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some measures are used to assess the predictive ability of competing models, the agree-
ment between published FRC measures of strength and model-based robot strengths
of all, playoff, and FRC top-8 robots, and the agreement between FRC top-8 robots
and model-based top robots. Moreover, the stability of estimated robot strengths and
accuracies is investigated to determine whether the scheduled matches are excessive or
insufficient. In the analysis of qualification data from the 2018 FRC Houston and Detroit
championships, the predictive ability of our model is also shown to be significantly better
than those of existing models. Teams who adopt the new model can now appropriately
rank their preferences for playoff alliance partners with greater predictive capability
than before.
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1. Introduction

For Inspiration and Recognition of Science and Technology (FIRST) is an international youth organization which
sponsors the FIRST Robotics Competition (FRC), a league involving three-versus-three matches, as dictated by a unique
game released annually. The FIRST entry on Wikipedia (2018) provides a more detailed description of the organization and
its history. Winning an individual match in the FRC requires one set of three robots, an alliance, scoring more points than
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an opposing alliance. Since its founding by Dean Kamen and Woodie Flowers in 1989, an increasing number of teams have
designed robots according to each year’s specific FRC game mechanics. The FRC has since ballooned to a pool of close to
4000 teams in 2018 playing in local and regional tournaments for a chance to qualify for the world championships of more
than 800 teams. In turn, starting in 2017, FIRST divided its world championships into two championship tournaments in
Houston and Detroit with about 400 robots playing in each.

Important to this article’s terminology and used frequently among scouters and tournament staff alike are the
competing “red” and “blue” alliances to refer to the aforementioned sets of three robots. Those interpreting raw footage
of matches rely heavily on the correspondingly colored bumpers of the robots in their data collection. Additionally, a
robotics “team” refers to a group of people who have constructed, managed, and maintained a “robot”, which refers to
the actual machine playing in a match.

With the never-changing three-versus-three format arose questions posed by many FRC strategists over the years in
analyzing past tournaments and their alliance selection phases: Which robots carried their alliance, and which robots
were carried by their alliance? How might one use the answers to the first questions to predict hypothetical or upcoming
matches?

Over the years, FRC games have gone through a variety of changes and tasks that form a key part of competition.
For 2017, tasks that earned points during a match included having the robot move across a line during the autonomous
period, delivering game elements from one location to another using the robot, and having the robot climb a rope (Fig. 1).
Generally, tasks will be similar to these regardless of the year, though the game elements, delivery locations, and terrain
will often change each year. In addition to similar tasks, there are some fundamental aspects that have not changed from
year to year. Games across the years have followed the same match timing format of 15 s of autonomous control, in which
robots are pre-programmed to operate in ways that score points, followed by a period of remote control, also called the
teleoperated period, lasting at least two minutes. FIRST (2017a) has provided a more detailed video guide of how points
were scored for the 2017 FRC game, and also provides a similar video guide at the start of each season.

There also exist numerous regulations and loopholes to those regulations that affect the relationships of results
between different tournaments. Before 2020, ideally, the same robot played in different tournaments would be expected
to have the same scoring ability across those tournaments. However, analysts often consider robots of the same team
from different tournaments independent from each other, since although FIRST implemented a “Stop Build Day” in which
teams could no longer make significant changes to their robots, there were still loopholes that allowed for a team'’s robot
to significantly improve in between tournaments. One such loophole allowed wealthier teams to build a secondary robot
for testing new components, which could be added on during pre-tournament maintenance. As of 2020, the Stop Build
Day rules have been lifted so that all teams can work on improvements more equitably in between tournaments. This
development means that in future years, one can predict the performance difference of a robot between tournaments to
be even more drastic than in recent history, thus reducing the reliability of previous tournament data in predicting the
performance of a robot in future tournaments. Because of these developments and the history of inconsistency between
tournaments, for the purposes of modeling, the same team’s entry played in different tournaments will be considered a
completely different robot. The model presented in this article is, thus, limited to the data from the qualification rounds
to predict the outcomes of the playoff rounds from the same tournament. It must also be noted that most maintenance
that occurs in between rounds does not have a significant additional positive impact on the robot’s performance, since
most of the scoring ability is inherently designed outside of competitive play.

The FRC's rules provide a structure with many features analogous to traditional sports. A kickoff event in January
announces the rules of that year’s game and signifies the beginning of the “build season”. Teams often organize
scrimmages or collaboratively test prototypes during this time in a fashion similar to roster formation during the MLB’s
Spring Training, other preseasons, or even free agent workouts. Build season is followed by the competition season where
good tournament results count toward advancement to increasingly higher levels of gameplay, most notably toward the
aforementioned championship tournaments.

As of the 2018 competitions, each championship site is composed of six divisions. Each division runs a mini-tournament
to determine a division champion alliance. The six division champion alliances further advance to the Einstein Division,
a round-robin group whose top two alliances play a best-of-three to decide a site champion alliance. In some years, each
site champion alliance plays the other at another gathering called the “Festival of Champions”. This scheme somewhat
parallels the Major League Baseball’s (MLB) National and American Leagues before the introduction of interleague play
in that championship sites, championship divisions, and regions for qualifying for the world championships segregated
teams from all over the world into their own pools of interaction, with the Festival of Champions serving as a counterpart
to the MLB’s World Series.

As in all tournaments throughout a season, matches in each division mini-tournament are divided into a qualification
stage and a playoff stage, which are similar to a microcosm of a regular season and a postseason in major Sports
leagues on the scale of only two days and with far more teams. In the qualification stage, teams’ robots are assigned
by a predetermined algorithm into matches of six split into three in a blue alliance against another three in a red
alliance. Deshpande and Jensen (2016) found similar types of data in the National Basketball Association (NBA), where
the contributions of players are assessed through home team scores and away team scores at different shifts, which are
defined to be periods of play between substitutions when ten players on the court is unchanged, during a match. Such a
concept is also applicable in the National Hockey League (NHL).
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Fig. 1. Three robots on the red alliance demonstrate their ability to climb a rope and hold wiffle balls. The yellow gears were delivered from an
angled slot or from the ground by the robots to be used in turning a crank on the top ledge. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Source: https://[www.thebluealliance.com/team/2767/2017.

Within the context of an individual game, the FRC also shares many similarities with traditional sports. Basketball
is a game that could be broken into separate units such as possessions, in which one team has control of the ball and
attempts to score by putting the ball in a basket, while the other team defends said basket. The above description defines a
possession with a scoring method, a defense, and an offense. The FRC's analog to the NBA's possession is a cycling feature
in which a robot may use the same method or set of actions to score repeatedly over the course of a match. Like the
structure of a basketball possession, each of these cycles involves an offensive unit attempting to score with a specific
action, and, sometimes, a defensive unit, which seeks to deter or defend from opponent scoring attempts. Robots on the
same alliance may work in tandem within each cycle or in parallel, often running multiple independent cycles with the
hopes of maximizing scoring. In both cases, a successful score for the offense is seen positively for offensive players and
negatively for defensive players. That the FRC allows the possibility of simultaneous, independent cycles should not lessen
the similarity between a cycle and a possession, since each cycle may be modeled the same way. The relation between
cycles in the FRC and possessions in the NBA allows individual contributions of robots in a FIRST match to be analyzed
like the individual contributions of players. However, unlike the FRC, players in the NBA are not randomly assigned to
shifts, and if a shift in the NBA is comparable to an individual match in the FRC, for any given NBA shift within a game,
players of different teams cannot be teammates in traditional sports, whereas in the FRC, former teammates often end
up facing each other in later matches on the same day.

Especially worth mentioning is that for the FRC, since matches and playing field setup are standard without significant
opportunity for fan interaction, there is no need to take into account a home-court advantage effect. A defensive
component is also unnecessary in our model formulation. Since the designed robots are memory-less, scores of different
matches are reasonably assumed to be mutually independent. There also exists the case in traditional sports where certain
players may have so much synergy that a team simply does not provide the opportunity, and thus the data, for the
hypothetical shifts where said players are separated. For the qualification stage of an FRC tournament, a predetermined
schedule algorithm, as detailed in the “match assignment” section of the 2017 game manual (FIRST, 2017b) provides
more opportunities for different synergies to be tested and for the separation of two or three well partnered robots in
the available data. Effectively, the FRC tournament design eliminates the analogous power of the coaches of traditional
sports to influence the model’s training data in less than ideal ways. It should be noted, however, that even though minute
differences exist in the updated wording of the algorithm between 2017’s game and games after 2017, the algorithm itself
has not changed. Although the scheduling algorithm is not truly random, it does eliminate many potential schedules
that may be obviously unbalanced. Thus, the way the qualification round schedules are assigned only helps models
account for irregularities in rating robots. More importantly, included in the eliminated potential schedules are those that
repeat match combinations. This control diversifies the head-to-head matchups between potential alliances, but since
the scheduling algorithm forces uniqueness in matchmaking within a tournament and that the same team’s robot is
considered a completely different entity between tournaments, every single qualification match across an entire season
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is unique and unrepeatable within qualification. This makes simulating new matches very prone to error and hard to
control, since any simulation of six robots in the same alliances would rely on only one pair of a red and blue score, if it
exists. In fact, the only place where matches of the same six robots separated into the same alliances is possible is during
the best-of —3 match-ups in the playoffs, and even that is not guaranteed to produce replicated matches, since an alliance
of four robots in the playoffs can opt to swap in its substitute robot between matches.

It has been observed that within an alliance for a specific match, there is at least some robot on the winning alliance
that contributed, possibly more than the others, to the win and at least some robot on the losing alliance that did not
pull its weight, possibly more than the others, in the loss. For example, Team 254 of the 2018 Hopper Division went
undefeated in its qualification matches, and Team 4775 of the same division failed to win a match in qualification per
The Blue Alliance’s online database (The Blue Alliance, 2018). These, together, provides a motivation to estimate robot
strengths to determine which robots are contributing the most to wins and losses. We aim in this article to develop a
model that utilizes the estimated strengths of individual robots to predict the outcome of any match.

Official ranking of FRC teams within the qualification stage involves a system of ranking points (RP). The kickoff
event’s revealing of game rules introduces two in-game objectives, the completion of which is rewarded with one RP
each. Additionally, winning a match will net a team two RPs while losing produces no additional RP. Pre-playoff rankings
are determined according to the total RP earned in the qualification stage with the top-8 teams in terms of RP being
guaranteed a spot in the playoffs. These top-8 teams are given the ability to form playoff alliances with an additional
three members for the playoff stage, one of which serves as a substitute, preserving the three-versus-three game structure.
When there are ties within the RP system, the average score (AS) measure is used to break RP ties.

Unlike the qualification stage, playoff stage alliances are determined by teams during the alliance selection phase. It
is during the alliance selection phase that the pool of teams within a particular tournament draft themselves into playoff
alliances that they each believe have the best chances of winning in the playoff stage. It is after this phase that the new,
team-selected alliances take full control of their own results, independent of randomness in having carried or being carried
in the qualification stage. The alliance selection phase, which takes place immediately after the end of qualification and
directly affecting the upcoming playoff, also marks the transition between when RP is king (qualification) and when in-
game scores become the ultimate goal (playoff). These reasons are why alliance selection is the most game-changing and
consequential portion of an entire tournament. Subsequently, there are some teams that design their robots specifically to
complete the in-game objectives, important to obtaining a higher RP ranking, with the hopes of guaranteeing a spot in the
playoffs and having more control over alliance selection. Teams that choose to implement this design strategy sometimes
sacrifice scoring ability, which is more important during the playoff stage. However, sometimes this tradeoff for alliance
selection control is understandable, since such teams usually invest more than others into scouting and analysis of the
competition and would thus have an information advantage in making alliance selections.

The alliance selection period is like the free agency period of the NBA. This is when players and managements, aside
from in-season trades, negotiate the bulk of partnerships in, for non-rebuilding teams, hopes of capturing the best odds
for the following season. It is important to note that unlike traditional sports leagues, the FRC does not have an analog to
team-rebuilds within a tournament, so all alliance selections must be done with only the end goal of a championship in
mind. Similarly, robotics teams, will negotiate with each other during the alliance selection phase to form the best alliance
of robots for the playoff rounds. Synergy comes into play within both the free agency period and alliance selection, as
management of an NBA team would not be looking to hypothetically field a team of five centers, nor would a FIRST team
necessarily look to form a partnership with a team whose robot is optimized for the same scoring method. The best
alliances tend to have each robot perform a different job, so as to maximize scoring opportunity, or minimize the other
alliance’s scoring opportunity if one of the jobs is general defense, depending on that year’s game. Thus, NBA management
and FRC strategists are comparable in that they both seek well-roundedness, as well as saturated ability in their quests
for championships. Other traditional sports’ free agencies also exhibit the same desires and goals from teams.

In the playoff stage, the eight alliances play three of their four robots in each match in a best of three matches knockout
manner until a champion is declared. As the FRC continues to progress, so have questions from participants on improving
the quality of alliance selection and decision making. Since the goal of playoff matches is actual points rather than RP,
many decide not to rely on the RP system to make decisions regarding the alliance selection. Teams throughout the years
have created new measures in order to assess actual or relative robot strengths. Some widely used measures in robotics
forums (e.g. Weingart, 2006; Law, 2008; Gardner, 2015; Fang, 2017) include the offensive power rating (OPR), the winning
margin power rating (WMPR), and the calculated contribution to winning margin (CCWM), among others. In one such
investigation of these measures, using simulated and past FRC and FTC tournaments, Gardner (2015) further analyzed the
performance of these measures. However, the OPR and WMPR models were found to have poor predictive performance
due to their imprecise estimates caused by a small ratio of the number of observations to the number of robots in the
considered data. Furthermore, the CCWM model was shown to be a special case of the WMPR model and indicated to be
meaningless in our application.

In the 2018 FRC Houston and Detroit championships, there were 112 to 114 matches involving 67 to 68 robots for
divisions in the qualification stage. The corresponding ratios of the number of observations to the number of robots range
from 3.28 to 3.40 for the OPR model and from 1.64 to 1.70 for the WMPR model. The analysis of such paired comparison
data also reveals no strong evidence to support the use of the WMPR model. These considerations motivate us to explore
some possible avenues to enhance their predictive capacities. With the consideration of latent clusters of robot strengths,
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the proposed model can be regarded as the dimension reduction of the parameter spaces in the OPR and WMPR models.
One crucial issue is how to estimate the number of clusters, clusters of robots, and robot strengths. The major aim of
our proposal is to assess robot strengths in a more accurate and precise manner and help highly ranked teams assess
potential alliance members for the opportunity of partnering in the playoff stage. To the best of our knowledge, there is
still no research devoted to studying the latent clusters of individual strengths in team games.

The rest of this article is organized as follows. Section 2 outlines existing measures and models for robot strengths.
In Section 3, we propose a more general regression model with latent clusters of robot strengths, develop two effective
estimation procedures, and present some agreement and stability measures. In Section 4, our proposal is applied to the
2018 FRC Houston and Detroit championships. Conclusion and discussion are also given in Section 5.

2. Existing measures and models for robot strengths

Throughout history, assessments for individual strengths have always intrigued analysts of team sports, e.g., individual
stats of NBA players in basketball. This is no different in the FRC as in the last 25 years, as the FRC game designs contain
features and components analogous to those in other traditional sports. Both FIRST and FRC teams have established their
own systems for rating competing robots. In this section, we concisely introduce and compare the OPR, CCWM, and WMPR
measures and models for robot strengths. Different from the OPR, CCWM, and WMPR models for the match outcome in
the literature, a more general semi-parametric formulation is further presented in this study. Moreover, we review similar
measures and models for individual strengths in other team games.

2.1. Data and notations

Let K and M stand for the number of robots and the number of matches, respectively, in a division. In each match s,
three robots forming the blue alliance, Bs, go against three other robots forming the red alliance, R;. In the qualification
stage, the first f%] matches are designed to ensure that each robot plays at least one match, the succeeding f%
matches are designed to ensure that each robot plays at least two matches, and in total, M = (mOGXK1 matches are designed
to ensure that each robot plays at least mg matches, where [] is the ceiling function. For example, in the Carver division
of the 2018 Houston championship, K = 68, M = 114, and my, = 10. With a total of 114 matches, each robot played at
least ten matches. Since exactly four robots played eleven matches, per the rules as specified in the game manual (FIRST,
2017b), the third match of each robot that played eleven games was not considered in their rankings, so that all robots
have exactly ten matches worth of opportunity to perform.

To simplify the presentation, let YSB and YsR stand for the scores of Bs and R, respectively; 81, ..., Bk the strengths
(or the relative strengths with the constraint Zf:l Bi = 0) of robots with the corresponding IDs 1, ..., K; and i.i.d. the
abbreviation of independent and identically distributed. The super-index in 8;’s and their estimators is further used to
distinguish different measures. For the linear model formulation of existing models, we also define the following notations:

Dy = I(Y} = Y? > 0), X} =1(i € By), X =I(i € Ry),
YO = (v, )" and x© = (x) = (x, .. x@) T = (G, xE),

where I(-) is the indicator function, Xs(t) = (XS(?, . ,Xs(,[())T and X((it)) = (Xﬁ), ... ,X,Eji))T represent the covariate information

of match s and robot i, respectively,s=1,...,M,i=1,...,K, and (t) can be either B or R.
2.2. Conceptual models

In application, the AS, the average score, is a simple way to assess robot strengths. The AS of a robot is calculated by
adding up the alliance scores in the matches played and dividing by three times of the number of matches played. Under
this system, the strength of robot i is estimated by

D Zi‘il(XSYSB +X51§YSR) P

Bi = TR z ,i=1,...,K. (1)

3 Zs:l (Xsi + Xsi)

Different from the plus-minus statistic, which was first adopted by the NHL's Montreal Canadiens in the 1950s, the AS is
analogous to goals for or points for, instead of score differential, divided by the number of players. Same as the drawback of
the plus-minus statistic, obviously strong (weak) robots may be underrated (overrated) due to being paired with relatively
weak (strong) robots, albeit robots are randomly assigned to matches. Even with a large enough number of matches, the
AS is still not a good representation for robot strengths.

As detailed by Fang (2017), in 2004, Karthik Kanagasabapthy of the FRC Team 1114 created a measure, which was
termed the calculated contribution, to assess the contribution of a robot to an alliance score. He initiated work on the
OPR measure, which characterizes the alliance score on the sum of contribution strengths of the alliance’s robots, and
estimated robot strengths by the least squares solution of systems of equations. The details of the computation were
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further explained in a post by Weingart (2006), who first called the calculated contribution as the OPR. In the following
OPR model, the blue alliance score and the red alliance score in each match are formulated in the same way:

R R B B
YE=>"p+efand P =Y pi+els=1....M, )
{ieRs} {ieBs}
where e¥, ..., &R, eB, ..., &b arei.i.d. with mean zero and variance o'2. As we can see, the above formulation is similar to

that from Macdonald (2011) for NHL players except that the OPR model does not consider a home-court advantage effect
and a defensive component. Under the assumption of independent errors, 2M observations are used in the estimation of
B1, ..., Bx. While such a model formulation allows for the decomposition of expected alliance scores into individual
robot strengths in a logical manner, it completely ignores actions of robots in the opposing alliance. As we can see,
the independence between ef and 8?, s = 1,..., M, is unrealistic in practice. Furthermore, robots in blue and red
alliances might be influenced by a common unobserved factor (e.g. environmental obstacles), say Z;, in match s such
that E[Zs|{i : i € Bs or Rg}] = E[Zs] = By # 0,s = 1, ..., M. To achieve this more realistic interpretation, the OPR model
can be modified as

YR = By + Z,g,.Jrgg and Y? = gy + Zﬁ,-+sf,s=1,...,1w, (3)

{ieRs} {ieBs}

where the intercept Sy can be interpreted as the average of all robot strengths. Furthermore, the error terms e} and &?
cannot be assumed to be mutually independent, s = 1, ..., M. It is notable that the resulting estimators of the regression
coefficients in model (2) are biased estimators of those in model (3).

Another commonly used assessment for robot strengths is the WMPR measure from Gardner (2015). This measure
accounts for the effects of robots on the opposing alliance. With this consideration, the difference in scores between
alliances in the WMPR model is formulated as

E-YP=D) fi-) Bites=1..M (4)
{ieRs} {ieBs}
where &1, ...,y are i.i.d. with mean zero and variance o2. In basketball, soccer, volleyball, and esport games, some

research works such as Rosenbaum (2004), Macdonald (2011), Schuckers et al. (2011), Seebg and Hvattum (2015), Hass and
Craig (2018), Hvattum (2019), and Clark et al. (2020), among others, used the adjusted plus/minus rating (APMR), which
is similar to the WMPR, to assess the contribution to net scores per possession by each player relative to all other players.
In contrast with the WMPR model, the APMR model takes into account a home-court advantage and clutch time/garbage
time play, typical of many team sports. In traditional sports, this model formulation has been shown to be useful for

paired comparison data. A more general condition is imposed on &1, . .., gy, albeit the OPR model in (2) or (3) also leads
to
V¥ =Y Bi— ) Bit(ef—e)s=1....M, (5)
{ieRs} {ieBs}
where (8 — &B), ..., (e} — &B)) are i.i.d. with mean zero and variance E[(s} — ®)?]. However, only M observations are

used in the estimation of robot strengths.
By taking into account the influence of the opposing alliance score, Law (2008) showed a CCWM model of the following
form:

R-vE= S pteland VP v =Y pi+els=1.....M, (6)
{ieRs} {ieBs}
where ef, ... el €8, ..., e} arei.i.d. with mean zero and variance 0. Clearly, the CCWM model formulates the net effect

of the opposing alliance score on the reference alliance score. The contribution of a robot in its participated match is further
explained by the winning margin. However, by the equality E[Y{ — Y{] = —E[Y{ — Y], we have 3~ ¢ i = — D icp,) Biv
s=1,...,M,whichleadsto gy =--- =8¢ =0forM > K and ef = -8, s =1,..., M. As a result,

YR —YE=e,s=1,..., M, (7)

where ¢, ..., ey are i.i.d. with mean zero and variance o2. This fact indicates that the CCWM model is meaningless
in our application. Obviously, the model formulation of the CCWM model in (7) is a special case of that in (4) with
B1 =--- = Bx = 0. For this reason, the CCWM model will not be studied in the rest of this article.

Remark 1. For the defensive strengths of robots, there were some proposals to take into account the defensive power
rating (DPR). It was shown by Gardner (2015) that estimated robot strengths of the DPR model can be expressed as
the difference of those of the OPR and CCWM models. The author further introduced other measures such as combined
power rating, mixture-based ether power rating, and some related simultaneous measures. However, in the setup of the
FRC system, these measures are inappropriate to characterize robot strengths. For this reason, we do not explore their
properties and extensions in this article. O
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2.3. Comparisons to measures in other team games

Wins above replacement (WAR), as described by Slowinski (2010), and value over replacement player (VORP), detailed
by Woolner (2001a,b), are statistics used in baseball to express individual contributions of a player to his team. WAR
measures this by wins in a 162-game season, while VORP measures offensive contributions of a player through runs
created and pitching contributions through allowed run averages. These statistics are comparable to the different
individual contribution statistics analyzed in this article. Out of these two statistics, VORP is more similar to the currently
available robotics statistics, since the lower number of matches in qualification, which does not usually pass 11 per robot
for the 2018 championships, means there is not enough data to fit an accurate WAR-like measure.

While the APMR model seems to gain an advantage in describing the basketball, ice hockey, soccer, volleyball,
and esport games, the context is quite different from robotics competitions. Furthermore, Ilardi and Barzilai (2008)
incorporated the role of each player as offensive or defensive into the APMR model. Based on the difference between
the expected and observed outcomes, Schuckers et al. (2011) proposed an adjusted plus-minus probability model. In a
robotics tournament, the ratio of the number of observations to the number of robots in each division is under two for
the WMPR model, while the ratio of the number of possessions to the number of NBA players in a season is about sixteen
(see TeamRankings (2019) for the 2018-2019 season) for the APMR model. This limitation in the WMPR model usually
produces poor estimation of robot strengths and poor prediction of future outcomes. An important task of our research
is, thus, to develop a better predictive model.

2.4. Linear model formulation

It follows from (2) and (4) that the OPR and WMPR models can be expressed as
Y =XB +e, (8)
where B = (B1, ..., ﬂ,()T and & has mean vector Oy, ; and covariance matrix o2I. In terms of such a linear model

formulation, we have

R R _

1LY= <¥B>.X = (iB), and e = (¢%, ..., eR, 6B, ... ¢B)" with M = 2M in the OPR model; and

2.Y=YR—YB X=XR—XB and ¢ = (&1, ..., en)" with M = M in the WMPR model.

Owing to the linear dependence of (X% — XE)'s (ie. Y1, (X} — X%) = 0) in the WMPR model, the constraint
K ; = 0, which was also adopted by Cattelan et al. (2013) for the Bradley-Terry specification in Bradley and Terry
i=1

(1952) and Bradley (1953), is further imposed to solve the identifiability of 8. As a result, the coefficient ;, compared to

Bk, is explained as the relative strength of robot i, i = 1, ..., K — 1. With this constraint, model (8) can be rewritten as
Y =XpB* +¢, 9)

= . o . . y T . _
where X is a M x (K — 1) matrix with the ith column being X — X and g* = (ﬂl, o, ﬁ,(_l) with g = — f:f Bi.

In the context of regression analysis, 8 (or 8*) is naturally estimated by the least squares estimator (LSE), say ﬁ (or E*),
under the Gauss-Markov conditions.

Remark 2. Under the WMPR model, Gardner (2015) proposed an estimator of 8 by solving the pseudo-inverse solution
of the corresponding estimating equations of the sum of squares. Albeit lacking an explanation for the resulting estimator,
the estimated or predicted score of a match is unique. In application, the constraint Zf;l ,31.2 = 1 can also be imposed to
obtain estimators of relative robot strengths. However, there is no simple formulation for the corresponding LSE of 8. O

Remark 3. Like the development of a plus/minus rating system by Feamhead and Taylor (2011), the robot strengths g;’s
in the WMPR model can also be formulated as i.i.d. normal random variables with mean zero and variance o2. Together
with the normality assumption on ¢ and the independence between 8 and ¢, the resulting predictor of 8 has been shown
by Fahrmeir and Tutz (2001) to be a ridge estimator, which is the same as that in Sill (2010), with the regularization
parameter o2 /002 in such a Bayesian framework. Since the ridge regression is mainly used to combat multicollinearity of
covariates, its explanation is different from that of the introduced Bayes estimator. Furthermore, in most existing paired
comparisons models, this problem was solved by imposing the constraint Zf; 1 Bi = 0. In our application to the 2018 FRC
championships, it is also shown that the WMPR model and its Bayesian formulation, which is hereinafter referred to as
the WMPRR model, have comparable performance in prediction. O

2.5. Binary regression models

It is implied by the OPR and WMPR models that the corresponding conditional probabilities of a match outcome have
the following form:
P(D; =1XE =22 XX =x8) =1 - F(-(xX —=x)"B),s=1,.... M, (10)

7
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where F(-) is an unknown distribution function. For the OPR model, F(-) is a distribution function of (ef — esB)'s. Although
the conditional probability in (10) can also be derived from model (3), the LSEs of the regression coefficients in both
models and the resulting nonparametric estimators of F(-) will be completely different. As for the WMPR model, F(-) is a
distribution function of &;’s.

Let (Y8, Y§, X8, X}) stand for a future run with Dy = I(Y§ — Y§ > 0) and (x5, x§) being a realization of (X§, X§). In
practical implementation, we will conclude that

{Yg > Yo} if F(—(x§ —x3)" B) < 0.5 and {Y§ < Yg} otherwise. (11)

Especially worth mentioning is that we do not assume any structure on F(-). For a strict monotonicity of F(u) with
F(0) = 0.5, F(—(x§ — x8)"B) < 0.5 is equivalent to (x§ — xg)T,B > 0. Special cases of F(u) for paired comparison
data include the logistic distribution function and the standard normal distribution function, which lead to the Bradley-
Terry model in Bradley and Terry (1952) and Bradley (1953) and the Thurstone-Mosteller model in Thurstone (1927)
and Mosteller (1951), respectively. In various sports and games, the Bradley-Terry model has been widely used to rate
players. It includes the studies of Cattelan et al. (2013) in basketball and football, Elo (1978) in chess and other sports, Islam
et al. (2017) in cricket, Chen et al. (2017) and Weng and Lin (2011) in online multi-player games, and Huang et al. (2008)
in bridge. With the specifications of the complementary logistic function for the “update function shape” and the logistic
model for the margin of victory in the Elo-type rating systems, Aldous (2017) and Kovalchik (2020), respectively, showed
that the resulting models are related to the Bradley-Terry model.

3. Latent clusters of robot strengths

A more general model formulation, compared to existing models, is used to characterize latent clusters of robot
strengths. Two effective estimation procedures are further developed for the proposed regression model. Moreover, some
measures for the predictive ability of models, the agreement related to FRC ratings and model-based robot strengths, and
the stability of estimated robot strengths and accuracies are presented in this section.

3.1. Model extensions

In Figs. 2 and 3, we observe a clustering feature in the estimated robot strengths from the OPR and WMPR models for
these two championship tournaments. With this finding, both models are extended to a more general formulation with
a clustering feature of robot strengths, i.e.

T
_ 0] ]
o (A2

where ¢y is an unknown number of clusters and g; € {1, ..., co} is the corresponding cluster of roboti,i =1, ..., K, with
g =(g1,...,8)". In addition to reducing the number of parameters in the OPR and WMPR models, we do not assume
any particular distribution for the underlying distributions of the difference in scores and the match outcome (win/loss).
In fact, the viewpoint of grouping players into some skill levels has been adopted by the United States Chess Federation
(USCF) and the National Wheelchair Basketball Association (NWBA). By using a rating system as defined by Elo (1978),
which is used to assess the relative skill levels of players, the USCF classifies chess players into thirteen groups: class
A, ..., class ], expert or candidate master, national master, and senior master. Based on the player’s physical capacity to
execute fundamental basketball movements, the NWBA groups players into one of eight categories (1, 1.5, .. ., 4, and 4.5).
However, these classification criteria are slightly subjective in practical implementation. By incorporating the information
of B = ﬂgC? with g € {1,...,c0}, i = 1,...,K, into the model formulation Y = B1Xq) + --- + BxXx) + € in (8), the
covariates X(;)'s sharing the same coefficient, say ﬁfo, can be further summed together to produce a new covariate X(C)‘;
j=1,...,co. It follows that Y can be expressed as ﬂfOX(C{’) RS lgfgx(‘c%) + ¢ and model (8) is an overparameterized
version of model (12) for K > co.
Based on theoretical and practical considerations, an extended linear regression model is, thus, proposed as follows:

Y = X0B% 4 ¢, (12)
where g% = (B°,...,B)", e has mean vector Oy, and covariBance malgrix olly, and X0 = (X%, ..., X)) =
(XD -+ X)) is a designed covariate matrix of X*© and X* with XJ° and X;° being defined as X} based on X's and

X(',?)‘s, respectively. Note that model (8) is our special case with ¢, = K and is over-parameterized when cg is smaller than
K. In addition to generalize the model formulation of robot strengths in (8), we do not assume any particular distribution
for the error term e¢. Since the ratio of the number of matches to the number of robots in each division is rather small,
our study provides a possible avenue to enhance the predictive capacities of existing models. Same with the derivation
in (10), we have

P(Ds = 1]XE =28, X} = %) = 1 — F(—(x{® — ) B0),s = 1,..., M, (13)

for the OPR model with latent clusters of robot strengths (OPRC) and the WMPR model with latent clusters of robot
strengths (WMPRC).
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Fig. 2. Dot plots of estimated robot strengths from the OPR model for the divisions of the 2018 FRC Houston and Detroit championships with
vertical jitter.
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Fig. 3. Dot plots of estimated robot strengths from the WMPR model for the divisions of the 2018 FRC Houston and Detroit championships with
vertical jitter.

Remark 4. Under the assumption that chess players of comparable skill levels play against each other, Sismanis (2010)
developed the Elo++ rating system to avoid overfitting the ratings of players in the Elo rating system. Since robots are
randomly assigned to matches and alliances in the qualification stage, there is no explicit neighbor for each robot and,
hence, this technique is inappropriate for estimating the OPRC and WMPRC models. Furthermore, it is rather subjective
for the defined neighbor averages in the introduced ¢,-regularization. O

3.2, Predictive ability

In this subsection, we consider all possible regression models of the form

Y =XB +e¢, (14)
where X¢ = (X(CU, .. ,X(CC)) and B¢ = (g5, ..., ,BCC)T with X(CD being defined as Xé‘)) based on Xy)'s, ¢ =1, ..., K. As in many
scientific studies, sensitivity and specificity are commonly used measures of diagnostic accuracy. We further employ these
two measures to detect the condition when the blue alliance defeats the red alliance and the condition when the red
alliance defeats the blue alliance, respectively. Since robots are randomly assigned to one of two alliances, the expected
value of the win indicator Dy should be 0.5. It follows that the accuracy, i.e. the weighted average of sensitivity and
specificity, is a reasonable measure to assess the predictive ability of a model. More precisely, such a measure is_the
expected proportion of correct predictions. Given the number of clusters c, clusters of robots g, and an estimator 8¢ of
B¢, the accuracy of a predictor based on model (14) is defined as

AC(c) = P(sign(Y§ — YB) - sign(P° (x5, &) — 0.5) > 0) + 0.5P(sign(Y& — Y7) - sign(P° (x5, x§) — 0.5) = 0),  (15)

where P(x8, x8) = 1 — F(—(xk — xB)TB) with F(v) = Y™ I(ef < v)/m and ¢ = (YR — YB) — (X% — xB)TB),
c=1,...,K,s=1,..., M. We note that the second term on the right-hand side of (15) is used to deal with the problem
of ties. Provided that ¢y and g are known, the empirical distribution function F(v) of residuals is shown by Mammen
(1996) to converge uniformly to the distribution function of errors under some suitable conditions. For the difference in
score between the red and blue alliances, i.e. (Y(‘} - yg), the following mean square prediction error is adopted:

MSPE(c) = E[((Y§ — Y&) — (xR —x&) "B)*], c=1,....K. (16)
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As in the context of regression analysis, this measure is found to be useful in exploring the effect of potential influential
observations and in selecting several competing models.
In the qualification stage, AC(c) and MSPE(c) are estimated by the leave-one-match-out cross-validation estimates
M 1M . .
AC(c ZD (c) and MSPE( )= o Z((YSR _ ySB) - (XSRC _ XSBC)Tﬁis) , respectively,c =1,...,K, (17)
s=1 s=1
where Dy(c) = I(sign(Y} — Y?) - sign(P¢ (X8, XR) — 0. 5) > 0) + 0.5I(sign(Y® — V&) - sign(P* (X8, XR) — 0.5) = 0),
Pe(XBXR) =1 —’ﬁﬁs(—(xs“c — XBYTBe <), and ( . F “,(v)) is computed as (E“,’I;C( )) with match s being removed,
s = lA .., M. Instead of using data {Y_,, X°}, (ﬂfs, F© s(v )) can be directly obtained through the relation between EC
and {B°, XC ¢} for each s. The computational details are relegated to Appendlx Let AC1 and AG, stand for the accuracies
of any two generic models of a division with the corresponding estimates AC1 = Z 1D1s/M and AC2 = Z 1 Das/M,
where Dq;'s and D-y's are defined as Dy(c)’s. It is ensured by Theorem lin Chlang and Chiu (2012) that «F(ACZ —AC,)/0,

can be approximated by the standard normal distribution, where ] o( = Z (DZS—AQ) /M, £ = 1, 2. Using this property,
an approximate (1 — «)-confidence interval for AC, is, thus, constructed as follows

AC, 7, a/zm =12, (18)
where z, is the gth quantile value of the standard normal distribution. For the hypotheses Hy : AC; = AC, versus
4 : ACy # AC; (or the hypotheses Hy : AC; < AC; versus Hy : AC; > AGC,), the following test statistic is proposed:

VM(AC; — AC 1Y DS
T = (8142) where 52 = v > (D15 — Das) — (AC; — AGy))’. (19)

s=1
In our test, Hy is rejected with an approximate significance level @ whenever |T| > Zi_q2 (or T > Z1_¢).

In the playoff stage, we let K* and M* stand for the number of robots and the number of matches, respectively, in a
division; and Y*© = (v;O, .., v20) " and X*® = (x;©, ..., X*")" the designed response vector and covariate matrix
with (t) being either B or R. By treating qualification data as training data, the measures AC(c) and MSPE(c) of an estimation
procedure on playoff data are defined as

M*
1 —~
AC(c) = ZD* ) and MSPE(c) = o Z((YS‘R By (xR X:BC)Tﬁc)z! c=1.... K" (20)
s=1
where D} (c) = I(sign(Ys*R — Y7) - sign(Pe(XB¢, X:R) — 0.5) > 0) + 0.51(sign(Y;® — v;®). sign(P(XB¢, X*R) — 0.5) = 0)
with (X;B¢, X}R¢)'s being computed as (X, XX¢)'s. As shown in our application, the predictive ability of the current and
proposed models is poor for match outcomes in the playoff stage. Due to non-random assignment of robots to matches,

some confounders cannot be treated merely as nuisance variables in model fitting. This partly explains poor capacity in
prediction.

3.3. Estimation procedures

For the unknown parameters cg, g, and 8 in model (12), it is usually impractical to fit all possible regression models
n (14). The total number of these model candidates can be further shown to be

sK—Z Z( 1)’()5—1 (21)

c=1

which is the Stlrlmg number of the second kind as shown by Marx (1962) and Salmeri (1962). In the 2018 FRC Houston
and Detroit championships, Sk is about 1.67 x 10%° for K = 67 and 3.66 x 107° for K = 68. In this study, two effective
estimation procedures are developed to avoid the computational complexity and cost associated with the selection of an
appropriate model from a huge number of possible model candidates indexed by the combinations of variant numbers of
clusters and clusters of robots.

We first propose the following estimation procedure (Method 1) for model (12):

Step 1. Fit a regression model in (8) (e.g. the OPR and WMPR models) and compute the LSE ﬁ of B.
Step 2. Perform the centroid linkage clustering method of Sokal and Michener (1958) on /3 and obtain cluster estimators

=(&.....8) withg's e {1,...,c}. .
Step 3. Fit a regression model Y = Xcﬂc + ¢ and compute the LSE g€ of 8¢, c =1, ... ,K.

Step 4. Compute an estimate /KE(C) of AC(c) (or aigtimate l\m(c) of MSPE(c)) and derive the maximizer ¢ =
arg max, AC(c) (or the minimizerﬁ = arg min, MSPE(c)).
Step 5. Estimate (co, g, 8%) by (C, g, B°).

10
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The reason of using E as an initial estimator is mainly based on the validity of model (8), which is an overparameterized
version of the proposed model for K > cg, and the consistency of 8 to 8. As shown by Portnoy (1984), its convergence rate
is the square root of the ratio of the number of robots to the number of observations. Owing to the constant strength of
robots in the same cluster, i.e. 8;'s € { ﬂlco, ce ,858 }, the centroid linkage clustering method, which is one of the hierarchical
clustering methods (Gordon, 1987), is reasonably used to measure the distance between any two clusters. For ¢ > co,
it is further ensured that EC, which is a consistent estimator of ¢ with g{’s € {ﬁfo, R ,358}, will be more and more
precise as ¢ decreases to cp. Thus, the determination of cy can be naturally transferred to the model selection problem
in such a dimension reduction of the parameter space. In the above estimation procedure, the LSE of ﬁ(} is directly
derived as B! = "™ (YR + YB)/6M for the OPRC model and ' = 0 for the WMPRC model. Different from existing
criteria (e.g. Krzanowski and Lai, 1985; Tibshirani et al., 2001; Sugar and James, 2003; Wang, 2010) in the cluster analysis,
the optimal number of clusters cq is determined by either maximizing the leave-one-match-out cross-validation estimate
of the accuracy AC(c) or minimizing the leave-one-match-out cross-validation estimate of the mean square prediction
error MSPE(c) with respect to the number of clusters ¢, where the left-out match (testing data) plays as the role of a
future run and the remaining matches (training data) are used to build up competing models. Although the properties
AC(cp) > AC(c) + O(M~1) and MSPE(cy) < MSPE(c) + O(M~1) hold for ¢ < ¢y < K, the cross-validation criterion,
which is akin to the Akaike information criterion (AIC) (Akaike, 1974), is inconsistent in model selection because of the
properties AC(c) = AC(cp) + O(M~1) and MSPE(c) = MSPE(c) + O(M~1) for ¢y < ¢ <« K. However, in our application, the
imprecise estimates of robot strengths in a set of nested models of the form (14) are found to result in //\E(cl) > R(cz)
for c; > ¢ >C and MSPE(cl) < MSPE(CZ) for ¢, > ¢; > C*. This implicitly implies that ¢ and c should be much smaller
than K and close to ¢y. A more thorough study warrants future research. It is notable that AC( ) and MSPE(C) are not only
used to assess the predlctlve ability of models, but also to estimate the number of clusters ¢y in model (12).

In fact, clusters of robots g;’s can be obtained by performing the cluster analysis on the estimator /3(” 1) sequentially
withc = K — 1, ..., 2. As an alternative of Method 1, the second estimation procedure (Method 2) is further proposed
as follows:

Step 1. Fit a regression model Y = X8 + ¢ and compute the LSE E of 8 and /KE( K) (or MSP\E(K))

Step 2. Perform the centroid linkage clustering method on ,BK ,8 and obtain cluster estimators g = (g1, . ,EK)T with
gse{l,....,K—1}. —

Step 3. Fit a regression model Y = XK '8! + & and compute the LSE BX=1 of BX=1 and AC(K — 1) (or MSPE (K — 1)).

Step 4. Repeat Steps 2-3 for g, /35, ,35 1 and AC(C —-1) (or MSPE(C - l)) c=K—1,...,2.

Step 5. Estimate ¢y, g, and 8% by T = arg max. AC(c) (or ¢* = arg min, MSPE(C)), g, and ¢, respectively.

As we can see, clusters of robots g;'s are obtained by performing cluster analysis on BK in Method 1 but on EC“,
c =K —1,...,2,in Method 2. It is notable that Method 2 shares the asymptotic properties of Method 1 because this
estimation procedure uses the same consistent initial estimator. Although both estimation procedures might produce
different estimated numbers of clusters, their estimated accuracies for the proposed model are close to each other in our
application.

In the proposed model (12), the multiple comparison procedures such as those proposed by Hochberg and Tamhane
(1987), Hsu (1996), and Hothorn et al. (2008), are possible avenues for the determination of the number of clusters and
clusters of robots. However, how to control the overall type I error rate for the simultaneous inference of {8; —g; : i # j} is
still a challenging task. Furthermore, such an inference procedure might not be able to achieve the prediction purpose. As
indicated in the introduction, a small ratio of the number of observations to the number of robots will affect the precision
of the LSE ﬂ of B in (8). It tends to choose a small number of clusters and, hence, lead to poor prediction on match
outcomes.

Remark 5. The formulation in (14) for the WMPRC model can be rewritten as Y = X¢B*¢ + ¢, where X¢ is defined as X

with the jth column being X5, — (n1/nc)X,), and g* = (8, ..., Cﬁ])T with ¢ = — 37" - s /nc and ny = YL I(gi =
j),j=1,...,c. As in the context of regression analysis, the LSE of 8¢ in the OPRC model is
’Bc — (XCTXC)*lchY (22)
and the LSE of ¢ in the WMPRC model is
- RxC e o _ . —yed n;B;
B¢ = (%C> with g* = (XCTXC)_]XCTY and B¢ = j=1 "] forc>2. O (23)
c ne

Remark 6. Although the Bayesian information criterion (BIC) (Schwarz, 1978) has been widely used in model selec-
tion, Giraud (2015) showed that the BIC is valid only when M is much larger than K, which is not the case for this
scenario. Furthermore, the BIC is infeasible in our setup with the lack of a particular distribution assumption on Y; and
Ds, s = 1,..., M. As we can see, existing methods in the latent cluster analysis (Lazarsfeld and Henry, 1968; Goodman,
1974; Collins and Lanza, 2010) are inapplicable to the proposed model because of their focus mainly on identifying the
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underlying clusters of Y’s rather than those of /31 s. Furthermore, when c is greater than 1, there exists a huge number of
possible class membership combinations (Z 1)’( ) ')K)/c' for g;’s in the perspective of latent class analysis. For
different combinations of g;’s, it also needs to carry out a complicated computational task in deriving the corresponding
design covariates X,’s and estimates ,BC' O

3.4. Agreement assessment

Let Ry be the collection of FRC ratings of all, playoff, or FRC top-8 robots; Ky the size of Ry; and Bo the estimated
robot strengths of robots in Ry. To assess the agreement between FRC ratings and model-based robot strengths, the rank
correlation, which was first proposed by Han (1987), of Ry and By is computed as

RC(Ro, Bo) = AT Zg sign(R; — R;) - sign(Bi — B;) > 0) + 0.5(sign(R; — R;) - sign(f; — f;) = 0),  (24)
i#]

where R;’s and E{s are the corresponding elements of Ry and Eo- In fact, this rank-based measure is particularly useful to
investigate the monotonic association of two ordinal scale measurements. Other measures such as Kendall's z (Kendall,
1938) and spearman’s p (Spearman, 1904) can also be used to assess the agreement between Ry and So.

As in the contexts of pattern recognition and information retrieval, we assess the agreement between FRC top-8
robots and model-based top-N robots, which are rated by estimated robot strengths, by the precision and recall measures
from Perry et al. (1955). Let RSg and RS(N) stand for the corresponding sets of FRC top-8 robots and model-based top-N
robots. The precision and recall measures of RSy and RS(N) are further given by

Pr(RSp, RS(N)) = |RSoﬂNﬂ and Re(RSy, RS(N)) = IRSoﬂsﬂ respectively. (25)
In diagnostic tests, the precision and recall are termed as the positive predictive value by Vecchio (1966) and sensitivity
by Yerushalmy (1947), respectively. It is notable that the sensitivity is a measure of the intrinsic accuracy of a test whereas
the positive predictive value is only a function of the accuracy and prevalence.

3.5. Stability assessment

In this study, we assess how many matches are needed in the qualification stage to produce a clear picture about robot
strengths. This is mainly to make a recommendation on an optimal number of matches in future tournaments to improve
planning and logistics. Let Y[(Zt]) and X[(é]) be the corresponding vector and matrix formed by the first M, elements of Y and

the first M, rows of X(*) with (t) being either B or R and M, = [2£7,¢ =6, ..., mo. Based on data {Y} e Y[‘E],X[[],Xm}
and the estimators (¢, g) (or (c*, g)) of (co, g), we define ,Bm as the robot strength estimates or the top-8 robot strength

estimates obtained from the LSE of ﬂCO in model (12), £ =6, ..., mq.

Same with the formulations of AC( ) and I\m(c) in (17), KEM(?) and l\mm(?*) are computed based on data

{Ym, Ym,Xm,Xm} and ,3[[], £ = 6,...,mp. The stability of estimated robot strengths and accuracies can be assessed

through {RC(/S[“ ﬂwﬂj) € =6,..., (mo — 1)} and {KE[“('C\) (or l\mm('c*)) : £ =6, ..., mg)}, respectively, where the
rank correlation function RC(-, -) is defined in (24). Given these measures and a pre-determined tolerance threshold, we
can further determine an appropriate number of matches in the qualification stage.

4. An application to the 2018 FRC championships

In this section, the OPR and WMPR models in Sections 2.2 and 2.4-2.5 and the OPRC and WMPRC models in Section 3.1
are applied to the 2018 FRC Houston and Detroit championships. As discussed in Remark 3, the WMPRR model is
the WMPR model with random robot strengths. Its flaws are also investigated in this application. As of the 2018
competitions, each championship site is composed of six divisions: Carver, Galileo, Hopper, Newton, Roebling, and Turing
in Houston; and Archimedes, Carson, Curie, Daly, Darwin, and Tesla in Detroit. For the determination of the number of
clusters and clusters of robots, the developed estimation procedures (Method 1, Method 2) in Section 3.3 are denoted by
(OPRC1,0PRC2) for the OPRC model and (WMPRC1,WMPRC(2) for the WMPRC model. To avoid verbosity, the corresponding
estimation procedures for the OPR and WMPR models are hereinafter denoted by OPR and WMPR estimation procedures.
In Table 1, we summarize the number of matches and the number of robots of each division in the qualification stage
and the playoff stage. Table 2 further displays the estimated numbers of clusters from the OPRC1, OPRC2, WMPRC1,
and WMPRC2 estimation procedures. Apparently, the estimated numbers of clusters are relatively small compared to the
number of robots. It is also shown in Figs. 4 and 5 that there exist an inverted U-shaped relationship between the estimated
accuracy and the number of clusters and a U-shaped relationship between the estimated mean square prediction error
and the number of clusters.

Since the research interest mainly focuses on predicting match outcomes, our investigation is based on the estimated
number of clusters C. In the twelve divisions, the corresponding ratios of the number of observations to the estimated
number of clusters range from 22.33 to 45.33 for the WMPRC model and from 6.48 to 22.67 for the WMPRC model.
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Table 1
The number of matches M and the number of robots K in the qualification stage and the number of
matches M* and the number of robots K* in the playoff stage.

Tournament Division M K M* K*
Houston Carver 114 68 17 28
Galileo 114 68 17 28
Hopper 114 68 17 28
Newton 112 67 14 28
Roebling 112 67 15 28
Turing 112 67 18 27
Detroit Archimedes 114 68 16 27
Carson 114 68 17 27
Curie 112 67 16 27
Daly 114 68 16 26
Darwin 112 67 18 25
Tesla 112 67 17 27

Table 2
The estimated numbers of clusters ¢ and ¢*, in which the numbers within the brace are the maximum and minimum cluster sizes, of ¢y from the
OPRC1, OPRC2, WMPRC1, and WMPRC2 estimation procedures on qualification data.

Tournament Division OPRC1 OPRC2 WMPRC1 WMPRC2
T c* T °* T Tt T Tt

Houston Carver 3(46, 3) 11(15, 1) 10(18, 1) 11(15, 1) 10(21, 1) 11(14, 1) 12(12, 1) 11(15, 1)
Galileo 12(19, 1) 9(19, 1) 10(18, 1) 8(18, 1) 7(22, 1) 8(17, 1) 8(17, 1) 8(17, 1)
Hopper 7(23, 1) 9(15, 1) 7(25, 1) 9(15, 1) 8(20, 1) 10(12, 1) 21(9, 1) 10(12, 1)
Newton 7(23, 1) 10(17, 1) 8(17, 1) 9(17, 1) 14(10, 1) 13(10, 1) 1409, 1) 10(17, 1)
Roebling 7(23, 2) 9(15, 1) 7(18, 2) 8(18, 2) 11(17, 1) 10(17, 1) 11(16, 1) 11(16, 1)
Turing 8(16, 1) 8(16, 1) 11(13, 1) 9(14, 1) 11(20, 1) 12(12, 1) 10(25, 1) 8(14, 1)

Detroit Archimedes 15(20, 1) 8(26, 1) 14(20, 1) 8(20, 1) 14(15, 1) 13(15, 1) 9(26, 2) 6(16, 2)
Carson 4(35, 8) 10(13, 2) 11(16, 2) 9(16, 2) 10(23, 1) 12(12, 1) 12(16, 1) 10(22, 1)
Curie 16(15, 1) 12(15, 1) 16(13, 1) 10(17, 1) 8(23, 1) 12(12, 1) 6(25, 1) 10(13, 1)
Daly 6(31, 1) 9(19, 1) 6(31, 2) 8(19, 2) 14(14, 1) 11(14, 1) 16(9, 1) 11(14, 1)
Darwin 9(13, 1) 7(19, 1) 8(16, 1) 9(16, 1) 8(15, 1) 9(15, 1) 8(21, 1) 8(21, 1)
Tesla 8(30, 1) 9(20, 1) 6(30, 1) 8(15, 1) 7(22, 1) 12(11, 1) 7(25, 1) 12(15, 1)

Table 3 displays the estimated accuracies of the form in (17) from different estimation procedures on qualification data
for the divisions of the Houston and Detroit tournaments. For the accuracies of the investigated models, approximate 0.95-
confidence intervals, which are constructed as in (18), are further provided in Table 3. Although there is no significant
difference in the accuracies from each estimation procedure for all divisions in the same tournament, it does not mean that
the results across divisions can be aggregated to obtain a more robust estimate of the accuracy. This is mainly because the
underlying models in some divisions might be completely different. Moreover, the overall estimated accuracies from the
AS, OPR, OPRC1, OPRC2, WMPR, WMPRC1, WMPRC2, and WMPRR estimation procedures are computed as 70.3%, 71.0%,
85.0%, 85.2%, 69.5%, 89.0%, 89.3%, and 70.1%. Based on the test statistic in (19), it is shown that the accuracies of the OPRC
and WMPRC models are significantly higher than those of the OPR and WMPR models in all divisions (p-values < 0.007).
As we can see, the accuracies of the AS, OPR, and WMPR models are not significantly different in most of the divisions
(p-values > 0.127), except that the accuracy of the WMPR model is significantly lower than the accuracies of the AS
model in the Archimedes and Darwin divisions (p-values = 0.003 and 0.029) and the OPR model in the Archimedes and
Daly divisions (p-values = 0.007 and 0.014). The performance of the WMPRR model is only comparable to that of the
WMPR model. Its poor prediction is probably caused by over-simplifying the heterogeneous feature of robot strengths.
The performance of the OPRC1 and OPRC2 estimation procedures and that of the WMPRC1 and WMPRC2 estimation
procedures are also found to be comparable in all divisions (p-values > 0.158). For the divisions of the Houston and
Detroit tournaments, the estimated accuracies of the OPRC and WMPRC models are about 8% — 19% and 14% — 26% higher
than those of the OPR and WMPR models, respectively. Although the predictive ability of the WMPRC model is generally
better than that of the OPRC model, their accuracies are not significantly different in all divisions (p-values > 0.079).
Despite using a smaller data set, it is possible for the WMPRC model to produce a more meaningful prediction compared
to the OPRC model, which does not take into account the feature of paired comparisons. In addition to these findings,
we note that the estimated numbers of clusters from the WMPRC1 and WMPRC2 estimation procedures are different in
most of the divisions, whereas the predictive capacities of both models are close to each other. The same conclusion can
be drawn for the OPRC1 and OPRC2 estimation procedures. As emphasized in Section 3.3, the accuracy and mean square
prediction error tend to overestimate the corresponding numbers of clusters in the OPRC and WMPRC models.

Provided that the OPRC (or WMPRC) model is valid for all divisions in the same tournament, we can add up their
estimated accuracy functions in (17) to estimate the number of clusters cyp. The estimated numbers of clusters from
the OPRC1, OPRC2, WMPRC1, and WMPRC2 estimation procedures are 8, 10, 11, and 15, respectively, for all divisions
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Table 3
The estimated accuracies (approximate 0.95-confidence intervals) from the AS, OPR, OPRC1, OPRC2, WMPR, WMPRC1, WMPRC2, and WMPRR
estimation procedures on qualification data.

Tournament  Division AS OPR OPRC1 OPRC2 WMPR WMPRC1 WMPRC2 WMPRR

Houston Carver 68(58.9,76.2)%  74(65.6818)%  84(77.590.9)%  88(81.7,938)%  74(65.6,81.8)% 89(82 7,945)%  88(81.7,93.8)% 69(60 5,77.5)%
Galileo 68(58.0.76.2)%  71(627.794)%  88(817.938)%  89(827.945)%  70(617.786)%  88(817.938)%  88(817.938)%  71(62.7.79.3)%
Hopper 73(646810%  71(627.794)%  85(785917)%  85(78591.7)%  69(60.8.77.8%  89(83.8.95.1%  89(82.7.945)%  72(63.8.80.2)%
Newton 78(70585.8)%  72(636802)%  86(79.8925)%  86(79.8.92.5)% 76(68 5842)%  92(86496.6)%  92(87.697.3)%  74(65.9.82.1)%
Roebling 67(58.7.76.1%  67(587.76.1%  85(78.7.91.8)%  86(79.8925)%  68(59.7.76.9)%  90(842.953)%  91(853.96.0%  71(62.679.3)%
Turing 72(64080.6)%  75(669.83.1%  90(846957)%  89(83595.0)%  73(65.0,81.5)%  95(90598.8)%  94(89.2,983)%  75(67.0,83.0)%

Detroit Archimedes  75(665,82.6)%  74(65.6818)%  82(754895)%  82(754895)%  63(54372.1)%  88(81.7,938)%  89(82.7,945)%  71(62.7,79.3)%
Carson 70(613.782)%  66(57.674.9)%  81(740,883)%  81(740,883)%  64(55.7.73.3)%  86(79.1.92.0%  86(80.192.7)%  66(57.3.74.7)%
Curie 66(57.474.8)%  69(60277.3)%  83(762,89.9)%  81(74.1,884)%  65(56.4,74.0)% 86(7943,92 1% 88(815935)%  67(58.3,75.7)%
Daly 64(55.7,733)%  72(642.80.6)%  87(812,934)%  87(812934)%  70(613782)%  89(833947)%  91(85596.1%  68(59.4,76.6)%
Darwin 71(62.6794)%  67(578753)%  80(72587.3%  81(73588.1%  64(549727)%  86(79.892.5)%  85(78.7.91.8)%  66(57.2.74.8)%
Tesla 72(640806)%  74(66.0,82.3)%  88(813.937)%  87(803.929)%  77(68.9.846)%  93(88.197.6)%  93(88.1.97.6)%  71(62.679.4)%

Table 4

The estimated accuracies (approximate 0.95-confidence intervals) and accuracies from the OPRC1, OPRC2, WMPRC1, and WMPRC2, estimation
procedures, in which a common estimated number of clusters is used for all divisions in the same tournament, on qualification and playoff data,
respectively..

Tournament  Division Qualification data Playoff data
OPRC1 OPRC2 WMPRC1 WMPRC2 OPRC1 OPRC2 WMPRC1 WMPRC2

Houston Carver 84(77.590.9)%  88(81.7,93.8)% 89(82.7,94.5)% 88(81.7,93.8)% 65% 65% 59% 59%
Galileo 2(74.4,88.7)% 9(82.7,94.5)%  86(79.6,92.4)%  86(79.6,92.4)% 35% 41% 59% 71%
Hopper 4(77.5,90.9)% 2(75.489.5)% 88(81.7,93.8)% 87(80.6,93.1)% 81% 81% 75% 75%
Newton 6(79.8,92.5)% 86(79.892.5)% 91(85.396.0)% 92(87.6,97.3)% 57% 71% 71% 71%
Roebling 5(78.7,91.8)% 6(79.8,92.5)% 90(84.2,95.3)%  91(85.3,96.0)% 57% 60% 40% 40%
Turing 0(84.6,95.7)% 8(81.3,93.7)%  95(90.5,98.8)%  89(83.5,95.0)% 44% 44% 33% 33%

Detroit Archimedes  82(74.4,88.7)% 82(74.4,88.7)% 86(79.6,92.4)%  86(79.6,92.4)% 50% 50% 56% 63%
Carson 1(74.0,88.3)% 0(73.0,87.6)% 86(79.1,92.0)%  86(79.1,92.0)% 76% 76% 76% 71%
Curie 9(72.1,86.9)% 9(71.0,86.1)%  86(79.3,92.1)%  85(78.3,91.4)% 75% 75% 63% 69%
Daly 7(812,93.4)% 86(79.192.0)% 88(82.394.1)% 90(84.4,95.4)% 75% 75% 56% 56%
Darwin 8(70.5,85.8)% 0(72.5,87.3)% 86(79.8,92.5)%  84(77.7,91.1)% 50% 50% 28% 28%
Tesla 7(80.3,92.9)% 2(75.0,89.3)% 90(84.6,95.7)%  92(86.9,97.0)% 59% 71% 35% 24%

in Houston and 6, 10, 11, and 10, respectively, for all divisions in Detroit. Table 4 further displays the estimated
accuracies (approximate 0.95-confidence intervals) and accuracies from these estimation procedures, in which a common
estimated number of clusters, say c, is used for all divisions in the same tournament, on qualification and playoff data,
respectively. Our test shows that there is no significant difference between the performance of the estimation procedures
with estimated numbers of clusters € and ¢ in most of the divisions (p-values > 0.079). However, the OPRC1, OPRC2,
and WMPRC2 estimation procedures with estimated numbers of clusters T significantly outperform the corresponding
estimation procedures with estimated numbers of clusters ¢ in the Galileo and Curie divisions (p-values = 0.004 and
0.051), the Curie and Tesla divisions (p-values = 0.041 and 0.047), and the Turing and Archimedes divisions (p-value
= 0.012 and 0.041). Based on these results, there is no strong evidence to use the same number of clusters for different
divisions of a tournament.

Since robots are not randomly assigned to matches and alliances in the playoff stage, the effects of some confounders
might be ignored in model fitting for qualification data. By treating qualification and playoff data as training and testing
data, the accuracy of a test on match outcomes in the playoff stage is computed as in (20) and is expected to be low (see
Table 5). It can be seen that the predictive ability of the OPR model is comparable with or even better than that of the
OPRC model. Except in the Turing, Darwin, and Tesla divisions, the WMPR model is comparable with or better than the
WMPRC model. The WMPRR model are further shown to have very poor prediction for match outcomes in the playoff
stage. Moreover, the OPR model performs similarly to the AS model except in the Roebling division and outperforms
the WMPR model except in the Galileo, Newton, and Archimedes divisions. In Table 4, we also find the poor predictive
capacities of the OPRC and WMPRC models with a common number of clusters for all divisions in the same tournament.
For all, playoff, and FRC top-8 robots, the corresponding rank correlations of the form in (24) between FRC ratings and
estimated robot strengths from the OPR model are generally higher than those between FRC ratings and estimated robot
strengths from the rest models (Tables 6-8). This particularly explains why the predictive ability of the OPR model is
better than those of the OPRC, WMPR, and WMPRC models in the playoff stage.

For the agreement between FRC ratings and model-based robot strengths of all robots in Table 6 or playoff robots
in Table 7, the rank correlations between FRC ratings and robot strengths estimated by the OPR, OPRC1, and OPRC2
estimation procedures are comparable in all divisions. The same conclusion can be further made for the rank correlations
between FRC ratings and robot strengths estimated by the WMPR, WMPRC1, and WMPRC2 estimation procedures.
Moreover, we find that the rank correlations between FRC ratings and robot strengths estimated by the OPR, OPRC1, and
OPRC2 estimation procedures are higher than those between FRC ratings and robot strengths estimated by the WMPR,
WMPRC1, and WMPRC2 estimation procedures. Generally speaking, there exist very strong monotonic associations among
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Table 5
The accuracies from the AS, OPR, OPRC1, OPRC2, WMPR, WMPRC1, WMPRC2, and WMPRR estimation procedures on playoff data.
Tournament Division AS OPR OPRC1 OPRC2 WMPR WMPRC1 WMPRC2 WMPRR
Houston Carver 71% 65% 65% 65% 59% 59% 59% 60%
Galileo 47% 41% 41% 41% 71% 59% 59% 57%
Hopper 75% 81% 81% 81% 75% 75% 75% 70%
Newton 71% 71% 57% 57% 79% 71% 71% 72%
Roebling 80% 60% 67% 60% 40% 40% 40% 40%
Turing 44% 47% 44% 50% 33% 33% 33% 47%
Detroit Archimedes 63% 50% 50% 50% 63% 59% 63% 62%
Carson 76% 76% 76% 76% 71% 71% 71% 58%
Curie 63% 69% 69% 72% 69% 63% 63% 60%
Daly 63% 75% 75% 75% 56% 56% 56% 59%
Darwin 44% 50% 50% 50% 28% 33% 28% 34%
Tesla 53% 65% 71% 71% 29% 47% 41% 43%
Table 6

The rank correlations between FRC ratings and model-based robot strengths, which are estimated by the OPR, OPRC1, OPRC2, WMPR, WMPRC1, and
WMPRC2 estimation procedures, of all robots.

Tournament Division OPR OPRC1 OPRC2 WMPR WMPRC1 WMPRC2

Houston Carver 77% 68% 77% 69% 68% 69%
Galileo 82% 81% 81% 78% 77% 77%
Hopper 77% 76% 77% 76% 75% 76%
Newton 80% 78% 78% 73% 73% 73%
Roebling 80% 78% 78% 74% 74% 73%
Turing 79% 79% 78% 74% 74% 73%

Detroit Archimedes 82% 81% 81% 77% 76% 75%
Carson 82% 77% 81% 73% 71% 72%
Curie 76% 75% 75% 70% 68% 68%
Daly 79% 76% 77% 73% 73% 73%
Darwin 78% 77% 76% 72% 72% 72%
Tesla 79% 76% 75% 75% 74% 74%

Table 7

The rank correlations between FRC ratings and model-based robot strengths, which are estimated by the OPR, OPRC1, OPRC2, WMPR, WMPRC1, and
WMPRC2 estimation procedures, of playoff robots.

Tournament Division OPR OPRC1 OPRC2 WMPR WMPRC1 WMPRC2

Houston Carver 71% 62% 73% 61% 62% 62%
Galileo 81% 80% 81% 70% 69% 69%
Hopper 79% 77% 79% 67% 71% 69%
Newton 72% 69% 69% 62% 62% 62%
Roebling 80% 76% 78% 70% 69% 69%
Turing 70% 73% 72% 68% 67% 68%

Detroit Archimedes 78% 75% 75% 74% 73% 73%
Carson 79% 75% 78% 64% 64% 63%
Curie 74% 74% 74% 66% 67% 67%
Daly 73% 70% 70% 64% 63% 64%
Darwin 68% 63% 67% 51% 49% 47%
Tesla 77% 77% 72% 71% 70% 68%

robot strengths estimated by the OPR, OPRC1, and OPRC2 estimation procedures, and among robot strengths estimated by
the WMPR, WMPRC1, and WMPRC2 estimation procedures (Table 9). Due to a very small estimated number of clusters
from the OPRC1 estimation procedure in the Carver division, the lower rank correlations are expected between robot
strengths estimated by the OPRC1 estimation procedure and robot strengths estimated by the OPR and OPRC2 estimation
procedures. As we can see in Table 10, there are relatively lower rank correlations between robot strengths estimated by
the OPR, OPRC1, and OPRC2 estimation procedures, and by the WMPR, WMPRC1, and WMPRC2 estimation procedures. For
the agreement between FRC ratings and model-based robot strengths of FRC top-8 robots (Table 8), the rank correlation
between FRC ratings and robot strengths estimated by the OPR estimation procedure is comparable to or even higher
than the rank correlations between FRC ratings and robot strengths estimated by the OPRC1, OPRC2, WMPR, WMPRC1,
and WMPRC2 estimation procedures. Overall, the rank correlations between FRC ratings and model-based robot strengths
are not strong in most of the divisions.

In Tables 11-12, it is shown that the precisions of the form in (25) between FRC top-8 robots and OPRC1-based top-N
robots and between FRC top-8 robots and OPRC2-based top-N robots are comparable to or higher than the precision
between FRC top-8 robots and OPR-based top-N robots, N = 8, 16. Except for FRC top-8 robots and model-based top-8
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Table 8
The rank correlations between FRC ratings and model-based robot strengths, which are estimated by the OPR, OPRC1, OPRC2, WMPR, WMPRC1, and
WMPRC2 estimation procedures, of FRC top-8 robots.

Tournament Division OPR OPRC1 OPRC2 WMPR WMPRC1 WMPRC2

Houston Carver 75% 66% 79% 61% 68% 63%
Galileo 50% 54% 54% 39% 46% 48%
Hopper 71% 66% 66% 57% 66% 63%
Newton 46% 36% 36% 50% 54% 54%
Roebling 89% 66% 70% 64% 64% 64%
Turing 39% 38% 43% 36% 34% 41%

Detroit Archimedes 61% 64% 64% 57% 61% 57%
Carson 68% 64% 68% 68% 71% 71%
Curie 89% 86% 86% 82% 86% 77%
Daly 82% 77% 77% 82% 82% 82%
Darwin 64% 55% 63% 54% 50% 50%
Tesla 50% 48% 48% 57% 66% 52%

Table 9

The rank correlations among robot strengths estimated by the OPR, OPRC1, and OPRC2 estimation procedures, and among robot strengths estimated
by the WMPR, WMPRC1, and WMPRC2 estimation procedures.

Tournament Division OPR OPR OPRC1 WMPR WMPR WMPRC1
OPRC1 OPRC2 OPRC2 WMPRC1 WMPRC2 WMPRC2

Houston Carver 73% 92% 73% 92% 95% 92%

Galileo 93% 93% 93% 90% 92% 90%

Hopper 90% 89% 89% 91% 97% 91%

Newton 89% 92% 89% 96% 96% 95%

Roebling 90% 92% 88% 93% 94% 93%

Turing 92% 95% 91% 93% 90% 89%

Detroit Archimedes 94% 93% 93% 95% 88% 87%

Carson 83% 94% 83% 90% 94% 90%

Curie 95% 967% 95% 89% 87% 86%

Daly 85% 86% 85% 94% 96% 94%

Darwin 93% 92% 90% 92% 91% 90%

Tesla 87% 85% 85% 89% 88% 86%

Table 10

The rank correlations between robot strengths estimated by the OPR, OPRC1, and OPRC2 estimation procedures and robot strengths estimated by
the WMPR, WMPRC1, and WMPRC2 estimation procedures.

Tournament Division OPR OPR OPR OPRC1 OPRC1 OPRC2 OPRC2 WMPR WMPR
WMPR WMPRC1 WMPRC2 WMPRC1 WMPRC2 WMPRC1 WMPRC2 OPRC1 OPRC2

Houston Carver 78% 77% 78% 67% 68% 77% 78% 67% 78%

Galileo 81% 81% 82% 81% 82% 81% 81% 82% 81%

Hopper 77% 76% 77% 76% 77% 75% 76% 77% 76%

Newton 79% 79% 79% 77% 77% 77% 78% 77% 77%

Roebling 80% 80% 79% 77% 77% 78% 78% 77% 78%

Turing 78% 78% 76% 77% 75% 78% 76% 77% 78%

Detroit Archimedes 80% 79% 79% 78% 78% 78% 78% 79% 79%

Carson 79% 77% 77% 71% 71% 76% 76% 73% 78%

Curie 83% 80% 79% 80% 78% 79% 78% 83% 83%

Daly 82% 82% 82% 77% 78% 78% 78% 77% 78%

Darwin 79% 77% 76% 77% 76% 76% 74% 79% 77%

Tesla 84% 81% 80% 78% 76% 77% 76% 80% 79%

robots in the Turing division, the precision between FRC top-8 robots and WMPRC1-based top-N robots is comparable to
or higher than the precisions between FRC top-8 robots and WMPR-based top-N robots and between FRC top-8 robots
and WMPRC2-based top-N robots. Further, the precisions between FRC top-8 robots and OPRC1-based top-N robots and
between FRC top-8 robots and OPRC2-based top-N robots are higher than the precision between FRC top-8 robots and
WMPRC1-based top-N robots except in the Hopper division. Evidenced by the results in Tables 13-14, the conclusion for
the precision of FRC top-8 robots and model-based top-N robots can also be made for the recall of FRC top-8 robots and
model-based top-N robots.

In Tables 15-16, we can observe that Mg matches should be enough to ensure the stability of accuracies of the OPRC
and WMPRC models in the qualification stage. Tables 17-18 further show that the OPRC2, WMPRC1, and WMPRC2
estimation procedures have relatively high rank correlations of estimated robot strengths on M, and M,,; matches,
¢ = 6,...,9. Except in the Carver division, the same conclusion can be made for the OPRC1 estimation procedure. It
must be emphasized that these observed results can only refer to the examined case study. According to model-based
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Table 11
Precisions of FRC top-8 robots and model-based top-8 robots, which are determined by the OPR, OPRC1, OPRC2, WMPR, WMPRC1, and WMPRC2
estimation procedures.

Tournament Division OPR OPRC1 OPRC2 WMPR WMPRC1 WMPRC2

Houston Carver 63% 100% 75% 50% 63% 63%
Galileo 75% 75% 75% 75% 75% 75%
Hopper 75% 75% 75% 75% 100% 75%
Newton 88% 88% 88% 63% 75% 75%
Roebling 63% 63% 88% 63% 63% 63%
Turing 38% 75% 63% 50% 50% 63%

Detroit Archimedes 75% 75% 75% 63% 63% 63%
Carson 50% 75% 64% 50% 50% 50%
Curie 50% 63% 63% 38% 50% 50%
Daly 63% 88% 88% 50% 50% 50%
Darwin 50% 63% 63% 25% 38% 25%
Tesla 63% 88% 88% 50% 75% 50%

Table 12

Precisions of FRC top-8 robots and model-based top-16 robots, which are determined by the OPR, OPRC1, OPRC2, WMPR, WMPRC1, and WMPRC2
estimation procedures.

Tournament Division OPR OPRC1 OPRC2 WMPR WMPRC1 WMPRC2

Houston Carver 56% 100% 56% 44% 56% 56%
Galileo 69% 69% 69% 56% 75% 69%
Hopper 75% 75% 75% 63% 88% 63%
Newton 75% 81% 81% 56% 63% 63%
Roebling 75% 81% 75% 63% 69% 69%
Turing 69% 75% 75% 63% 69% 69%

Detroit Archimedes 69% 75% 75% 50% 56% 56%
Carson 75% 81% 81% 50% 50% 50%
Curie 69% 69% 69% 50% 69% 75%
Daly 69% 69% 69% 63% 63% 63%
Darwin 75% 75% 75% 50% 50% 56%
Tesla 69% 81% 94% 75% 75% 81%

Table 13

Recalls of FRC top-8 robots and model-based top-8 robots, which are determined by the OPR, OPRC1, OPRC2, WMPR, WMPRC1, and WMPRC2
estimation procedures.

Tournament Division OPR OPRC1 OPRC2 WMPR WMPRC1 WMPRC2

Houston Carver 63% 100% 75% 50% 63% 63%
Galileo 75% 75% 75% 75% 75% 75%
Hopper 75% 75% 75% 75% 100% 75%
Newton 88% 88% 88% 63% 75% 75%
Roebling 63% 63% 88% 63% 63% 63%
Turing 38% 75% 63% 50% 50% 63%

Detroit Archimedes 75% 75% 75% 63% 63% 63%
Carson 50% 75% 63% 50% 50% 50%
Curie 50% 63% 63% 38% 50% 50%
Daly 63% 88% 88% 50% 50% 50%
Darwin 50% 63% 63% 25% 38% 25%
Tesla 63% 88% 88% 50% 75% 50%

top-8 robots, which are selected according to estimated robot strengths on M matches, high rank correlations of estimated
robot strengths on M, and M, matches, £ = 6,...,9, (see Tables 19-20) are found in the Archimedes and Tesla
divisions from the OPRC1 estimation procedure; in the Galileo, Turing, Archimedes, Darwin, and Tesla divisions from
the OPRC2 estimation procedure; in the Carver, Newton (except for £ = 6), Turing, Carson, and Daly divisions from
the WMPRC1 estimation procedure; and in the Carver, Hooper, Newton, Carson, and Daly divisions from the WMPRC2
estimation procedure.

5. Conclusion and discussion

In our application to the 2018 FRC championships, the OPR and WMPR models have poor predictive performance. This
is mainly because the ratio of the number of matches to the number of robots in each division is rather small and both
models are highly over-parameterized. To enhance their predictive capacities, the OPRC and WMPRC models are proposed
as possible avenues. In addition to generalize the model formulation of robot strengths, we do not assume any particular

18



A. Lim, CT. Chiang and J.C. Teng Computational Statistics and Data Analysis 158 (2021) 107181

Table 14
Recalls of FRC top-8 robots and model-based top-16 robots, which are determined by the OPR, OPRC1, OPRC2, WMPR, WMPRC1, and WMPRC2
estimation procedures.

Tournament Division OPR OPRC1 OPRC2 WMPR WMPRC1 WMPRC2
Houston Carver 88% 100% 88% 63% 63% 63%
Galileo 88% 88% 88% 75% 100% 88%
Hopper 100% 100% 100% 75% 100% 75%
Newton 88% 100% 100% 75% 88% 88%
Roebling 88% 100% 88% 75% 75% 75%
Turing 75% 88% 88% 75% 100% 88%
Detroit Archimedes 88% 88% 88% 75% 88% 88%
Carson 88% 100% 88% 63% 63% 63%
Curie 88% 88% 88% 63% 88% 88%
Daly 88% 88% 88% 75% 75% 75%
Darwin 75% 75% 75% 50% 50% 63%
Tesla 100% 100% 100% 88% 88% 88%
Table 15
The accuracies, which are estimated by the OPRC1 and OPRC2 estimation procedures, on Mg, ..., Mjp matches in the qualification stage.
Tournament Division OPRC1 OPRC2
Ms My Mg My Mo Ms M, Mg My Mo
Houston Carver 85% 86% 86% 86% 84% 81% 85% 80% 85% 88%
Galileo 78% 77% 84% 88% 88% 78% 82% 87% 88% 89%
Hopper 84% 84% 86% 85% 85% 85% 84% 85% 85% 85%
Newton 89% 84% 86% 82% 86% 89% 84% 86% 84% 86%
Roebling 78% 75% 81% 86% 85% 78% 77% 77% 82% 86%
Turing 88% 88% 87% 90% 90% 84% 85% 84% 88% 89%
Detroit Archimedes 82% 84% 80% 81% 82% 87% 84% 82% 83% 82%
Carson 71% 76% 78% 79% 81% 70% 71% 75% 79% 81%
Curie 78% 79% 81% 80% 83% 76% 79% 82% 80% 81%
Daly 87% 87% 86% 85% 87% 87% 87% 87% 86% 87%
Darwin 79% 83% 82% 81% 80% 82% 83% 79% 80% 81%
Tesla 85% 85% 88% 88% 87% 87% 85% 83% 86% 87%
Table 16
The accuracies, which are estimated by the WMPRC1 and WMPRC2 estimation procedures, on Mg, ..., Mo matches in the qualification stage.
Tournament Division WMPRC1 WMPRC2
Ms M; Mg My Mo Ms M; Mg My Mo
Houston Carver 85% 86% 88% 88% 89% 87% 89% 89% 88% 88%
Galileo 88% 84% 87% 88% 88% 85% 83% 85% 87% 88%
Hopper 87% 90% 90% 92% 89% 82% 83% 86% 86% 89%
Newton 95% 92% 89% 91% 92% 93% 90% 89% 92% 92%
Roebling 89% 87% 89% 91% 90% 84% 84% 86% 91% 91%
Turing 94% 96% 96% 94% 95% 94% 96% 96% 93% 94%
Detroit Archimedes 84% 84% 83% 85% 88% 84% 89% 86% 85% 89%
Carson 85% 83% 85% 86% 86% 85% 84% 84% 87% 86%
Curie 85% 85% 88% 85% 86% 88% 84% 89% 88% 88%
Daly 90% 92% 90% 91% 89% 95% 94% 92% 90% 91%
Darwin 85% 86% 86% 84% 86% 84% 87% 84% 87% 85%
Tesla 86% 91% 88% 94% 93% 91% 92% 93% 94% 93%

distribution on the underlying distributions of errors in the proposed models. In the analysis of such paired comparison
data, the estimated accuracies of the WMPRC and OPRC models are about 14% — 26% and 8% — 19% higher than those
of the WMPR and OPR models, respectively. It is notable that there is no need to take into account a specific-alliance
advantage, a defensive component, and any dynamic effect in the WMPRC model.

As stated in the introduction, performing well in the qualification stage comes with the benefit of being able to choose
your alliance for the playoff stage. Compared to the other advantage of being guaranteed a spot in the playoff stage, this
benefit is often taken for granted, with some teams opting to rely on chance qualification-round synergy, published OPR
rankings, or cooperation history from tournaments or seasons past. Our methodology, shown to provide better predictive
capabilities with regard to the playoff rounds, outputs a more reliable ranking of robots by rating that should assist in
top teams’ decision making during alliance selection. As a baseball field manager might look to past data and statistical
models to guide a decision on whether or not to call in a relief pitcher or substitute a pinch hitter in a crucial inning, we
hope that future FRC teams may look to our model to guide their endeavors at the highest levels of play, and that such
adoption leads to a greater experience and appreciation of all facets of this complicated game.
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Table 17
The rank correlations of robot strengths, which are estimated by the OPRC1 and OPRC2 estimation procedures, of all robots on M, and M,,; matches,
{=6,...,9, in the qualification stage.

Tournament Division OPRC1 OPRC2
Ms&M; M;&Mg Mg &My Mo&M;o Me&M7 M;&Mg Mg&My Mo&Mo

Houston Carver 73% 73% 73% 73% 92% 92% 92% 92%
Galileo 93% 91% 93% 93% 93% 92% 93% 93%
Hopper 90% 90% 90% 90% 89% 89% 89% 89%
Newton 89% 89% 89% 89% 92% 92% 92% 92%
Roebling 90% 90% 90% 90% 92% 92% 92% 92%
Turing 91% 92% 92% 92% 93% 93% 95% 95%

Detroit Archimedes 94% 94% 94% 94% 93% 93% 93% 93%
Carson 83% 83% 83% 83% 87% 93% 94% 94%
Curie 94% 94% 95% 95% 94% 94% 95% 96%
Daly 85% 85% 85% 85% 86% 86% 86% 86%
Darwin 93% 93% 93% 93% 92% 92% 92% 92%
Tesla 87% 87% 87% 87% 85% 85% 85% 85%

Table 18

The rank correlations of robot strengths, which are estimated by the WMPRC1 and WMPRC2 estimation procedures, of all robots on M, and M,
matches, £ =6, ...,9, in the qualification stage.

Tournament Division WMPRC1 WMPRC2
Mg&M; M,&Ms Ms&Mo Mo&Mo Mg&M; M,&Ms Ms&M, Mo&Mg

Houston Carver 92% 92% 92% 92% 95% 95% 95% 95%
Galileo 90% 90% 90% 90% 92% 92% 92% 92%
Hopper 91% 91% 91% 91% 96% 95% 97% 97%
Newton 96% 96% 96% 96% 96% 96% 96% 96%
Roebling 93% 93% 93% 93% 94% 94% 94% 94%
Turing 92% 92% 93% 93% 90% 90% 90% 90%

Detroit Archimedes 94% 94% 95% 95% 88% 88% 88% 88%
Carson 90% 90% 90% 90% 94% 94% 94% 94%
Curie 89% 89% 89% 89% 87% 87% 87% 87%
Daly 94% 94% 94% 94% 94% 96% 96% 96%
Darwin 92% 92% 92% 92% 91% 91% 91% 91%
Tesla 89% 89% 89% 89% 88% 88% 88% 88%

Table 19

The rank correlations of robot strengths, which are estimated by the OPRC1 and OPRC2 estimation procedures, of model-based top-8 robots on M,
and M1 matches, £ =6,...,9, in the qualification stage.

Tournament Division OPRC1 OPRC2
Mg&M; M;&Ms Ms&Ms Mo&Mjg Me&M; M;&Ms Ms&M, Mo&M1q

Houston Carver 77% 77% 77% 77% 80% 80% 80% 80%
Galileo 89% 89% 79% 89% 84% 84% 84% 84%
Hopper 63% 63% 63% 63% 63% 63% 63% 63%
Newton 63% 63% 63% 63% 63% 63% 63% 63%
Roebling 71% 71% 71% 71% 71% 71% 71% 71%
Turing 71% 71% 71% 71% 88% 88% 88% 88%

Detroit Archimedes 84% 84% 84% 84% 88% 88% 88% 88%
Carson 50% 50% 50% 50% 80% 80% 80% 80%
Curie 86% 75% 71% 89% 86% 71% 75% 89%
Daly 79% 79% 79% 79% 79% 79% 79% 79%
Darwin 70% 73% 73% 73% 84% 84% 84% 84%
Tesla 91% 91% 91% 91% 84% 84% 84% 84%

To sum up, our major contributions include:

1. Existing models are extended to more general models, which have better predictive performance in our application,
with latent clusters of robot strengths;

2. Effective estimation procedures, in which the estimation problem is transferred to the model selection problem,
are developed to simultaneously estimate the number of clusters, clusters of robots, and robot strengths;

3. A very flexible semiparametric regression model is proposed to predict a future match outcome; and

4. The stability of estimated robot strengths and accuracies is investigated to determine an appropriate number of
matches in the qualification stage.
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Table 20
The rank correlations of robot strengths, which are estimated by the WMPRC1 and WMPRC2 estimation procedures, of model-based top-8 robots
on M, and My, matches, £ =6, ...,9, in the qualification stage.

Tournament Division WMPRC1 WMPRC2
Ms&M- M;&Ms M;s&Ms Mo&Mio Ms&M- M;&Ms Ms&Ms Mo&Mio

Houston Carver 88% 88% 88% 88% 91% 91% 91% 91%
Galileo 71% 71% 71% 71% 71% 71% 71% 71%
Hopper 80% 80% 80% 80% 96% 89% 96% 96%
Newton 80% 88% 88% 88% 88% 88% 88% 88%
Roebling 80% 80% 80% 80% 80% 80% 80% 80%
Turing 88% 88% 88% 88% 79% 79% 79% 79%

Detroit Archimedes 68% 75% 82% 93% 80% 80% 80% 80%
Carson 84% 84% 84% 84% 84% 84% 84% 84%
Curie 63% 63% 63% 63% 73% 73% 73% 73%
Daly 86% 89% 86% 89% 89% 89% 89% 93%
Darwin 73% 73% 73% 73% 73% 73% 73% 73%
Tesla 77% 77% 77% 77% 63% 63% 63% 63%

Some measures are further used to assess the predictive ability of competing models and the agreement related to FRC
ratings and model-based robot strengths. With slight modifications, our methodology should be successfully applied to
other team games.

By takmg into account random robot strengths, i.e. fi = B + &, with &g having mean zero and variance a
i=1,...,K, the proposed fixed effects model in (12) can be further generalized to the following random effects model
c K
Y = X0p% 4 (Z D X + 8) (26)
c=1 j=1
where X4, is the designed covariate vector of X; with g = ¢, i = 1,..., K, &;, which has mean zero and variance o7,
c=1,...,¢,j=1,..., K, are mutually independent, and ¢ is independent of &’s. Obviously, the WMPRR model is a

special case of the above model. Different from the error in model (12), the error term (22021 Z,I‘(; &X(g) + €) in model

(26) is correlated. In particular, the model formulation avoids the problem of ties in g;’s in model (12). It will be challenging
to develop an appropriate estimation procedure for such a random effects model, especially for the determination of the
number of clusters and clusters of robots. An investigation for its predictive ability would be worthwhile in future research.
By making distributional assumptions on &'s and &, existing methods in the literature, such as Laird and Ware (1982)
and Diggle et al. (2002), can also be used to estimate match-specific effects as well as robot-specific effects on each match
score.

We note that no individual robot characteristic (e.g. the speed, weight, or height of a robot), which is expected to bring
a contribution to alliance scores, is considered in existing models. Another factor that affects match scores is penalty scores
gained from opposing robots who violate game rules. For some FRC games, obstacles in the middle of the field change
match-by-match relying on the audience selection. Since some robots might have an advantage on the designed obstacles
in their matches, such an environmental factor needs to be carefully formulated. The winning rate of each robot in its
former matches should be also helpful in the model development. As emphasized in this article, robots in the playoff stage
are not randomly assigned to alliances and matches. A consideration of the above confounders is expected to enhance
the predictive power of the current models. With this in mind, our goal is to continue improving the proposed model for
the convenience of future robotics teams, leading to high quality competitions.
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Appendix
Let H® = X¢(X°TX)'X°T and A = X°(XTX°)'X“T. For the OPRC model, we derive that

(XCTXC)71((1 Hlf/l+sM+s)e§+ If/l—%—ssex/H—s)XS
(1= HE) (1 = Hyypis) — Hifs
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— (XCTXC)71 ((1 — HC)eM+s + HM+ss )XM+5

,s=1,..., M. (A1)
(1 - HSCS)(1 HK/I+SM+S) HI€/12+ss
In light of the above result, fﬁs(v) has the form
~ 1 ~
Fe(v) = 1 I((Yrgs, — Yo,) = Xipys, —X$) 7B < 0) (A.2)
S1#S
with

(HSCM+51 Hscs])((‘1 H1€/1+5M+s) €5 + Hlf/1+sseg/l+s)
(1 - Hscs) (1 - HM+sM+s) Hlf/12+ss
_ (Hlf/l+sM+s1 - Hlf/1+ssl)((lc - Hscs)elc\ﬂ+s;_ Hlf/1+sse§) s.si=1.....M. (A3)
(1 - Hscs) (1 HM+sM+s) HM+ss

As for the WMPRC model, the properties in equation (8.5) of Sen and Srivastava (1990) and Remark 4 enable us to have
R (Xchc) 15

(XIL\;’-FS] Xscl )Tﬂis - (XIL\;’-FS] Xscl )Tﬂc -

C,C
XS eS

Aics = ﬂ*c W and XCTﬂiS —XsclTﬂics,S, s1=1,...,M. (A.4)
It follows that
—~ 1 T3 . T T H;: Seg
Fy(v) = T I(Ys, = X5 B < v) with X{ 78S _x; B — (1—]—H§s)’s’ si=1,...,M. (A5)
S1#S
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