
Risk Analysis of the Space Shuttle: Pre-Challenger Prediction of
Faillure

In this document we reperform some of the analysis provided in 

Risk Analysis of the Space Shuttle: Pre-Challenger Prediction of Failure by Siddhartha R. Dalal, Edward B.

Fowlkes, Bruce Hoadley published in Journal of the American Statistical Association, Vol. 84, No. 408 (Dec.,

1989), pp. 945-957 and available at http://www.jstor.org/stable/2290069. 

On the fourth page of this article, they indicate that the maximum likelihood estimates of the logistic regression

using only temperature are:  and  their asymptotic standard errors are  and

. The Goodness of fit indicated for this model was  with 21 degrees of freedom. Our goal

is to reproduce the computation behind these values and the Figure 4 of this article, possibly in a nicer looking

way.

Technical information on the computer on which the analysis is run
We will use Matlab.

% Peut afficher des informations personnelles
%system('systeminfo')
version

ans = 
'9.6.0.1072779 (R2019a)'

Loading and inspecting data
Let's start by reading data.

data = readtable("./shuttle.csv")

data = 23×5 table
Date Count Temperature Pressure Malfunction

1 04/12/0... 6 66 50 0

2 11/12/0... 6 70 50 1

3 03/22/0... 6 69 50 0

4 11/11/0... 6 68 50 0

5 04/04/0... 6 67 50 0

6 06/18/0... 6 72 50 0

7 08/30/0... 6 73 100 0

8 11/28/0... 6 70 100 0

9 02/03/0... 6 57 200 1

10 04/06/0... 6 63 200 1
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Date Count Temperature Pressure Malfunction

11 08/30/0... 6 70 200 1

12 10/05/0... 6 78 200 0

13 11/08/0... 6 67 200 0

14 01/24/0... 6 53 200 2

15 04/12/0... 6 67 200 0

16 04/29/0... 6 75 200 0

17 06/17/0... 6 70 200 0

18 NaT 6 81 200 0

19 08/27/0... 6 76 200 0

20 10/03/0... 6 79 200 0

21 10/30/0... 6 75 200 2

22 11/26/0... 6 76 200 0

23 01/12/0... 6 58 200 1

We know from our previous experience on this data set that filtering  data is a really bad idea. We will therefore

process it as such.

data.Frequency = data.Malfunction./data.Count;
figure()
plot(data.Temperature,data.Frequency,"o")
ylim([0 1])
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Logistic regression
Let's assume O-rings independently fail with the same probability which  solely depends on temperature. A

logistic regression should allow us to  estimate the influence of temperature.

data.Success = data.Count - data.Malfunction;
data.Intercept = ones(size(data.Success))

data = 23×8 table

Date Count Temperature Pressure Malfunction Frequency Success

1 04/12/0... 6 66 50 0 0 6

2 11/12/0... 6 70 50 1 0.1667 5

3 03/22/0... 6 69 50 0 0 6

4 11/11/0... 6 68 50 0 0 6

5 04/04/0... 6 67 50 0 0 6

6 06/18/0... 6 72 50 0 0 6

7 08/30/0... 6 73 100 0 0 6

8 11/28/0... 6 70 100 0 0 6

9 02/03/0... 6 57 200 1 0.1667 5

10 04/06/0... 6 63 200 1 0.1667 5
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Date Count Temperature Pressure Malfunction Frequency Success

11 08/30/0... 6 70 200 1 0.1667 5

12 10/05/0... 6 78 200 0 0 6

13 11/08/0... 6 67 200 0 0 6

14 01/24/0... 6 53 200 2 0.3333 4

15 04/12/0... 6 67 200 0 0 6

16 04/29/0... 6 75 200 0 0 6

17 06/17/0... 6 70 200 0 0 6

18 NaT 6 81 200 0 0 6

19 08/27/0... 6 76 200 0 0 6

20 10/03/0... 6 79 200 0 0 6

21 10/30/0... 6 75 200 2 0.3333 4

22 11/26/0... 6 76 200 0 0 6

23 01/12/0... 6 58 200 1 0.1667 5

logmodel = fitglm([data.Intercept,data.Temperature],data.Frequency,'Distribution','binomial','VarNames',{'Intercept','Temperature','Frequency'})

Warning: Regression design matrix is rank deficient to within machine precision.
logmodel = 
Generalized linear regression model:
    logit(Frequency) ~ 1 + Intercept + Temperature
    Distribution = Binomial

Estimated Coefficients:
                   Estimate      SE        tStat     pValue 
                   ________    _______    _______    _______

    (Intercept)          0           0        NaN        NaN
    Intercept        5.085       7.477    0.68008    0.49645
    Temperature    -0.1156     0.11518    -1.0036    0.31556

23 observations, 21 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 1.02, p-value = 0.312

The maximum likelyhood estimator of the intercept and of Temperature are thus  and .

This corresponds to the values from the article of Dalal et al. The standard errors are  and

, which is different from the 3.052 and 0.04702 reported by Dallal et al. The deviance is 3.01444 with

21 degrees of freedom. I cannot find any value similar to the Goodness of fit ( ) reported by Dalal et

al. There seems to be something wrong. Oh I know, I haven't indicated that  my observations are actually the

result of 6 observations for each  rocket launch. Let's indicate these weights (since the weights are  always the

same throughout all experiments, it does not change the  estimates of the fit but it does influence the variance

estimates).

logmodel = fitglm([data.Intercept,data.Temperature],data.Frequency,'Distribution','binomial','Link','logit','Weights',data.Count,'VarNames',{'Intercept','Temperature','Frequency'})
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Warning: Regression design matrix is rank deficient to within machine precision.
logmodel = 
Generalized linear regression model:
    logit(Frequency) ~ 1 + Intercept + Temperature
    Distribution = Binomial

Estimated Coefficients:
                   Estimate       SE        tStat      pValue 
                   ________    ________    _______    ________

    (Intercept)          0            0        NaN         NaN
    Intercept        5.085       3.0525     1.6658    0.095744
    Temperature    -0.1156     0.047024    -2.4584    0.013958

23 observations, 21 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 6.14, p-value = 0.0132

Good, now I have recovered the asymptotic standard errors  and . The Goodness of fit

(Deviance) indicated for this model is 

with 21 degrees of freedom (Df Residuals).

I have therefore managed to fully replicate the results of the Dalal et al. article.

Predicting faillure probability
The temperature when launching the shuttle was 31°F. Let's try to  estimate the failure probability for such

temperature using our model.:

data_pred = table();
data_pred.Temperature = linspace(30,90,121)';
data_pred.Intercept = ones(size(data_pred.Temperature));
data_pred.Frequency = logmodel.predict(data_pred);
figure()
plot(data_pred.Temperature,data_pred.Frequency)
ylim([0 1])
hold on
scatter(data.Temperature,data.Frequency,"o")
hold off
grid
legend("Frequency")
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This figure is very similar to the Figure 4 of Dalal et al. I have managed to replicate the Figure 4 of the Dalal
et al. article.

Computing and ploting uncertainty

figure()
xlim([30 90])
ylim([0 1])
plotregression(data.Temperature,data.Frequency)
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