diff --git a/module2/exo1/toy_notebook_en.ipynb b/module2/exo1/toy_notebook_en.ipynb index 6ba03f75705096624e1429089cdcfcae476db3e3..52474811c702e7729c2c8e9095274a73f0d3d3fc 100644 --- a/module2/exo1/toy_notebook_en.ipynb +++ b/module2/exo1/toy_notebook_en.ipynb @@ -4,8 +4,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# 1. On the computation of $\\pi$\n", - "## 1.1 Asking the maths library\n", + "# On the computation of $\\pi$\n", + "## Asking the maths library\n", "My computer tells me that 𝜋 is approximativey" ] }, @@ -33,7 +33,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## 1.2 Buffon’s needle" + "## Buffon’s needle" ] }, { @@ -72,7 +72,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## 1.3 Using a surface fraction argument\n", + "## Using a surface fraction argument\n", "\n", "A method that is easier to understand and does not make use of the sin function is based on the fact that if $X ∼ U(0, 1)$ and $Y ∼ U(0, 1)$, then $P[X^2 + Y^2 ≤ 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia)](https://en.wikipedia.org/wiki/Monte_Carlo_method). The following code uses this approach:\n" ]