"A method that is easier to understand and does not make use of the sin function is based on the fact that if $X ∼ U(0, 1)$ and $Y ∼ U(0, 1)$, then $P[X^2 + Y^2 ≤ 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia)](https://en.wikipedia.org/wiki/Monte_Carlo_method). The following code uses this approach:\n"
"It is then straightforward to obtain a (not really good) approximation to $\\pi$ by counting how many times, on average, $X^2+ Y^2$ is smaller than 1:\n"
"\u001b[0;32m<ipython-input-11-58176ea0e3c2>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m##R\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcars\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;32m<ipython-input-6-63677292ba96>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcars\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'plot' is not defined"
"\u001b[0;31mNameError\u001b[0m: name 'plot' is not defined"