDhQ1HI6iDiF+gVOtDMTsvlg3OYrxnr3I3ak5XHD7ORr9fSSSSQCGiaQDeC+AXjsMXA1ggvy8AcInj+J1CiAEhxAYA6wHMI6LJAEYKIRYJSw+9vewcldfdAM6X2suFABYKIfYJIboBLERJCNUMW6AYvGW1N3mZp21uQpi8Iq/lFVSShDjlDf0acUzAK60dF8FEJD+TsHW2ItLERh8T3nAnqobyIwBfBuBsKpOEEDsAQH5OlMenAtjiSLdVHpsqv5cfd50jhMgDOABgnE9eNUW1n0aavExQL/DX7llR9Yq2cRJppnyCNJSkzUMxFXBRLhOPD0Vfjuaeh8ICpZyqBQoRvQ/AbiHEMtNTPI4Jn+PVnuO+KNEVRLSUiJZ2dXUZFVSHuoCZUz7SpQLLYNqYn9+wrzYFMSEGk4tJPYbxK/nmE2jyivehVptdPbuxOG7ZL+qwmeehJMHk9ftlW7Fi64FGF8MmioZyDoAPENFGAHcCeAcR/RrALmnGgvzcLdNvBXC04/xpALbL49M8jrvOIaIMgFEA9vnkVYEQ4mYhxFwhxNwJEyZUd6d2ZtaHSWNspMkraUsNRRoh1zPKq05hw3FNPA2eiCmM0vlRcsrXRkVplIYSRRgkJSwfAL74u5fw/p890+hi2FQtUIQQXxVCTBNCzIDlbH9cCPFJAPcBUFFX8wHcK7/fB+BSGbk1E5bz/XlpFushorOkf+SysnNUXh+W1xAAHgZwARGNkc74C+SxmqJeqiTMlPcnWRIl2sTGYEo27eqvY51fn7Bh0+tpy2F4WpxzRyJNjvTxOTTjWl626bvx8iRx1GIeynUA3kVE6wC8S/4PIcQqAHcBWA3gIQBXCiHUnqufheXYXw/gNQAPyuO3ABhHROsB/AtkxJgQYh+AawAskX/fkcdqimpIZgKlZqVwlcULp4ZSrWjpHcjj3he3VXm2+9r1W3ql6ssACHYax+1Urr68ZpqHaoPR6l9pKHr6hwro6hnQ/u63fH2j/BBRrmtrbQnQUJJGJo5MhBBPAnhSft8L4HxNumsBXOtxfCmAkz2O9wP4iCavWwHcWm2Zq0E1HyOTV42HL74mrxjyv/q+Vbh72VYcPbYdZxxT84hsLWbL9MdjlqnX0itR96sx1lBi0KhMfHafvm0JFr2+Fxuve6/n737LtzTMhxJhcKDqIgkmr6TBM+VDoBpSEmbK15rdcsR54PBQ5LzqNg8lslPe//e4O7/IS6+Y5h+LD0XPotf3+ubhZ5JsnA8lgtZm5xFPWY4kWKCEQLWfgaHg4U0jo7xcTvkq1ZVc2jpxKMIWrTH0Z4kKG47bxBHdKW9W3jj8BbFwhPhQiqyhaGGBEgLVfnoH8prfSw2skcvXx0EuYzWNwTjmsUQaDYaI8oo8sTHI5BUp+wqqXsvLOH/rM0q57TqJcu++WwA3X5SX7ZtieVIBC5QQqPbTO+gtUJyNtFYOO5N849hYKSt3E4s0MTKGvqiuTvlAk1e8zzT6xEZ/4hhJx6FllpfHlX8TaihhJjgPN1ighEG2pMODBc+f8w5PX80nqBtGeVVLTgqUwUgmL7NoJP88QqStsQkp/v1QqjvPfNl6lb666zivZXJNXRq/1a+bUUMpmRJjKkzEciQJFighUI9P55R3Ro7UbrVh9VnbxpROxbfAZBxhq2bXiUbd9kOJODFOVHzxJhYNJYSWqas/v4mcjeoS4wgbbrQPpdECzQsWKCEImofi1FAaGeWlhEEU4lyptlmivJpmx0ZjJ0q061jnml+zmus0ZZSXXSeN7dFrtStsFFighECNtE00lFq3NfOJjdUJlziWB4nDnxtGu4naOR1pi0OWRtIRrhGikLoOzm/eTcO2AI5gki4K92ejaLSG5AULlBAEOeOcy9rXbE95kzQxXDrqroJO6qWhRCV4Hko8hYk6sVERdHocI+kws+1Ny+OVf72JNlBKismLBUpTo55fXjO8qYfJq7wstSKO/eDjmMFeT5NX0CAg/nko1Z1nWg57JB0pQEQY56HbJ8h/6ZVqyxWNOAJFGq2hsMmryVGPT/cg3U75aNfqG8zjYH/lLPXS2kr6CzhflmojvmLdbTGGl9fkOiaCa+eBfvzdgiXo8ahb5yDAq9OO6/2Nak40rVZVH/Wa2Ki7jp9G1qhRtskmeTqSspZXkjYsU7BACUHQ0itODSVqYzvnusdxyrceiZRHFFK2Uz4Gk1eUc8NEeRkk/dGjr+LRNbvxp5d3+J7vlVdcI8LIuyAanhbPxEaVV3Am1czLaEanfMmH0mCnPJu8jgxMNJSonU93n/8aWn5tyfnyVxvvFce+9PZIOoaX1w8/k0o5/UPWHKKWTGXTd2koHucmZYMt0/PjGEkrLcdkO+HAsGGPBKZFe2DFDsy5ZqGn1h6GMG1FR1LmoTRaoHnBAiUEJR9KsFO+Zmt52eYdnzSa72GIYxOhOMKGw9yBiclrQE7UbMmkK35zPrNa7i4YVVibnlbSUGJwyhvkERTl5S2kzcpx6zMbsLd3EJv29JmdEEAc21IH1evn7liGb923qurrBJHEmfosUEIQtMFWwcDkJYTAc6/tqan9NZ4or/g26Ypm8jJPY5K2JFACNBSPvJIyD0WRtLBhbVrfLYDN8ldLAA1FdBzY/pwIlWLXa0AeD6zYiV8+t7Gqa/z51S5cevMi32uwyavJUc82r1lXpWDglP/jyzvw8f9ejN8u2VJVGUyWM3F2NNWbvBB4nWCCy2qWQ3yojinrIVCcHWI99u6oenFIYVav6ud6OeWDOrgoi0OqybpRVr8OKospcfimgvj8HS/gL6/vQ49mIVqAo7yaHvUi6zWU0nHdy3WgbxAA8PK2A1FLo/8lhnZmO+UDuvTu3kE8u36Pb5r6hQ2bm2UyHqsJuBf39M8/ioZZinqq7nxzk1ccAt38ZO39lJxp2p+CUAIlaPXr5Zu78dKW/YH5JX35ejIIiuEoryZHPVqtD8VxXNfYOlqsTTL7fEYevmUwMQFVlbOblKGd/84lW3DZrc97LiIZhw8llg7Ngd+oLozJK47BYXSTV8DvcfhQQnRaOvOMn+nNVDDbGkqAQPnrG57DxT9/Vvu78l9Fqfp6LF+fMlhLj53yzY58floNJaYRrG8RDBqzex5K1RNRAAQ32sNDBRSKwvNFj6MGwnTcJlWunl2Q0z3I5OVXL/9270rcs3xrYFmqn9holi7O5evDXK+cgmqzXnVqKLAyKaur+t/l20OUSE/SZ8qrt9ZvAMQ+lCbHqaF4CQynU77W6qh/U4re0EwnNqp7zhf0CaNF1ASfq2RmoA2/KLB0U7f1PWC0HGTv9+tMbl+0Cf/825d8y1J+vaoIOD+eeSjmJwcFq0TxoXS0WFF5D66snD8UBrujjkHI1lKgKAuBr0bNPpTmJqjDcQ7Sg5ahMG0K5Y0mjjWVTDBVbJQg8bJtl2b11xa74wx4we5YvMn+HhRx5NXZOw/FUcfVz5Q3Oy9MyK/PxYzRVb/qFD39UoZ5Tx7VBgA4d/YE8wJ5EEewSRzRc+t3H8K9L27T/q7KqVvmCUimhpJpdAGaCefjyxeLSKfccxmco4m4TF4FIZDyiNUyzb9ai5fpTHnlT/IzeUXqz0L4jHS+LcWmvaU5DF7Cx7VatMf5znPiGJ1Wm4XJXCQrXfSOL+g+nRGPWpOXLVC8hLSpcLTSxdWJRgsbtj6jvOPv+uGfIQTwgVOnaMzSJhpK1ZevGayhhMDZfrwetNspH881y69TL6e8MnkF3UfBR6CUyhPFvBB8rqmvIJ0uvbhB5hfhcTtuH0pgsbTEMVsbiCds+JWdB/HC5u7APHQMFZxt3ju1EvRRJovaAiVipZm2az9MBHX6ZqBuAAAgAElEQVSQwFJVcUgTnKMGdEM+pmR2yjc5zs7NazQcZvn6sI7VUhncn955R29opqYBe8KZR8OPI8rLZBSm8vfz4wDuUOGg/c29nfLxaiiRd2w0zN+vKV70o6fxwRueC8xDl4VJm/czeZnWgRqvBD3jIOJcMNMvD9MJmAf7dQIlWEPheShNjktD8WjYBYPl68PuNa9rNL5RXuEu4YkdXhmQm5+GYiL8FMWiwDv+80nc95I7isfkXJOROACkU6Xm7r2asNNk6XGdAA0mLFEFf9D56udCBNtIUBGD6sy6vl6wOc/xG9UHzQEzpTTIiWLyChbUpoLPqx8BmteHwgIlBM7n56mhGCwOGfblrkhuYvKKoZ2ZTr7z86GEKc9QsYjXu3rxxbteLDvX/Ib9Xj4ASFOQycv53d88E2WEG9nsElK7HcpHMTkG/G7Q5lUbiaL1qbyjdqKlwUeEPAyEUtB8GYWuzZqEDXOU1xGEV+N3Pnz95Efr07QplL9ApU2r9MSx2rCtXRg6ZT01FPvc4LvVXcZIu7FH4v7pMml/k1fQasPO3+MYHfp1oLsO9uPmp17zrf/Azl5+Bs0u980jKBTbQCAUfUxeLg3F51IFe9AQrd7jmJtjkodpnWsX1CQ1kdNHoCRPnrBACYPz5fLWUBwvl8HkRxPKG5xJhEks7czQxFDSUPzMFcGXy+s6HRMFxV60M0BDcfhQvO7LvbRK5fkFg87ThJIdX5/mC3cux3cfeAVrd/Vozw+8jtJQDDq3akyrgJlAKT3b6jWUOMx3rnzi8KH4FMXvfXCiE5D23Cr2oRy5CJQ6JU8fisEIthBytFjhlK9TmJepaUDZir06rdJ+HMHX03ZoIbSbQA3FIVC8HcTOPL0Ejvd3Vx4GL7mJyaR/yLqZXo8oINNgB/W7iUDRpQl6hiZbNvgvvVKZzvM68uQoTvmgAYNxPgaOfb9FLJ2h1rp2r5zyfmbcRu8Y6QULlBAIUeqUvB60e6a8TkNReZk1Bp2G4ltOx/dq56GYmgZ856GokZzBvdqRQBXlCDzVePSaDojycs0j8jjfZB6KycjXRNC2Za05TocH/cKxza7jtc5aObqRsqnQAnx8KAV9WzJdH03Va5RRucsHFss8FH0aPyE+aCBQjDQUFijNjYBANm1Vmfc8lNJ33QsatiFXzENRnz7ZmAqr3T39+NPL3msjldR6/7xUJ+4XNmzS8HWT30xupTTpzT+dW6Do89Fd12QeikmHZyJo1fL6XuGnpi1IFcXE/KLbkiFoMGBistINFkzPB0oWgSgCZcg1CbPqbCL7UJzPQ2vyCvgdOMJMXkR0NBE9QURriGgVEX1BHh9LRAuJaJ38HOM456tEtJ6I1hLRhY7jc4hohfztJyQ9UkTUQkS/lccXE9EMxznz5TXWEdH8au8jDEKUHLteD9rZ+QZFvJhS0WgNeljTK3z6tiX4/P8sx4HDlduqqjyChIGfhlIvk1cpj2gaSpD5xdX5Bcy58EOl8EtqlzTCwEH9bOIgrtZx7x71e6cp2O3AfxDmF4ptaygRRuXOd6/m81B8hHjBoJ+wTV4RfZP1JoqGkgfwRSHECQDOAnAlEZ0I4CoAjwkhZgN4TP4P+dulAE4CcBGAG4hIrV1yI4ArAMyWfxfJ45cD6BZCzALwQwDXy7zGArgawJkA5gG42im4aoUAfDUUkwYbNFGsHK1TPob9ULbs65Pp9Z1rkIbi50MpdZwGGoqmXoxcRkoTCiircxfKahzEJjb4cCYvc81NVw4/wjjldR1XoIZiYgb0ifIy8Ts684jiQ3FqYX51eMnPn8UnfvEX7e8mM+Vf3qrfk8VpLg82efnMQzEYvBzsH8LPn1hfN22maoEihNghhHhBfu8BsAbAVAAXA1ggky0AcIn8fjGAO4UQA0KIDQDWA5hHRJMBjBRCLBLWk7q97ByV190Azpfay4UAFgoh9gkhugEsREkI1QwhBLIpvYbinjXsnUfYB1s5U9581B+Uzi8Lk0gkwDGx0Wuugz2S888D0Asuk87TdFmOYsDzcTvl/X8PCpE1KYeJoPXy1Zm2IJXOyIeiFSjWp84XZxJK7btlgKHWoN430/fHq90MGpq8XtyyH8+u36v93STS8t/u1e8l76zroLBhP4uGSfv57v1r8B8Pr8Wja3YFpo2DWHwo0hR1OoDFACYJIXYAltABMFEmmwrAue/tVnlsqvxeftx1jhAiD+AAgHE+eXmV7QoiWkpES7u6uqq7QUlRlGzbXiOHgqvBej/sfEnFMKK84zNRt43NRD4je1P/h7Lxe9v6ZUdi0AnowobDmJCCl7vx77ycxzxNmiH8Bf7lUHno06gOfNDHNxWEPbExgslL3Y8utiMoMs6ZR5Dfyq9Nqzbk18EK14ChMl3eYN0xE0wHWzrc89X8Jzb6aWQm99A3WAAAHJaftSayQCGiTgC/B/B/hRAH/ZJ6HBM+x6s9x31QiJuFEHOFEHMnTIi29HVRCDvKy+v9cz577Ygv5EhLZ/Lycxc425nfVfxWcC1tH+tfzpKG4uVDcV/HJJ+K4wbVpMoY5J8KDgt2vOiePiHv705MTF4mg4JSh1L9CgTq96GC9/49TnQdmzpPt1FbkNbnzNvT5OXUUHzatMrDzwTkfCZebcEtUPTXCkIVwe/5tedKK5GX172zbLp2r0zrA3m9IDBxe2V8LCq1IJJAIaIsLGFyhxDiD/LwLmnGgvzcLY9vBXC04/RpALbL49M8jrvOIaIMgFEA9vnkVVOEKD1orxfQ5ZTXjdYMOz87z4qoJ70QsNOUlTkondc7qooXOLHR9qHoO+goAiXMvI6g6wStBh3UIZnsKW+2mKW3NuaETJyyAZqosz6CnO666wR1WkFanzOPKBMbbR+KT3sI8k0MGYT1m2Cylpdz35bydCbzUFqzVj/T56NZmLxXKogo6oRQU6JEeRGAWwCsEUL8wPHTfQDmy+/zAdzrOH6pjNyaCcv5/rw0i/UQ0Vkyz8vKzlF5fRjA49LP8jCAC4hojHTGXyCP1ZSiEMhlDJ3yAVFA5quslgsU7+PuREZZ23l5CkdDwafO9dxgS36ajKRMtlXWoVIEOWyDOi/3aDuo8/O+hplTXl+GckxXrQ0iyI+iEzjBYcOO79o2LzUUz9/MrmUvge/nUwgI2x8yMEmHwU/r6xkoRU6WtyUTDaUlY2k4UQWKWhDVdOZ+VKJssHUOgE8BWEFEakW/rwG4DsBdRHQ5gM0APgIAQohVRHQXgNWwIsSuFEKo2vosgF8CaAPwoPwDLIH1KyJaD0szuVTmtY+IrgGwRKb7jhBiX4R7McKtoQR0SAH2ZFMNRbeWl6kPxX+JFvWSevymOr1AgSLvx6PBmjgvS2n960vl42V6MXVyO3+uRkMx6fzCOOV9NRT56TfjOqha3WHO/mmrjfIy2QPIfz8U5/PVX8fEhxKkoajVB/zKaoJJezvkWJa+PJ3Jmn9KszjYXxnS75Wv7t0Iu0NsVKoWKEKIZ6D31Z2vOedaANd6HF8K4GSP4/2QAsnjt1sB3Gpa3jgoCoGsUiE9l6+3juXSqUANxVQFrdgC2EBDMfWh+DnebYduwJvnu8FWqGim4A66KIC0R4sz1aZcy4QEmLS8fSj+Gg4Qdh6KPm1p+fLquwJnEwucTxTglNea+AwGUX6LQ77WdajiWp7lM/A9ujWUyvvpGyx18tGWr3d/euHUCMovNWRg8lL1un7XIc/frXOd34Vr8VNFaT5TfUQKz5QPgSVQ9BqKOpZNk89qw8Evhld6ZxmCzjdtOiqdl3BT17n/5R2+eZjMQzHRtk1MXno/i/r0v1AYk5ff8wWizUMJszWv76KbQddBcN0p9CYv92fFNZyDF829+2kof3ihtK+6qQ9Ff50gDaVkPopi8jLRUFyTF6vQUFSa3kHvDbiAysGWF/XWUFighKAo/Cc2FosC6RQhlaLADtJYoFSYvFRZ/DQUMzNCadOiyt+cxXtlpz54z9eHIirLo8PEKW+6rpiOMCYv3fMNKouZyUuVxy+tcspX70Nx+TcCNRT/kXLQRF0geLQdbKLzKZ9B5+l8V7zux7kuWiSXgv389ElcAQBlCU18rep0Ux+K7vmoybx1UlBYoIRC+C8OmS8KpImQTlFgh2Mc5aWZh+Ibjw/3MiPadDKLoNnYfs5u9Zu3DyV4JKcw0VCCOrUgIV0IEAjO3700rnwx2AYfTkPxS6vX/Er5BF3IUS7D4IpybHOV5rwwPpSgqDQ/AevseHVlDVrSRIXgZnzeT901XcdDaijl+TjfFa2pV+btJ1BM3g2loZhu+BUVFighKArhmNjo3YGmUtbOgEFreZmGLVZoKCL4fCGAOdOtlWh8l2hR1/AcjZe+K63MC6PVhg3aclDIqZXG/9zgiCSn5laZ1hkJFbT4ZxQfiokN3q5X34GD+f0Gm7z8BXrQpEXAu00Wi8K4HfgJY/eoXnN+gClpQD7ftmza6P3TRdipU319Pj5zXtymOY1wVALFY/sCr3y1M+7lZ72ivFighKAoBHK+qw0LZFIppH1MXuE1lDKBoq4V0HnaCopPMr85LWHnB/iGDUdxyht0iiZam5VX6bvXgM05icw7yit4LagBg2VOTARgSfOrfmQZZkMw3XVKZkvNNYK0PqcQDxKAfotDxqChqAFDay6trQ8TzdxvbTKv61cT5aXe+14/k5eRD0Xt/MgaSuKwfChqopC3QEkRfAWKiQ/Fb9ViuzMKaB9ksPmvr4biOORn8lIN1W9io1HYcIBz0i8fe8QfJFDk87HO0Y9gAe97NrHjf/CG53zLAMDIBq86zfJ6DbNJlMnq1wpdhxM0b8rP+Vzxe0CbNXZyG7QVr/sZdGgo+ln9wQJFPRuTeTNAZbt0PtOgfuLA4SFXMIErjYkvRkQfmISBBYoBW7v78Ohqa3G1jE+UlxW6l0KKSDsqNwp/9AnF9PN7WL9bx02iO0x9KH6T60qrwPqYvAyUsaBoF105reuYaX1FIYMmKNjk5TfZEzA3WerKAfgLWl30XJjLhlmuXWcSCZoVHiRk3ZP43PfyqVsWAwA65DIlph10tW1FaaBtWb2G4hQiQeub+QvAom3NKC+KSZt2VtWyTd3eaQw0UPVcdSbNuIkysXHY8O4fP40eOVEpm9JrKPmiQEo55QNUWT+B4jdfwhYCWpXd+lT7KZhEd3hqWwaqvxDC34eC4Hv1KwNQ/tJ4n1vS2vyvUxDW5K8Ueec1mC+iPZdG32DB+/nGtRaUgaBVvpPyug9jujAxrdi/B24B7D+SBrzr31mG8g766XV7AACt2TR6Bwu+9VEoFpFJWeH4JgEcXverBgwt2ZS+Ay76DyqAUicd5APLpgmDBa8or6IrnRdFITBhRAu6egbsvscrjUI7gLUtCKyhJAbnA80Ehg1bUSS6AYHRmkQFfUMJcsqro2G2/g02eQXbrP1WxY0SNhxkowccS68EdJpCWL6lFHlH+QxIgQLoo9ZUlF+UiXEmqx3YO2GWdWphJjoWhTDaShbw0VDsdbg05QxYwdfVRjT+pdasmYailj3S1YEresqjzQ7ki2jJSAuCUR7+bdKvDRSK+gAek+XrC0WBo0a2AgB6NLPlnafqiuI34KsFLFBComaj6hyQmVQKqRQFdsIms4K90qn/9BqKdVw540yWsg9yyusijZzl9F5tOHgk51eG8nIEBToERnkVrbBuIu/rWRqKpbTrJjaWnr/vpQAE+3x8fSiacGxnB26yErRtdgnoT7btP+xdDtV56q4R8Hycx3QBC0pQBIUNt2RS9nfPsgRoZAP5InIZK2hG2wE73ltdJ1zyoWiLawnAtLov7/N15QSseu1osQTtYQMfiu7dGGINJdlkU3oN5el1XdjXO4hsOqUd8Zk45Z2NuryTtOdc6MxQ8lM5n00G0tUsQwIER96oX42WXjG4hj4yR5UhoIMVlkkykyLP+hsslDQUz9UDiqWVEozmMWiSCJM2oBlZDrkizfyvX3CM6oMi7XYe6NeUw98BHdSpmWgopXlE+vLli8JeMNGvE/a71mBBaSg+HXAIX01QEIE9CbosnbNv0G8sB3S2WIMb3V4mJhNt1YBk0GsDvBrAPpSQ2MtBe5iidh0cAADk0hQY2miy3an13f1bkA9FnZsOYfPyXOjScV2dcHQ7MD3SqLIaDOf1UUbeZXJiOrFRCCCVIqTgvTTOQL5gCxSve86HFCiFovCcYKou7W/29I7yctb5rh5vIWBfX/iHuTs7JOfquF7X03ZYAQLD+R7oBIqKYgrqoHM+m9upNPa1vExeQ0W0ZNK+QTMDDm3Aq7xCiJIPRSsMhKu8FT6UgoGGUhS2tqyb3Ghm8tKvZFELWEMJid2hlDUE5wOzNJTqTV7OUZJ2HkqAE1t1ZCbjEt0kzbTPqgDlx/1MXiZaki4KxSSSJahOnOenyAr91oWVdshRoW60rcLGjTQ/j0SqswH8zRCq0yqve+f/v/7LZv/rF+ErAJ2dqs7xq8qou99iQCeuikukN3mpEbivQBElk5dJlJdOQymZvLzzGAzo7MP4LUomL+H5u1VmfT+RSRNasym9ycvAHKza0S6NBho3LFBCktbsgOZ8WTJp8t5j3XGeX1x4wcQpH2CfT4dwHnsvlFh6IYKck0B0k5dumfageQ7O/E2WXlFReLqJb21ZvVlFTVx1XtNJ+TMNDHYwCsfWayhB5ItFZDP+86YUA0O6QYP/oMApFL0EhrrH9mxaK1DU5D0/oSVEydeinR/iOO4lrAeGCsil/Z3yznrwekdN9lRReZc0qvI8rN9V1JoXQlj+vvZcJprJS9b/mh1+m+nGBwuUkKgon3LNwTn5KJtOaeduqJGTX9/nPLfCKR9gRlLHUwZreSl0uxO2ZNXmPJrwSadT3ifKy2ymvP8SFKpMXqhiDOSL2klgKl0qRcikvH1cAy4NpbI8BeE0Y1TmX95het23W6vzMXnJdH1lq836CaGK8hbhcMp7CFCXMPCuN1tD0ei6/Y579tIKVEfXlstgsOwaY9qzAIBPnTVdltd/EOa3uR3gfm+0PpSsFTSjk8vOZ+jVRpT5qTWb0keblZVXZ/Jq9VkCRvn72rJpH5NXsEBR99Djs4RLnLBACUlGTowr7yycI5ucj8lLNXST0Smgd8oXhXcHqxpoJoTJy3MNJof9XWtikI2VSGNvhrnJSzX8cjnonu2tOVnADrHctLdPew0hTV4ZjY9rMF9Em48PxdJQ9FF+qg5UWcLOy3Ci6nxf76DncROc2y14CTenVqjTHko+FO9rqLWm2nPeGogqb3suXXG/I9uy+MCpU3DJ6VNlWn8ttSUgwGDIJQy8n6+loegHJ0GTW5X5aWx7DgP5omc+6r3Qraox5LgfvfnOGvy05dI4POQtDNxL63gmcQf4hGg71cICJSS5TFqaTErHnl7Xhbd+7wn7/2w6pR19qpfKzzzjt0hh0Mxk24cS0SmfLwp7foDOPKdGtZ25jOcLbO9TYiBR1D2X7zpnEuVVFALjOnMAKkf05XmpKC/dxLeWjH4tNmfkjldHojrU0XLkrZv8qvDzoaiOfG+5QAlj8pI+A11ZVFvMpEgvUAKivNToeXRb1lPLUeVVAqd8raxsOmULCp3ZTXWcKsorSJMBvAXkQN7SUPwWb3Wt5+a5BL7VvsZ05LTXUXWmM5/mC9YkzUzaZ80/Yc1pUxNtvXA+EpM6ibIHjCksUEJy3vETKibGPbRyp/39inOPtXwomtGWarB+AsU5Kq0Y3QTs9qZePtvkZdCGPKNzCsJ+IXRRXofk6HRUe9Z35BwmyqtQdG+gZLrfhjJV+S33reaRZNMpTyHZM5C3nbY6H0rWZx6KerZ26LGPBgkEOeWt33r6865OLsx8gqGC8J00qAY9I1oz2gis17p6Aei1zMNDBbRmU2jNpQNMXmkIUb6EShHZNNkCRbvUScGtoeiEqrNuvNqs0lAyadLm4bwHr/Ko9jVWChQv/4Zqp0rbLa8X1Q7TpPehFKUPpS2b1vpQTAZbrhDl2ssTFihheN8pkzFldFvFCDbjsNO8ZdZ4rcnrlZ0HsWWfNYGsKPQqqN+2qPlCaYFD71BQd5lMJjaW27ZV3q1ZZfLSOFMH5Oi0PevpVC8tDhlYBK2gdH7XOm1FKWb/kI+teKhQRFauBl3eoby4ZT8A4HdLt1oajMfzc2oofotL+kWKmSw+qM5VPga/AYYfQ4WiLVC8+urBgtQwWzOe2sX2/Ydd1/bSyvoG82jPZZBLpwJNXkCZSalgRRLmAjQU1f4CfSjOMHZPDaWAXCZlddIaX1vQAqHlAqXfSytTAiWbkeVyl8Vuhz4aSqFoLRNkmbxMFof0TGIURBAnLFBC8MajRgCo3O8knSpVY2s2rTV5/evvXnL9r7MFf/uPqz3TFIvCZYryXN21XEMxwGskNlQsdUY6DUVtTzqmPeeZh9/WrxXX02w65Ly01/2qTu6oUZbfYodmxjdgdRCZNCGTTlXM/t/TY80hGswXtSYxFcoJaDQU2SGOarMEgZe2ZOJDUWukTZK+mO2OezLd10K1lbasvhNWneeIliyGCpVrZJWHEns9xr7BAtqyabRkvTWUQlnn6uqwi8rklZa/+YfHlpZe0QSJBMxyt0yaad9O2r2FgYcPRT7TMe16DUVd2xaiZWWx22Eq5bv6QzpFviYv94Zv3vk4y8cCJSG87Q0TAAD/8LbjAFidtfPhqE5Gkc14z3OYNrodgKXFAMGTzQB3CLEyo5VGnfrz0wGLQ7rmD2g6gpIPRSNQpDYwWjooywknULw1lKDQSHWNo0a2gqjSie1OW0QmlUI2RRVRXCqi7acfOx2ZtPeLXhD+PpSXt1lazvjOFgDAIY+5HSpfouAl44+XA5jVO3pc9wCUNDKdf0t1Yr4mL/lcO1utvMrbQfn/Xnn0DViTQVvSKV+B4q2hWMJb1b3Oj1Nyyvuv+RUkUNTSK63ZNPo1nbSzfH5RXraG4qFVqTx09ZovFpFJ+++bVJDzwNqy+rBhp0anG5w6ox7Z5JUQvvvBN+HPXzrPXhiyfOKiczb0aUePlmGp3i/HGyZ12prOHYsrJ6b98eXtAICvvvuNAMqWgpANfLQcAfd6mHcqJjZqGpHz5dX5ULIyIkZv8rKuf9RIqwPdss8dYVXyi3iXwSuturZCJ1zK0+YyKXTkMjg0oPehDBUsH0g6RRWdhXppJ4xokT4Uj86x4G/y+vo9KwEA42Rn42V+U/fTmknrVyCQaaaPtQYgzuesfnvrbGtQouuEbYHi48hWz31kq9Ie3HWnAhzOOnYsAO8OqW+ogPaWDFqyKU/zj69AKQqkHT6UoEizIB+K6uyzae8gAxV00Z5Lo2+o4DkocGouXsJa1YntQ/HQdNS1ldCvNHkJZFPKh6IXoimyNBSdNuUM2dZFrR0eKviayOOGBYoBU0e3Yfq4Dvv/Ea3ujkt1dHOmj0Euk0Iu4z3PoVfam1dsOwAA+ONL212/5wtFfOHOFwEAx07orPDFqO8TRlgduNdovDzEUuf0czbSAc3+6VYkin5dMlUHpx49GgCw59BA2f0oH0pYk5f3SNPrVpyRSh0taRzSLCGi8s2kU55OefVytmbTyKVTnmsfWetJ+XdqgBWkAHgLlEGHOUQ3mVPdc0dLBkTubWDVdZWfRtcJD9n3oxeA6jqdmrxUG1G/e/njDg/m0Z5NY2Rr1nO2vS1As5VmrXxRIJtK2eHpwRqKvw+lbyAPIktj9pqPNCg1FGuDLeHZrp334DUotMOGVZSX13UK/gIlX/DXUIqybK3ZFNpyaW3kovPaXoM2IQQODxXsthJlhWxTWKBUQWdLBoccS0r//oVtAIAFn5kHQL+0R3ffIMa0Z/GB06YAAI4d3+H63RkievLUkVY+jpdMqdcnTRkFAHh564GKa6iOo8X2f3i/pM5G6r0Gk4yI8lk5uatnAB25NMZ1WAKufCRlsrOdXQaNyWuoUMQI+UI8s34PZlx1P9btcpiA5HnZdAodLRk7UMCLIekE9grX7HdMWGv3eImFEOjPF0qmJp/RnlqD6fsPr634TZnBxnbktJGA+/uG7Htqk3uF2OdLgWl3aBq/gxqtj2jVhzCr567SlDvFldZW6pAqr7NkYzfacmmMas/a5XZSbqJTbVgtQZNJE4gsx7zuXpTmo/LQ+Z56Bwtoz6a1o3pl8mrL6RdddAsUvcnL9qFoBBdQqrfy92uoqHx5mhUb5P21ZNJoy6bRP1T01M6dGoouSEQIoEPeL5u8EkpnSwZPrO2yJb4amasG39lihdGWm6T2HhrEuM4WfOLM6Zg6us013ttzaABnfvcx+//WTFpqB6VGc9a/W7+fMX002nNpVzQYYL2k975oaT1qNOe58ZUQeMv1T9j/60xeSkPRdZ47Dx7GpFGttjnD+YI6F9EzmTvhHIU7zXwD+SImSpPabc9sAAAsen1vKa09iSxlCXqfKK98wQpTzXiYvPodu/l1tlbmM1Swlv9QdnG/8F3VDtbtPlTx28tbLT/LuM6cVvP7h18vA2CN6qeMbsNmhylxt1yA9BhpDvOy4QPAvz+4BkApQMCv4+rUmrys/0dKgVN+z8+9Zm2Q9fgru1EoCOw5NIDdB91rRh0etM6ZJJ/hQTkQcy4/AljtVRfldfCw9SwmycALnU/hlmc2oFcGCZSn6R8qWKtJZzN2OLyXMDjYP2TPI/IyR9kCpSMr8/XxobQop7y77vPOaEMvQSHL1ZJJYYR8Noc8tJTegbz9nntpZKUBgf/8nThhgVIFqkNbuHoXbpGdXNbhmJ8+znrZlWkLAA70DWHHgX7bvj5+RItLI7ni9qWua6hoMdUYneak0W05jG7L4sBh94hw8YZ9+Onj6+3zAe+Or3wk6SVQ+gbzaMtltNpWoSiwavtBTHYKFJcKXnI+HxrM+zZmIQTWOBzPrkCEQtGOdlLLR6gOwXl/mTShsyXj6VdS9A8VLcqVAVwAABwISURBVEGdSlV0FodtDSWNzpZMhflGCRw1mi+vs8df2WV/nzN9jP29XDB9895VAIApo9pQKApPs+Wq7da6S+25NMZ15HDQ8Zx3HRxAey5tz8Y/eNjbxPfACmtuVKlzrKz/Hzzyqrwnb5NXn3yeatJoeSftXPL+3pcsLf2GJ19zpVHPY8roNgCldqzyUtpCi4+Gotr5ZClQ/OYaWXlWaiiv7LTa1xsmddoC9KDHxlU9/XmMldqHl8B/bfchTBvTZrdBr458wx5r7s7RUuhXOOXtKC9vDUU9h5asQ6BURNwJLNvUbW+g5mVurDBZsskr2RwayOOaP1khvpe/5Vj7+F/NsJyYakG2QlHg1O88AgDYJUdwY9uz2NdbEhKv7nKPZlsyKWsZfNlhOjuO448agZFt2Yqd3JwCRjVEr1V8N+7tdf3f3efu1IpFge6+IYzryGnnF6zb3YNNe/twwYlH2cLL+aKrDmx8ZwuE0O86B1jBCTsdI9s+x1ITg4Uixne2uHagbHUIFHWdbJrQ4aOh3L5oI1bvOIgRrRm59EqZhjJU8qGMaK0UTGr0PMK2i7vP/95DJfPWhBEt+N6HTgEA7O/zjjp76xssp/rq7fpF+1JyjobTxLO7px+TRrbafrTdPQO60wFY/j/AO+JsrTQdThxhddTlHboyA46TUWu9ZR25CuO94MRJdgSk0pwU6nmcNGUUMinCavlOqM5ctdPp4zrsTr8c1faVEPXSLHbLpfxPnTZKmoncaTbJNj97Uiemjrby2dZdGWLe0z9kz4L30qy37j+MmeM77DboVRY1SFB+1/IBWX++gNastYy+v4aSRmdLVpbL/fy6pGBWZfQSKM+utzTIdjZ5JZvLzp4OwL3N7lipAgPA+M4cOlsy9rpSSzbus38789hxMn0L9h0qdTblHWEqRWhxTMBSDeamT56BCSNaMKI1Y5sCFE5zg4oE83L8lguUR9fsdv3//UfWWhPrOnIY19lS4Wzfc2gAF/3oaQBWVJuXyUt1giqEttvDvg5YHeo3/teKjlLRRs56GcpbM/aV6QZwv6Bq9KdMXr0aB+a/Sc1gr9wArXzU2DuYR2vWMkOUm84O9A3hfhl9N8LA5AWU7Oc6n85pR1tazIY9lWYxhTWocJs9//TyDmza22ubAXd77InivLdZkzpB5B6NF4vCdd60MZbQKTc5qQHCeNnB6oTs1997Aj427xirzFl3l9LdN4gUWe/EuM4cumVn+90HLJOceuanTBuF5Zv3e46iVdnHdbYgRd4mr3nXWubgT5413XPiohpsjW7PYaz0+e0/7Bb2SuueMrpNG92464Al0Ft9NJTfPG9Fb7Yqs3O55jdohVpn0uTpG1FlHdWWLWkoZcEme+U7cs0lJwPw1ra+dPfLAErmOZNFWqPCAqUKvviu40Hk1iqckxuJCMeMbbdHRUoFBoBL/+poAJYZYW/vIB5ZtVNrEx7lMGv12M5c62UY0Zqt2BTJOcpXo6xy7QMANu6xBJ2KzgJKL8bmvX222WJsRxYTR7TYdnvFTQ6zxtFj2+0lJv7wwlb7uOp8VGelG6m/5ydP299vvmwuAHdwwuGhAlqyKddL6RRwKt/RbTkrystjpObspJZs3IfRZQ7k+1/egYdW7rSDCzpbsq58vnHvSnxLTjZty6WtzqZMoJRrccpufduzlkl0+/7DOEv6yGZN7MSMce3oyKXtpU0U6jlMGdWK846f4Jokq4Tc1DFtGN/ZgkyK8PCqXa7z//L6XrzhGw/a/08c0YoRZSa8q/7wst0Bf/09J9gDgvJBTd+QtRSN8l3sKvOP9NhaRtbOo1zo7DzQjwkjWpBJp3DUyFaslVrIg3K5oqNGWe1DDbruWroF5aiB08jWDNpzGV+T1+j2HFpzlT4U9bxHtpY66fIB2V9e34ue/jzOOGY0MulUhfN/zY6D2HmwH0eNtOo0RZXvV99g3tYaMzLsvjwfNXcnl/YOtVZlHd2edZjnKv2xgBXYk06RrwVg1oROALw4ZGIZ1Z7F3OljcKOjYz1+0ghXmhnj220NRX0u+8Y77cUPx3VYkwGv+NUyXH3fSs/rjO3IYdPePhSLwvHyZuzPPT3uxrxD2rRz6RSOk43op4+vx5NrSxrIz59Yjx8/tg4zxrXj3ivPwTffdyKA0qjIubf4+M4WTBjRYqvXirTDXzS2I2fPdXjJEXX21KtdAEqRbLotZhXnzBqHWROtMiuTwTPr9uDA4SEresvRQbzu6ITVCz2mI4uRrVl09w25/BLFosC//u5l+/+bPjkHE0a04NBAHg+t3AkhBK78nxeweV8fxktfQWdLGocG86W9ZxwvYms2jfZcpuIFLx+pzpbt4Q8vbMPq7Qfx0f9aZAv8v33zDBARTpoyyqW9AsAvnn4dAPCli45HSyaNrMPkpTr0L77reCv0uSjw1KtdWLW9VO9/t6Dki7vhE2cAsDp8NYIVQuCupSXB//Ezj7FNM+sdQR7X/Gk1/uvPr6M9l8bRYywzlnOeUU//kC1kO1rSdiRRuUamOmAAmDtjLNbu6nHVp5qTdeLkkQCAdWWm35XbDuCHj76KXCaFTDrlufruR/9rkf193oyxFU75X/1lE36w8FVk05YJUb1D5Z3wJ36xGIDlAxvfkcNrjqCK17sO4d0/tgY/k0a1IpUijO1osTt2wIp6/I5jlQvAGhQ6hc5QoYht+w9jVFtWG5Voa1NtWVszLx+QvbC5G4Dlix3dlq2wAKhlZuafPd1+vnVQUJpboBDRRUS0lojWE9FV9bz2J+UeDoA1Cn+LnGimmDGuA6/v6cULm7uxeV8vjh3fYduiAWueiWLltoPIpAifO+84Vx4XnjQJm/f1YeX2AxU256KwXtYZV92PNTsOyi2I+3HqtFH4y9fOt8NKAbfJ7T9kKOsM2dFPlLb430vtQjXmqaPbMGf6GEwc0YKungHXiHzz3j6059JY8vV3ArDMcxNGtOCMYyyNp1gU+MrvVwAomcTKzWq/WrQRM666HwDw/lOn4I6/O8sOxfz5E1ZgwSdvWWxf73sfPgVj2rOYPKoVrzs0PiXExnbkcN7xEwEAZ1yz0HZ2Lli00b63ay4+CecdPxET5HP4h18vwzPSzgyUzHOdrRkIUTL5KGcwYJmTJoxowZ9f7cLPn1hvd0rlJpapo9vwiTOPQTZNeM9PnsZWh71eOe3/auYYrNp+EB/42TPo7h3Ee378NL4vHeWnTrPqMpsm24T1/AbrOSpzl+Kvf/6c/d2pZcyWAtppHi3fF6OjJYNRbVlMGtmC13aX6lUFmxw1shXjO3Noy6axxXEPH7yhdM2WTBopuUxIuYby9Lo9dr3OGN+B/qEi/iwHGx+bd7RtOrr2r98EoHIt00//cgmAkhmvLZt2dcLLNnXb9UJkDfbGdeaw59CgLbi+KU2qQ/YEyTRasyl8/5FX8ZGbrPtwLvB67IROvP2NE7F4wz57UOEcxEyTfqnxnTmXtvzdB9bgziWWhqXe5YkjWl0a/jfuWYlDA3mcdew4z6jEB1bswD/+ZjkA616UD6zc37N2Zw9SBBw9ph1Hj23Hxj1uTXf19oMYzBdx9nHjoIwnbPLygYjSAH4O4N0ATgTwMSI6sV7Xv/i0qfZ3NTpzojrsD97wHB5YsbNiRPumqaPs76t3HES+KHDchE5XtNhbZ1tLvnzgZ8/aHbR6OeccUzJXvfvHT+PWZzfi2fV7MXVMmy1M7vv8OQCskdNTr3a5nPbXXGzZXt98nOXT+d5Da7FsU7dtW7/nc29Gey5jR+eo4AMhBJZs3Ifzjp9gO4YB4KQpI7F5Xx9ufPI1V4d//gmT8LY3TMCSjfuw62A/+uUMZRWFBADffO8JAEqz+3f3DLhs/OcdPwEfnXs0lv/bBThn1nis2X4QA/kCnli729YSx7TnMG/mWPucV6XD+dn1pRBj9Uyc5f7ULc/b3y84aRKAUiTXvt5BrN5+EL+QnStgCdwNe3qxYU8v/uPhtTjtOwsBWP6ENx41Ai/92wV22rOPG1fhyAZKEU/KGf7y1gNYsGij7bAGrAEJYEV6bdt/GA+t3IlX5O8ny7bz9uOt9jFYKOKjNy3Cn1/twrETrPOmjGq1o4ymjWnHo2t2Ye+hAduHcczYdvz40tPs6xWFNajIF4quTvKysy1tatqYNqzafsBeRFOFRF/+lpl22lFtWfvZb9rbix88Yg1eVNjzcbL+lZBwCoZsOoU508fggRU7UCgKPPHKbhweLFRsw3DchA4s29Rtd/TOwdLyb77Lvt/BQhFdhwYqIiEV6hkv2diNQwN5O1T7rbPHo7Mlg5njO9DTn7fN2t+81xJKYztyOFOuHDBxZKs9UDg8WMA9y61ItzcfNw5fvsha6cKp4e/u6cdvpUnvLbPH46hRrejqGbC1DQD43B0v2N/HtOesIJGWjMsM/PLW/bh/xQ5ceNJRyGUsa4RzCkHvQB5/LQX+m6aNRor0e/jETWVP2DzMA7BeCPE6ABDRnQAuBrDa96wYefRfzsU7f/AUPjxnWsVv733TZHz57pKp5YTJbpPYUaNa8a33n2ibDQDLp7H4a+8s2dFHt7n8KEApwmn+m2fglZ099ohIdfgjWkrO61OmjcYJk0firqVbcdfSrXYH9KO/Oc3ubMZ1tuCts8fj6XV78KEbrUbYnkvbne7Fp03FLc9swIJFm7Bg0SY773OlsFOM62jBnkODuP6hV3D9Q68AAB7/4tuQy6Rw4uSReHDlTtc8G8Vv/v4sTBxZ0gC++b4Tcc2fVuNTv7A6+p9+7HS8/9Qp9u/vOnES7l62FfOufcyefPjOEybZ9fLXp0/FPcu34d0/ftry/ziioM45ztIix3e6R/gA8NgX32abCdWnc48b532r+gIsR+7p33kEh4cKeP+pU+xZ8gBw7PhO17m5dAq//Mxf2WaMoxyaz48eXWd/X/ntC+3FPedMH4Nf/2Wz3eGN72yx54X892VzMevrlr/k+Y378PytVp390ztm4V8uON7Ob2Sb9ZrP+X+P2sd+8NFTMXdGSQB3yXqa9fUH8eWLSudeKIXshBEteO61vbjk58/ao+Z3vHGibTIFLLPVY6/stjVPxX9+9FQAbp8dYC1p5OQdb5yI/3h4LY772gMo50sXWmV6/6lT8C93vYSZX3WnOevYsRgtNVzlt3O2tw+eMRU/+GhJgE4f227f88lXP2wf/48PW2VVZqILf/SU6zpLv/5O+9mkyQpH/uhNizBZRo59+pwZ+IoUJoClZagJuYrjJ43AxBGtuPCko/CjR9fhgzc8h8+edxyeXNvlqgu1zE/vYB63PbsRyzfvx/tPnWK/68oqctzEDvz+ha34yWPrMGtiJx5zWAOmjGrF1NFteM+bjrL9XLWkaTUUAFMBOD14W+WxujFr4ggs/+a78HdvnVnxW0dLBo/887n2///5kVMr0vztOTPxsXlH27/PmtiJsR05ewQLAE9/5e32d2UTByzH/3UfOgVP/Ot59rwXAPjoX7mF25mOUfsTssE650kAVsd0yWmlTvsNk0bYvp62XNrVaSje5+jkAcsvUM5MOSJVO/KV83/OPRZnSw1J8ZG50zCuI4e1u3qQy6Ts0aDizceNw+h2S8gOFQSOndCBX8yfa/9+3YfeZIeuKmHymXNmYsO/v8fuCN4waQQ+fuYxOGmKZbcf0ZqxhQgAnCiPO/nR35yGjde9F8eMa8ftn5lnd3BAKYJNmakUsye5Bcqnzp6ONx9XMo2e/8aJ9oQ/xU2fPMOeNwAA732Tu56njC4JoUw6hT9/6TyXtgsAH5l7tOv/95c9K6C02oLC+YxVCPTyb77LNtOef8Ik+3flZ5tZttLD3597LMq55uKTcIqsl46WDJ75ytsxZ/oYPPLP57ruE7DMRGeVPW8AWPy183Hl22cBcFsGFJe/Zaa9SgUAnDS58vl9R2rkitPKhBsAPP3lt9tC/vRjKn//8aWnuVbxVvf7/MZ99oTiz799liusff7ZM2zfHGCtxPDAF94KADhh8ki7Dm988jV7msG3P3ASbvxk6V1XPqgXt+zHNX9ajbZsGtd98E34G/mc33+K9Xx/sPBVfO6OF/D7F7Zi3oyxWPXtC0FEmDtjLG74xBxMHlXqV2oF1WOySy0goo8AuFAI8Xfy/08BmCeE+MeydFcAuAIAjjnmmDmbNm2qyKuWLHptLw4P5fGON07y/L1YFBh07FtRDUOFIh5/ZbdrVOP8bcFzGzGuM4ebnnwdn3v7cZ4vJWA5QJdt6sYlp011jbSB0vpDagOsTNp7LLJxTy9GtGYwtiNXsfvik2t349E1u5AmwuffMRvjOyvTAJa9/LZnN+DcN0zACR6dw4HDQ3h2/R48s34PLjt7Ot54lDtNd+8gdh7sx7Pr92DyqDa895TJnmUdyBfw8KpduODESRX1P5AvIJdOYcW2AzhqVKttnirnriVb8OPH1uGGT5xRMQIHrOe76PW9uGPxJlz3oVNs7cLJvt5BPL3OEvYfOHVKRZ309A9h094+vLz1AM6ZNc61rlx5Pl09A/YqxU76hwrYsKcXT67twnvedJRnHsWiwNfuWYE7l2zBzZ+agwtOOsr1++6D/XhybRf+++nXccLkkfj2B06yowkVr+7qwaNrduGtsyZgIF/A6ceMcS2eGoQQAi9u2Y+xHTnc9uxGfPKs6XawhvNe9hwawN3LtuLi06ZWCDbACiDoHyqgb7CAEyaPtOfMKA4PFvDUui60ZFLY3TOAM44ZjVkT3fVWKAps338YYzty2Np9GLMndlZsCyGEwMa9fXjq1S5k0oRPnDkdXrzWdQgrtx3AubMnuOrsxS378b/Lt2FMew4XnDQJnS0Z23qgONg/hO8/vBZvmTUeRSEwa2JnRVmXbdqHJRu7sfNAP2aO78Alp091hdpHhYiWCSHmBqZrYoFyNoBvCSEulP9/FQCEEP+uO2fu3Lli6dKlup8ZhmEYD0wFSjObvJYAmE1EM4koB+BSAPc1uEwMwzDDlqZ1ygsh8kT0eQAPA0gDuFUIsarBxWIYhhm2NK1AAQAhxAMAKkNCGIZhmLrTzCYvhmEYJkGwQGEYhmFigQUKwzAMEwssUBiGYZhYYIHCMAzDxELTTmysBiLqAbDWJ8koAAd8fgeAYwBsjphHUJo48gCap6xB5YzrOlzW2lxnuLVXYPiV9XghROUSDOUIIYbNH4ClAb/fbJBHVwx5+KaJI49mKmtQObmsR35ZTcrLZW1oWX37TvXHJi83fzRIsz+GPILSxJEH0DxlDSpnXNfhstbmOsOtvQLDr6xGDDeT11JhsB5NrfOoF81S1mYpJ8BlrSXNVN7hVlbTPIabhnJzQvKoF81S1mYpJ8BlrSXNVN7hVlajPIaVhsIwDMPUjuGmoTAMwzA1YtgLFCK6lYh2E9FKx7FTiWgREa0goj8S0Uh5PEtEC+TxNWoPFvnbk0S0lohelH8TG1zWHBHdJo+/RETnOc6ZI4+vJ6KfkNcuV8kpa03rlYiOJqIn5PNcRURfkMfHEtFCIlonP8c4zvmqrLu1RHSh43hN6zXmstajvYYqLxGNk+kPEdHPyvJKVN0GlDVRbZaI3kVEy2T9LSOidzjyirdeTULBjuQ/AOcCOAPASsexJQDeJr9/BsA18vvHAdwpv7cD2Ahghvz/SQBzE1TWKwHcJr9PBLAMQEr+/zyAswEQgAcBvDvBZa1pvQKYDOAM+X0EgFcBnAjgewCuksevAnC9/H4igJcAtACYCeA1AOl61GvMZa1Hew1b3g4AbwHwDwB+VpZX0urWr6xJa7OnA5giv58MYFut6nXYayhCiKcA7Cs7fDyAp+T3hQA+pJID6CCiDIA2AIMADtajnEDosp4I4DF53m5YoYNziWgygJFCiEXCalG3A7gkiWWNu0xeCCF2CCFekN97AKwBMBXAxQAWyGQLUKqji2ENKgaEEBsArAcwrx71GldZ4yxTnOUVQvQKIZ4B0O/MJ4l1qytrPaiirMuFENvl8VUAWomopRb1OuwFioaVAD4gv38EwNHy+90AegHsgDXz9PtCCGeneZtUcb9ZCzNSyLK+BOBiIsoQ0UwAc+RvUwFsdZy/VR5LYlkVdalXIpoBazS3GMAkIcQOwHqBYWlOgFVXWxynqfqra71GLKuibu3VsLw6kli3QSSpzTr5EIDlQogB1KBeWaB48xkAVxLRMlgq5aA8Pg9AAcAUWCaELxLRsfK3Twgh3gTgrfLvUw0u662wGshSAD8C8ByAPCzVtpx6hfqFLStQp3olok4Avwfwf4UQflqnrv7qVq8xlBWoY3sNUV5tFh7HGl23fiStzar0JwG4HsD/UYc8kkWqVxYoHgghXhFCXCCEmAPgN7Bsz4DlQ3lICDEkTTPPQppmhBDb5GcPgP9BnUwLurIKIfJCiH8WQpwmhLgYwGgA62B13NMcWUwDsL0834SUtS71SkRZWC/mHUKIP8jDu6RJQJlcdsvjW+HWnlT91aVeYypr3dpryPLqSGLdaklgmwURTQNwD4DLhBCqP4u9XlmgeKCiMogoBeAbAG6SP20G8A6y6ABwFoBXpKlmvDwnC+B9sMw7DSsrEbXLMoKI3gUgL4RYLVXhHiI6S6rilwG4N4llrUe9yjq4BcAaIcQPHD/dB2C+/D4fpTq6D8Cl0gY9E8BsAM/Xo17jKmu92msV5fUkoXWryydxbZaIRgO4H8BXhRDPqsQ1qdcoHv0j4Q/WSHkHgCFYEvtyAF+AFTnxKoDrUJoA2gngd7AcW6sBfEmUIj6WAXhZ/vZjyGiaBpZ1BqyVldcAeBTAdEc+c2E18tcA/Eydk7Sy1qNeYUXqCHmNF+XfewCMgxUosE5+jnWc83VZd2vhiIqpdb3GVdY6ttdqyrsRVjDHIdluTkxw3VaUNYltFtbgrdeR9kUAE2tRrzxTnmEYhokFNnkxDMMwscAChWEYhokFFigMwzBMLLBAYRiGYWKBBQrDMAwTCyxQGCYhENE/ENFlIdLPIMdqzgzTaDKNLgDDMNaEOCHETcEpGSa5sEBhmJiQC/U9BGuhvtNhTeC8DMAJAH4Aa2LsHgB/K4TYQURPwlq37BwA9xHRCACHhBDfJ6LTYK0k0A5r0tlnhBDdRDQH1tpnfQCeqd/dMUwwbPJimHg5HsDNQohTYG1tcCWAnwL4sLDWMLsVwLWO9KOFEG8TQvxnWT63A/iKzGcFgKvl8dsA/JMQ4uxa3gTDVANrKAwTL1tEab2kXwP4GqxNjRbKVczTsJakUfy2PAMiGgVL0PxZHloA4Hcex38F4N3x3wLDVAcLFIaJl/K1jHoArPLRKHpD5E0e+TNMYmCTF8PEyzFEpITHxwD8BcAEdYyIsnJfCi1CiAMAuonorfLQpwD8WQixH8ABInqLPP6J+IvPMNXDGgrDxMsaAPOJ6L9grfr6UwAPA/iJNFllYG0itiogn/kAbiKidgCvA/i0PP5pALcSUZ/Ml2ESA682zDAxIaO8/iSEOLnBRWGYhsAmL4ZhGCYWWENhGIZhYoE1FIZhGCYWWKAwDMMwscAChWEYhokFFigMwzBMLLBAYRjm/28UjAKqgNEKZRSMglEwCkYBVQAA+LxNn5ORreoAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'].plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Un zoom sur les dernières années montre mieux la situation des pics en hiver. Le creux des incidences se trouve en été." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEKCAYAAADuEgmxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztvXmUXFd16P3bNfbc6lGzLFmSB1lgGwtZZvAHGGwFHtgkdhAJtpKYp4Rn8kKStxKcxbfM8DlAHsHESezEYMc2JGBjCAjwgLAxYPAkGduarMmSrLlbPY817u+Pe26rulXdXdVdPVT3/q1Vq6tO3XPq3NtVd589nL1FVTEMwzCMXAhM9QQMwzCM4sGEhmEYhpEzJjQMwzCMnDGhYRiGYeSMCQ3DMAwjZ0xoGIZhGDljQsMwDMPIGRMahmEYRs6Y0DAMwzByJjTVEyg09fX1unTp0qmehmEYRlGxbdu206raMNpxM05oLF26lK1bt071NAzDMIoKETmcy3FmnjIMwzByxoSGYRiGkTM5Cw0RCYrIb0Xkx+51rYhsEZF97m9NxrG3ish+EdkjItdktF8mItvde3eKiLj2qIg85NqfF5GlGX02us/YJyIbC3HShmEYxtjIR9P4C2B3xutPA0+q6krgSfcaEVkFbAAuAtYDd4lI0PW5G9gErHSP9a79ZqBNVVcAdwBfdmPVArcBlwNrgdsyhZNhGIYxueQkNERkEfAB4BsZzdcCD7jnDwDXZbR/R1VjqnoQ2A+sFZH5QJWqPqteEY8Hh/Txx3oEuMppIdcAW1S1VVXbgC2cETSGYRjGJJOrpvE14G+AdEbbXFU9AeD+Nrr2hcCRjOOOuraF7vnQ9kF9VDUJdAB1I4w1CBHZJCJbRWRrc3NzjqdkGIZh5MuoQkNE/gfQpKrbchxTsrTpCO1j7XOmQfUeVV2jqmsaGkYNMzYMwzDGSC6axtuBD4nIIeA7wHtE5FvAKWdywv1tcscfBRZn9F8EHHfti7K0D+ojIiGgGmgdYSzDMIqI9t44P3rFfrozgVGFhqreqqqLVHUpnoP7KVX9GLAZ8KOZNgI/dM83AxtcRNQyPIf3C86E1SUi65y/4qYhffyxrnefocATwNUiUuMc4Fe7NsMwiohHth3lz7/9W9p64lM9FWOcjGdH+JeAh0XkZuAN4AYAVd0pIg8Du4AkcIuqplyfTwD3A6XAY+4BcC/wTRHZj6dhbHBjtYrIF4AX3XGfV9XWcczZMIwp4HS3Jyx6Eyks/LG4yUtoqOrTwNPueQtw1TDH3Q7cnqV9K7A6S3s/Tuhkee8+4L585mkYxvSitScGQH8iNcqRxnTHdoQbhjHhtPYkABMaMwETGoZhTDhtvZ55qj+RHuVIY7pjQsMwjAnHd4DHTNMoekxoGIYx4bQ4odGfNKFR7JjQMAxjQkmm0nT0+T4NM08VOyY0DMOYUNqdwABzhM8ETGgYhjGhZG7oM02j+DGhYRjGhNIySGiYplHsmNAwDGNCGaRpmCO86DGhYRjGhNLaa+apmYQJDcMwJhRf0wgGxPZpzADGk7DQMAxjVFp64lREQwQDYj6NGYAJDcMwJpS2njg15WHiybSZp2YAZp4yDGNCae1NUFsWoSQcNEf4DMCEhmEYE4qnaUQoCQXNPDUDMKFhGMaE0toTp7Y8Qkk4YOapGcCoQkNESkTkBRF5RUR2isjnXPtnReSYiLzsHu/P6HOriOwXkT0ick1G+2Uist29d6cr+4orDfuQa39eRJZm9NkoIvvcYyOGYRQVbb1x5pRGiIZN05gJ5OIIjwHvUdVuEQkDz4iIX6b1DlX9SubBIrIKr1zrRcAC4Gcicp4r+Xo3sAl4DngUWI9X8vVmoE1VV4jIBuDLwEdEpBa4DVgDKLBNRDaratv4TtswjMkilkxTGglQEg4OJC40ipdRNQ316HYvw+6hI3S5FviOqsZU9SCwH1grIvOBKlV9VlUVeBC4LqPPA+75I8BVTgu5Btiiqq1OUGzBEzSGYRQBqbSSSiuRYJBoKGD7NGYAOfk0RCQoIi8DTXg38efdW58UkVdF5D4R8evFLwSOZHQ/6toWuudD2wf1UdUk0AHUjTDW0PltEpGtIrK1ubk5l1MyDGMSiCc9H0Yk5GkaZp4qfnISGqqaUtVLgEV4WsNqPFPTcuAS4ATwj+5wyTbECO1j7ZM5v3tUdY2qrmloaBjxXAzDmDwGCY2QOcJnAnlFT6lqO/A0sF5VTzlhkga+Dqx1hx0FFmd0WwQcd+2LsrQP6iMiIaAaaB1hLMMwioBYytMsIkGhJBwkZvs0ip5coqcaRGSOe14KvBd4zfkofD4M7HDPNwMbXETUMmAl8IKqngC6RGSd81fcBPwwo48fGXU98JTzezwBXC0iNc78dbVrMwyjCEikPMOAZ54yTWMmkEv01HzgAREJ4gmZh1X1xyLyTRG5BM9cdAj4UwBV3SkiDwO7gCRwi4ucAvgEcD9Qihc15Udh3Qt8U0T242kYG9xYrSLyBeBFd9znVbV1HOdrGMYkcpZPI5lCVXHR9kYRMqrQUNVXgUuztN84Qp/bgduztG8FVmdp7wduGGas+4D7RpunYRjTjwGhEQxSEg6iCvFUmmgoOMUzM8aK7Qg3DGPCyNQ0oiHvdmMmquLGhIZhGBNG3DnCw84RDthejSLHhIZhGBNGPJnpCPeEhmkaxY0JDcMwJox4yhMQURc9BVYnvNgxoWEYxoQxyBEe8jUNExrFjAkNwzAmjKEht2DmqWLHhIZhGBOG7wiPZJqnTNMoakxoGIYxYSScIzwzesqERnFjQsMwjAkjlso0T/mOcDNPFTO5pBExDMMYE75PIxoMEg15z03TKG5M0zAMY8LI5gi3zX3FjWkahmFMGIlM81Ta0ojMBEzTMAxjwogn0wQEggFzhM8UTGgYhjFhxFNpIi5RYSggBMR2hBc7JjQMw5gw4sk0kaB3mxERVyfczFPFjAkNwzAmjFgyTSSjdoYnNEzTKGZyKfdaIiIviMgrIrJTRD7n2mtFZIuI7HN/azL63Coi+0Vkj4hck9F+mYhsd+/d6cq+4krDPuTanxeRpRl9NrrP2CciGzEMo2hIpNIDdTTAS1zoO8eN4iQXTSMGvEdVLwYuAdaLyDrg08CTqroSeNK9RkRW4ZVrvQhYD9zlSsUC3A1swqsbvtK9D3Az0KaqK4A7gC+7sWqB24DLgbXAbZnCyTCM6U08mSYcPFPaNRwMDNQNN4qTUYWGenS7l2H3UOBa4AHX/gBwnXt+LfAdVY2p6kFgP7BWROYDVar6rKoq8OCQPv5YjwBXOS3kGmCLqraqahuwhTOCxjCMaU48ecYRDhAKykC6dKM4ycmnISJBEXkZaMK7iT8PzFXVEwDub6M7fCFwJKP7Ude20D0f2j6oj6omgQ6gboSxDKNgJFJp/u6/t3OsvW+qpzLjyIyeAogEAyQsjUhRk5PQUNWUql4CLMLTGlaPcLhkadMR2sfa58wHimwSka0isrW5uXmEqRnG2Rw63cN/Pf8Gz+yz706hyYyeAs88lUybeaqYySt6SlXbgafxTESnnMkJ97fJHXYUWJzRbRFw3LUvytI+qI+IhIBqoHWEsYbO6x5VXaOqaxoaGvI5JcOgN+5F8/TELKqn0AzVNMJBMUd4kZNL9FSDiMxxz0uB9wKvAZsBP5ppI/BD93wzsMFFRC3Dc3i/4ExYXSKyzvkrbhrSxx/reuAp5/d4ArhaRGqcA/xq12YYBcMXGr3x5BTPZObhOcIHaxpxM08VNbnknpoPPOAioALAw6r6YxF5FnhYRG4G3gBuAFDVnSLyMLALSAK3qKq/hPsEcD9QCjzmHgD3At8Ukf14GsYGN1ariHwBeNEd93lVbR3PCRvGUPoSnrDoNk2j4MSTg0Nuw8GACeciZ1ShoaqvApdmaW8Brhqmz+3A7VnatwJn+UNUtR8ndLK8dx9w32jzNIyxYprGxJHdPGU+jWLGdoQbs57emPk0JopsjnDzaRQ3JjSMWY+vYZimUXgSQzUN2xFe9JjQMGY9vS4XUnfMhEahGbq5L2I7woseExrGrKdvwKdh5qlCMzR6KhSwkNtix4SGMes5s0/DNI1CEzPz1IzDhIYx6+k1TWNCUFUvy23QzFMzCRMaxqzHd4CbplFYkmlFFdsRPsMwoWHMegbMUxY9VVD8nd+RkIXcziRMaBizHt8R3p9Ik7JkegXDFxqDHOHOPOVlCTKKERMaxqwnc3+G7dUoHH7djMEht17iavNrFC8mNGYosWSK//PdV9h1vHOqpzLtyXSA267wwjFgnhqyIxwgmTYTVbFiQmOG8oPfHuORbUf5rxcOT/VUpj298RTBgLcCNr9G4cimafhCI5E0TaNYMaExA0mnla//6iAAT+9pNvvxKPTGU9SWR7znpmkUDF/TiA7ZpwFYydcixoTGDOTne5rY39TN5ctqOdrWx8HTPVM9pWlNXzxJQ0UUME2jkGRzhIcDvk/DhEaxYkJjhpFMpfnKT/eycE4pX/q9NwPwi71WxnQ4VJXeRIqGSic0bK9GwRjRPGVCo2gxoTHD+OZzh9l9opPPfOBCltWXc259uQmNEYgl06hC/YCmYeapQpHI5ggP+ULDTKbFSi7lXheLyM9FZLeI7BSRv3DtnxWRYyLysnu8P6PPrSKyX0T2iMg1Ge2Xich2996druwrrjTsQ679eRFZmtFno4jsc4+NGMPS1Z/gqz/dy5XnNbB+9TwArlhex7ZDbVM8s+mLHzlVX+n7NEzTKBSxEUNuTdMoVnIp95oE/lpVXxKRSmCbiGxx792hql/JPFhEVuGVa70IWAD8TETOcyVf7wY2Ac8BjwLr8Uq+3gy0qeoKEdkAfBn4iIjUArcBawB1n71ZVe0umIXXm3voiiX52OVLcPKYuoooXbEk6bQScPZk4wy+OarBNI2CM9yOcDChUcyMqmmo6glVfck97wJ2AwtH6HIt8B1VjanqQWA/sFZE5gNVqvqseuE8DwLXZfR5wD1/BLjKaSHXAFtUtdUJii14gsbIQlNXDIC5VSUDbeWRIHCmZoQxmD53XcynUXiyRU+FTGgUPXn5NJzZ6FLgedf0SRF5VUTuE5Ea17YQOJLR7ahrW+ieD20f1EdVk0AHUDfCWEYWmrr6gSFCI+opk2Z2yY5vnqosCRENBSx6qoBkjZ5y5qm47dMoWnIWGiJSAXwP+JSqduKZmpYDlwAngH/0D83SXUdoH2ufzLltEpGtIrK1uXn2On2bOmOIQH1FZKCtPOppGlaVLjt+2pDScIjyaMj2aRSQRFafhu0IL3ZyEhoiEsYTGP+pqt8HUNVTqppS1TTwdWCtO/wosDij+yLguGtflKV9UB8RCQHVQOsIYw1CVe9R1TWquqahoSGXU5qRNHXFqCuPDJgAAMojTtMwW31W/GSF5dEgZZGgaRoFZCDkNksaETNPFS+5RE8JcC+wW1W/mtE+P+OwDwM73PPNwAYXEbUMWAm8oKongC4RWefGvAn4YUYfPzLqeuAp5/d4ArhaRGqc+etq12Zkoamzn4bKkkFtvnnKbPXZ8R3fZZEg5ZGQXacCMpIj3MxTxUsu0VNvB24EtovIy67t74CPisgleOaiQ8CfAqjqThF5GNiFF3l1i4ucAvgEcD9Qihc19Zhrvxf4pojsx9MwNrixWkXkC8CL7rjPq2rr2E515tPUFaPROXR9BoSGraCz0uebpyIhyqNB08gKSCyr0LCQ22JnVKGhqs+Q3bfw6Ah9bgduz9K+FVidpb0fuGGYse4D7httnobnCL9gXuWgNj96yrK3ZscXEmXhIOVR0zQKyYAjPGDmqZmE7QifIaTSyunuOI1Vw2gadjPMii80SiOeT8M0jcIRS6aJhAKD9gf5O8KTtiO8aDGhMUNo7YmTSiuNQ30aEd88ZTfDbPS5tOjRUIDySMiizApILJmiJDT4FjMQcmuaRtFiQmOG4O/RGOrTKHMht7ZPIzu98RRl4SAiQlVpmI6+xFRPacbQn0gTDQcHtfmmKjNPFS8mNGYI/m7wxqrBmkY4GCASCtBtjvCs9MaTlDq/T215hK7+5IAt3hgfsWRq0G5wyExYaNe4WDGhMUNo7nRCY4imAZ4z3DatZac3nqIsQ2gAtPXGp3JKM4ZYMk3JUE3DaoQXPSY0Zgi+eaohm9CwqKBh6U+kBm5sdU5otHSb0CgEsUQWTcPMU0WPCY0ZQlNXjOrS8FkrO/Cc4bZPIzux5Bm7u69ptPaY0CgEsWT6LKERCAihgJjQKGJMaMwQmrtiWbUMwDatjUA848ZW53J2tfTEpnJKM4ZYIk00dPYiJhQUM08VMSY0Zggt3fEB88pQyqMWSjocmc7amjLTNApJfzJFSfjsW0w4GLBggyLGhMYMoaUnNlCydCjlEcveOhyZJpQ5ZRFEoM2ERkEYTtOIBANmnipiTGjMEFp64gM2+aGURYOmaQyDJzS8G1swINSURWgxoVEQYskU0WE0DdsRXryY0JgBJFNp2nsTwwqN8khooG6EMZihewlqyyNmnioQ/Yk0JVk0jXDIHOHFjAmNGUBbr7eLua5ieJ+GJSzMTiyRHrQari03TaNQDKtpBAKWRqSIMaExA/BXxsNrGkHiqbQ5H7MQTw22u9eZplEwsoXcgmeeMk2jeDGhMQPwQ0TryocLufWSFvZZ2O1ZxBLpQfUeakxoFIxMf1Em4ZCYT6OIMaExA/B3MA9vnnJ1ws2vMQhVPcunUVceoa3XyxhsjJ1EKk0qrcOH3JqmkRcHT/dMm6i+XMq9LhaRn4vIbhHZKSJ/4dprRWSLiOxzf2sy+twqIvtFZI+IXJPRfpmIbHfv3enKvuJKwz7k2p8XkaUZfTa6z9gnIhsxzmJU85TTNCzT7WCSaSWtnOUIV8Wy3Y4Tv2pfVk3DzFN5oap85N+f5f/+dM9UTwXITdNIAn+tqhcC64BbRGQV8GngSVVdCTzpXuPe2wBcBKwH7hIR/5tzN7AJr274Svc+wM1Am6quAO4AvuzGqgVuAy4H1gK3ZQonw6OlJ47Imc1pQ/FraljY7WCy3djOpBKxXeHjIZbwTKHZQ25tR3g+tPTEaeqKcaCpe6qnAuQgNFT1hKq+5J53AbuBhcC1wAPusAeA69zza4HvqGpMVQ8C+4G1IjIfqFLVZ1VVgQeH9PHHegS4ymkh1wBbVLVVVduALZwRNIajtSfGnNIwwUC2qrwZmob5NAbhBwZk3th8v5AlLRwf/e7aZg25NU0jL/Y7YXGktXeKZ+KRl0/DmY0uBZ4H5qrqCfAEC9DoDlsIHMnodtS1LXTPh7YP6qOqSaADqBthLCOD1p44dcPsBgcGUn9bptvBxJKeEI0EB5unwFKJjJeRNY2AaRp5sM8JjROd/QPf2akkZ6EhIhXA94BPqWrnSIdmadMR2sfaJ3Num0Rkq4hsbW5uHmFqM5PT3cPvBgeo8OuEmyN8ELFEFk3DBROcNqExLs6Y/s6+xVgakfzYf6oLAFU41tY3xbPJUWiISBhPYPynqn7fNZ9yJifc3ybXfhRYnNF9EXDctS/K0j6oj4iEgGqgdYSxBqGq96jqGlVd09DQkMspzShae4ZPVghnSr7aBr/BZPNpNFREiYYCHD7dM1XTmhH0+5pGVvOU7QjPh/3N3QPa8BvTwESVS/SUAPcCu1X1qxlvbQb8aKaNwA8z2je4iKhleA7vF5wJq0tE1rkxbxrSxx/reuAp5/d4ArhaRGqcA/xq12Zk0DpC3ik44wg389RgfFU/czUcCAjL6st53YTGuIhl8Rf5hIIBErbRNGf2nerm8nNrgenh18hF03g7cCPwHhF52T3eD3wJeJ+I7APe516jqjuBh4FdwOPALarqL3E/AXwDzzl+AHjMtd8L1InIfuCvcJFYqtoKfAF40T0+79oMRyqttPWOrGmUuiJD/Qn7oWYyXFjo8oYKXm+eHpEqxcpoIbdx82nkREdfgqauGFcsryMaCnBkGpinQqMdoKrPkN23AHDVMH1uB27P0r4VWJ2lvR+4YZix7gPuG22es5X23jiqjOgIDwSEcFCmhRNtOuFHT0WG2N2XN5Tz2I4TbuPf2Tc9Y3QGHOFZfRpCMm0LmFzwI6fOa6xkcW0Zb7QUh6ZhTGNaRtnY5xMNBQdWf4ZHNvMUwLkNFaSVafEDLVYGQm6zlB8Om3kqZ/y9GSsaK1hSW1YcPg1jetPpdi5Xl4ZHPC4aCpimMYRs0VPgmacADpiJasyMpGmEQxZymyttvd6isLEqyuKaUo609uK5e6cOExpFTo/bsOfnlxqOaMhKbA5lOLv7soZyAA40mzN8rIzkCA8HhHgqPeU3v2KgJ55CxNskubi2jK5YkvbeqU1xY0KjyPEjovxd38MRCQXMPDWE4cxTFdEQ86pKTNMYByOH3HrXO2lJIUelN5akLBwkEBDmV5cC0NQ1tSluTGgUOX4+KT+sdjiioeCAOcbwGM4RDrC8sZzXTdMYM7EBn0Z28xRg6dFzoCeeotT9tmvKPBP0VGcrMKFR5PiaRsUomkY0bD6NoYy0a3llYyW7T3Ty0httkz2tGYF/bTNTtPj4moalRx+d3nhywPRc44Jd2ntNaBjjwBcaZTn4NMw8NZiR9hJsuvJc5leX8LFvPM8rR9one2pFTyzh1Slx1Q8GEQl6bbYrfHR6YinKnKYxkBfNhIYxHnriKcJBGXU/QTQUNEf4EGIJz8kYDp59Y1swp5SH/+wKVOG/f3tsCmZX3AxX6hW8HeFgQiMXeuNJyl3C0TnOPGWOcGNc9MSSozrBwRzh2Ygl00SC2VfDAI2VJZw3r5K9LmGckTuxZCrrHg3IME/Z93FUeuMpytzvOxoKUh4Jmk/DGB/dseSoTnCwfRrZGGk17HP+3AoTGmOgP5HOGm4LZ5zjtogZnUxNA2BOWWTKy76a0ChyPE1j9FQX5tM4m1gyTXSY1bDPeXMrOd0d53S3VfLLh5FSsPiFmfywXGN4Mn0a4Pk12synYYyH3ngqJ/OUhdyejXdjG0XTmFcJwN6Tpm3kQyyRzhpuC1DqVs59VklyVDKjp8CLoGo1n4YxHrpjyVHDbcH3adiPNJOczFNOaOwxE1VeeNd2GE3DCZN+03xHpSc+WNOoKQtbyK0xPnry8GmY43EwsUSayChRZw0VUWrKwubXyJP+xPBaXNTMUzmRSKWJJ9ODfBo1ZRFzhBvjoyeWGnWPBvib+0xoZJKLeUpEOG9uJXvMPJUXI2lxJWETGrnQ68x3ZdFMTSNCV39ySsOVTWgUObmap6KhIMm0krTY+AHiOZinwDNR7T3VbQn28mCkkFvfp2FCY2R6427jboamUVs+9Xs1cin3ep+INInIjoy2z4rIsSGV/Pz3bhWR/SKyR0SuyWi/TES2u/fudCVfcWVhH3Ltz4vI0ow+G0Vkn3v45WCNDDxHWW7mKbDUDZnkEj0FsLKxgu5YkhMd/ZMwq5lBf2IETcO1WyXJkemJOU0jMtgRDkxpBFUumsb9wPos7Xeo6iXu8SiAiKwCNgAXuT53iYh/xncDm/Bqhq/MGPNmoE1VVwB3AF92Y9UCtwGXA2uB21ydcMMRS6ZIpDRnRzhgEVQZ5OIIB1jR6DnD/SpqxuiMGHJr5qmc8DWN8shg8xQwpXs1Rv3FqOovgVzrcl8LfEdVY6p6EK8W+FoRmQ9Uqeqz6un4DwLXZfR5wD1/BLjKaSHXAFtUtVVV24AtZBdes5ZsK5Hh8H/ApmmcIZZMZc1wO5QVjV5RJhMauRNLDh9yW2I163PijE9jsCMcpr+mMRyfFJFXnfnK1wAWAkcyjjnq2ha650PbB/VR1STQAdSNMJbhyLWWBpwxT5mmcYbYCCaUTOorIlSXhtlv9TVypj+RGtb0FwwIkWCAPtM0RiSrpuF8Gm3T2acxDHcDy4FLgBPAP7r2bEl8dIT2sfYZhIhsEpGtIrK1ubl5pHnPKHriuaVFhzMV1GyvxhniqeH3EmQiIqxorDBNI0dUdVTTXzQcMPPUKPiWhPIsmsZUht2OSWio6ilVTalqGvg6ns8BPG1gccahi4Djrn1RlvZBfUQkBFTjmcOGGyvbfO5R1TWquqahoWEsp1SU5KdpeF88C7s9Q2yEvQRDWdFQwQETGjnhlXLNXqfEpyQctAXMKJyJnjrz+y4JBymLBKe3TyMbzkfh82HAj6zaDGxwEVHL8BzeL6jqCaBLRNY5f8VNwA8z+viRUdcDTzm/xxPA1SJS48xfV7s2w9Htr0Ry8GkMOMLthzqAFz2Vo9BorKClJz7lyeKKAT89SOkIm05LwgHzaYzCgKYx5DrWlEWmtKbGqEtUEfk28C6gXkSO4kU0vUtELsEzFx0C/hRAVXeKyMPALiAJ3KKq/l3qE3iRWKXAY+4BcC/wTRHZj6dhbHBjtYrIF4AX3XGfV9VcHfKzgjH5NEzTADJMKFkqy2XDd4Y/+3oLZZEg7zq/cSKnV9QMOHBHWMyUhoOWe2oUfE2jdMh1rKuY2l3ho95tVPWjWZrvHeH424Hbs7RvBVZnae8HbhhmrPuA+0ab42wl11KvYEJjKH4UWS77NOCM0Ljlv15CFX76l1dy3tzKCZtfMZOL0CgJB+k3rXdEeuIpIsHAWRF+9RVRTnVO3Z4h2xFexIzJp2EmAWDk+uDZWDinlPqKCMvqyhGBR7efmMjpFTUD5qkRBHJJKGiO8FHojSWzpghqqIhOaap+ExpFTE8OKzof82kMJp6n0AgEhCc+dSWPfeqdvHVprQmNEcjmwB1KSSRoPo1R6ImnsiYjra+McLo7Tjo9NWltTGgUMd2xJKGA5HTjM/PUYM5oGrmZpwDqKqJEQ0Hev3oee091s7/Jkhhmw99/MdQWn0lJyEJuR6M3nsx6DRsqoqTSSnvf1OzVMKFRxPj1wYercZ2JHyVk6dE9Yu6GlcuO8KGsX+0FDz62/WRB5zRT6MvVp2FCY0R6YqmskZH1lVEAmrumxkRlQqOI6YmlcnKCg+3TGEq+Po1M5lWXcG5DOTuPdxZ6WjOC3BzhFnI7Gn1DCjD5NFSY0DDGSE8smZM/AzLNU7a6gzPJ8oZL3z0aS2rLONLWW8gpzRh6czBPlVr01Kj0DCn16uNrGlMJyt6TAAAgAElEQVTlDDehUcT05JgWHSAStNxTmeSyGh6JJbVlvNFqQiMbfbk4wm2fxqj0DqdpmHnKGCud/UkqS3ITGgGXJM7MUx75hCtnY3FNGV39STqmMHHcdKU3h5DbaDhILJm2wlYj4Pksz76GldEQ0VDANA0jf7r6ElSVhnM+3uqEn2G8msbi2jIA0zay0Bf3Us4HA8MHaJSELZpvNHpiSUrDZy9qRIT6iqhpGkb+dPYnqcpR0wC/TriZBOBMhuAxaxq1pQDm18iCZ1YZWRiXWiGmEUmm0vTEU1QPsyhsqIzSbJqGkS+d/QmqSvLRNIK2snP05lHAKhumaQxPbzxF2SgBBn4AgtXUyE5nv7eomVOW/fdtmoaRN/2JFPFkOmefBnh7EkxoeJwxT41N06gqCTOnLMwRExpn0ZfIviktE988ZWG32Wl3WWxH0jTMp2HkRZdbieTr04jZyg7wdttGR7G7j4ZFUGVnuP0FmZSEzDw1Ev5u7+phNI0Gl+k2NQWpRExoFCld/d6XKj/zlGkaPvmEKw/H4poyjrb1FWhGM4feeGp0TSNiQmMk/Ki8OSNoGmmFlp7J1zZMaBQpvs0zH/NUNBS06ClHb2x0Z+1oLK4t42hb75Ss9qYzfYnRr62vaZhPIzsdTtOY48q7DmVuVQkAr52Y/PxnJjSKlAFNIw/zlOfTsB8pOE1jjP4MnyW1ZSRSyokO0zYyySV6aiDk1nwaWRnNp3HleQ3Mqyrhaz/bO+l7XUYVGiJyn4g0iciOjLZaEdkiIvvc35qM924Vkf0iskdErslov0xEtrv37nRlX3GlYR9y7c+LyNKMPhvdZ+wTEb8krAF09o1F0zDzlE9vPJW1VkE+XDDfK8JkOagG0xdPZd1fkEmJhdyOiO/TGC6kviQc5FPvXclLb7SzZdepyZxaTprG/cD6IW2fBp5U1ZXAk+41IrIKr1zrRa7PXSLi/zLvBjbh1Q1fmTHmzUCbqq4A7gC+7MaqxSstezmwFrgtUzjNdsbk0wib0PDpiY1f01g1v4pgQNh+tKNAs5oZ9MZHz4k2sE/DNN+stPcmqCwJERqhHPH1ly1ieUM5t35/O7smceEyqtBQ1V/i1e7O5FrgAff8AeC6jPbvqGpMVQ8C+4G1IjIfqFLVZ9XTpR4c0scf6xHgKqeFXANsUdVWVW0DtnC28Jq1dDqhka9Pw8xTHrmYUEajJBzkvLmVvHrMhEYmuZmnnE8jbouYbHT2JYbdo+ETCgb4+k1riIQCfPTrz9HUNTklYMfq05irqicA3N9G174QOJJx3FHXttA9H9o+qI+qJoEOoG6EsQy8kNuAkNdq2dKInKE3nhp39BTAmxdWs+NYh+VQcqTSSiyZHjV78Jl9GraIyUZ7X2JYf0Ym5zZU8H+vv5iOvgR7Tk6OU7zQjvBsQe86QvtY+wz+UJFNIrJVRLY2NzfnNNFip7MvQUU0RCCPfQa2ue8Mw1VFy5fVi6pp7YlzrN2c4XAmGipXTcPMU9lp740zpzR75NRQfOEyWUEFYxUap5zJCfe3ybUfBRZnHLcIOO7aF2VpH9RHREJANZ45bLixzkJV71HVNaq6pqGhYYynVFx09SfzipwCf3OfCQ0Yvipavrx5YTWA+TUcZ+qDj3xto6EAIrYjfDja+xLDbuwbil+Vc7IE8FiFxmbAj2baCPwwo32Di4hahufwfsGZsLpEZJ3zV9w0pI8/1vXAU87v8QRwtYjUOAf41a7NIP+8U3DGpzHbTSmptLq9BOM3T10wv5JwUMyv4eh3PorSUa6tiFfb3sxT2enoTQy7sW8o/p6XyVoQjvqrEZFvA+8C6kXkKF5E05eAh0XkZuAN4AYAVd0pIg8Du4AkcIuq+t+KT+BFYpUCj7kHwL3AN0VkP56GscGN1SoiXwBedMd9XlWHOuRnLfnU0vApiwZJKwW7YRYrvgklW62CfImGgixvqGDfqe5xjzUT6E3kpmmA1QkfDlWlIwdHuM9kaxqj3jlU9aPDvHXVMMffDtyepX0rsDpLez9O6GR57z7gvtHmOBvp7EsMZFrNlXpXW/h0V5wldbNXaPTGRq8slw/zqks41Tk5kSvTnYECTDkIjVITGlnpiadIpjUnRzhMvqZhO8KLlK4xaBoDBemnKDvmdMG/sRVC0wCYX13CiQ4TGsBACdfRUqODK/lqPo2z8HeD5+oILxafhjHFjMWnMaBpzHKh0ZNDDet8mFtVQktPzMKZyS/lfFVJiM4+K5c7lPbekTPcDiUamtyULCY0ipB0WumO5Ve1D6C+0lu5tHTHJ2JaRcN4S70OZX51CapM2uaq6YwfPZWLeaq23EvvbQzGF6S5OsJFhEgoYJqGMTzd8SSq+SUrBKgrN00DvBQiUFhNA+CkmajOmKdyEBo1JjSyMlotjWyUTGI4vQmNIsRfieTr04iEAlSXhme90Ci8T8OrF37SnOF5aXG1ZRHaek1oDKV9oJZGbj4NgGh48lIEmdAoQgaq9uXp0wCor4jMeqHhaxrjTVjoM880jQH8cObR0oiAp2n0xlMWQTWE9r6R06JnoyRsmoYxAmc0jbEIjSinu2b36q7QPo2q0hCl4aAJDTyfRkDOOGdHorbcW0mbiWowJzv6qSoJ5ZXmJhoKmk/DGB5fpa8pH4PQmMKC9NOFM+apwmgaIsK86hJOmHmKjr4EVaVhXLmcETGhkZ2jbX0srMlvD5ZpGsaInHbRT34IbT7Ul0dsn0Yeq+FcmVdVwinTNDjW1scC5+MZDV9omF9jMMfa+lhUk9s19DFNwxgRf2VWM0z94JGor4jS1Z+c1XZkL1lhKKfVcK7Msw1+ABxr72Nhjjc8//trmsYZVNW7hnPyExqmaRgj0tIdo6okRGQMK+X6Sk87aZnFP9RCpUXPZG5VCU1d/aTTszcZpKpyrC33G96ApjGLv4tD6ehL0B1LmqZhFJbTPfExmaYgM//U7DVR9RSoAFMm86tLSKR0Vgvjzr4kPfFUzje86tIwIqZpZHK0zavLkq/QME3DGJGW7hh1FfmbpsALuYXZvcGvNzZ6Det8WeBW14dbego6bjFxtL0XIGdNIxgQ5pSGaTWfxgC+0Fg4Jz9HuGkaxoi09sQHdnfni+Wf8hyv+cTA58LFi71iTC+90VbQcYuJY+6GtyAPe3xteYS2Hss/5eNXgDRNwygoLd3xMWsaDZW+0Ji9q7vj7f153dhyobGyhHPqyth6aBYLDXfDy9URDpZ/aihH23opiwRzrqXhEw1NXpp5ExpFRiqttPbGqSsfm9AoCQepjIZonqU+jUQqzamuwgsNgMvOqWHb4bZZWxnxWFsfJeFAXt/NmjITGpn4gQT5RvZFwwFik5RleVxCQ0QOich2EXlZRLa6tloR2SIi+9zfmozjbxWR/SKyR0SuyWi/zI2zX0TudCVhcWVjH3Ltz4vI0vHMdybQ1htHFerG6AgHaKyKztqMrKc6+1GFBdUlBR/7rUtraemJc/D07PRrHGvvY0GeN7za8oj5NDI41p7/Hg3wSzmnJ2XBUghN492qeomqrnGvPw08qaorgSfda0RkFV4p14uA9cBdIuJ7I+8GNuHVFF/p3ge4GWhT1RXAHcCXCzDfosZflY3VPAVeeOipztmpaRxv94TlRGgaa87x1kdbD89OE9VY9hfUlEdo64nPWu1sKN5u8Py/myWuENNkaBsTYZ66FnjAPX8AuC6j/TuqGlPVg8B+YK2IzAeqVPVZ9b45Dw7p44/1CHCVFHJHVhHiO7DH6ggHX2jMTk3jeHv+ztpcWd5QwZyyMFsPzc5S9mPZyVxbFiGZVrpcEsnZTFtPnI6+BEvyLOMMnqYBxSE0FPipiGwTkU2uba6qngBwfxtd+0LgSEbfo65toXs+tH1QH1VNAh1A3TjnXNT4BZTGo2k0VkVp6ozNytXd8Q5faBTePBUICG9aWM3uE10FH3u60xdP0dITz1vTGMg/NYsDM3x2n+wE4IJ5VXn3HdA0JsEZPl6h8XZVfQvwO8AtInLlCMdm0xB0hPaR+gweWGSTiGwVka3Nzc2jzbmoaRnQNMZhnqosIZ5KD+Ttn00cb+9jTlm4YAWYhrKisYIDzd2zbmf4q0fbgfxveI1Vnsbsa4CzGX+xceH8/IVG0Wgaqnrc/W0C/htYC5xyJifc3yZ3+FFgcUb3RcBx174oS/ugPiISAqqBs3R/Vb1HVdeo6pqGhobxnNK0p7UnTkBgzhjyTvn4leaaZmEE1fH2/pwT6o2F5Q0V9MZTs64g0/MHWxGBty6rzavfysZKAPY1dU/EtIqK1050Ul8RHQiLzwdf05iMsNsxCw0RKReRSv85cDWwA9gMbHSHbQR+6J5vBja4iKhleA7vF5wJq0tE1jl/xU1D+vhjXQ88pbPRppLB6Z44teURgoGxu3bmutXdbPRrHHcRPhPF8oYKAA40z66b4PMHW7hwXlXemybnVkWpLAmx99TsM+kNZffJTi6cXzmmvsWiacwFnhGRV4AXgJ+o6uPAl4D3icg+4H3uNaq6E3gY2AU8Dtyiqr5Y/ATwDTzn+AHgMdd+L1AnIvuBv8JFYs1mWrpjA3bgseJrGrNVaCycAH+Gz4pGT2jsn0Ur53gyzbbDbazNU8sArxbJeXMr2Xdq9lyvbCRTafae6h6TaQomV9MYs2FXVV8HLs7S3gJcNUyf24Hbs7RvBVZnae8HbhjrHGcip7vj4xYavvo728xTXf0JOvuTzJ9ATaO+IkJVSWjWaBo7j3fQ0h2nP5Fm3bn5Cw2A8+ZW8NiOk6hqQdPVFxMHT/cQT6a5YN701zQmxhtoTBiHTvfw3gvnjmuMkrCXpmC2aRp+vYuJNE+JCMsbKzjQNPM3+O071cUH7nwG/z6/dtnYAhtXNlby7d4jnO6Oj8mePxPYdcKLnJrRmoYx+bR0x2jpibNybsW4x2qsjM46oeGbjMYSB58PKxoqeHrvzI7iA/iFO8f3XjiX6tLwmDXg8+Y6Z/iprlkrNLYf7SAclAGfWL4Ui0/DmGT8CJOVc8emwmYyG3eFv3CwldJwkFVjXM3lyvLGCpq7YnT0zeyQ5l/vP8259eV8/aY1fOWGsyzVOXOeWwTNFmd4bzzJLf/1EjuOdQCQTiuP7TjJO1bUj6mwGhRJ9JQx+exzP6rzCqJplNA0yzSNFw628pZz5oz5h5kr/mpx3wy+CcaTaZ4/2MrbV9SPe6yGyijVpeFZE3b7+I6T/OTVE/zvb/+WvniKl95o41h7H9desnD0zsNgmoaRlb2nuqmMhphXNf7on7lVUZq6YrNmE1pHX4LdJztZu3TiEwqsOaeGgMAvZ7CJ6uUj7fTGUwURGiLCqvlVbJslObv++7fHqC4N8/rpHv7fH+7g4a1HKAkHeN+qsfsqTdMwsrL3VBcr5lYUJMJk/pxSkmmdNZvQth1uRZUxhYXmS015hDXn1LJld9PoBxcpz+w/TUDginMLI4Tfu2our53s4tAMzxDc1NXPr/ef5sZ15/C/3rWcR7Yd5eGtR7nqwrnjKkFsmoaRlX1N3ZzXOH5/BsCFLrRvt4vamOk8f7CVcFC4dMmcSfm8965qZPeJzoHCRDMJVeXxHSe4dEkN1XkWCxqO9avnAfDYjpMFGW+68qNXTpBWuO7SBfzN+gv49v9cx9Wr5vKnV547rnGjIdM0jCG0dMdoLVDkFMAFzhk8a4TG6628edEcSsKFrQ0+HH5Y9JO7T03K500mrx7tYO+pbn73LWO3wQ9l4ZxSLl5UzWM7ThRszOnG9qMd3LFlL29ZMocVbvF3xfI67rlpDW9eNL7FTCAgRIKTU4jJhEYR0J9I8a3n3gAKEzkFUBENcU5d2UB8+Eymsz/Bq0fbedvyyUuQfG5DBec2lPPo9pl3E/zutiNEQwE+ePGCgo67fvV8Xj3awZHW3oKOOx043NLDxv94gerSMHf94WUT8hnRcMA0DcOLUvndu37DHT/by9pltaxdWjib/IXzqmZFGu/nDrSQVnjb8vE7bfPh99cs5rnXW3nlSPukfu5E8XpzNw/85hCbXz7O+tXzqCopjGnK59pLFhAJBvjXn+8v6LhTTVd/go8/sJW0Kt/6+OXMm4CqkXCmet9EY0JjmvP1X73OrhOd3PGRi3lo0zpKI4Uzr6xaUMWhlh56ZngBnN8caKEkHOAt50yOP8PnDy9fQlVJiLueLv6b4IHmbj5812+4bfNO+hNpblx3TsE/Y8GcUj627hwe3nqE/U0zYzHT2Z9g04PbeP10D3f9wVtYVl8+YZ9VYprG7Kaps59vPXeYO5/cx/vfNI8PX7qo4Hl5LpxfhSq8drL4fqCxZO4/jl/vP81bl9YORJhMFpUlYf7o7ct4Yuepor4JdvQm+JP7XyQUEJ741JXs+vw1rCmgxpvJJ9+zgrJIiC/8eHfRh4O39cS54e5nefFQK1+54c28rQDhySMRDZlPY1bw0htt/PsvDvDVLXv57RttqCpd/Qnef+czfOYHO1g4p5TbPnjRhHz2qgWeM7zY/Bo7j3fw1v/vZ/zxf7wwUP42G//5/GG+8ONd7Gvq5h0T/IMdjo+tWwLAEzuL1yH+uR/v5FhbH/fcdBnnz6skFJy420ZteYS/WX8+v9jbzL8UuZnqrqf3s6+pi/v/eC0fvnTR6B3GSUk4OCmV+yz31BTy7784wBcfew2AgMCdT+7jhssWMb+6hNPdMf7r45dzxfK6Ccv8uaC6hPqKKF95Yg+nOvr51HtXTugNoRAcae3lT+5/kUgowK8PtPC2Lz3FvKoSPrZuCf/znecOXKvdJzr5zA92oAoi8K7zG0cZeWJorCzhgnmV/ObAaW5594opmcNYOdLay7Ovt/D9l47xyXev4LJzJn6PC8CN687ht2+0c8fP9vK25XUTptVMJKc6+3nw2cN8+NJFvGPl5CxYJkvTMKExRdzzS09g/I83z+cL164mIMK/Pr2fe375OiLw/jfNm3B1VkS4/4/fyj8/tY9/+fl+0qr8zfoLJvQzx4qqcvcvDvDPT+4nFBC++4krEITvvXSUHcc6+PtHX2PPyW7+/ndXEw0F+ftHd1NVEmbLX15JWpkw52MuvGNFPQ8+d5j+RGrSQn7Hy0MvvsHffm87ACsbK/jzqyZP4IkIf//hN/HLvc3c/fQB7v2j4hAau090UhYJsnBOKV98dDeptPIXV62ctM8vCQcty+1MZe+pLr7yxF7WXzSPf9pw6UAVvlt/5wJauuP86NXj/NX7zp+UuaxeWM2/37iGT3/vVe56+gDPH2xl36ku3n1BI59894qChfiOl+deb+UfHt/Dey9s5LYPXsRil6n2795/IarKPz25j6/9bB9HWntZ3ljOr/ad5jMfuJDGAqRcGS9vX1HPN545yNZDbZO26hyO10520tGbIBQM0NYTZ8+pLt5o6WVOeZi1S2t51/mNHGvr43M/2sW6c2v5xLtWcOmSOZPuDyqNBLnxinP42s/2sb+pa2Bfw3TgeHsf3/jVQV492s51ly6kviLC5leO8+j2kwQDwrL6cvY3dfPn71nBkrqJzaicydL68kkJapFiqJ4qIuuBfwKCwDdU9UvDHbtmzRrdunVr3p/RF0/xvZeOkkylKY+GWLuslqqSMIGAUFUSQkToT6T4zgtvcPHiOVy6pGZM59LcFeNP7n+RY+19bPnLK6mrGJwKWlVp701QM85CS/nSn0hx473P096bYPXCan626xR1FRGe/Ot3jau0bDaOtvXS3ptgnjOP5cLHH9jKS2+08ZtPv2fY1frmV47zf777CgC/95aFfO5Dqyc8OWEu9MSSXPy5n/Lxd57Lp39najS5dFr52s/2cudTZ/sJ6iuidPYliKfSVJeGBxzQj//llSycwNojo9HSHeNtX3qKay6axx0fuaTg38N8UVW+/cIRPv/jnSRTypK6Ml5v9tKelIaDbLryXDr6Evxk+wk+vf4Cfu+yifdjFBIR2aaqa0Y7btprGiISBP4Vr3TsUeBFEdmsqrsK+Tm98SSf+cGOrO9VloRYXFNGW2+cEx39lEWCfPPmtVx2Ti3ptPLK0Xb2nepmSV0Z64bk4jnc0kNXf5Lz51XyzWcPc8eWvfQnU/zzRy89S2C48510gQGeavvdP3vbwOvHtp/gE//5Eo/vOMkH3jw/a58jrb0cbevjksVzRg0Fburs55f7TvP4jpM8+dop/LXK21fUsf6ieZzbUMHS+nLmV5UQGHJzOHS6hydfO8Un371iRPPOhy5ewGXn1FAeCTKnbPKv4XCUR0O8ZUkNP/jtMT548XxSaSUYEC5aUD3ouI6+BLFEisaqEhKpND965Tjfeu4w4WCAt6+o5/x5lVy+rDbvc9t2uI3bf7KLl95o54bLFnHdpQuJp9LMKQ1zbkMF1aVhEqk0T+4+xS/2NqMK1126cEoFBkBdRZQ/eccy7n76ACc7+vnDdUu4YnkdjZUl9CdSHGrpob4iSm1Z5KzvTCFRVXYe7+SLj+3m1/tbeOfKer74u29i4ZxSXjnagapy4fyqge/mZz80MYEr04Vpr2mIyBXAZ1X1Gvf6VgBV/WK248eqaaTTyunuGOFggNPdMV481EYsmSKRSnO0rY8jrb2kFP5g7WK+/PgeTnX28/trFvPykXZezti8tXZZLe9YUU8yrTx74DQvHvIyd5ZFgvTGU7xzZT2f/dBFYy62Mlmk08p77/gFpeEgmz/5DpLpNC8dbufZA6d5o7WX1t4Ez+xrJq0QCQb4/bcuYuMVS2nvS3C8vY+OvgSRYIAVjRUcaevl776/g75EivqKCH+wdgmrFlSz52QXD289Mig/UzQUYHFtGem00htP0RNP0htPERD49d++Z1qYm8bCy0fa2fTg1oESuyJwy7tWcLClh1/vP00kGKCpK0ZA4KYrlvLioVZ2Hu9kRWMFkWBgIMKtIhriDy5fgoinHWejujTMBfOqCAj8ePsJfvLqCRoro/zt+gv43bcsLKqSqqrK9146xhd+vMv7ToUCbHjrYp7c3TTwvQkFhIbKKI1VJTRWRjmntoz3v3n+wHU73R1jz8kujrT2cs1F86gpi/DioVZCQW9fQ1NXP+fNrWR5QwWqSjKtVJWEWdFYwZZdp9j8ynHeaO2lujTMX73vPG5cd86ECqmpIldNoxiExvXAelX9uHt9I3C5qn4y2/FjFRr5cKKjjy8++hqP7ThBTVmEv3zfeaw7t45f7GnigWcPc/B0DwGB8+dV8cGL51NfHuW511u4ZvU8rl41t2h+tA9vPcLfPPIqZZEgaVX6E2kCAgtrSomGgly9ai5vWVLDk6818fDWI6RGiKtfu7SWz37oIi6YVznoB6eqnOqM8frpbg6e7uFgcw9H2noJBwOURYKURUKURYJcsngOV180bzJOe8Jo6Y5x/28OcU5dOb/c28zmV45TFgnygTd5mtw5dWUcae3joa1HqK+I8LkPreb9b5qHiNDVn2DPyS6+8auDPL7zJJFggLJokGzfpM7+5MD/wjebbLry3HFlUZ1qkqk0r53s4hu/ep0fvHyc8+dW8vF3LqM3nuJUZz9NXTFOdfbT3BXj4Omes6KI5lZFaaiMsuOYJ3zryiOICNFQgLqKCHtOdmWNPBKBd65s4H0XNvLBixdMKw220MwkoXEDcM0QobFWVf8845hNwCaAJUuWXHb48OFJmVtXv7fyGeok7IklEYGySPH+SMG7of9k+wlePNhKICC8bXk9l59bmzV9xIHmbrYdbmNuVQkLqkuoKY/Qn0ix83gnXf1Jrr1kAeFpHs47magqP9/TxOqF1TRWDtaedh3vZOGc0mEzyPbFU5SEA8MuPvoTKQ40dxMQYUH18OMUK6e7Y1SXhof9PnX1J9iy6xShYIA3L6ymsSo68Fvc39RFIqVcMK9y0PWLJ9O09cYJiBAMCC3dMXaf7OLSxXMGgi5mOjNJaEyKecowDGM2k6vQKIal34vAShFZJiIRYAOweYrnZBiGMSuZ9vYTVU2KyCeBJ/BCbu9T1Z1TPC3DMIxZybQXGgCq+ijw6FTPwzAMY7ZTDOYpwzAMY5pgQsMwDMPIGRMahmEYRs6Y0DAMwzByxoSGYRiGkTPTfnNfvohIF7DHvawGOgo4/HQfrx44XcDxpvv5Fno8KNw1LIZznYhxp/N3cLr/T6by2tUD5araMOqRqjqjHsDWjOf3FHjs6T7e1gKPN93Pt6DjFfIaFsO5TtA8p+13cLr/T6by2uXz2TPdPPWjWTZeoZnu5zudr1+xnOt0voZQ2PkVy/+kUEzI/GaieWqr5pA/ZSYym8+9UNg1HB92/cbOVF67fD57Jmoa90z1BKaQ2XzuhcKu4fiw6zd2pvLa5fzZM07TMAzDMCaOmahpGIZhGBOECY1pjIgsFpGfi8huEdkpIn/h2mtFZIuI7HN/a1x7nTu+W0T+JWOcShF5OeNxWkS+NlXnNZkU6hq69z4qIttF5FUReVxE6qfinCaTAl+/j7hrt1NE/mEqzmcyGcO1e5+IbHPfsW0i8p6MsS5z7ftF5E6ZyvKfhQzxskdhH8B84C3ueSWwF1gF/APwadf+aeDL7nk58A7gz4B/GWHcbcCVU31+xXQN8TJCNwH17vU/4BUHm/JzLJLrVwe8ATS41w8AV031+U2za3cpsMA9Xw0cyxjrBeAKQIDHgN+ZqvMyTWMao6onVPUl97wL2A0sBK7F+9Hh/l7njulR1WeA/uHGFJGVQCPwqwmc+rShgNdQ3KPcrfKqgOMTfwZTSwGv37nAXlVtdq9/BvzeBE9/ShnDtfutqvrfqZ1AiYhERWQ+UKWqz6onQR70+0wFJjSKBBFZircSeR6Yq6onwPti4gmBXPko8JD78s0qxnMNVTUBfALYjicsVgH3TuB0px3j/A7uBy4QkaUiEsK76S2euNlOL8Zw7X4P+K2qxvAEzdGM9466tinBhEYRICIVwPeAT6lq5ziH2wB8e/yzKi7Gew1FJKxncRwAAAM9SURBVIwnNC4FFgCvArcWdJLTmPFeP1Vtw7t+D+FpuYeAZCHnOF3J99qJyEXAl4E/9ZuyHDZliz4TGtMcd7P6HvCfqvp913zKqay4v005jnUxEFLVbRMy2WlKga7hJQCqesBpaQ8Db5ugKU8rCvUdVNUfqerlqnoFXn64fRM15+lCvtdORBYB/w3cpKoHXPNRYFHGsIuYQtOoCY1pjLOd3wvsVtWvZry1Gdjonm8EfpjjkB9llmkZBbyGx4BVIuIndHsfno16RlPI76CINLq/NcD/Ar5R2NlOL/K9diIyB/gJcKuq/to/2JmwukRknRvzJnL/zReeqY4wsMfwD7woFMUzhbzsHu/Hi0R5Em+l9iRQm9HnENAKdOOtUFZlvPc6cMFUn1exXkO8iKDdbqwfAXVTfX5Fdv2+Dexyjw1TfW7T7doBnwF6Mo59GWh0760BdgAHgH/BbcyeioftCDcMwzByxsxThmEYRs6Y0DAMwzByxoSGYRiGkTMmNAzDMIycMaFhGIZh5IwJDcOYZETkz0TkpjyOXyoiOyZyToaRK6GpnoBhzCZEJKSq/zbV8zCMsWJCwzDyxCWfexwv+dyleCmvbwIuBL4KVACngT9S1RMi8jTwG+DtwGYRqQS6VfUrInIJ8G9AGd7GrT9R1TYRuQy4D+gFnpm8szOMkTHzlGGMjfOBe1T1zUAncAvwz8D1qurf8G/POH6Oqv4/qvqPQ8Z5EPhbN8524DbX/h/A/1YvT5NhTBtM0zCMsXFEz+QH+hbwd3iFc7a4ompB4ETG8Q8NHUBEqvGEyS9c0wPAd7O0fxP4ncKfgmHkjwkNwxgbQ/PvdAE7R9AMevIYW7KMbxjTAjNPGcbYWCIivoD4KPAc0OC3iUjY1UUYFlXtANpE5J2u6UbgF6raDnSIyDtc+x8WfvqGMTZM0zCMsbEb2Cgi/46XrfSfgSeAO515KQR8Da9s50hsBP5NRMrwshD/sWv/Y+A+Eel14xrGtMCy3BpGnrjoqR+r6uopnophTDpmnjIMwzByxjQNwzAMI2dM0zAMwzByxoSGYRiGkTMmNAzDMIycMaFhGIZh5IwJDcMwDCNnTGgYhmEYOfP/A8nsahCRE8NwAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'][-200:].plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Etude de l'incidence annuelle" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Etant donné que le pic de l'épidémie se situe en hiver, à cheval\n", "entre deux années civiles, nous définissons la période de référence\n", "entre deux minima de l'incidence, du 1er août de l'année $N$ au\n", "1er août de l'année $N+1$.\n", "\n", "Notre tâche est un peu compliquée par le fait que l'année ne comporte\n", "pas un nombre entier de semaines. Nous modifions donc un peu nos périodes\n", "de référence: à la place du 1er août de chaque année, nous utilisons le\n", "premier jour de la semaine qui contient le 1er août.\n", "\n", "Comme l'incidence de syndrome grippal est très faible en été, cette\n", "modification ne risque pas de fausser nos conclusions.\n", "\n", "Encore un petit détail: les données commencent an octobre 1984, ce qui\n", "rend la première année incomplète. Nous commençons donc l'analyse en 1985." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n", " for y in range(1985,\n", " sorted_data.index[-1].year)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "En partant de cette liste des semaines qui contiennent un 1er août, nous obtenons nos intervalles d'environ un an comme les périodes entre deux semaines adjacentes dans cette liste. Nous calculons les sommes des incidences hebdomadaires pour toutes ces périodes.\n", "\n", "Nous vérifions également que ces périodes contiennent entre 51 et 52 semaines, pour nous protéger contre des éventuelles erreurs dans notre code." ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "year = []\n", "yearly_incidence = []\n", "for week1, week2 in zip(first_august_week[:-1],\n", " first_august_week[1:]):\n", " one_year = sorted_data['inc'][week1:week2-1]\n", " assert abs(len(one_year)-52) < 2\n", " yearly_incidence.append(one_year.sum())\n", " year.append(week2.year)\n", "yearly_incidence = pd.Series(data=yearly_incidence, index=year)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Voici les incidences annuelles." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAD8CAYAAAC7IukgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3X+w1fV95/HnC0GwiSgQMPxQYSPJBE0Xyx10x+5uxC2QHxOwNQ2rVWbqDIniju1mVqTJjqnSmZhpYsu6ISE1FbWK1MSRTaF4jTq1XQJcgr+Q0Hu7UkSIXOaiYmegXnjvH9/Pqd97cjmcc/lyftz7esycOd/7OZ/P53zul8N9n8+P7/ejiMDMzKxIwxrdADMzG3wcXMzMrHAOLmZmVjgHFzMzK5yDi5mZFc7BxczMCufgYmZmhXNwMTOzwjm4mJlZ4YY3ugH19JGPfCSmTp3a6GaYmbWU7du3H4qI8bWUGVLBZerUqXR0dDS6GWZmLUXSP9daxsNiZmZWOAcXMzMrnIOLmZkVrqrgImmPpFckvSipI6V9Q9KbKe1FSZ/N5V8uqUvSbknzcumzUj1dklZKUkofKenxlL5F0tRcmcWSOtNjcS59Wsrbmcqeffqnw8zMilBLz+XqiJgZEW25tPtS2syI2AAgaQawCLgUmA98V9JZKf8qYAkwPT3mp/SbgcMRcQlwH3BvqmsscBdwBTAbuEvSmFTm3vT+04HDqQ4zM2sCZ2JYbAGwNiKORcTrQBcwW9JEYHREbI5sh7KHgIW5MmvS8RPANalXMw9oj4ieiDgMtAPz02tzUl5S2VJdLe/gu0f53e9v5uCRo41uipnZgFQbXAJ4WtJ2SUty6bdJelnSD3M9isnAG7k8+1La5HRcnt6nTET0Au8A4yrUNQ54O+Utr6vlrfxpJ9v29LDymc5GN8XMbECqvc7lqojYL2kC0C7pF2RDXPeQBZ57gG8Dvw+on/JRIZ0BlKlUVx8pGC4BuOiii/rL0jQ+8fWNHOs98W8/P7JlL49s2cvI4cPYveIzDWyZmVltquq5RMT+9HwQeBKYHRFvRcTxiDgB/IBsTgSyXsSFueJTgP0pfUo/6X3KSBoOnAf0VKjrEHB+ylteV3nbV0dEW0S0jR9f0wWmdffCHVfzhZmTGDUi+2cZNWIYC2ZO4oVlVze4ZWZmtTllcJH0IUnnlo6BucCraQ6l5Frg1XS8HliUVoBNI5u43xoRB4Ajkq5McyY3AU/lypRWgl0HPJvmZTYBcyWNScNuc4FN6bXnUl5S2VJdLWvC6FGcO3I4x3pPMHL4MI71nuDckcOZcO6oRjfNzKwm1QyLXQA8mVYNDwcejYi/lfSwpJlkw1F7gC8DRMROSeuA14BeYGlEHE913QI8CJwDbEwPgAeAhyV1kfVYFqW6eiTdA2xL+e6OiJ50vAxYK2kFsCPV0fIOvXeMG664mOtnX8SjW/fS7Ul9M2tByjoBQ0NbW1v43mJmZrWRtL3sMpRT8hX6ZmZWOAcXMzMrnIOLmZkVzsHFzMwK5+BiZmaFc3BpUb7/mJk1MweXFuX7j5lZM6v23mLWJHz/MTNrBe65tBjff8zMWoGDS4vx/cfMrBV4WKwF+f5jZtbsfG+xKhx89yi3PbaD+6+/3D0EMxtyfG+xM8Qrs8zMauNhsQq8MsvMbGDcc6nAK7PMzAbGwaUCr8wyMxuYqoKLpD2SXpH0oqSOlDZWUrukzvQ8Jpd/uaQuSbslzculz0r1dElambY7Jm2J/HhK3yJpaq7M4vQenZIW59KnpbydqezZp386flVpZdaTt17FDVdcTPd7x87E25iZDSpVrRaTtAdoi4hDubRvAT0R8U1JdwJjImKZpBnAY8BsYBLwDPDxiDguaStwO/AzYAOwMiI2SroV+PWI+IqkRcC1EfElSWOBDqCNbDvl7cCsiDictlL+cUSslfQ94KWIWFXp9/BOlGZmtav3arEFwJp0vAZYmEtfGxHHIuJ1oAuYLWkiMDoiNkcW0R4qK1Oq6wngmtSrmQe0R0RPRBwG2oH56bU5KW/5+5uZWYNVG1wCeFrSdklLUtoFEXEAID1PSOmTgTdyZfeltMnpuDy9T5mI6AXeAcZVqGsc8HbKW16XmZk1WLVLka+KiP2SJgDtkn5RIa/6SYsK6QMpU6muvo3JguESgIsuuqi/LGZmVrCqei4RsT89HwSeJJtPeSsNdZGeD6bs+4ALc8WnAPtT+pR+0vuUkTQcOA/oqVDXIeD8lLe8rvK2r46ItohoGz9+fDW/rpmZnaZTBhdJH5J0bukYmAu8CqwHSqu3FgNPpeP1wKK0AmwaMB3YmobOjki6Ms2Z3FRWplTXdcCzaV5mEzBX0pi0Gm0usCm99lzKW/7+ZmbWYNUMi10APJlWDQ8HHo2Iv5W0DVgn6WZgL/BFgIjYmVZyvQb0Aksj4niq6xbgQeAcYGN6ADwAPCypi6zHsijV1SPpHmBbynd3RPSk42XAWkkrgB2pDjMzawK+caWZmVXkG1eamVlTcHAxM7PCObiYmVnhHFzMzKxwDi5mZlY4BxczMyucg4uZmRXOwcXMzArn4GJmZoVzcDEzs8I5uJiZWeEcXMzMrHAOLmZmVjgHFzMzK5yDi5mZFc7BxczMCufgYmZmhas6uEg6S9IOST9JP39D0puSXkyPz+byLpfUJWm3pHm59FmSXkmvrVTaO1nSSEmPp/QtkqbmyiyW1Jkei3Pp01LezlT27NM7FWZmVpRaei63A7vK0u6LiJnpsQFA0gxgEXApMB/4rqSzUv5VwBJgenrMT+k3A4cj4hLgPuDeVNdY4C7gCmA2cJekManMven9pwOHUx1mZtYEqgoukqYAnwP+oorsC4C1EXEsIl4HuoDZkiYCoyNic0QE8BCwMFdmTTp+Argm9WrmAe0R0RMRh4F2YH56bU7KSypbqsvMzBqs2p7LnwF3ACfK0m+T9LKkH+Z6FJOBN3J59qW0yem4PL1PmYjoBd4BxlWoaxzwdspbXpeZmTXYKYOLpM8DByNie9lLq4CPATOBA8C3S0X6qSYqpA+kTKW6+pC0RFKHpI7u7u7+spiZWcGq6blcBXxB0h5gLTBH0iMR8VZEHI+IE8APyOZEIOtFXJgrPwXYn9Kn9JPep4yk4cB5QE+Fug4B56e85XX1ERGrI6ItItrGjx9fxa9rZman65TBJSKWR8SUiJhKNlH/bET8XppDKbkWeDUdrwcWpRVg08gm7rdGxAHgiKQr05zJTcBTuTKllWDXpfcIYBMwV9KYNOw2F9iUXnsu5SWVLdVlZmYNNvzUWU7qW5Jmkg1H7QG+DBAROyWtA14DeoGlEXE8lbkFeBA4B9iYHgAPAA9L6iLrsSxKdfVIugfYlvLdHRE96XgZsFbSCmBHqsPMzJqAsk7A0NDW1hYdHR2NboaZWUuRtD0i2mop4yv0zcyscA4uZmZWOAcXMzMrnIOLmZkVzsHFzMwK5+BiZmaFc3AxM7PCObiYmVnhHFzMbMg7+O5Rfvf7mzl45GijmzJoOLiY2ZC38qedbNvTw8pnOhvdlEHjdO4tZmbW0j7x9Y0c6/1gm6pHtuzlkS17GTl8GLtXfKaBLWt97rmY2ZD1wh1X84WZkxg1IvtTOGrEMBbMnMQLy65ucMtan4OLmTWdes2BTBg9inNHDudY7wlGDh/Gsd4TnDtyOBPOHXVG33cocHAxs6ZTzzmQQ+8d44YrLubJW6/ihisupvu9Y2f8PYcC33LfzJpG+RxIiedAGsu33DezluY5kMHDwcXMmobnQAaPqoOLpLMk7ZD0k/TzWEntkjrT85hc3uWSuiTtljQvlz5L0ivptZWSlNJHSno8pW+RNDVXZnF6j05Ji3Pp01LezlT27NM7FWbWDDwHMjhUPeci6b8DbcDoiPi8pG8BPRHxTUl3AmMiYpmkGcBjwGxgEvAM8PGIOC5pK3A78DNgA7AyIjZKuhX49Yj4iqRFwLUR8SVJY4GO9L4BbAdmRcRhSeuAH0fEWknfA16KiFWVfgfPuZiZ1e6MzblImgJ8DviLXPICYE06XgMszKWvjYhjEfE60AXMljSRLDBtjiyiPVRWplTXE8A1qVczD2iPiJ6IOAy0A/PTa3NS3vL3NzOzBqt2WOzPgDuA/DKOCyLiAEB6npDSJwNv5PLtS2mT03F5ep8yEdELvAOMq1DXOODtlLe8rj4kLZHUIamju7u7yl/XzMxOxymDi6TPAwcjYnuVdaqftKiQPpAylerqmxixOiLaIqJt/Pjx/WUxM7OCVdNzuQr4gqQ9wFpgjqRHgLfSUBfp+WDKvw+4MFd+CrA/pU/pJ71PGUnDgfOAngp1HQLOT3nL6zKrie+Ia1a8UwaXiFgeEVMiYiqwCHg2In4PWA+UVm8tBp5Kx+uBRWkF2DRgOrA1DZ0dkXRlmjO5qaxMqa7r0nsEsAmYK2lMWo02F9iUXnsu5S1/f7Oa+I64ZsU7nbsifxNYJ+lmYC/wRYCI2JlWcr0G9AJLI+J4KnML8CBwDrAxPQAeAB6W1EXWY1mU6uqRdA+wLeW7OyJ60vEyYK2kFcCOVIdZ1XxHXLMzx7d/sSHr4LtHWbFhF0/v/CVH3z/BqBHDmHfpR/na5z7pi/bMcnz7F7Ma1HI1eKvOy7Rqu631ObjYkFbt1eCtOi/Tqu221udhMbMKWvUuva3abmtOHhYzK1ir3qW3Vdttg4eDi1kFrXqX3lZttw0ep7MU2WxIKM3LXD/7Ih7dupfuFpkcb9V22+DgORczM6vIcy5mZtYUHFzMzKxwDi5mZgXyhasZBxczswL5wtWMV4tZSzr47lFue2wH919/uZfXWlPwjVD7cs/FWpK/HVqz8YWrfbnnYi3F3w4/4N5bc/GFq32552Itxd8OP+DeW/Op9kaoQ4F7LtZ0Kn0j97dD996a2fdv/OA6wxULL2tgSxrvlD0XSaMkbZX0kqSdkv44pX9D0puSXkyPz+bKLJfUJWm3pHm59FmSXkmvrUzbHZO2RH48pW+RNDVXZrGkzvRYnEuflvJ2prJnF3NKbKCKWoJ5qm/kQ/3boXtv1gqq6bkcA+ZExHuSRgB/L6m0PfF9EfGn+cySZpBtU3wpMAl4RtLH01bHq4AlwM+ADcB8sq2ObwYOR8QlkhYB9wJfkjQWuAtoAwLYLml9RBxOee6LiLWSvpfqWDXwU2GnKx8UVlz7qZrLV/uNfKh/O3TvzVrBKXsukXkv/TgiPSrdkGwBsDYijkXE60AXMFvSRGB0RGyO7IZmDwELc2XWpOMngGtSr2Ye0B4RPSmgtAPz02tzUl5S2VJdVmef+PpGpt75NzyyZS8RWVCYeuff8Imvbzx14Rx/I6/eUO+9WfOras5F0lnAduAS4H9HxBZJnwFuk3QT0AF8NQWAyWQ9k5J9Ke39dFyeTnp+AyAieiW9A4zLp5eVGQe8HRG9/dRldfbCHVefdC/6WvgbefWGeu/Nml9Vq8Ui4nhEzASmkPVCLiMbgvoYMBM4AHw7ZVd/VVRIH0iZSnX1IWmJpA5JHd3d3f1lsdNUZFDwN/LBz7dHGRpqWi0WEW9Leh6Yn59rkfQD4Cfpx33AhbliU4D9KX1KP+n5MvskDQfOA3pS+qfLyjwPHALOlzQ89V7ydZW3eTWwGrJb7tfy+1r1ito7xN/IB7/TnZuz1nDK/VwkjQfeT4HlHOBpssn07RFxIOX5Q+CKiFgk6VLgUWA22YT+T4HpEXFc0jbgvwFbyCb0/1dEbJC0FPhURHwlTej/dkT8bprQ3w78RmrOz4FZEdEj6a+BH+Um9F+OiO9W+l28n4tZ45Qv2CjxEurmN5D9XKrpuUwE1qR5l2HAuoj4iaSHJc0kG47aA3wZICJ2SloHvAb0AkvTSjGAW4AHgXPIVomVZnwfAB6W1EXWY1mU6uqRdA+wLeW7OyJ60vEyYK2kFcCOVIeZNami5uasNZwyuETEy8Dl/aTfWKHMnwB/0k96B/ArYx0RcRT44knq+iHww37S/x9Z78jMWoAXbAwtvkLfzOqmqLk5a36nnHMZTDznYmZWu4HMufjGlWZmVjgHFzMzK5yDi5mZFc7BxczMCufgYmZmhXNwMTOzwjm4mJlZ4RxczMyscA4uZmZWOAcXszrzfiY2FDi4mNVZfj8Ts8HKN640q5Py/Uwe2bKXR7bs9X4mNii552JWJy/ccTVfmDmJUSOy/3ajRgxjwcxJvLDs6ga3zKx4Di5mdeL9TGwocXCxQa3ZJs9L+5k8eetV3HDFxXS/d6zRTTI7I04ZXCSNkrRV0kuSdkr645Q+VlK7pM70PCZXZrmkLkm7Jc3Lpc+S9Ep6baUkpfSRkh5P6VskTc2VWZzeo1PS4lz6tJS3M5U9u5hTYoNJs02ef//GNlYsvIwZk0azYuFlfP/GmrbIMGsZp9wsLAWAD0XEe5JGAH8P3A78NtATEd+UdCcwJiKWSZoBPEa2BfEk4Bng4xFxXNLWVPZnwAZgZURslHQr8OsR8RVJi4BrI+JLksYCHUAbEMB2YFZEHJa0DvhxRKyV9D3gpYhYVel38WZhQ0f55HmJJ8/NandGNguLzHvpxxHpEcACYE1KXwMsTMcLgLURcSwiXge6gNmSJgKjI2JzZBHtobIypbqeAK5JQW0e0B4RPRFxGGgH5qfX5qS85e9v5snzBmm2YUhrnKrmXCSdJelF4CDZH/stwAURcQAgPU9I2ScDb+SK70tpk9NxeXqfMhHRC7wDjKtQ1zjg7ZS3vK7yti+R1CGpo7u7u5pf1wYBT543RrMNQ1rjVHWdS0QcB2ZKOh94UtJlFbKrvyoqpA+kTKW6+iZGrAZWQzYs1l8eG5xKk+fXz76IR7fupdvfps8YX8Nj5Wq6iDIi3pb0PDAfeEvSxIg4kIa8DqZs+4ALc8WmAPtT+pR+0vNl9kkaDpwH9KT0T5eVeR44BJwvaXjqveTrMgPoM1m+YmGl70N2ul6442pWbNjF0zt/ydH3TzBqxDDmXfpRvva5Tza6adYg1awWG596LEg6B/gvwC+A9UBp9dZi4Kl0vB5YlFaATQOmA1vT0NkRSVemOZObysqU6roOeDbNy2wC5koak1ajzQU2pdeeS3nL39/M6szDkFaump7LRGCNpLPIgtG6iPiJpM3AOkk3A3uBLwJExM60kus1oBdYmobVAG4BHgTOATamB8ADwMOSush6LItSXT2S7gG2pXx3R0RPOl4GrJW0AtiR6jCzBvEwpOWdcinyYHImlyIffPcotz22g/uvv9zf1szqpFX/37Vau8/IUmSrjlfJmNVfq/6/a9V218I9l9Pki/XM6q9V/9+1arvdc2kAX6xnVn+t+v+uVds9EA4up6mWVTK+etlaWTN9flt1dVqrtnsgHFwKUO2dbofCOKsNXs32+W3VO0y3artr5TmXOmjVcVYz8OfXPOfStIbSOKsNPv78Nq9mGqos5+BSB4NhnLWZP8R2Zg2Gz+9g1WxDlXk13VvMBq7Vr17Of4hXXPupRjfH6qzVP7+DTSvcKNRzLlaRx9vNms/Bd4+e9EahZ6JH6TkXK5zH282aTysMVXpYzCpqhQ+x2VDU7EOVDi52Ss3+ITYbipp9vyLPuQxxrXZ3VjOrP8+5WM2aeSmjmbUuD4sNUa2wlLHVuBdo9oFqtjm+UNJzknZJ2inp9pT+DUlvSnoxPT6bK7NcUpek3ZLm5dJnSXolvbYybXdM2hL58ZS+RdLUXJnFkjrTY3EufVrK25nKnl3MKRkavAqseO4Fmn2gmp5LL/DViPi5pHOB7ZLa02v3RcSf5jNLmkG2TfGlwCTgGUkfT1sdrwKWAD8DNgDzybY6vhk4HBGXSFoE3At8SdJY4C6gDYj03usj4nDKc19ErJX0vVTHqoGfiqHFq8CK416g2a86Zc8lIg5ExM/T8RFgFzC5QpEFwNqIOBYRrwNdwGxJE4HREbE5slUEDwELc2XWpOMngGtSr2Ye0B4RPSmgtAPz02tzUl5S2VJdVqWhcnfWM829QLNfVdOcSxquuhzYAlwF3CbpJqCDrHdzmCzw/CxXbF9Kez8dl6eTnt8AiIheSe8A4/LpZWXGAW9HRG8/dVmVmn0pY6twL9DsV1W9WkzSh4EfAX8QEe+SDUF9DJgJHAC+XcraT/GokD6QMpXqKm/3Ekkdkjq6u7v7y2J22twLNOurqp6LpBFkgeWvIuLHABHxVu71HwA/ST/uAy7MFZ8C7E/pU/pJz5fZJ2k4cB7Qk9I/XVbmeeAQcL6k4an3kq+rj4hYDayG7DqXan5fs1q5F2jWVzWrxQQ8AOyKiO/k0ifmsl0LvJqO1wOL0gqwacB0YGtEHACOSLoy1XkT8FSuTGkl2HXAs2leZhMwV9IYSWOAucCm9NpzKS+pbKkuMzNrsGp6LlcBNwKvSHoxpf0R8F8lzSQbjtoDfBkgInZKWge8RrbSbGlaKQZwC/AgcA7ZKrGNKf0B4GFJXWQ9lkWprh5J9wDbUr67I6InHS8D1kpaAexIdZiZWRPw7V/MzKwi3/7FzMyagoOLmVkTavWtxR1czKzl/5ANRq1+OyHfuNLM+vwhW3HtpxrdnCFtsNxOyBP6ZkNY+R+yklb7QzaYHHz3KCs27OLpnb/k6PsnGDViGPMu/Shf+9wnB3TXhyLu1u0JfTOrie+L1nyKvp1Qo4bXPCxm1oTqtTeM74vWnIrYWrzRw2sOLmZNqJ5zIEX8IbNiFXE7oRfuuPqkw2v14OBi1kQa8W3T90UbnBrdK/Wci1kT8RxI8YbyMutG3q3bPRezJtLob5uD0VBeZt3IXqmDi1mT8RxIMRo9oT3U+ToXMxuUir5eZCjzdS5mZomHGBvLw2JmNmh5iLFxPCxmZmYVeVjMzMyawimDi6QLJT0naZeknZJuT+ljJbVL6kzPY3JllkvqkrRb0rxc+ixJr6TXVkpSSh8p6fGUvkXS1FyZxek9OiUtzqVPS3k7U9mzizklZmZ2uqrpufQCX42ITwJXAkslzQDuBH4aEdOBn6afSa8tAi4F5gPflXRWqmsVsASYnh7zU/rNwOGIuAS4D7g31TUWuAu4ApgN3JULYvcC96X3P5zqMDOzJnDK4BIRByLi5+n4CLALmAwsANakbGuAhel4AbA2Io5FxOtAFzBb0kRgdERsjmyi56GyMqW6ngCuSb2aeUB7RPRExGGgHZifXpuT8pa/v5mZNVhNcy5puOpyYAtwQUQcgCwAARNStsnAG7li+1La5HRcnt6nTET0Au8A4yrUNQ54O+Utr8vMzBqs6uAi6cPAj4A/iIh3K2XtJy0qpA+kTKW6+jZGWiKpQ1JHd3d3f1nMzKxgVQUXSSPIAstfRcSPU/JbaaiL9Hwwpe8DLswVnwLsT+lT+knvU0bScOA8oKdCXYeA81Pe8rr6iIjVEdEWEW3jx4+v5tc1M7PTVM1qMQEPALsi4ju5l9YDpdVbi4GncumL0gqwaWQT91vT0NkRSVemOm8qK1Oq6zrg2TQvswmYK2lMmsifC2xKrz2X8pa/v5mZNVg1V+hfBdwIvCLpxZT2R8A3gXWSbgb2Al8EiIidktYBr5GtNFsaEcdTuVuAB4FzgI3pAVnwelhSF1mPZVGqq0fSPcC2lO/uiOhJx8uAtZJWADtSHWZm1gR8hb6ZmVXkK/St6Q3ljZvMhhIHF6ur/MZNZjZ4+a7IVhfeuMlsaHHPxerCe8ObDS0OLlYX3rjJbGjxsJjVjTduMhs6vBTZzMwq8lJkMzNrCg4uZmZWOAeXQcwXLJpZozi4DGK+YNHMGsWrxQYhX7BoZo3mnssg5AsWzYrnYebaOLgMQr5g0ax4HmaujYfFBilfsGhWDA8zD4wvojQzq+Dgu0dZsWEXT+/8JUffP8GoEcOYd+lH+drnPjlkRgPOyEWUkn4o6aCkV3Np35D0pqQX0+OzudeWS+qStFvSvFz6LEmvpNdWpq2OSdshP57St0iamiuzWFJneizOpU9LeTtT2bNr+aXNzKrlYeaBqWbO5UFgfj/p90XEzPTYACBpBtkWxZemMt+VdFbKvwpYAkxPj1KdNwOHI+IS4D7g3lTXWOAu4ApgNnCXpDGpzL3p/acDh1MdZmZnRGmY+clbr+KGKy6m+71jjW5S0zvlnEtE/F2+N3EKC4C1EXEMeF1SFzBb0h5gdERsBpD0ELAQ2JjKfCOVfwK4P/Vq5gHtEdGTyrQD8yWtBeYA16cya1L5VVW20cysJt+/8YMRoRULL2tgS1rH6awWu03Sy2nYrNSjmAy8kcuzL6VNTsfl6X3KREQv8A4wrkJd44C3U97yuszMrAkMNLisAj4GzAQOAN9O6eonb1RIH0iZSnX9CklLJHVI6uju7j5ZNjMzK9CAgktEvBURxyPiBPADsjkRyHoRF+ayTgH2p/Qp/aT3KSNpOHAe0FOhrkPA+SlveV39tXV1RLRFRNv48eNr/VXNzGwABhRcJE3M/XgtUFpJth5YlFaATSObuN8aEQeAI5KuTPMpNwFP5cqUVoJdBzwb2froTcBcSWPSsNtcYFN67bmUl1S2VJeZmTWBU07oS3oM+DTwEUn7yFZwfVrSTLLhqD3AlwEiYqekdcBrQC+wNCKOp6puIVt5dg7ZRP7GlP4A8HCa/O8hW21GRPRIugfYlvLdXZrcB5YBayWtAHakOszMrEn4IkozM6toIBdRDqngIqkb+Od+XvoI2VxOq3G768vtrq9WbTe0bttP1u6LI6KmSeshFVxORlJHrVG5Gbjd9eV211erthtat+1Fttt3RTYzs8I5uJiZWeEcXDKrG92AAXK768vtrq9WbTe0btsLa7fnXMzMrHDuuZiZWeEGZXA5yR40/17S5rSnzP+RNDqlj5C0JqXvkrQ8V+b5tC9Nad+aCU3U7rMl/WVKf0nSp3Nl+t07pwXaXe/zfaGk59K/+05Jt6f0sZLa035B7bkbs9a8X1ELtLtu57zWdksal/K/J+n+srrq/Rkvsu3NfM5/S9L2dG63S5qTq6u2cx4Rg+4B/CfgN4BXc2nbgP+cjn8fuCcdX0+2TQDAr5HdcWBq+vl5oK1J270U+Mt0PAHYDgxLP28F/gPZTT43Ap9pkXbX+3xPBH4jHZ8L/CMwA/jPDIkDAAADj0lEQVQWcGdKvxO4Nx3PAF4CRgLTgH8Czqr3OS+43XU75wNo94eA3wS+AtxfVle9P+NFtr2Zz/nlwKR0fBnw5kDP+aDsuUTE35HdSibvE8DfpeN24HdK2YEPKbsR5jnAvwLv1qOd5Wps9wzgp6ncQeBtoE3Zfd9GR8TmyD4Rpb1zmrrdZ7J9JxMRByLi5+n4CLCLbPuGBWT7BJGeS+fv3/YriojXgdJ+RXU950W1+0y172RqbXdE/EtE/D1wNF9Pgz7jhbS93gbQ7h0RUboR8E5glLJ7RdZ8zgdlcDmJV4EvpOMv8sEdl58A/oVs64C9wJ/GB/cwA/jL1HX9n2e6630SJ2v3S8ACScOV3SR0Vnqt0t459VRru0sacr6VbYh3ObAFuCCym62SnkvDFgPZr+iMOs12l9T9nFfZ7pNp6Gf8NNte0grn/HeAHZFt/ljzOR9KweX3gaWStpN1D/81pc8GjgOTyIYMvirp36XXboiITwH/MT1urG+TgZO3+4dk/8AdwJ8B/5fsZqE17XdzBtXabmjQ+Zb0YeBHwB9ERKVeayF7DBWlgHZDA855De0+aRX9pNXlM15A26EFzrmkS8m2k/9yKamfbBXP+ZAJLhHxi4iYGxGzgMfIxp0hm3P524h4Pw3T/ANpmCYi3kzPR4BHacxQQr/tjojeiPjDiJgZEQuA84FOKu+d08ztbsj5ljSC7D/dX0XEj1PyW2kYoDQEczClD2S/omZud93PeY3tPpmGfMYLanvTn3NJU4AngZsiovR3suZzPmSCS2lFhqRhwNeB76WX9gJzlPkQcCXwizRs85FUZgTweT7Yt6bh7Zb0a6m9SPotoDciXovKe+c0bbsbcb7T+XkA2BUR38m9lN9jKL9f0ED2K2radtf7nA+g3f1qxGe8qLY3+zmXdD7wN8DyiPiHUuYBnfNKs/2t+iD7pnwAeJ8s4t4M3E62UuIfgW/ywQWkHwb+mmzy6jXgf8QHqz22Ay+n1/6ctMKmSdo9FdhNNkH3DNldS0v1tJF9YP8JuL9Uppnb3aDz/ZtkXfuXgRfT47PAOLJFB53peWyuzNfSed1NbrVMPc95Ue2u9zkfYLv3kC0WeS99tmY06DNeSNub/ZyTfRH8l1zeF4EJAznnvkLfzMwKN2SGxczMrH4cXMzMrHAOLmZmVjgHFzMzK5yDi5mZFc7BxczMCufgYmZmhXNwMTOzwv1/q4MdzlEclD8AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "yearly_incidence.plot(style='*')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Une liste triée permet de plus facilement répérer les valeurs les plus élevées (à la fin)." ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2014 1600941\n", "1991 1659249\n", "1995 1840410\n", "2012 2175217\n", "2003 2234584\n", "2019 2254386\n", "2006 2307352\n", "2017 2321583\n", "2001 2529279\n", "1992 2574578\n", "1993 2703886\n", "2018 2705325\n", "1988 2765617\n", "2007 2780164\n", "1987 2855570\n", "2016 2856393\n", "2011 2857040\n", "2008 2973918\n", "1998 3034904\n", "2002 3125418\n", "2009 3444020\n", "1994 3514763\n", "1996 3539413\n", "2004 3567744\n", "1997 3620066\n", "2015 3654892\n", "2000 3826372\n", "2005 3835025\n", "1999 3908112\n", "2010 4111392\n", "2013 4182691\n", "1986 5115251\n", "1990 5235827\n", "1989 5466192\n", "dtype: int64" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "yearly_incidence.sort_values()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Enfin, un histogramme montre bien que les épidémies fortes, qui touchent environ 10% de la population\n", " française, sont assez rares: il y en eu trois au cours des 35 dernières années." ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEKCAYAAAAGvn7fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGalJREFUeJzt3X2UJXV95/H3h5kBhmkYjAONDsr4QAhIqzgXXWQ13WhcdNCcGE5QQcVIGo0PRCdnM8v6sLrLOj5MsphgkklUiAodw8PZyBjUE2hQNEgPqA2OEBdmlSEMAjLSMAuMfPePX7XctP1wq+69XcXPz+ucPn3vrbpVn/rdut9b9auqexURmJlZPvaqO4CZmfWWC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLzNJ+TnzVqlWxZs2aWYc9+OCDrFixop+zr6zJ2aDZ+Zytuibnc7bqyubbunXrPRFxUFczjYi+/a1duzbmctVVV805rG5NzhbR7HzOVl2T8zlbdWXzARPRZe11V4yZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWWmVGGX9B5JN0u6SdJFkvbtVzAzM6um48IuaTXwbqAVEUcDS4DX9SuYmZlVU7YrZimwXNJSYD/gzt5HMjOzbihK/OappLOAc4DdwFcj4tRZxhkFRgEGBwfXjo2NzTqtqakpBgYGqmTuuyZng97nm9yxq2fTGlwOO3d3Pv7Q6pU9m/dCftVe115yturK5hsZGdkaEa1u5tlxYZf0JOAS4BTgfuAfgIsj4vNzPafVasXExMSsw8bHxxkeHi6bd1E0ORv0Pt+aDVt6Nq31Q3vYNNn5N1Vs37iuZ/NeyK/a69pLzlZd2XySui7sZbpiXg7cHhE/iYhHgUuBF3czczMz670yhf1HwH+QtJ8kAS8DtvUnlpmZVdVxYY+I64CLgRuAyeK5m/uUy8zMKir1tb0R8UHgg33KYmZmPeArT83MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy03Fhl3SEpO+0/f1M0h/1M5yZmZXX8U/jRcQtwPMBJC0BdgCX9SmXmZlVVLUr5mXA/4mI/9vLMGZm1j1FRPknSZ8BboiIv5hl2CgwCjA4OLh2bGxs1mlMTU0xMDBQet6LocnZoPf5Jnfs6tm0BpfDzt2djz+0emXP5r2Q9nbr5TKXMd/yNnm9c7bqyuYbGRnZGhGtbuZZurBL2hu4E3hOROycb9xWqxUTExOzDhsfH2d4eLjUvBdLk7NB7/Ot2bClZ9NaP7SHTZMd9/CxfeO6ns17Ie3t1stlLmO+5W3yeuds1ZXNJ6nrwl6lK+aVpK31eYu6mZnVo0phfz1wUa+DmJlZb5Qq7JL2A34LuLQ/cczMrFudd4YCEfEQ8OQ+ZTEzsx7wladmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmSn703gHSrpY0g8kbZN0XL+CmZlZNaV+Gg84F7giIk6WtDewXx8ymZlZFzou7JIOAF4KnA4QEY8Aj/QnlpmZVaWI6GxE6fnAZuD7wPOArcBZEfHgjPFGgVGAwcHBtWNjY7NOb2pqioGBgerJ+6jJ2aD3+SZ37OrZtAaXw87dnY8/tHplz+a9kPZ26+UylzHf8jZ5vXO26srmGxkZ2RoRrW7mWaawt4B/AY6PiOsknQv8LCLeP9dzWq1WTExMzDpsfHyc4eHh8okXQZOzQe/zrdmwpWfTWj+0h02Tnffwbd+4rmfzXkh7u/VymcuYb3mbvN45W3Vl80nqurCXOXh6B3BHRFxX3L8YeEE3Mzczs97ruLBHxF3AjyUdUTz0MlK3jJmZNUjZs2LeBXyhOCPmNuAtvY9kZmbdKFXYI+I7QFd9P2Zm1l++8tTMLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsM6V+QUnSduAB4OfAnm5/SdvMzHqv7G+eAoxExD09T2JmZj3hrhgzs8woIjofWbod+CkQwF9HxOZZxhkFRgEGBwfXjo2NzTqtqakpBgYGqmTuq8kduxhcDjt3L/68h1av7Gi8Xrfd5I5dPZtW2bbrdJl7ob3dernMZcy3vE19T4CzdaNsvpGRka3ddnOXLexPjYg7JR0MfA14V0RcM9f4rVYrJiYmZh02Pj7O8PBwybj9t2bDFtYP7WHTZJVequ5s37iuo/F63XZrNmzp2bTKtl2ny9wL7e3Wy2UuY77lbep7ApytG2XzSeq6sJfqiomIO4v/dwOXAS/sZuZmZtZ7HRd2SSsk7T99G3gFcFO/gpmZWTVl+hsGgcskTT/vwoi4oi+pzMysso4Le0TcBjyvj1nMzKwHfLqjmVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZKF3ZJSyTdKOnyfgQyM7PuVNliPwvY1usgZmbWG6UKu6RDgXXA3/YnjpmZdUsR0fnI0sXAR4D9gT+OiJNmGWcUGAUYHBxcOzY2Nuu0pqamGBgYqJK5ryZ37GJwOezcXXeSuTU5X9lsQ6tX9i/MDO3r3OSOXYs233bzLW9T3xPgbN0om29kZGRrRLS6mefSTkeUdBJwd0RslTQ813gRsRnYDNBqtWJ4ePZRx8fHmWtYnU7fsIX1Q3vYNNlx0yy6Jucrm237qcP9CzND+zp3+oYtizbfdvMtb1PfE+Bs3agjX5mumOOB10jaDowBJ0j6fF9SmZlZZR0X9oj4LxFxaESsAV4HXBkRp/UtmZmZVeLz2M3MMlOpozYixoHxniYxM7Oe8Ba7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8tMx4Vd0r6Svi3pu5JulvShfgYzM7NqyvyC0sPACRExJWkZ8A1J/xQR/9KnbGZmVkHHhT0iApgq7i4r/qIfoczMrDqlet3hyNISYCvwbOC8iPiTWcYZBUYBBgcH146Njc06rampKQYGBuac1+SOXR3n6rXB5bBzd22zX1CT85XNNrR6Zf/CzNC+ztW1fs23vAu9J+r0RM3WhNe5bNuNjIxsjYhWN/MvVdh/8STpQOAy4F0RcdNc47VarZiYmJh12Pj4OMPDw3POY82GLaVz9cr6oT1smqz0O9+Losn5ymbbvnFdH9P8e+3rXF3r13zLu9B7ok5P1GxNeJ3Ltp2krgt7pbNiIuJ+YBw4sZuZm5lZ75U5K+agYksdScuBlwM/6FcwMzOrpsz+/FOAC4p+9r2AL0bE5f2JZWZmVZU5K+Z7wDF9zGJmZj3gK0/NzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMlPmN0+fJukqSdsk3SzprH4GMzOzasr85ukeYH1E3CBpf2CrpK9FxPf7lM3MzCroeIs9Iv4tIm4obj8AbANW9yuYmZlVo4go/yRpDXANcHRE/GzGsFFgFGBwcHDt2NjYrNOYmppiYGBgznlM7thVOlevDC6Hnbtrm/2CmpzP2arrd76h1SsrP3eh92ud5stWVx1pb+uybTcyMrI1IlrdzL90YZc0AFwNnBMRl843bqvViomJiVmHjY+PMzw8POdz12zYUipXL60f2sOmyTK9VIuryfmcrbp+59u+cV3l5y70fq3TfNnqqiPtbV227SR1XdhLnRUjaRlwCfCFhYq6mZnVo8xZMQI+DWyLiD/tXyQzM+tGmS3244E3AidI+k7x96o+5TIzs4o67tCLiG8A6mMWMzPrAV95amaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpaZMr95+hlJd0u6qZ+BzMysO2W22M8HTuxTDjMz65GOC3tEXAPc18csZmbWA4qIzkeW1gCXR8TR84wzCowCDA4Orh0bG5t1vKmpKQYGBuac1+SOXR3n6rXB5bBzd22zX1CT8zlbdf3ON7R6ZeXnLvR+rdN82eqqI+1tXbbtRkZGtkZEq5v597ywt2u1WjExMTHrsPHxcYaHh+d87poNWzrO1Wvrh/awaXJpbfNfSJPzOVt1/c63feO6ys9d6P1ap/my1VVH2tu6bNtJ6rqw+6wYM7PMuLCbmWWmzOmOFwHfAo6QdIekt/YvlpmZVdVxh15EvL6fQczMrDfcFWNmlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWmVKFXdKJkm6R9ENJG/oVyszMqivzm6dLgPOAVwJHAa+XdFS/gpmZWTVltthfCPwwIm6LiEeAMeC3+xPLzMyqUkR0NqJ0MnBiRJxR3H8j8KKIeOeM8UaB0eLuEcAtc0xyFXBPldCLoMnZoNn5nK26JudzturK5jssIg7qZoZLS4yrWR77pU+FiNgMbF5wYtJERLRKzH/RNDkbNDufs1XX5HzOVl0d+cp0xdwBPK3t/qHAnb2NY2Zm3SpT2K8HDpf0DEl7A68D/rE/sczMrKqOu2IiYo+kdwJfAZYAn4mIm7uY94LdNTVqcjZodj5nq67J+ZytukXP1/HBUzMze2LwladmZplxYTczy4wLu5lZZp6QhV3Sakmr684xG0nPlPQeSSfUnWWmJmeDZudztuqanK/J2aB6vidUYZe0RtLVwBXAxyW9pO5M7ST9R+BrpO/SeZukt9cc6ReanA2anc/ZqmtyviZngy7zRUSj/4B9226/FvhEcfvNwD8AQ8V91ZDtBOAZ0/MHPgCcVtx/EfAlYLiOfE3O1vR8zpZnviZn63W+Rm6xSzpA0l9JuhX4hKTDikG/A/youD0G/BA4Y/ppi5jvKEnfA/4b8FlJJ0Rq7aOAQwAi4jrgm8BbFjNfk7M1PZ+z5Zmvydn6la+RhR04EdiXtGCPAB+QtJy0W/JqgIh4GLgYeElx/7F+hZF0qKQD2h46BbgkIl5K+oB5g6TDgQun8xUuA46WtE+/8jU5W9PzOVue+ZqcbbHy1VbYlSyV9FZJX5d0lqRnFYOfDTwSEXuAPwN+CpwGfBV4iqRfK8a7FfixpOP6lPFISV8GvgF8WNL01xT/P2C/4vYXgbuAdaRP1Ce37WHcR/p2y+f9KmVrej5nyzNfk7Mtdr7aCnuxq/GbwJuAjwH7AH9TDL4LuLv4ZPoxaWGeRWqA7/P41wIvA+4tHu8JSSva7j4fuCMi1gBXAp8oHr8PeFjS/hFxH/CvwFOLHN8E3luMtzfwc2B77tmans/Z8szX5Gx15lu0wi7pOEkflXR6cV/AkcAVEfGliPgYcJikFwM7SJ9gRxZP3wYMFI/9BfAqSa8mfSgMAt/tMtuTJJ0v6Xpgo6SDinxDwLWSFBH/CNwvaR1pT2H/YjjF/YOBx0h7GAdL+hvgImBPRNydY7am53O26pqcr8nZmpJvUQq7pOcAfwk8APyepPcW814NPFAsNMD5wBtIhXoP8OLi8RtIR4wfiohrgA3A6cDxwH+PiMfaplHFS4v5vYp0UOJs4ADSl50dUuxdAFxQ5Pt2sSyvBIiIbxXTWBoR24AzgZuB/xkRb6E7Tc7W9HzOlme+JmdrRr65Tpep+kfasj6DtNuxtHjsT4Gzitst4JPAycDLga+0PfdppF0VSIX8RtKvMB0D/G/gKW3jlj4dqWjYM4GrSd05q4rHvwi8u7j9DGBjMfxYUn/YkrZl+0kxndWkPYl3Ap8FPgWs6KLdGput6fmcza+r2+7f//V0i13S80kHOH8b+CDwvmLQDtJvpkL65LkW+F3gn4FDJD1X0rJI/ek7JL0kIq4kfd3lR4FLgYsi4t+m5xVFy5R0EvAa4EPAcaS+fUhn20zvHfwY+Drwyoi4nvSJO1LMcwq4Djg2InYAbyR1Bd0FvC8iHiwbqG1P49VNyzaD266axrUbuO26yfZEaLsyP433SyS9EDgc+GpE/IS0NX5rRJwu6QXAOZJawDjwnyTtFxEPSfou8HukczQvBP4A+KSk3cAkcHsxi78CLoyIXSUyKSJC0rGk3ZyvA1sinR7568BtEXGlpNtJV6++AtgK/I6kVRFxj6R/BR6U9HTgz4HTJB1M+tWoe0m7TkTEBDBRod1apL2aB4CPA3cDz6w7m9uuWrYnQru57fJru/mU2mJXskzSmyTdSOrYPxCYLrw/B7YXW983kHYtjgMe4vFTeAAeJe2CHELaKr+J1L9+NXBPRNwBaau8YlF/KfAZ0lHllwMfKUZ5DLhV0vKIuL3I91zSi3Un6XzS6eVYQmqfS4qMpwJrgc1R8RxXSSslfbaY5u3AuRFxt6S9SJ/kdWZbUrTdb5J2BRvTdsV6NyDpfBrWdsU8Q9IwzVzn9pG0oqFtd0DD225A0r6SLqBhbbegTvprgBXAi4vbBxbBPjnLeGeRLoNdXdw/mdSffhjpKwCuLh7fl9QNs6rtuccAe3eSZ8Y89wPexuNb/suAPwLeUQx/EvC9YvqnkPq71hTDTiqWZVVxexJYSerf/3J7HmCvLrJdRLpibIDUtXRm2zjTxyHeCfyPxcrW9rqeQVrZ1pMO8DSl7aazXVqsVwc1rO32B7aQfkkM4D1NaLcZ+b4M/HVx/2PA2+puO9J74s2k9/8lTWu7tnxXAn9fPNaY9a7TvwW32CWdDdwGbJE0GBH3k/qF7iz6xl+jxy8Q+hbpAOj0hUbXkg6iPhQRFwA/lfQ50kHRW4Bf9CFFxI0R8chCeWZkOwS4HBgGPkc6QPFa0l7CnmK6PyUdeH03qe/rYB4/jfIa0rn0j0TE5cCnSVeznkc6Yv1oW75Sn6ozsv0d8PYi263AEZI2FltRv690wdUVpD2Yvmcr8q0gvblOIF0/8ArScY9jSVtKdbZde7bNpLMFXku6huE36m67wnLStRfPkrSKtM4vKaZZS7vNkm9v0rr2VFIXx9GSPlJX20laRjrGdjLw8Yj43WLQMW3TrK3tZuT7WERMb3FPAkfV2XaldfAJNkzavfhb4D3FY8eSitYdRfALgU3FsHOAD7c9/3rgmOL2PqRTgI7txacSaeV9Udv900lbJm8Gvt32+FOBO4vb7yBdtvuk4vlfAp7eNu6qPmV7E+lI968Df1/8vR74X6Rz+RctW9v0Dmy7/Z9Jb6ZT6267WbL9MemUsWc2qO3eTOprfT/wVtKBtOvrbrdZ8r2PtMezqgltR9oDO3XGY6cA1zWh7ebI9/QiQ+3rXcfL0cGCTp+acwowXtxeRtqaWlncP4y0tX4saRfwYtKW1j+RPqn26Uv41Mcl+MVvt76Ax7t77iWdMzo97tcoCi1p9+mrxTh/skjZjgG+Mb3ito23jHRw+YTi/jn9zjYj5wGk4xs7gQ8X9+8FButqu1my3VXMdwVFN19dbdf2er6F1M32WuALxWP31N1uc+QbKx5rP124lvWO1EVxK7CpmP8HivpxH3BwA9a59nxXkb6Y69C617vSy1FigZ9MulDoOcX9pTOGnw+cPL0CkboezqRPRX2OlfkCHj9f/nPAR4vbv0ba43h62wtzNG1fCbxI2d7R/lhx+5Ci7Z672NnaMvwh6XzbzaR+7W8WbzjV2XYzsp1HOq3s2U1oO9JXRi8h9aFeTdoyvgl4f93r3Cz5/pl0htkLGtJ2XyHtgT2NtBV8FmnDsCnrXHu+L5Au/T+8CW3X6d900emIpE8BP4uIDcX9vUjnXb4DeA5wSpTsJ+8VSYeS+rTeFRG3Kn2h2GiRazXwnejNVWXdZHt7RNxWPHYMqVtqXZHtD+vI1k7pOoQzSW+yI0kr66HU2HZt2Y4mvdn+nHSW1UnU1HaSBkjdHPuQ2uk3SBeenE3aUj6cGtttlnyHk45P/BbpmNfLSO1Xy3qn4rTn4vbzSO/Ta0mX1Ne+zs3IdzTpSvdzSd80W9t6V0bZ89g3A+cWBxmOJK3Ex5NelLPrKuqFYyjOgZd0Bqn//2xSF9IPIp1+WXe2HxXZbietHHtIW/E31pit3b2kg4Dvi4i/k3QacHND8t1P6ie+ifS6LqO+tttDOnviUdKW+s9J6/8k8N4GtNtc+R6W9BpSwa9tvZsumoX7Sced3h8RFzag7Wbme4C08boN+K/Uu951rOwW++tIB0ofJn3j2JURcUufspUi6VrSwbXtpHNIPxQR36s1VGFGtruADQ1qt5WkLbg3kL7/fjNwXkQ8Ou8TF8Es2T4dEZvqTfXLigtPpvuy76o7z0xFvpOBz0Y666TuPPuQfnPhjaQ96r8EPhXpa7prN0u+zRHxZ/WmKqfjwi7puaTzOS8mHSzq2VfldqvYg/ggaUv485GuWmuEJmcDkLSU1P3yMClfk17XxmaDdFEX8FiU2TpaRE3OJ+lM0mm1n2va6wrNz7eQUlvsZmbWfE39aTwzM6vIhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlpn/D0QBdzhJVkBDAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "yearly_incidence.hist(xrot=20)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 1 }