From 1d817f1c56f4af7a2231167ed21236dd0bde9796 Mon Sep 17 00:00:00 2001 From: 3582521b868d7c148df1de482ec5a734 <3582521b868d7c148df1de482ec5a734@app-learninglab.inria.fr> Date: Wed, 25 Oct 2023 21:22:29 +0000 Subject: [PATCH] Update toy_document_en.Rmd --- module2/exo1/toy_document_en.Rmd | 2 -- 1 file changed, 2 deletions(-) diff --git a/module2/exo1/toy_document_en.Rmd b/module2/exo1/toy_document_en.Rmd index 72b2b96..169a1d8 100644 --- a/module2/exo1/toy_document_en.Rmd +++ b/module2/exo1/toy_document_en.Rmd @@ -17,7 +17,6 @@ pi ``` ## Buffon's needle - Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__ ```{r} @@ -29,7 +28,6 @@ theta = pi/2*runif(N) ``` ## Using a surface fraction argument - A method that is easier to understand and does not make use of the $\sin$ function is based on the fact that if $X\sim U(0,1)$ and $Y\sim U(0,1)$, then $P[X^2+Y^2\leq 1] = \pi/4$ (see ["Monte Carlo method" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach: ```{r} -- 2.18.1