From 58a4322e0322019101ca1055d2951694bdb1af9e Mon Sep 17 00:00:00 2001
From: 38aa774a8d758b656537a01a0a41397c
<38aa774a8d758b656537a01a0a41397c@app-learninglab.inria.fr>
Date: Wed, 30 Nov 2022 08:28:02 +0000
Subject: [PATCH] Replace exercice_pair.ipynb
---
module3/exo3/exercice_pair.ipynb | 1033 +++++++++++++++++++++++++++++-
1 file changed, 1029 insertions(+), 4 deletions(-)
diff --git a/module3/exo3/exercice_pair.ipynb b/module3/exo3/exercice_pair.ipynb
index 86f306b..2f029bf 100644
--- a/module3/exo3/exercice_pair.ipynb
+++ b/module3/exo3/exercice_pair.ipynb
@@ -13,21 +13,1046 @@
"- Les salaires sont donnés en shillings par semaine."
]
},
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "import pandas as pd\n",
+ "import isoweek\n",
+ "import numpy as np"
+ ]
+ },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Partie 1\n",
"Votre première tâche est de reproduire le graphe de Playfair à partir des données numériques. Représentez, comme Playfair, le prix du blé par des barres et les salaires par une surface bleue délimitée par une courbe rouge. Superposez les deux de la même façon dans un seul graphique. Le style de votre graphique pourra rester différent par rapport à l'original, mais l'impression globale devrait être la même.\n",
- ""
+ ""
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 4,
"metadata": {},
- "outputs": [],
- "source": []
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Unnamed: 0 \n",
+ " Year \n",
+ " Wheat \n",
+ " Wages \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 1 \n",
+ " 1565 \n",
+ " 41.0 \n",
+ " 5.00 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 2 \n",
+ " 1570 \n",
+ " 45.0 \n",
+ " 5.05 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 3 \n",
+ " 1575 \n",
+ " 42.0 \n",
+ " 5.08 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 4 \n",
+ " 1580 \n",
+ " 49.0 \n",
+ " 5.12 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 5 \n",
+ " 1585 \n",
+ " 41.5 \n",
+ " 5.15 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 6 \n",
+ " 1590 \n",
+ " 47.0 \n",
+ " 5.25 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 7 \n",
+ " 1595 \n",
+ " 64.0 \n",
+ " 5.54 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 8 \n",
+ " 1600 \n",
+ " 27.0 \n",
+ " 5.61 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 9 \n",
+ " 1605 \n",
+ " 33.0 \n",
+ " 5.69 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 10 \n",
+ " 1610 \n",
+ " 32.0 \n",
+ " 5.78 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 11 \n",
+ " 1615 \n",
+ " 33.0 \n",
+ " 5.94 \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 12 \n",
+ " 1620 \n",
+ " 35.0 \n",
+ " 6.01 \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 13 \n",
+ " 1625 \n",
+ " 33.0 \n",
+ " 6.12 \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 14 \n",
+ " 1630 \n",
+ " 45.0 \n",
+ " 6.22 \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " 15 \n",
+ " 1635 \n",
+ " 33.0 \n",
+ " 6.30 \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 16 \n",
+ " 1640 \n",
+ " 39.0 \n",
+ " 6.37 \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 17 \n",
+ " 1645 \n",
+ " 53.0 \n",
+ " 6.45 \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " 18 \n",
+ " 1650 \n",
+ " 42.0 \n",
+ " 6.50 \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 19 \n",
+ " 1655 \n",
+ " 40.5 \n",
+ " 6.60 \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " 20 \n",
+ " 1660 \n",
+ " 46.5 \n",
+ " 6.75 \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 21 \n",
+ " 1665 \n",
+ " 32.0 \n",
+ " 6.80 \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " 22 \n",
+ " 1670 \n",
+ " 37.0 \n",
+ " 6.90 \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " 23 \n",
+ " 1675 \n",
+ " 43.0 \n",
+ " 7.00 \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 24 \n",
+ " 1680 \n",
+ " 35.0 \n",
+ " 7.30 \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 25 \n",
+ " 1685 \n",
+ " 27.0 \n",
+ " 7.60 \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 26 \n",
+ " 1690 \n",
+ " 40.0 \n",
+ " 8.00 \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " 27 \n",
+ " 1695 \n",
+ " 50.0 \n",
+ " 8.50 \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " 28 \n",
+ " 1700 \n",
+ " 30.0 \n",
+ " 9.00 \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 29 \n",
+ " 1705 \n",
+ " 32.0 \n",
+ " 10.00 \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " 30 \n",
+ " 1710 \n",
+ " 44.0 \n",
+ " 11.00 \n",
+ " \n",
+ " \n",
+ " 30 \n",
+ " 31 \n",
+ " 1715 \n",
+ " 33.0 \n",
+ " 11.75 \n",
+ " \n",
+ " \n",
+ " 31 \n",
+ " 32 \n",
+ " 1720 \n",
+ " 29.0 \n",
+ " 12.50 \n",
+ " \n",
+ " \n",
+ " 32 \n",
+ " 33 \n",
+ " 1725 \n",
+ " 39.0 \n",
+ " 13.00 \n",
+ " \n",
+ " \n",
+ " 33 \n",
+ " 34 \n",
+ " 1730 \n",
+ " 26.0 \n",
+ " 13.30 \n",
+ " \n",
+ " \n",
+ " 34 \n",
+ " 35 \n",
+ " 1735 \n",
+ " 32.0 \n",
+ " 13.60 \n",
+ " \n",
+ " \n",
+ " 35 \n",
+ " 36 \n",
+ " 1740 \n",
+ " 27.0 \n",
+ " 14.00 \n",
+ " \n",
+ " \n",
+ " 36 \n",
+ " 37 \n",
+ " 1745 \n",
+ " 27.5 \n",
+ " 14.50 \n",
+ " \n",
+ " \n",
+ " 37 \n",
+ " 38 \n",
+ " 1750 \n",
+ " 31.0 \n",
+ " 15.00 \n",
+ " \n",
+ " \n",
+ " 38 \n",
+ " 39 \n",
+ " 1755 \n",
+ " 35.5 \n",
+ " 15.70 \n",
+ " \n",
+ " \n",
+ " 39 \n",
+ " 40 \n",
+ " 1760 \n",
+ " 31.0 \n",
+ " 16.50 \n",
+ " \n",
+ " \n",
+ " 40 \n",
+ " 41 \n",
+ " 1765 \n",
+ " 43.0 \n",
+ " 17.60 \n",
+ " \n",
+ " \n",
+ " 41 \n",
+ " 42 \n",
+ " 1770 \n",
+ " 47.0 \n",
+ " 18.50 \n",
+ " \n",
+ " \n",
+ " 42 \n",
+ " 43 \n",
+ " 1775 \n",
+ " 44.0 \n",
+ " 19.50 \n",
+ " \n",
+ " \n",
+ " 43 \n",
+ " 44 \n",
+ " 1780 \n",
+ " 46.0 \n",
+ " 21.00 \n",
+ " \n",
+ " \n",
+ " 44 \n",
+ " 45 \n",
+ " 1785 \n",
+ " 42.0 \n",
+ " 23.00 \n",
+ " \n",
+ " \n",
+ " 45 \n",
+ " 46 \n",
+ " 1790 \n",
+ " 47.5 \n",
+ " 25.50 \n",
+ " \n",
+ " \n",
+ " 46 \n",
+ " 47 \n",
+ " 1795 \n",
+ " 76.0 \n",
+ " 27.50 \n",
+ " \n",
+ " \n",
+ " 47 \n",
+ " 48 \n",
+ " 1800 \n",
+ " 79.0 \n",
+ " 28.50 \n",
+ " \n",
+ " \n",
+ " 48 \n",
+ " 49 \n",
+ " 1805 \n",
+ " 81.0 \n",
+ " 29.50 \n",
+ " \n",
+ " \n",
+ " 49 \n",
+ " 50 \n",
+ " 1810 \n",
+ " 99.0 \n",
+ " 30.00 \n",
+ " \n",
+ " \n",
+ " 50 \n",
+ " 51 \n",
+ " 1815 \n",
+ " 78.0 \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 51 \n",
+ " 52 \n",
+ " 1820 \n",
+ " 54.0 \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 52 \n",
+ " 53 \n",
+ " 1821 \n",
+ " 54.0 \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Unnamed: 0 Year Wheat Wages\n",
+ "0 1 1565 41.0 5.00\n",
+ "1 2 1570 45.0 5.05\n",
+ "2 3 1575 42.0 5.08\n",
+ "3 4 1580 49.0 5.12\n",
+ "4 5 1585 41.5 5.15\n",
+ "5 6 1590 47.0 5.25\n",
+ "6 7 1595 64.0 5.54\n",
+ "7 8 1600 27.0 5.61\n",
+ "8 9 1605 33.0 5.69\n",
+ "9 10 1610 32.0 5.78\n",
+ "10 11 1615 33.0 5.94\n",
+ "11 12 1620 35.0 6.01\n",
+ "12 13 1625 33.0 6.12\n",
+ "13 14 1630 45.0 6.22\n",
+ "14 15 1635 33.0 6.30\n",
+ "15 16 1640 39.0 6.37\n",
+ "16 17 1645 53.0 6.45\n",
+ "17 18 1650 42.0 6.50\n",
+ "18 19 1655 40.5 6.60\n",
+ "19 20 1660 46.5 6.75\n",
+ "20 21 1665 32.0 6.80\n",
+ "21 22 1670 37.0 6.90\n",
+ "22 23 1675 43.0 7.00\n",
+ "23 24 1680 35.0 7.30\n",
+ "24 25 1685 27.0 7.60\n",
+ "25 26 1690 40.0 8.00\n",
+ "26 27 1695 50.0 8.50\n",
+ "27 28 1700 30.0 9.00\n",
+ "28 29 1705 32.0 10.00\n",
+ "29 30 1710 44.0 11.00\n",
+ "30 31 1715 33.0 11.75\n",
+ "31 32 1720 29.0 12.50\n",
+ "32 33 1725 39.0 13.00\n",
+ "33 34 1730 26.0 13.30\n",
+ "34 35 1735 32.0 13.60\n",
+ "35 36 1740 27.0 14.00\n",
+ "36 37 1745 27.5 14.50\n",
+ "37 38 1750 31.0 15.00\n",
+ "38 39 1755 35.5 15.70\n",
+ "39 40 1760 31.0 16.50\n",
+ "40 41 1765 43.0 17.60\n",
+ "41 42 1770 47.0 18.50\n",
+ "42 43 1775 44.0 19.50\n",
+ "43 44 1780 46.0 21.00\n",
+ "44 45 1785 42.0 23.00\n",
+ "45 46 1790 47.5 25.50\n",
+ "46 47 1795 76.0 27.50\n",
+ "47 48 1800 79.0 28.50\n",
+ "48 49 1805 81.0 29.50\n",
+ "49 50 1810 99.0 30.00\n",
+ "50 51 1815 78.0 NaN\n",
+ "51 52 1820 54.0 NaN\n",
+ "52 53 1821 54.0 NaN"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data_url=\"https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/master/csv/HistData/Wheat.csv\"\n",
+ "raw_data = pd.read_csv(data_url, skiprows=0)\n",
+ "raw_data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "On va tout de suite supprimer les données manquantes: "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Unnamed: 0 \n",
+ " Year \n",
+ " Wheat \n",
+ " Wages \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 1 \n",
+ " 1565 \n",
+ " 41.0 \n",
+ " 5.00 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 2 \n",
+ " 1570 \n",
+ " 45.0 \n",
+ " 5.05 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 3 \n",
+ " 1575 \n",
+ " 42.0 \n",
+ " 5.08 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 4 \n",
+ " 1580 \n",
+ " 49.0 \n",
+ " 5.12 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 5 \n",
+ " 1585 \n",
+ " 41.5 \n",
+ " 5.15 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 6 \n",
+ " 1590 \n",
+ " 47.0 \n",
+ " 5.25 \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 7 \n",
+ " 1595 \n",
+ " 64.0 \n",
+ " 5.54 \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 8 \n",
+ " 1600 \n",
+ " 27.0 \n",
+ " 5.61 \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 9 \n",
+ " 1605 \n",
+ " 33.0 \n",
+ " 5.69 \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 10 \n",
+ " 1610 \n",
+ " 32.0 \n",
+ " 5.78 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 11 \n",
+ " 1615 \n",
+ " 33.0 \n",
+ " 5.94 \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 12 \n",
+ " 1620 \n",
+ " 35.0 \n",
+ " 6.01 \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 13 \n",
+ " 1625 \n",
+ " 33.0 \n",
+ " 6.12 \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 14 \n",
+ " 1630 \n",
+ " 45.0 \n",
+ " 6.22 \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " 15 \n",
+ " 1635 \n",
+ " 33.0 \n",
+ " 6.30 \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 16 \n",
+ " 1640 \n",
+ " 39.0 \n",
+ " 6.37 \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 17 \n",
+ " 1645 \n",
+ " 53.0 \n",
+ " 6.45 \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " 18 \n",
+ " 1650 \n",
+ " 42.0 \n",
+ " 6.50 \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 19 \n",
+ " 1655 \n",
+ " 40.5 \n",
+ " 6.60 \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " 20 \n",
+ " 1660 \n",
+ " 46.5 \n",
+ " 6.75 \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 21 \n",
+ " 1665 \n",
+ " 32.0 \n",
+ " 6.80 \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " 22 \n",
+ " 1670 \n",
+ " 37.0 \n",
+ " 6.90 \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " 23 \n",
+ " 1675 \n",
+ " 43.0 \n",
+ " 7.00 \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 24 \n",
+ " 1680 \n",
+ " 35.0 \n",
+ " 7.30 \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 25 \n",
+ " 1685 \n",
+ " 27.0 \n",
+ " 7.60 \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 26 \n",
+ " 1690 \n",
+ " 40.0 \n",
+ " 8.00 \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " 27 \n",
+ " 1695 \n",
+ " 50.0 \n",
+ " 8.50 \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " 28 \n",
+ " 1700 \n",
+ " 30.0 \n",
+ " 9.00 \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 29 \n",
+ " 1705 \n",
+ " 32.0 \n",
+ " 10.00 \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " 30 \n",
+ " 1710 \n",
+ " 44.0 \n",
+ " 11.00 \n",
+ " \n",
+ " \n",
+ " 30 \n",
+ " 31 \n",
+ " 1715 \n",
+ " 33.0 \n",
+ " 11.75 \n",
+ " \n",
+ " \n",
+ " 31 \n",
+ " 32 \n",
+ " 1720 \n",
+ " 29.0 \n",
+ " 12.50 \n",
+ " \n",
+ " \n",
+ " 32 \n",
+ " 33 \n",
+ " 1725 \n",
+ " 39.0 \n",
+ " 13.00 \n",
+ " \n",
+ " \n",
+ " 33 \n",
+ " 34 \n",
+ " 1730 \n",
+ " 26.0 \n",
+ " 13.30 \n",
+ " \n",
+ " \n",
+ " 34 \n",
+ " 35 \n",
+ " 1735 \n",
+ " 32.0 \n",
+ " 13.60 \n",
+ " \n",
+ " \n",
+ " 35 \n",
+ " 36 \n",
+ " 1740 \n",
+ " 27.0 \n",
+ " 14.00 \n",
+ " \n",
+ " \n",
+ " 36 \n",
+ " 37 \n",
+ " 1745 \n",
+ " 27.5 \n",
+ " 14.50 \n",
+ " \n",
+ " \n",
+ " 37 \n",
+ " 38 \n",
+ " 1750 \n",
+ " 31.0 \n",
+ " 15.00 \n",
+ " \n",
+ " \n",
+ " 38 \n",
+ " 39 \n",
+ " 1755 \n",
+ " 35.5 \n",
+ " 15.70 \n",
+ " \n",
+ " \n",
+ " 39 \n",
+ " 40 \n",
+ " 1760 \n",
+ " 31.0 \n",
+ " 16.50 \n",
+ " \n",
+ " \n",
+ " 40 \n",
+ " 41 \n",
+ " 1765 \n",
+ " 43.0 \n",
+ " 17.60 \n",
+ " \n",
+ " \n",
+ " 41 \n",
+ " 42 \n",
+ " 1770 \n",
+ " 47.0 \n",
+ " 18.50 \n",
+ " \n",
+ " \n",
+ " 42 \n",
+ " 43 \n",
+ " 1775 \n",
+ " 44.0 \n",
+ " 19.50 \n",
+ " \n",
+ " \n",
+ " 43 \n",
+ " 44 \n",
+ " 1780 \n",
+ " 46.0 \n",
+ " 21.00 \n",
+ " \n",
+ " \n",
+ " 44 \n",
+ " 45 \n",
+ " 1785 \n",
+ " 42.0 \n",
+ " 23.00 \n",
+ " \n",
+ " \n",
+ " 45 \n",
+ " 46 \n",
+ " 1790 \n",
+ " 47.5 \n",
+ " 25.50 \n",
+ " \n",
+ " \n",
+ " 46 \n",
+ " 47 \n",
+ " 1795 \n",
+ " 76.0 \n",
+ " 27.50 \n",
+ " \n",
+ " \n",
+ " 47 \n",
+ " 48 \n",
+ " 1800 \n",
+ " 79.0 \n",
+ " 28.50 \n",
+ " \n",
+ " \n",
+ " 48 \n",
+ " 49 \n",
+ " 1805 \n",
+ " 81.0 \n",
+ " 29.50 \n",
+ " \n",
+ " \n",
+ " 49 \n",
+ " 50 \n",
+ " 1810 \n",
+ " 99.0 \n",
+ " 30.00 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Unnamed: 0 Year Wheat Wages\n",
+ "0 1 1565 41.0 5.00\n",
+ "1 2 1570 45.0 5.05\n",
+ "2 3 1575 42.0 5.08\n",
+ "3 4 1580 49.0 5.12\n",
+ "4 5 1585 41.5 5.15\n",
+ "5 6 1590 47.0 5.25\n",
+ "6 7 1595 64.0 5.54\n",
+ "7 8 1600 27.0 5.61\n",
+ "8 9 1605 33.0 5.69\n",
+ "9 10 1610 32.0 5.78\n",
+ "10 11 1615 33.0 5.94\n",
+ "11 12 1620 35.0 6.01\n",
+ "12 13 1625 33.0 6.12\n",
+ "13 14 1630 45.0 6.22\n",
+ "14 15 1635 33.0 6.30\n",
+ "15 16 1640 39.0 6.37\n",
+ "16 17 1645 53.0 6.45\n",
+ "17 18 1650 42.0 6.50\n",
+ "18 19 1655 40.5 6.60\n",
+ "19 20 1660 46.5 6.75\n",
+ "20 21 1665 32.0 6.80\n",
+ "21 22 1670 37.0 6.90\n",
+ "22 23 1675 43.0 7.00\n",
+ "23 24 1680 35.0 7.30\n",
+ "24 25 1685 27.0 7.60\n",
+ "25 26 1690 40.0 8.00\n",
+ "26 27 1695 50.0 8.50\n",
+ "27 28 1700 30.0 9.00\n",
+ "28 29 1705 32.0 10.00\n",
+ "29 30 1710 44.0 11.00\n",
+ "30 31 1715 33.0 11.75\n",
+ "31 32 1720 29.0 12.50\n",
+ "32 33 1725 39.0 13.00\n",
+ "33 34 1730 26.0 13.30\n",
+ "34 35 1735 32.0 13.60\n",
+ "35 36 1740 27.0 14.00\n",
+ "36 37 1745 27.5 14.50\n",
+ "37 38 1750 31.0 15.00\n",
+ "38 39 1755 35.5 15.70\n",
+ "39 40 1760 31.0 16.50\n",
+ "40 41 1765 43.0 17.60\n",
+ "41 42 1770 47.0 18.50\n",
+ "42 43 1775 44.0 19.50\n",
+ "43 44 1780 46.0 21.00\n",
+ "44 45 1785 42.0 23.00\n",
+ "45 46 1790 47.5 25.50\n",
+ "46 47 1795 76.0 27.50\n",
+ "47 48 1800 79.0 28.50\n",
+ "48 49 1805 81.0 29.50\n",
+ "49 50 1810 99.0 30.00"
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data = raw_data.dropna().copy()\n",
+ "data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtEAAAHwCAYAAABg0TMJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XeYXGXd//H3N71CeoFQpIqFIkGQIgiE3qJ0ifSAIsWCUhV4kCYapShqIFThRy8iPOShQ6SEngJJSO+9b9/798dMcAkpOyGzZ8v7dV1zzczZM3M+s5vyyZ373CdSSkiSJEmqvWZZB5AkSZIaGku0JEmSVCBLtCRJklQgS7QkSZJUIEu0JEmSVCBLtCRJklQgS7SkeiciLomIwVnnWFcRcUpEvPYlXn9bRFy+PjPV8rg/johZEbE0IrrW9fElqSFpkXUASU1PRCyt8bQdUAZU5Z+flVK6pu5TZSMiTgHOSCntuWJbSunsDHK0BP4I7JZS+qCujy9JDY0lWlKdSyl1WPE4IiaSK5H/l10iAT2BNsDIrINIUkPgdA5J9U5EXBER9+Yfbx4RKSJOjYgpEbEgIs6OiF0i4sOIWBgRt6z0+tMiYnR+3/+NiM3WcKzdImJY/n0+iIh98tuPj4jhK+37s4h4Mv94w4i4OyLmRMSkiLgsIr7wZ2qN/C1qbHspIs6IiO2A24Dv5KdQLMx//c6IuLrG/mdGxLiImB8RT0bERjW+lvLfj7H5z3trRMRqPmvriPhTREzP3/6U37YN8El+t4UR8cIaPsd6+TlExJ/z77M4It6JiL1qfO2KiHgw//1dEhEjI6Lvaj7TlRFxc/5xy4hYFhE35J+3jYjSiOicf/5QRMyMiEUR8UpEfL3G+3SNiKfyed6OiKtrTsmJiK9GxND8z+CTiDh2VXkkNR2WaEkNxa7A1sBxwJ+AS4H9ga8Dx0bE3gARcRRwCfB9oDvwKnD/qt4wIjYGngauBroAvwQeiYjuwJPAthGxdY2XnAj8M//4ZmBDYAtgb+BHwKmFfKCU0mjgbOA/KaUOKaVOq8i4L3AtcCzQG5gEPLDSbocBuwA75Pc7cDWHvBTYDdgxv++3gctSSmPIfR8BOqWU9l1D7PX1c3g7n6MLue/pQxHRpsbXj8h/zk7kfhafK+g1vAzsk3+8CzCT3M8D4DvAJymlBfnnz+Sz9wDeBe6r8T63AsuAXsDJ+Rv5z9IeGJrP2QM4AfhLzRIuqemxREtqKP4npVSaUnqOXNm5P6U0O6U0jVxB2ym/31nAtSml0SmlSuAaYMfVjEafBPw7pfTvlFJ1SmkoMBw4JKW0HHiCXGEiX6a/CjwZEc3JlciLU0pLUkoTgT8AA4rwuX8I3JFSejelVAZcTG7kevMa+1yXUlqYUpoMvEiunK7uva7Kf9/mAFeuQ+b18nNIKd2bUpqXUqpMKf0BaA1sW+M4r+V/LlXAPeRK/6r8B9g6cidCfhe4Hdg4IjqQK9Mvr9gxpXRH/udVBlwB7JD/H4XmwA+A36aUlqeURgF31TjGYcDElNKQfN53gUeAowv83klqRCzRkhqKWTUel6zi+Yp51psBf85PL1gIzAcC2HgV77kZcMyKffP770luxBdyI48n5B+fCDyeL9fdgFbkRoVXmLSaY3xZG9U8TkppKTBvpWPNrPF4Of/9XqzxvfKPN1rNvquzXn4OEfGL/FSPRfmvb0ju+7rCyp+pTc0pMSuklErI/cNnb3Il+mVgGLAHNUp0RDSPiOsi4tOIWAxMzL9FN3Ij5S2AKTXeuubjzYBdV/p18kNyo9aSmihPLJTU2EwBfpdSum+te+b2vSeldOZqvv4c0C0idiRXpn+W3z4XqCBXrkblt20KTFvFeyzL37cDFucf1yxfaS0Zp+ePA3w2taDrao61Nivea8XJg5vmtxXDan8O+fnPvwb2A0amlKojYgG5kr0uXgb2JTcK/nb++YHkpqu8kt/nROBIclNPJpIr7SuOOQeoBPoAY/L7b7LSZ3k5pdRvHfNJaoQciZbU2NwGXLxivmr+v+uPWc2+9wKHR8SB+ZHKNhGxT0T0AchPQ3gY+D25ubtD89urgAeB30VEx/wUhZ/n3+9z8tMmpgEn5Y9xGrBljV1mAX0iotVqMv4TODUidoyI1uSmRbyZn0JSqPuByyKie0R0A36zqszryZp+Dh3JldY5QIuI+A2wwZc41svk5qSPSimVAy8BZwAT8t//FccsIzeK347c9xH47Of5KHBFRLSLiK/m32+FfwHbRMSA/MmLLfMnVG73JTJLauAs0ZIalZTSY8D1wAP5/7YfARy8mn2nkBudvIRcoZsCXMjn/2z8J7nRy4fypXqFc8mNMo8HXsvvd8dqYp2Zf9955E7AG1bjay+QGxmeGRFzV5HxeeBycnNwZ5Ar4Mev5jhrczW5qQ8fAh+RO7nu6jW+Yh2t5efwv+RO8htDbkpJKZ+fPlGoYUBb/jvqPCr/nq/U2Ofu/LGm5b/+xkrv8VNyo9Mzyc3Bvp9c6SaltAQ4gNz3fXp+n+vJzeOW1ERFSmv7n0RJkpqWiLge6JVSOnmtO0tqkhyJliQ1efl1oLePnG8DpwOPZZ1LUv3liYWSJOXmTN9PbrWS2eSWLHwi00SS6jWnc0iSJEkFcjqHJEmSVCBLtCRJklSgBjEnulu3bmnzzTfPOoYkSZIauXfeeWduSqn72vZrECV68803Z/jw4VnHkCRJUiMXEZNqs5/TOSRJkqQCWaIlSZKkAlmiJUmSpAJZoiVJkqQCWaIlSZKkAlmiJUmSpAJZoiVJkqQCWaIlSZKkAlmiJUmSpAJZoiVJkqQCWaIlSZKkAlmiJUmSpAJZoiVJkqQCWaIlSZKkAhWtREdEm4h4KyI+iIiREXFlfnuXiBgaEWPz952LlUGSJEkqhmKORJcB+6aUdgB2BA6KiN2Ai4DnU0pbA8/nn0uSJEkNRtFKdMpZmn/aMn9LwJHAXfntdwFHFSuDJEmSGpiqKpg0KesUa1XUOdER0Twi3gdmA0NTSm8CPVNKMwDy9z2KmUGSJEkNQErwxBOk7benav/9SeXlWSdao6KW6JRSVUppR6AP8O2I+EZtXxsRAyNieEQMnzNnTvFCSpIkKVsvvQS77w5HHcXykjKG//RCSlNknWqN6mR1jpTSQuAl4CBgVkT0Bsjfz17Na/6eUuqbUurbvXv3uogpSZKkuvTuu3DQQfC971E2cRLvXX0jzz31IjMPPpzUrH4vIlfM1Tm6R0Sn/OO2wP7Ax8CTwMn53U4GnihWBkmSJNVDY8fC8cfDzjtT8cabjPjV5Tzz7GtMOPpEUosWQP0ehQZoUcT37g3cFRHNyZX1B1NK/4qI/wAPRsTpwGTgmCJmkCRJUn0xbRpcdRXp9tupbtWacWefz9jTzqZ8gw2zTlawopXolNKHwE6r2D4P2K9Yx5UkSVI9M38+XH896aabSFVVTDzhR3x81vmUdm+460sUcyRakiRJTVlKcOONpN/9DhYvZurh32f0eb9kaZ/Nsk72pVmiJUmStP6lBL/4BQwaxKx99mfUzy9m4TbbZZ1qvbFES5Ikaf276ioYNIjxA07n/Uuugqj/JwsWon6vHSJJkqSGZ9AguOIKJn//ON6/+MpGV6DBEi1JkqT16fbb4ec/Z/qBh/LOVb+Her7e87pyOockSZLWjwcfJJ15JnP22oe3fn9Lfs3nxqlx/tNAkiRJdevf/yb98Ics2HlX/nPTYKpbtc46UVFZoiVJkvTlvPwy6Qc/YPG2X+P1v95JVdt2WScqOku0JEmS1t3bb5MOO4xlm2zGa4Pvo6LjBlknqhOWaEmSJK2bESNIBx1EaecuvHb7/ZR17pp1ojpjiZYkSVLhxo0j9etHectWvDrk/7G8R6+sE9WpxnvKpCRJkopj6lTS/vtTWVbO6/c+2igu410oS7QkSZJqb84cUr9+VM2fz+t3PsTCLbfJOlEmLNGSJEmqnYULSQceSJo0if8M/ifzv7591okyY4mWJEnS2i1bBoceShoxgjf+ehdzdt4160SZskRLkiRpzcrKoH9/0htvMPxPf2PmnvtknShzlmhJkiStXmUlnHACDB3Ke9cOYuoBh2adqF5wiTtJkiStWnU1nHYaPPYYH172P0zsf1zWieoNS7QkSZK+KCU47zy45x5Gn/8rxp10etaJ6hVLtCRJkr7ossvg1lsZe/qPGX32+VmnqXcs0ZIkSfq866+Ha65hwnED+OiXl0FE1onqHUu0JEmS/uuvf4WLLmLq4f157zfXWKBXw9U5JEmSlHPvvaRzzmHWvgfw9jV/gubNs05UbzkSLUmSJHj8cdIppzBvtz14Y9BtpJYts05Ur1miJUmSmrr/+z/Sccex6Bs7MOyWIVS3bpN1onrPEi1JktSUDRtGOvJIlm6xFa/97R4q27fPOlGDYImWJElqqt5/n3TIIZT06MVrg++nvFPnrBM1GJZoSZKkpqisjHTEEZS178CrQx6gpFv3rBM1KK7OIUmS1BTdfTcxZQrvDnmAZb37ZJ2mwbFES5IkNTVVVaQbbmDRN3dg5m57ZZ2mQbJES5IkNTUPP0yMG8eYmwd7MZV1ZImWJElqSlIiXXcdy7fYiqn7HZR1mgbLEwslSZKakv/9X+L99xlzxjnQzCq4rvzOSZIkNSXXXktp742YeFj/rJM0aJZoSZKkpmLYMHjlFcaechapVaus0zRolmhJkqSm4rrrqOjchfHH/DDrJA2eJVqSJKkpGDECnnqKcSedRlW7dlmnafAs0ZIkSU3B9ddT1a49n/7w1KyTNAqWaEmSpMZuwgTS/fcz4biTKO/UOes0jYIlWpIkqbG78UZSs2aMPWVg1kkaDUu0JElSYzZrFumOO5h85NGU9OyddZpGwxItSZLUmP35z1BWxtgzfpJ1kkbFEi1JktRYLVpEuvVWph94GEs23zLrNI2KJVqSJKmxuu02YvFixg78adZJGp0WWQeQJElSEZSUkAYNYs6eezP/a9/MOk2j40i0JElSY3TnncSsWYwZeF7WSRolR6IlSZIam8pK0u9/z8IdvsXsXXbLOk2j5Ei0JElSY/Pgg8SECYwZeC5EZJ2mUXIkWpIkqTFJiXTddSzbelumfa9f1mkaLUeiJUmSGpOnnyY++ogxZ/wEmln1isXvrCRJUmNy3XWUbLwJkw45KuskjZolWpIkqbF49VV4/XXGnnY2qWXLrNM0apZoSZKkxuLaaynv2o0J3z8u6ySNniVakiSpMfjwQ3jmGT4dcDpVbdtlnabRs0RLkiQ1Bv/4B9WtW/Pp8T/KOkmTYImWJElq6MrKSP/8J9P3P4jyTp2zTtMkWKIlSZIauqeeIubPZ3J/50LXlaKV6IjYJCJejIjRETEyIs7Pb78iIqZFxPv52yHFyiBJktQkDBlCaa/ezPzOXlknaTKKecXCSuAXKaV3I6Ij8E5EDM1/bVBK6cYiHluSJKlpmD6d9OyzTDrzHGjePOs0TUbRSnRKaQYwI/94SUSMBjYu1vEkSZKapHvvJaqrmXzUsVknaVLqZE50RGwO7AS8md/004j4MCLuiAhnv0uSJK2LlEhDhjD/W7uw5CtbZp2mSSl6iY6IDsAjwAUppcXAX4EtgR3JjVT/YTWvGxgRwyNi+Jw5c4odU5IkqeF56y3i44+Z7MVV6lxRS3REtCRXoO9LKT0KkFKalVKqSilVA/8Avr2q16aU/p5S6ptS6tu9e/dixpQkSWqYhgyhqk1bJh90eNZJmpxirs4RwO3A6JTSH2ts711jt/7AiGJlkCRJarRKSkgPPMD0Aw6hskPHrNM0OcVcnWMPYADwUUS8n992CXBCROwIJGAicFYRM0iSJDVOjz9OLFrkVI6MFHN1jteAWMWX/l2sY0qSJDUZd95JycabMOvbu2edpEnyioWSJEkNzZQppKFDmXTU0dDMOpcFv+uSJEkNzT33ECkxybWhM1PMOdGSJEla3/JrQ8/79ndYtslmWadpshyJliRJakiGDSPGjWOKJxRmyhItSZLUkAwZQlW79kzud2jWSZo0S7QkSVJDsWwZ6cEHmXrQoVS1b591mibNEi1JktRQPPoosWQJU75/fNZJmjxLtCRJUkNx550s33QzZu+8a9ZJmjxLtCRJUkMwcSK88EJuWbtY1fXsVJcs0ZIkSQ3B3XeTIph05DFZJxGWaEmSpPqvupp0553M3W1Plm/cJ+s0whItSZJU/736KjFhAlP6e4XC+sISLUmSVN8NGUJlhw5M6Xdw1kmUZ4mWJEmqz5YsIT30EFMPPoKqtu2yTqM8S7QkSVJ99vDDxPLlTHZt6HrFEi1JklSfDRnCsq9sydwdd846iWqwREuSJNVX48bBq68yqb9rQ9c3lmhJkqT66q67SM2aMenIo7NOopVYoiVJkuqj6mrSXXcxZ4/vUtKzd9ZptBJLtCRJUn30wgvElCmeUFhPWaIlSZLqozvuoGKDDZm67wFZJ9EqWKIlSZLqm0mTSA89xOSjjqG6dZus02gVLNGSJEn1zR/+QIpg7KlnZZ1Eq2GJliRJqk/mzCENHsyUw7/P8t4bZ51Gq2GJliRJqk9uuglKSxl7xk+yTqI1sERLkiTVF4sXk265hRn9DmbxFltnnUZrYImWJEmqL/72N2LhQsaeeW7WSbQWLbIOIEmSJKC0lPTHPzL3O3sx75s7ZJ1Ga+FItCRJUn1w993EzJmMOctR6IbAkWhJkqSsVVaSbriBRdvvyKxd98g6jWrBkWhJkqSsPfII8emnjDnzpxCRdRrVgiPRkiRJWUqJdO21LNtya6bud1DWaVRLjkRLkiRl6dlniQ8+YMwZ50Azq1lD4U9KkiQpS9ddR2nvjZh06FFZJ1EBLNGSJElZGTYMXnmFsaeeTWrVKus0KoAlWpIkKSvXXktF5y6MP/rErJOoQJZoSZKkLHz0EfzrX4w76TSq2rXLOo0KZImWJEnKwvXXU9W+A5/+8NSsk2gdWKIlSZLq2oQJpAceYPxxP6S8U+es02gdWKIlSZLq2o03kpo1Y9zJA7NOonVkiZYkSapLs2aR7riDyUcdQ0nP3lmn0TqyREuSJNWlP/0JyssZe8ZPsk6iL8ESLUmSVFcWLSL95S9MP/Awlmy2RdZp9CVYoiVJkurKX/9KLF7M2IHnZJ1EX1KLrANIkiQ1CSUlpEGDmLPXPszf7ptZp9GX5Ei0JElSXbjzTmL2bMYMPDfrJFoPHImWJEkqtspK0u9/z8Idd2Z2392yTqP1wJFoSZKkYrvpJmLCBD45+3yIyDqN1gNHoiVJkopp0iTS5Zcze5/9mb73flmn0XriSLQkSVKxpATnnEN1gvd/c42j0I2IJVqSJKlYHn4Ynn6a0edfyLKN+mSdRuuR0zkkSZKKYdEi0nnnsfjr2zP2pNOzTqP1zBItSZJUDBdfDLNn896td5JaWLkaG6dzSJIkrW//+Q/pttsYP+B05n99+6zTqAgs0ZIkSetTRQVp4EDKevVm5LkXZp1GReL/LUiSJK1PN95IjBjBB38ZQmWHDlmnUZFYoiVJktaXTz8lXXUVMw44hGn7Hph1GhVR0aZzRMQmEfFiRIyOiJERcX5+e5eIGBoRY/P3nYuVQZIkqc6kBGefTXWLFnx46f9knUZFVsw50ZXAL1JK2wG7AedExNeAi4DnU0pbA8/nn0uSJDVs990H//d/jPz5xSzv2TvrNCqyopXolNKMlNK7+cdLgNHAxsCRwF353e4CjipWBkmSpDoxbx7pZz9jwQ7fYtxxP8o6jepAncyJjojNgZ2AN4GeKaUZkCvaEdFjNa8ZCAwE2HTTTesipiRJ0rq58EJYuJD3b38AmjfPOo3qQNGXuIuIDsAjwAUppcW1fV1K6e8ppb4ppb7du3cvXkBJkqQv46WXYMgQxp16Fgu2/VrWaVRHilqiI6IluQJ9X0rp0fzmWRHRO//13sDsYmaQJEkqmtJS0llnUbLJpoz6yc+yTqM6VMzVOQK4HRidUvpjjS89CZycf3wy8ESxMkiSJBXVddcRY8bw3m+vo6ptu6zTqA4Vc070HsAA4KOIeD+/7RLgOuDBiDgdmAwcU8QMkiRJxfHxx6Rrr2XaYf2Zuec+WadRHStaiU4pvQbEar68X7GOK0mSVHTV1XDWWVS1bcuHF12RdRploOgnFkqSJDU6t90Gr7zCRxdeRmk3F0BoirzstyRJUiEee4x07rnM2XNvJnz/hKzTKCOOREuSJNXW0KGk449n4fY78cafB0Mzq1RT5U9ekiSpNl5/nXTUUSzdYite/9s9VLZvn3UiZcgSLUmStDbvvUc69FBKevTitcH3U75hp6wTKWOWaEmSpDX5+GPSAQdQ1r4Drw55gBJPJBSWaEmSpNWbOJG0//5UELx6xwMs690n60SqJ1ydQ5IkaVVmzCDtvz9VS5fy+t2PsGTzLbNOpHrEEi1JkrSyefNI/fpRPWMmw4Y8wIJtv5Z1ItUzlmhJkqSaliyBgw8mjRvHG3+7h7k77Jx1ItVDlmhJkqQVSkrg8MNJ777LW7fcwazd9sw6keopS7QkSRJAeTkccwzplVd458ZbmP69flknUj1miZYkSaqqggED4Omn+eCqG5h8aP+sE6mec4k7SZLUtFVXw1lnwYMPMuJXlzP+2JOyTqQGwJFoSZLUdFVWwhlnwF138cmPL2DMaT/OOpEaCEu0JElqmsrL4aST4KGHGH3ehYz+8QVZJ1IDYomWJElNT2kpHHMM/OtfjLjot4w55aysE6mBsURLkqSmZelSOPJI0osv8sGV1zP+uAFZJ1IDZImWJElNx6JFcMghpDfe4N3r/sykI4/OOpEaKEu0JElqGubOJR14IHz0EW//6W9MPeDQrBOpAbNES5Kkxm/mTNL++5PGjePNW4cw47v7Zp1IDZwlWpIkNW6TJ5P224/q6TN442/3Mmu3PbJOpEbAEi1JkhqvceNI++1H1cKFDLvjfubu2DfrRGokLNGSJKlxGjWKtP/+VJaV8/pdDzF/u29mnUiNiJf9liRJjc+775K++13Kq6p55Z5HLNBa7yzRkiSpcRk+nLTvvpS1acsr9z7Koi23yTqRGiGnc0iSpMZj4kTSoYdS2nFDXrnnYZb17pN1IjVSlmhJktQ4LFpEOvRQqsrKGHbnQxZoFZUlWpIkNXwVFXDMMTBmDG8Ovp9FW2yddSI1cpZoSZLUsKUE55wDQ4fy/jV/dB1o1QlPLJQkSQ3bjTfCP/7BmLPPY8L3j886jZoIS7QkSWq4HnkEfvUrph1yJCPO+1XWadSEOJ1DkiQ1TG+9RTrpJBbu1Je3r/kjNHNsUHVnrb/aIuekiPhN/vmmEfHt4keTJElajYkTSYcfTmn3Hgy7dQjVbdpmnUhNTG3+yfYX4DvACfnnS4Bbi5ZIkiRpTVYsZVdayrC/3UNZl65ZJ1ITVJvpHLumlL4VEe8BpJQWRESrIueSJEn6IpeyUz1RmxJdERHNgQQQEd2B6qKmkiRJWplL2akeqc10jpuAx4AeEfE74DXgmqKmkiRJWtmKpezOOtel7JS5tY5Ep5Tui4h3gP2AAI5KKY0uejJJkqQVVixld/ARjDj/11mnkdZeoiOiCzAbuL/GtpYppYpiBpMkSQLgzTdzS9ntuDNvXzvIpexUL9TmV+G7wBxgDDA2/3hCRLwbETsXM5wkSWriXn6ZdPDBlHbv6VJ2qldqU6KfBQ5JKXVLKXUFDgYeBH5Cbvk7SZKk9e/OO0n9+rG8SzdeHfIAZV27ZZ1I+kxtSnTflNL/rniSUnoO+G5K6Q2gddGSSZKkpqm6Gi6+GE49lbm7fIcX73+SpX02yzqV9Dm1WeJufkT8Gngg//w4YEF+2TuXupMkSevP8uXwox/BI48w8biTeO+y35Fatsw6lfQFtSnRJwK/BR4ntzrHa/ltzYFjixdNkiQ1KTNmwBFHkN55h5EX/ZYxJw+EiKxTSatUmyXu5gLnrubL49ZvHEmS1CR98AHp8MOpnjef4bcOYdq+B2SdSFqj2ixx1x34FfB1oM2K7SmlfYuYS5IkNRX/+hfphBMo79CR/9z3KPO3+2bWiaS1qs2JhfcBHwNfAa4EJgJvFzGTJElqClKCP/+ZdOSRLN58S1588GkLtBqM2pToriml24GKlNLLKaXTgN2KnEuSJDVmlZVwzjlwwQXM3PcAXr77EZb36JV1KqnWanNi4YorE86IiEOB6UCf4kWSJEmN2qJFcOyx8NxzjD3jJ3z080u8CqEanNqU6KsjYkPgF8DNwAbAz4qaSpIkNU5jx5KOOgrGjOH9q29kwtEnZp1IWie1KdH/l1IqBRYB3ytyHkmS1Fjdfz9p4EAqW7TkrdsfYNauu2edSFpntSnRIyJiFvAq8ArwekppUXFjSZKkRmP5cjj/fBg8mAU7f5u3/3Ary3ptnHUq6UupzTrRW0XEpsBewGHAXyJiYUppx6KnkyRJDduoUaRjj4VRoxh79nmM/OkvSS1qM4Yn1W+1WSe6D7AHuRK9AzCS3FULJUmSVi0luPNO0jnnUNGuPcMH38fMPfbJOpW03tTmn4KTya0LfU1K6ewi55EkSQ3d0qXw4x/Dvfcyb7c9ePuGWyjp0TPrVNJ6VZsSvROwJ3BiRFwEjAVezq8dLUmS9F8ffJCbvjFuHB+f+0tGn30+NG+edSppvVvroowppQ+Au4AhwAvA3sDla3tdRNwREbMjYkSNbVdExLSIeD9/O+RLZJckSfVFSnDbbaRdd6V84SJev/MhRp/zcwu0Gq3azIkeDrQGhpGbC/3dlNKkWrz3ncAtwN0rbR+UUrqxwJySJKm+WrQIzjwTHnqIOXt9j7evv4myLl2zTiUVVW2mcxycUppT6BunlF6JiM0LTiRJkhqOYcNIAwbApEmM/OWljDntx159UE1CbaZzFFyg1+KnEfFhfrpH59XtFBEDI2J4RAyfM2d9R5AkSV/K6NHwgx/AHntQVlrGq/c+ypgzzrFAq8mo61/pfwW2BHYEZgB/WN2OKaW/p5T6ppT6du/eva7ySZKkNZk8GU47jfSNb1D13HOMPveXPPfki8zdaZesk0l1qk5XO08pzVrxOCL+AfyrLo8vSZLW0Zw5cM0/LhclAAAfK0lEQVQ1pL/8hQSM/9EZfDLwXOc+q8mqVYmOiN2BzWvun1Ja+YTB2rxP75TSjPzT/sCINe0vSZIytmQJ/PGPpBtvhOXLmdz/WD4+5+cs26hP1smkTNVmdY57yE3BeB+oym9OfHHVjZVfdz+wD9AtIqYCvwX2iYgd86+fCJy1rsElSVIRlZXllqy7+mpi7lxmHHAIoy74NYu32DrrZFK9UJuR6L7A11JKqZA3TimdsIrNXqBFkqT6rKoK7rmH9NvfEpMnM2+3PRn514uZ982dsk4m1Su1KdEjgF7kTgSUJEmNUUrw+OOkyy4jRo1i8Te2Z+SQG5j5ne9mnUyql2pTorsBoyLiLaBsxcaU0hFFSyVJkurOiy/CRRfBW2+x/CtbMvLP/2DqAYdARNbJpHqrNiX6imKHkCRJGXjnHbjkEnjuOUp7b8Toq//AxKOOIbWo08W7pAZprb9LUkov10UQSZJUR8aMgcsvhwcfpKJTZz759W8Yd8LJVLdpm3UyqcGozeocuwE3A9sBrYDmwLKU0gZFziZJktanqVPhqqtId9xBdes2jP3JBYw99WwqOvpXulSo2vx/zS3A8cBD5Fbq+BHg+jaSJDUU8+bB9deTbr6ZVFXFhBNP5pOzzqe0m1cEltZVrSY9pZTGRUTzlFIVMCQihhU5lyRJ+rKWLIGbbiLdcAMsWcKUI4/m45/+gqV9Ns06mdTg1aZEL4+IVsD7EXEDuaXu2hc3liRJWmdjx8Ktt5KGDCEWL2bmfgcy+oJfs3Drr2adTGo0alOiBwDNgJ8CPwM2AX5QzFCSJKlA1dXw7LNw883w7LNUt2zJtAMPY/zJZzLvmztmnU5qdGqzOsekiGgL9E4pXVkHmSRJUm0tXAhDhpBuvZX49FPKevRk/Lm/ZMKxJ1HavUfW6aRGqzarcxwO3EhuZY6vRMSOwFVebEWSpAyNGAG33EK65x5i+XIW7Pxtxg+6kCn7HURq1SrrdFKjV9uLrXwbeAkgpfR+RGxetESSJGnVKivhySdzUzZeeonqNm2YcuhRjD/pVBZs982s00lNSm1KdGVKaVF46U9JkupeZSW88go8+ijpsceI6dMp2agP439xCROPPpGyzl2yTig1SbUp0SMi4kSgeURsDZwHuMSdJEnFUlICQ4fCY4+RnnySmD+fqjZtmbXn3ky99Gqm7tMPmjfPOqXUpNWmRJ8LXAqUAfcD/wv8TzFDSZLU5CxaBE8/nSvOzzxDLFtGxQYbMuN7/ZjZ72Bm7LE3VW3bZZ1SUl5tVudYTq5EX1r8OJIkNSGzZsETT+SK8/PPExUVlHXvwfTDf8CMAw5m1i67k1q2zDqlpFVYbYmOiCfX9EJX55AkaR1MnAiPPZab4/z660RKLN90M6YNOJ0Z/Q5m7g47Q7NmWaeUtBZrGon+DjCF3BSONwHPLJQkqVApwahR/z0x8L33AFj81a8x/ZyfMb3fISzcZjvwBH6pQVlTie4F9ANOAE4EngbuTymNrItgkiQ1WNXV8PbbuWkajz5KjB0LwIJv7cL0X/2G6fsfxNJNN882o6QvZbUlOqVUBTwLPBsRrcmV6Zci4qqU0s11FVCSpAah5lJ0jz9OTJtGdYsWzN11d2aeeDpT9z2A0p69sk4paT1Z44mF+fJ8KLkCvTlwE/Bo8WNJktRAVFbC3XeTrriCmDIltxTdXvsw8/xfM23v/anYsFPWCSUVwZpOLLwL+AbwDHBlSmlEnaWSJKm+Syk3XePSS4mPP2bR9jsy9sLfMH2v77kUndQErGkkegCwDNgGOK/GFQsDSCmlDYqcTZKk+umFF0gXX0y89RbLttqGUbfcztT9DvLkQKkJWdOcaNfXkSSppuHD4ZJLYOhQyjbamNHXDGLiET8gtajNtcskNSb+rpckaW0++QQuuwwefpiKLl35+OIr+fT4AVS3bpN1MkkZsURLkrQ6U6fClVeShgyhuk1bxv7054w55SwqO3TMOpmkjFmiJUla2bJlcMUVpJtvJqXE+JNO45OzzqOsS9esk0mqJyzRkiTV9OmnpP79YcQIpvQ/htHn/JJlG/fJOpWkesYSLUnSCs8+SzrhBKoSvDX4PmbusU/WiSTVU67AIUlSSnDNNaRDDmFpr4144ZFnLNCS1siRaElS07ZkCZxyCjz6KNMO6887V/2eqnZeLEXSmlmiJUlN1yef5OY/jxnDiIuvYOyPzvSCKZJqxRItSWqannqKdNJJVLZoyVu3P8Cs3fbIOpGkBsQ50ZKkpqW6Gq68Eo44gsWbbM4LDz9jgZZUMEeiJUlNx6JFMGAAPPUUk486hnevuI7qNm2zTiWpAbJES5KahlGjcvOfx4/no8uvZtyJpzr/WdI6s0RLkhq/Rx8lnXwyFW3a8uZdDzFn512zTiSpgXNOtCSp8aqqgksvhR/8gEVbbs0LjzxjgZa0XjgSLUlqnBYsgBNPhGefZeIxJ/L+5b+julXrrFNJaiQs0ZKkxufDD0n9+5OmTOHDq25g/LEnZZ1IUiNjiZYkNS7/7/+RTjuN8g4defOeR5i7Y9+sE0lqhJwTLUlqHCor4cIL4fjjWbDdN3jh4Wct0JKKxpFoSVLDN3cuHH88PP88E048mfcvupLUqlXWqSQ1YpZoSVLD9t57ufnPM2fywTV/ZML3j886kaQmwOkckqSG6557SLvvTll5Ba/e+7gFWlKdsURLkhqeigo4/3z40Y+Yv/1OvPDws8z75g5Zp5LUhDidQ5LUsCxZAkccAS+9xKcnn8mHv7yM1LJl1qkkNTGWaElSw1FSAocfTnrtNd69/iYmHXl01okkNVGWaElSw1BeDsccQ3rlFd658RYmH9o/60SSmjBLtCSp/quqggED4Omn+eCqGyzQkjLniYWSpPotJTj7bHjwQUb86nIv4S2pXrBES5Lqr5TgF7+AwYP55McXMOa0H2edSJIAS7QkqT676ioYNIhPB5zOyPMuzDqNJH3GEi1Jqp8GDYIrrmDy94/jg4uvhIisE0nSZyzRkqT65/bb4ec/Z/qBh/LOVb+HZv51Jal+cXUOSVL98uCDpDPPZM5e+/DW728htfCvKkn1j/+0lyTVH//+N+mHP2TBzrvyn5sGU92qddaJJGmVilaiI+KOiJgdESNqbOsSEUMjYmz+vnOxji9JamBefpn0gx+weNuv8fpf76SqbbusE0nSahVzJPpO4KCVtl0EPJ9S2hp4Pv9cktTUvf026bDDWNZnU14bfB8VHTfIOpEkrVHRSnRK6RVg/kqbjwTuyj++CziqWMeXJDUQI0aQDjqI0s5deO2O+ynr3DXrRJK0VnU9J7pnSmkGQP6+x+p2jIiBETE8IobPmTOnzgJKkurQuHGkfv0ob9GSV4f8P5b36J11IkmqlXp7YmFK6e8ppb4ppb7du3fPOo4kaX2bOpW0//5UlpXz+pD/x9I+m2WdSJJqra5L9KyI6A2Qv59dx8eXJNUHs2eT+vWjet58Xh/8TxZuuU3WiSSpIHVdop8ETs4/Phl4oo6PL0nK2sKFpAMPJE2cxLC/3c38r2+fdSJJKlgxl7i7H/gPsG1ETI2I04HrgH4RMRbol38uSWoqli2DQw8ljRzJmzcPZs7Ou2adSJLWSdEuA5VSOmE1X9qvWMeUJNVjZWXQvz/pjTcYPug2Zuz1vawTSdI681qqkqTiq6yEE06AoUN579pBTD3wsKwTSdKXUm9X55AkNRLV1XDaafDYY3x06VVM7H9c1okk6UuzREuSiiclOO88uOceRp//K8YOOCPrRJK0XliiJUnFc+mlcOutjD3tbEaffX7WaSRpvbFES5KK4/rr4dprmXjcSXx04eUQkXUiSVpvLNGSpPXvL3+Biy5i6uH9efc311qgJTU6lmhJ0vp1111wzjnM3PcA3r7mT9C8edaJJGm9s0RLktaP4cOhXz845RTm7rYHbwy6jdSyZdapJKkoLNGSpC/n44/hmGNgl12oePc9Prr4Sl77+71Ut26TdTJJKhovtiJJWjdTpsCVV5KGDKG6bTvGnPsLxp48kMoOHbNOJklFZ4mWJBVm3jy49lrSLbeQUmL8gNP55KzzKOvSNetkklRnLNGSpNpZuhQGDSLdeCMsXcqUo45m9Dm/ZNnGfbJOJkl1zhItSVqzsjL4+99JV19NzJ7NzH4HM+qCX7Noy22yTiZJmbFES5JWraoK/vlP0m9+Q0ycyLxdd2fULXcwd/tvZZ1MkjJniZYkfV5K8NRTpEsuIUaOZPHXt2fk7f9k5u57e9EUScqzREuS/uuVV+Cii+A//2H5V7Zk1J/+zpQDDoFmrogqSTVZoiVJ8P77cMkl8MwzlPXqzairf8/Eo44jtfCvCUlaFf90lKSmbNw4uPxyeOABKjbsxCe/upxxJ55CdZu2WSeTpHrNEi1JTdH06fA//0MaPJjqlq0Yd/b5jD3tbMo32DDrZJLUIFiiJakpWbAAbriB9Oc/Q0UFE447iY/PvoDS7j2yTiZJDYolWpKagpEj4ZZbSPfcA8uXM/Xw7zP6vF+ytM9mWSeTpAbJEi1JjVVlJTz1FNx8M7z4ItWtWzPl0KP49JSBLNxmu6zTSVKDZomWpMZm7lwYPJj0178SkydTslEfxv/iEiYefQJlnbtmnU6SGgVLtCQ1Fu++CzffTLr/fqKsjLm77cmEX/2Wafv0c6k6SVrP/FNVkhqy8nJ45BG45RYYNoyqtu2Y3P84xp90Kou22jbrdJLUaFmiJamhqajIXVnw0UdJjzxCzJrF8s2+wqcXX8nE/sdS4TJ1klR0lmhJaghKSuC55+Cxx0hPPkksWEBVm7bM+u73mHz0iUzfcx8vzS1JdcgSLUn11cKF8PTTueL8zDPE8uVUbLAhM77Xj5kHHMKM3b9LVdt2WaeUpCbJEi1J9cmsWfDEE7mpGi+8QFRUUNa9B9OOPIaZ/Q5m1i7fIbVsmXVKSWryLNGSlLUJE+Cxx3Ijzq+/TqTE8k03Z9qPzmBGv4OZu/23nKohSfWMJVqS6lpKuSsIPvoo6bHHiPffB2Dxdl9n+k9/zvT9D2HhNl+FiIyDSpJWxxItSXWhuhreeis32vzoo8S4caQIFuzUl+m//i3T9j+IZZt4CW5Jaigs0ZJULDWXonv8cWL6dKpbtGDubnsw46QzmLbvgZT26Jl1SknSOrBES9K6qKqCmTNh2rQv3qZOJeXvY/ny3FJ0e+3DzAsuZtre+1GxYaes00uSviRLtCStbNmyzxXimgU5rXg8cyZRVfW5l1W3aEFZj54s79mL0q9sQ+l39mbeLrsxY4+9XYpOkhoZS7Skxq26OleKlyyBxYtztxWPZ836XFFeUZBj0aIvvE1Fxw0o7dmL5T16UbrrHpT17E1pz96U9OjJsp69KenZm7IuXV1FQ5KaCEu0pIZp0SIYPRo+/jh3/+mnsGgRKV+S0+LFxJIlsGQJkdJq3yY1a0ZZ9x6U9OxNycabUfqt3Sjt2YvSnr1Y1qMXJT16UdKzN1Xt29fhh5Mk1XeWaEn1V0owffp/i3L+lj7+mJgx47Pdqlu2ZPkmm1G2wYZUduhI5aY9qOzQIX/rmLu1a09Fh45UtO9AefsOVLZvT1nXbpR17U5q4R+FkqTC+DeHpOxUVMCMGV+Yd8y0aaRPP4WPPyYWL/5s98qOHVm8xdYs2W0vlm25NUu22JqFW2zF8j6bWoQlSXXKv3UkrR9VVbB06arnHi9alBtRXvnkvNmzvzDVoqpV69zc4403Ycnh32fpltuweIutWPyVrXLLwXkBEklSPWCJlvR51dWwYAHMmQOzZ+duNR/Png3z539+7vHixcSyZWt96/LOXfJzjHtR+t2vUtazNyU9c8+X9exNaY9elHfqbFGWJNV7lmipMUspNxI8b96ab3PmkFYU5TlzvrB02wrlnTpT1qUr5Rt2oqLjBlR2701lh45UdehIZfsOVHTo8Nl9RfuOVLTPzUOubN+R0m7dqG7Tto6/AZIkFYclWmpIqqpg/vzPjwqvNGKc5syBuXNz5Xj+fKKycrVvV7FhJ8o7daa0SxfKuvemfNtvUN61W+6Euy7dKO3chdL84/JOnUktW9bhh5Ukqf6yREv1QXn55+YMf+42c+Z/R4nnzl3lcm0pgvLOXXLlt1MXyjfZgortd6a8U2cqOnWhvHNnyjbsROmGnSnv1Jnyzp0p36ATNG+ewYeVJKnhs0RLxVZSklt9YvLk3G1VF/eYPfsLL6tq3Sa3XnG37pRttCll3/gW5V27Ut6lG6Vdu1HauSulXbtR3qUrZZ06W4glSapDlmjpy6iuzo0QryjINW4pfx9z5nzhZZ87wW6fr1Has/dnV8Nb3rOXJ9hJklTPWaKlFaqrc0uxre0kvHnzSCsez5pFlJd/7m0q27enpPfGLOu9MaX7HkjJRhtT0msjlvXamOW9N6KkZy+qW7fJ6ENKkqT1wRKtpqeqCiZMgBEjYORIGDmSNGIEfPLJFwrxCqlZs89Owivr1InyTt2o+Mo2lHXrTslGfVjeeyOW9s6V5YoNNnQEWZKkRs4Srcarujo3tWLkyM8Kcxo5EkaNIkpLP9utZONNWLTVtiwZsBdlPXrki3Ln/56E16lzrhg3a5bhh5EkSfWJJVoNT0qwcCHMnJm7zZjxhfs0cyZMmkQsXfrZy0p79WbRltuw5ISTWbL1tizaalsWb7E1lR06ZPhhJElSQ2SJVv1QWZmbY7yqq+Pln6caRTnKyr7wFlWtWlPWowel3XpQutGmlH5rN5ZsvS0Lt9qGxVttmxtNliRJWg8s0Vr/qqtzI8VrO0Fv9mzSipI8b96q1z9u1iy3/nGXrpR270HZDn0p69eT0m7dKe3Wg5JuPSjtnrtVdNzAuciSJKlOWKK17pYsgeeeg6eeIo0Z899yvGABUV29ypekZs2o6NSZ8g075a6Et8kWlO/47dxaxytfJa9rV8o37OxcZEmSVO9YolWY6dPhqafgiSdIzz9PlJdT0akzC7b7OuVbbkvFzrmr4+WKcv4EvU41TtDruIGlWJIkNXiWaK1ZSrnVLZ54gvTkk8RbbwGwfNPNmH7iKczc70Dm7LQLqYW/lCRJUtNh89EXVVbCa6/Bk0+SnniCGD8egIXb78SMn13EjH0PZNFW2zj/WJIkNVmZlOiImAgsAaqAypRS3yxyNEkp5a7KN23aF29Tp5KmTYPx44lFi6hu3ZrZu+3JrFPOZtre+1Pas1fW6SVJkuqFLEeiv5dSmpvh8RuGykpYtuy/t+XLoaQESku/eFvd9vnzYdq0XEGeNo1YtuwLhynv3IWSnr0p6dmLkoO/ydzd92L6HvtQ1b59Bh9akiSpfnM6x7pKKVdolyyBxYv/e19Ssvoyu6qyW1ICy5aR8iV5xX0sX567X81lqGujqnUbqlu3pqJjR0p69KJki20p230fSvNleXmPXizv2YvSHj2pbt1mPX5zJEmSGresSnQCnouIBPwtpfT3jHKs3rBhMHjwZwU51biPfGFe3TJuq5OaNaOqTRuqW7ehqlVrqlu3pqpNGyrbtqOyTVuqNuxKVe9NqGrbnqp27ahq25aqdvmvtW2X269dOyrzr69qnX+P1m0+K8wrtlW3bOWcZUmSpCLJqkTvkVKaHhE9gKER8XFK6ZWaO0TEQGAgwKabblr3CWfMoOK5oZS2bUdFh45UtGtP5cabU7Vteyo7dKSiQ0eq2negokMHKtvl7svbdciV35UKbnWrXFl2BQtJkqTGIdIqrhJXpwEirgCWppRuXN0+ffv2TcOHD6+7UHlvTl/AtCWldX5cSZKkpqx5BP2+0p12LZvX+bEj4p3aLHpR51e9iIj2EdFxxWPgAGBEXeeQJEmS1lUW8wt6Ao9Fbr5uC+CfKaVnM8ghSZIkrZM6L9EppfHADnV9XEmSJGl9qfPpHJIkSVJDZ4mWJEmSCmSJliRJkgpkiZYkSZIKZImWJEmSCmSJliRJkgpkiZYkSZIKZImWJEmSCmSJliRJkgpkiZYkSZIKZImWJEmSCmSJliRJkgpkiZYkSZIKZImWJEmSCmSJliRJkgpkiZYkSZIKZImWJEmSCmSJliRJkgpkiZYkSZIKZImWJEmSCmSJliRJkgpkiZYkSZIKZImWJEmSCmSJliRJkgpkiZYkSZIKZImWJEmSCmSJliRJkgpkiZYkSZIKZImWJEmSCmSJliRJkgpkiZYkSZIKZImWJEmSCmSJliRJkgpkiZYkSZIKZImWJEmSCmSJliRJkgpkiZYkSZIKZImWJEmSCmSJliRJkgpkiZYkSZIKZImWJEmSCmSJliRJkgpkiZYkSZIKZImWJEmSCmSJliRJkgpkiZYkSZIKZImWJEmSCmSJliRJkgpkiZYkSZIKZImWJEmSCmSJliRJkgpkiZYkSZIKZImWJEmSCmSJliRJkgpkiZYkSZIKZImWJEmSCmSJliRJkgqUSYmOiIMi4pOIGBcRF2WRQZIkSVpXdV6iI6I5cCtwMPA14ISI+Fpd55AkSZLWVRYj0d8GxqWUxqeUyoEHgCMzyCFJkiStkyxK9MbAlBrPp+a3SZIkSQ1CiwyOGavYlr6wU8RAYCDApptuWuxMq9SqWe7fGKsKLEmSpOKoTonmUb8bWBYleiqwSY3nfYDpK++UUvo78HeAvn37fqFk14Ude27A9j02yOLQkiRJTVYENLNEf8HbwNYR8RVgGv+/vfuJtaMs4zj+/dnGxoU1xtZI8A/F2AWGSCxtQFME0sToRqMJqRplpaERBJds1LgiijG4MgYa4watwaALiI0m4kYtGNFSIkpBQ0MjRTcQsab0cXHfG4/Hey0v3J5x5nw/yeTOvDO9fU9+eU6ezHnPXNgPfHyAeZxTEjb9f+cnSZKkASy8ia6qM0luBH4MbAIOVtWxRc9DkiRJermGuBNNVd0H3DfE/y1JkiS9Uv7FQkmSJKmTTbQkSZLUySZakiRJ6mQTLUmSJHWyiZYkSZI62URLkiRJnWyiJUmSpE420ZIkSVInm2hJkiSpk020JEmS1MkmWpIkSepkEy1JkiR1somWJEmSOtlES5IkSZ1soiVJkqROqaqh53BOSU4Bfx56HtpQ24Bnh56EFsrMl4t5LxfzXi5Tz/ttVbX9XBeNoonW9CR5qKouH3oeWhwzXy7mvVzMe7mY9wqXc0iSJEmdbKIlSZKkTjbRGsq3hp6AFs7Ml4t5LxfzXi7mjWuiJUmSpG7eiZYkSZI62URrwyQ5mOSZJI/Mjd+U5LEkx5J8ZWb81iSPt3PvnxnfleRoO/eNJFnk69BL05N3kouSvJDk4bZ9c+Z68x6BtfJO8r2ZTP+U5OGZc9b3iPXkbX1PwzqZX5bkly3Xh5LsmTlnjVeVm9uGbMBVwLuBR2bGrgF+Amxpx29sPy8BfgtsAXYAx4FN7dwR4EogwP3AB4Z+bW6vOO+LZq+b+z3mPYJtrbznzn8N+ELbt75HvnXmbX1PYFvnPf3wambAB4GftX1rvMo70do4VfVz4G9zwweA26rqdLvmmTb+IeC7VXW6qp4EHgf2JLkA2FpVv6iVavwO8OHFvAL16Mx7TeY9HuvkDUC703QdcHcbsr5HrjPvNZn3uKyTeQFb2/7rgKfbvjWOyzl0/u0E9ib5VZIHkuxu4xcCT81cd6KNXdj258c1DuvlDbAjyW/a+N42Zt7TsBf4S1X9sR1b39M2nzdY31N1C/DVJE8BtwO3tnFrHNg89AQ0eZuB1wNXALuBQ0kuZuVjnnn1P8Y1DuvlfRJ4a1X9Ncku4N4k78S8p+Jj/OddSet72ubztr6n6wDw+aq6J8l1wF3APqxxwCZa598J4AftY50jSc4C29r4W2auezMrHxOdaPvz4xqHNfOuqlPA6hKPXyc5zspda/MeuSSbgY8Au2aGre+JWivvtnzL+p6m64Gb2/73gTvbvjWOyzl0/t0LXAuQZCfwauBZ4EfA/iRbkuwA3gEcqaqTwHNJrmjr7j4F/HCYqetlWDPvJNuTbGrjF7OS9xPmPQn7gN9X1exHuNb3dP1X3tb3pD0NvK/tXwusLuGxxvFOtDZQkruBq4FtSU4AXwQOAgfbI3P+CVzf7lIeS3IIeBQ4A3y2ql5sv+oA8G3gNax8s/f+Rb4OvTQ9eSe5CvhykjPAi8ANVbX6BRbzHoG18q6qu4D9zH3BrKqs75HryZuVpzpY3yO3znv6p4E72icQ/wA+A9b4Kv9ioSRJktTJ5RySJElSJ5toSZIkqZNNtCRJktTJJlqSJEnqZBMtSZIkdfIRd5I0AkneAPy0Hb6JlUeJnWrHf6+q9wwyMUlaUj7iTpJGJsmXgOer6vah5yJJy8rlHJI0ckmebz+vTvJAkkNJ/pDktiSfSHIkydEkb2/XbU9yT5IH2/beYV+BJI2PTbQkTcu7gJuBS4FPAjurag9wJ3BTu+YO4OtVtRv4aDsnSergmmhJmpYHq+okQJLjwOE2fhS4pu3vAy5JsvpvtiZ5bVU9t9CZStKI2URL0rScntk/O3N8ln+/578KuLKqXljkxCRpSlzOIUnL5zBw4+pBkssGnIskjZJNtCQtn88Blyf5XZJHgRuGnpAkjY2PuJMkSZI6eSdakiRJ6mQTLUmSJHWyiZYkSZI62URLkiRJnWyiJUmSpE420ZIkSVInm2hJkiSpk020JEmS1OlfIDJHlZmct2EAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(12,8))\n",
+ "plt.plot(data['Year'],data['Wages'],color='red')\n",
+ "plt.fill_between(data['Year'],np.zeros(50),data['Wages'],color='lightblue')\n",
+ "plt.title(\"Time evolution of mean wage\", loc=\"center\")\n",
+ "plt.xlabel(\"Time\")\n",
+ "plt.ylabel(\"Mean wage\")\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtcAAAHwCAYAAABtz0NOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xm4ZWdZJ+zfYyIJUyCYAkIYAhrsDt0fQQMdRBAZPho/IEg3dpiMCEa8FBC1NQGlUrZDGqFb2ta2IyABFAyKkEYFYiQBPhAIMiVETJiSkJAUc5iCCU//sVfJoTinalfVu885u+q+r2tfZ017r2fv96xTv3r3u9aq7g4AALDvvmOjCwAAgP2FcA0AAIMI1wAAMIhwDQAAgwjXAAAwiHANAACDCNfAuqmqZ1fViza6jr1VVT9RVW/bh+f/YVX92sia5tzvz1TVNVX1par6rvXe/yJV1dFV1VV18EbXApAk/hgBw1TVl1bM3izJ9UlunOZ/urt/a/2r2hhV9RNJntrdP7hjWXc/bQPq+M4k/y3JCd39/vXe/zKrqpcmubK7f3Ud9/nxzH5v/na99gmMJVwDw3T3LXZMCwmbxu2SHJrk4o0uBOBAYFgIsG6q6vSqesU0vePr/CdX1RVV9bmqelpV3buqPlBVn6+q/7nT83+yqi6Ztn1jVd1lF/s6oarePr3O+6vqgdPyk6rqwp22fVZVnTNN36qqXlZV26vqE1X1q1X1bX8rVxuOUFXnV9VTq+pfJ/nDJPedhmJ8flr/0qr6jRXb/1RVXVZVn62qc6rqDivW9fR5XDq939+vqlrjvR5SVb9bVVdNj9+dlt09yYenzT5fVX+3i/cxpB2q6oXT63yxqt5TVfdfse70qjp7+nyvq6qLq+r4Nd7Ttqr6vWn6O6vqy1X1vGn+plX1tao6fMVTnlBVl1fVp6vqOSte5zuq6tSq+khVfWba/21WrH91VX2qqr5QVW+pqntMy09J8oQkvzy14f9Zo857VNW5UxteU1XP3lWbTOuOqKrXT5/tZ6vqrVOdL09y5yT/Z9rnL6+2T2BzE66BjfbvkhyT5D8l+d0kz0nykCT3SPJjVfVDSVJVj07y7CSPSbIlyVuTvHK1F6yqo5L8VZLfSHKbJL+U5C+qakuSc5J8b1Uds+Ipj0/yp9P07yW5VZK7JfmhJD+e5Ml78oa6+5IkT0vyju6+RXffepUaH5Tkt5P8WJIjk3wiyat22uwRSe6d5J7Tdg9bY5fPSXJCkuOmbe+T5Fe7+58y+xyT5Nbd/aBdlD2qHd491XGbzD7TV1fVoSvWP2p6n7fOrC2+JbivcEGSB07T907yqczaI0num+TD3f25Fdv/YJLvTfLgJM+d/oOTJM9I8ujpuXdI8rkkv7/ieX8zve/bJvmHJH+SJN195jT9vKkNH7lzgVV1yyR/m+QN02t/T5LzptWrtsm07heTXJnZ53e7zD7P7u4nJbk8ySOnfT5vjc8G2MSEa2Cj/Zfu/lp3vynJl5O8sruv7e5PZhbc7jVt99NJfru7L+nuG5L8VpLjavXe6ycm+evu/uvu/kZ3n5vkwiQ/0t1fSfK6JI9Lkilk/6sk51TVQZmFy9O6+7ru/niSFyR50gLe9xOSvKS7/6G7r09yWmY93Uev2OaM7v58d1+e5M2ZBbW1XuvXp89te5Jte1HzkHbo7ld092e6+4bufkGSQzILvTu8bWqXG5O8PLPguZp3JDmmZidgPiDJi5McVVW3yCwoX7DT9tu6+6vTuPL3r3jdn07ynO6+cvqcT0/yH3d849DdL5naese6e1bVreb8zB6R5FPd/YLps7uuu985rdtVm/xzZv+hukt3/3N3v7W7e859ApuccA1stGtWTH91lfkd47jvkuSF01fpn0/y2SSV5KhVXvMuSR67Y9tp+x/MLNAksx7Vx03Tj0/y2il0H5HkJpn1Iu/wiTX2sa/usHI/3f2lJJ/ZaV+fWjH9lXzzs9jla03Td1hj27UMaYeq+sVpyMgXpvW3yuxz3WHn93RorXKlj+7+amb/IfqhzML1BUnenuR+WT1cr/VZ3SXJX66o95LMTrK9XVUdVFVnTENGvpjk49NzVta7K3dK8pE11u2qTX4nyWVJ3lRVH62qU+fcH7AEhGtgWVyR2RVHbr3icdPufvsa2758p21v3t1nTOvflOSIqjous5C9Y0jIpzPrVVzZG37nJJ9cZR9fnn7ebMWy26+Y3l1P5FUr91NVN0/yXWvsa3e+5bUyq/mqvXideazZDtP46l/JbAjL4dNwmC9kFr73xgVJHpRZr/m7p/mHZTbE4i17UO/Dd6r30KlH/vFJTsxs+Mutkhw9PWdHvbtrwyuSfPca69Zsk6mH+xe7+25JHpnkF6rqwXPuE9jkhGtgWfxhktNWnHB2q6p67BrbviLJI6vqYVPv5KFV9cCqumOSTMMZ/jyzHsTbJDl3Wn5jkrOT/GZV3XIa6vAL0+t9i+mr/k8meeK0j5/Mtwata5LcsapuskaNf5rkyVV13HSi228leec0FGVPvTLJr1bVlqo6IslzV6t5kF21wy2T3JBke5KDq+q5SQ7bh31dkNmY9w9199eTnJ/kqUk+Nn3+89b7mzuGrUyf0Ykr6r0+s28MbpZZG6x0TWZj79fy+iS3r6qfn05gvGVV/btp3ZptUlWPqKrvqapK8sXMetJ3XLJyd/sENjnhGlgK3f2XSf5rkldNX+FflOTha2x7RWY9ks/OLOhdkeQ/51v/5v1pZj2Wr57C9g5Pz6xX+qNJ3jZt95I1yvqp6XU/k9mJfyt70f8us8vffaqqPr1Kjecl+bUkf5Hk6syC+Ulr7Gd3fiOzIRQfSPLBzE7M+41dPmMv7aYd3pjZCYL/lNkwiK9l9tnvrbcnuWm+2Uv9oek15+21TpIXZnbi5Juq6rokf5/ZyZtJ8rKpzk9Or/33Oz33xUmOnYaUvHbnF+7u65I8NLPe508luTTJD0+rd9Umx2R2IuSXMhtb/gfdff607rczC+Wfr6pf2oP3CWwS5RwKAAAYQ881AAAMIlwDAMAgwjUAAAwiXAMAwCDCNQAADPJtd8VaJkcccUQfffTRG10GAAD7ufe85z2f7u4tu9tuqcP10UcfnQsvvHCjywAAYD9XVZ+YZzvDQgAAYBDhGgAABhGuAQBgEOEaAAAGEa4BAGAQ4RoAAAYRrgEAYBDhGgAABhGuAQBgEOEaAAAGEa4BAGCQhYXrqnpJVV1bVRetWHabqjq3qi6dfh6+Yt1pVXVZVX24qh62qLoAAGBRFtlz/dIk/36nZacmOa+7j0ly3jSfqjo2yUlJ7jE95w+q6qAF1gYAAMMtLFx391uSfHanxScmOWuaPivJo1csf1V3X9/dH0tyWZL7LKo2AABYhPUec3277r46Saaft52WH5XkihXbXTkt+zZVdUpVXVhVF27fvn2hxQIAwJ7YLCc01irLerUNu/vM7j6+u4/fsmXLgssCAID5rXe4vqaqjkyS6ee10/Irk9xpxXZ3THLVOtcGAAD7ZL3D9TlJTp6mT07yuhXLT6qqQ6rqrkmOSfKuda4NAAD2ycGLeuGqemWSByY5oqquTLI1yRlJzq6qpyS5PMljk6S7L66qs5N8KMkNSX62u29cVG0AALAICwvX3f24NVY9eI3tfzPJby6qHgAANpdt27bt0fZbt25dUCXjbJYTGgEAYOkJ1wAAMIhwDQAAgwjXAAAwiHANAACDCNcAADCIcA0AAIMI1wAAMIhwDQAAgwjXAAAwiHANAACDCNcAADCIcA0AAIMI1wAAMIhwDQAAgwjXAAAwiHANAACDCNcAADCIcA0AAIMI1wAAMIhwDQAAgwjXAAAwiHANAACDCNcAADCIcA0AAIMI1wAAMIhwDQAAgwjXAAAwiHANAACDCNcAADCIcA0AAIMI1wAAMIhwDQAAgwjXAAAwiHANAACDCNcAADCIcA0AAIMI1wAAMIhwDQAAgwjXAAAwiHANAACDCNcAADCIcA0AAIMI1wAAMIhwDQAAgwjXAAAwiHANAACDCNcAADCIcA0AAIMI1wAAMIhwDQAAgwjXAAAwiHANAACDCNcAADCIcA0AAIMI1wAAMIhwDQAAgwjXAAAwiHANAACDCNcAADCIcA0AAIMI1wAAMIhwDQAAgwjXAAAwiHANAACDCNcAADCIcA0AAIMI1wAAMIhwDQAAgwjXAAAwiHANAACDCNcAADCIcA0AAIMI1wAAMMjBG7HTqnpWkqcm6SQfTPLkJDdL8mdJjk7y8SQ/1t2f24j6AADYc9u2bdvoEjbcuvdcV9VRSZ6R5Pju/jdJDkpyUpJTk5zX3cckOW+aBwCApbFRw0IOTnLTqjo4sx7rq5KcmOSsaf1ZSR69QbUBAMBeWfdw3d2fTPL8JJcnuTrJF7r7TUlu191XT9tcneS2610bAADsi40YFnJ4Zr3Ud01yhyQ3r6on7sHzT6mqC6vqwu3bty+qTAAA2GMbMSzkIUk+1t3bu/ufk7wmyQ8kuaaqjkyS6ee1qz25u8/s7uO7+/gtW7asW9EAALA7GxGuL09yQlXdrKoqyYOTXJLknCQnT9ucnOR1G1AbAADstXW/FF93v7Oq/jzJPyS5Icl7k5yZ5BZJzq6qp2QWwB+73rUBAMC+2JDrXHf31iRbd1p8fWa92AAAbAKuW73n3KERAAAGEa4BAGAQ4RoAAAYRrgEAYBDhGgAABhGuAQBgEOEaAAAGEa4BAGAQ4RoAAAYRrgEAYBDhGgAABhGuAQBgkIM3ugAAANbHtm3bNrqE/Z6eawAAGES4BgCAQYRrAAAYRLgGAIBBhGsAABhEuAYAgEGEawAAGES4BgCAQYRrAAAYRLgGAIBBhGsAABhEuAYAgEGEawAAGES4BgCAQYRrAAAYRLgGAIBBhGsAABhEuAYAgEGEawAAGES4BgCAQYRrAAAYRLgGAIBBhGsAABhEuAYAgEGEawAAGES4BgCAQYRrAAAYRLgGAIBBhGsAABhEuAYAgEGEawAAGES4BgCAQYRrAAAYRLgGAIBBhGsAABhEuAYAgEGEawAAGES4BgCAQYRrAAAYRLgGAIBBhGsAABhEuAYAgEGEawAAGES4BgCAQYRrAAAYRLgGAIBBhGsAABhEuAYAgEGEawAAGOTgjS6A/de2bdv2aPutW7cuqBIAgPWh5xoAAAYRrgEAYBDhGgAABhGuAQBgEOEaAAAGEa4BAGAQ4RoAAAYRrgEAYJDdhuuqeuY8ywAA4EA3T8/1yass+4nBdQAAwNJb8/bnVfW4JI9PcteqOmfFqsOSfGbRhQEAwLJZM1wneXuSq5MckeQFK5Zfl+QDiywKAACW0ZrDQrr7E919fpKHJHlrd1+QWdi+Y5Lal51W1a2r6s+r6h+r6pKqum9V3aaqzq2qS6efh+/LPgAAYL3NM+b6LUkOraqjkpyX5MlJXrqP+31hkjd0979Kcs8klyQ5Ncl53X3MtJ9T93EfAACwruYJ19XdX0nymCS/190/muTYvd1hVR2W5AFJXpwk3f317v58khOTnDVtdlaSR+/tPgAAYCPMFa6r6r5JnpDkr6ZluxqrvTt3S7I9yR9X1Xur6kVVdfMkt+vuq5Nk+nnbfdgHAACsu3nC9c8nOS3JX3b3xVV1tyRv3od9Hpzk+5L8r+6+V5IvZw+GgFTVKVV1YVVduH379n0oAwAAxtptuO7uC7r7UUn+oKpu0d0f7e5n7MM+r0xyZXe/c5r/88zC9jVVdWSSTD+vXaOeM7v7+O4+fsuWLftQBgAAjDXPHRr/bVW9N8lFST5UVe+pqnvs7Q67+1NJrqiq750WPTjJh5Kck2/esObkJK/b230AAMBGmGfs9P9O8gvd/eYkqaoHJvmjJD+wD/t9epI/qaqbJPloZlcg+Y4kZ1fVU5JcnuSx+/D6AACw7uYJ1zffEayTpLvPn05A3Gvd/b4kx6+y6sH78roAALCR5gnXH62qX0vy8mn+iUk+triSAABgOc1ztZCfTLIlyWumxxGZDeMAAABW2G3PdXd/Lsm+XB0EAAAOCPNcLeTcqrr1ivnDq+qNiy0LAACWzzzDQo6Ybk+e5F96st09EQAAdjJPuP5GVd15x0xV3SVJL64kAABYTvNcLeQ5Sd5WVRdM8w9IcsriSgIAgOU0zwmNb6iq70tyQpJK8qzu/vTCKwMAgCUzT891pjD9+gXXAgAAS22eMdcAAMAchGsAABhknutcv3yeZQAAcKCbp+f6HitnquqgJN+/mHIAAGB5rRmuq+q0qrouyf9TVV+cHtcluTbJ69atQgAAWBJrhuvu/u3uvmWS3+nuw6bHLbv7u7r7tHWsEQAAlsI817k+raoOT3JMkkNXLH/LIgsDAIBls9twXVVPTfLMJHdM8r7MbibzjiQPWmxpAACwXOY5ofGZSe6d5BPd/cNJ7pVk+0KrAgCAJTRPuP5ad38tSarqkO7+xyTfu9iyAABg+cxz+/Mrq+rWSV6b5Nyq+lySqxZbFgAALJ95Tmj80Wny9Kp6c5JbJXnDQqsCAIAlNE/PdarqB5Mc091/XFVbkhyV5GMLrQwAAJbMPLc/35rkV5LsuLb1dyZ5xSKLAgCAZTTPCY0/muRRSb6cJN19VZJbLrIoAABYRvMMC/l6d3dVdZJU1c0XXBOwRLZt27ZH22/dunVBlQDAxpun5/rsqvrfSW5dVT+V5G+T/NFiywIAgOUzz9VCnl9VD03yxcyub/3c7j534ZUBAMCSmetqIVOYFqgBAGAX5rlayGOq6tKq+kJVfbGqrquqL65HcQAAsEzm6bl+XpJHdvcliy4GAACW2TwnNF4jWAMAwO6t2XNdVY+ZJi+sqj9L8tok1+9Y392vWXBtAACwVHY1LOSRK6a/kuT/XTHfSYRrAABYYc1w3d1PTpKqOrS7v7Z+JQEAwHKa54TGi6rqmiRvTfKWJP9/d39hsWUBAMDy2e0Jjd39PUkel+SDSR6R5P1V9b5FFwYAAMtmtz3XVXXHJPdLcv8k90xycZK3LbguAABYOvMMC7k8ybuT/FZ3P23B9QCwyWzbtm2Ptt+6deuCKgHY/Oa5zvW9krwsyeOr6h1V9bKqesqC6wIAgKWz257r7n5/VX0kyUcyGxryxCQPSPLiBdcGAABLZZ4x1xcmOSTJ2zMba/2A7v7EogsDAIBlM8+Y64d39/aFV8I+MSYSAGDjzXMpPsEaAADmMM8JjQAAwByEawAAGGSeMdepqh9IcvTK7bv7ZQuqCQAAltI8Vwt5eZLvTvK+JDdOizuza18DAACTeXquj09ybHf3oosBAGB+e3q1MBZvnjHXFyW5/aILAQCAZTdPz/URST5UVe9Kcv2Ohd39qIVVxabkf8cA7E/cI4JFmCdcn77oIgAAYH+w23Dd3ResRyEAI+iJAmAj7XbMdVWdUFXvrqovVdXXq+rGqvriehQHAADLZJ5hIf8zyUlJXp3ZlUN+PMkxiywKAGDZ+SbtwDTXTWS6+7KqOqi7b0zyx1X19gXXBQAAS2eecP2VqrpJkvdV1fOSXJ3k5ostCwAAls8817l+0rTdzyX5cpI7JfkPiywKAACW0TxXC/lEVd00yZHd7ULHAACwht2G66p6ZJLnJ7lJkrtW1XFJft1NZPaMkxoYwe8RAGxu8wwLOT3JfZJ8Pkm6+31Jjl5cSQAAsJzmCdc3dPcXFl4JAAAsuXmuFnJRVT0+yUFVdUySZyRxKT4AANjJPOH66Umek+T6JK9M8sYk/2WRRQHArjj/gI2wp793HJjmuVrIVzIL189ZfDkAALC81gzXVXXOrp7oaiEAAPCtdtVzfd8kV2Q2FOSdSWpdKgIAgCW1q3B9+yQPTfK4JI9P8ldJXtndF69HYQD7C+ODYX0YE81msOal+Lr7xu5+Q3efnOSEJJclOb+qnr5u1QEAwBLZ5QmNVXVIkv8vs97ro5P8jySvWXxZAACwfHZ1QuNZSf5Nkr9Jsq27L1q3qgAAYAntquf6SUm+nOTuSZ5R9S/nM1aS7u7DFlzbAc24MfZXxh8DrM6//fuHNcN1d89za3QAAGAyzx0a2Q/53zEAwHh6pwEAYBA913tJzy8AADvbsJ7rqjqoqt5bVa+f5m9TVedW1aXTz8M3qjYAANgbG9lz/cwklyTZcdWRU5Oc191nVNWp0/yvbFRxwObgWyIAlsmG9FxX1R0zuznNi1YsPjHJWdP0WUkevd51AQDAvtionuvfTfLLSW65YtntuvvqJOnuq6vqtqs9sapOSXJKktz5zndedJ0A+x3fBgAszrr3XFfVI5Jc293v2Zvnd/eZ3X18dx+/ZcuWwdUBAMDe24ie6/sleVRV/UiSQ5McVlWvSHJNVR059VofmeTaDagNAAD22rr3XHf3ad19x+4+OslJSf6uu5+Y5JwkJ0+bnZzkdetdGwAA7IvNdBOZM5I8tKouTfLQaR4AAJbGht5EprvPT3L+NP2ZJA/eyHrgQOdEN9g7e3PsbN26dQGVABttM/VcAwDAUhOuAQBgEOEaAAAGEa4BAGAQ4RoAAAYRrgEAYBDhGgAABtnQ61wDLBvXAgdgV/RcAwDAIMI1AAAMIlwDAMAgwjUAAAwiXAMAwCCuFgIALNzeXGln69atC6gEFkvPNQAADKLnGgba054ZvTKsxu8RwPLScw0AAIMI1wAAMIhwDQAAgwjXAAAwiHANAACDCNcAADCIcA0AAIMI1wAAMIibyLC01uNGG3tzu94D6fVhWbgxD7Be9FwDAMAgwjUAAAwiXAMAwCDGXHPAMP6Y1fi92By0w+4ZNw7LQc81AAAMIlwDAMAgwjUAAAxizDUAsMfWY5y8sfgsIz3XAAAwiHANAACDCNcAADCIMdcADGWcLHAg03MNAACDCNcAADCIcA0AAIMYcw0AOzFuHNhbeq4BAGAQ4RoAAAYRrgEAYBDhGgAABhGuAQBgEOEaAAAGcSk+AMDlB2EQPdcAADCInms2Db0msHccO6zG7wVsDD3XAAAwiHANAACDCNcAADCIMdcAsAGMiYb9k55rAAAYRLgGAIBBhGsAABhEuAYAgEGEawAAGES4BgCAQYRrAAAYRLgGAIBBhGsAABhEuAYAgEGEawAAGES4BgCAQYRrAAAYRLgGAIBBhGsAABhEuAYAgEGEawAAGES4BgCAQYRrAAAYRLgGAIBB1j1cV9WdqurNVXVJVV1cVc+clt+mqs6tqkunn4evd20AALAvNqLn+oYkv9jd/zrJCUl+tqqOTXJqkvO6+5gk503zAACwNNY9XHf31d39D9P0dUkuSXJUkhOTnDVtdlaSR693bQAAsC82dMx1VR2d5F5J3pnkdt19dTIL4Eluu3GVAQDAntuwcF1Vt0jyF0l+vru/uAfPO6WqLqyqC7dv3764AgEAYA9tSLiuqu/MLFj/SXe/Zlp8TVUdOa0/Msm1qz23u8/s7uO7+/gtW7asT8EAADCHjbhaSCV5cZJLuvu/rVh1TpKTp+mTk7xuvWsDAIB9cfAG7PN+SZ6U5INV9b5p2bOTnJHk7Kp6SpLLkzx2A2oDAIC9tu7hurvflqTWWP3g9awFAABGcodGAAAYRLgGAIBBhGsAABhEuAYAgEGEawAAGES4BgCAQYRrAAAYRLgGAIBBhGsAABhEuAYAgEGEawAAGES4BgCAQYRrAAAYRLgGAIBBhGsAABhEuAYAgEGEawAAGES4BgCAQYRrAAAYRLgGAIBBhGsAABhEuAYAgEGEawAAGES4BgCAQYRrAAAYRLgGAIBBhGsAABhEuAYAgEGEawAAGES4BgCAQYRrAAAYRLgGAIBBhGsAABhEuAYAgEGEawAAGES4BgCAQYRrAAAYRLgGAIBBhGsAABhEuAYAgEGEawAAGES4BgCAQYRrAAAYRLgGAIBBhGsAABhEuAYAgEGEawAAGES4BgCAQYRrAAAYRLgGAIBBhGsAABhEuAYAgEGEawAAGES4BgCAQYRrAAAYRLgGAIBBhGsAABhEuAYAgEGEawAAGES4BgCAQYRrAAAYRLgGAIBBhGsAABhEuAYAgEGEawAAGES4BgCAQYRrAAAYRLgGAIBBhGsAABhEuAYAgEGEawAAGES4BgCAQYRrAAAYRLgGAIBBhGsAABhk04Xrqvr3VfXhqrqsqk7d6HoAAGBemypcV9VBSX4/ycOTHJvkcVV17MZWBQAA89lU4TrJfZJc1t0f7e6vJ3lVkhM3uCYAAJjLZgvXRyW5YsX8ldMyAADY9A7e6AJ2Uqss62/ZoOqUJKdMs9dX1UULr4qNdkSST290ESycdj4waOf9nzY+MGxIO59++unrvcuV7jLPRpstXF+Z5E4r5u+Y5KqVG3T3mUnOTJKqurC7j1+/8tgI2vnAoJ0PDNp5/6eNDwzaeW2bbVjIu5McU1V3raqbJDkpyTkbXBMAAMxlU/Vcd/cNVfVzSd6Y5KAkL+nuize4LAAAmMumCtdJ0t1/neSv59z8zEXWwqahnQ8M2vnAoJ33f9r4wKCd11DdvfutAACA3dpsY64BAGBpbbpwXVUvqaprV15ir6pOr6pPVtX7psePTMuPrqqvrlj+hyue8/1V9cHpNur/o6pWu8wfG2C1Np6WP72qPlxVF1fV81YsP21qxw9X1cNWLNfGm9ietLNjeXmt8Tf7z1a05cer6n0r1jmel9CetLPjeTmt0cbHVdXfT+14YVXdZ8U6x/JauntTPZI8IMn3JbloxbLTk/zSKtsevXK7nda9K8l9M7t29t8kefhGvzePXbbxDyf52ySHTPO3nX4em+T9SQ5JctckH0lykDbe/I89bGfH8pI+Vmvnnda/IMlzp2nH85I+9rCdHc9L+Fjjb/abdrRRkh9Jcv407VjexWPT9Vx391uSfHZfXqOqjkxyWHe/o2ct/bIkjx5RH/tujTb+mSRndPf10zbXTstPTPKq7r6+uz+W5LIk99HGm98etvOqtPPmt6u/2VOP1Y8leeW0yPG8pPawnVelnTe3Ndq4kxw2Td8q37z3iGN5FzZduN6Fn6uqD0xfWxy+Yvldq+q9VXVBVd1/WnZUZjek2cFt1De/uye5f1W9c2rLe0/Lj0pyxYrtdrSlNl5Oa7Vz4ljeH90/yTU6Bh8oAAADWElEQVTdfek073jeP+3czonjeX/x80l+p6quSPL8JKdNyx3Lu7As4fp/JfnuJMcluTqzr58yTd+5u++V5BeS/GlVHZY5bqPOpnNwksOTnJDkPyc5e+oNWasttfFyWqudHcv7p8flW3szHc/7p53b2fG8//iZJM/q7jsleVaSF0/LHcu7sOmuc72a7r5mx3RV/VGS10/Lr0+y4+vl91TVRzLrGbsys1un7/Btt1Fn07kyyWumr5HeVVXfSHLEtPxOK7bb0ZbaeDmt2s7dvT2O5f1KVR2c5DFJvn/FYsfzfma1dvZv837l5CTPnKZfneRF07RjeReWoud6GsOzw48muWhavqWqDpqm75bkmCQf7e6rk1xXVSdMvWI/nuR161w2e+a1SR6UJFV19yQ3SfLpJOckOamqDqmqu2bWxu/Sxktr1XZ2LO+XHpLkH7t75VfEjuf9z7e1s+N5v3JVkh+aph+UZMfQH8fyLmy6nuuqemWSByY5oqquTLI1yQOr6rjMvlr4eJKfnjZ/QJJfr6obktyY5GndvWMw/s8keWmSm2Z2turfrNNbYDfWaOOXJHnJdAmgryc5eerdvLiqzk7yoSQ3JPnZ7r5xeiltvIntSTtXlWN5Sa3Wzt394iQnZacT3Lrb8byk9qSd49/mpbTG3+yfSvLC6RuKryU5JXEs7447NAIAwCBLMSwEAACWgXANAACDCNcAADCIcA0AAIMI1wAAMMimuxQfAHumqr4ryXnT7O0zu/zZ9mn+K939AxtSGMAByKX4APYjVXV6ki919/M3uhaAA5FhIQD7sar60vTzgVV1QVWdXVX/VFVnVNUTqupdVfXBqvruabstVfUXVfXu6XG/jX0HAMtFuAY4cNwzyTOT/NskT0py9+6+T5IXJXn6tM0Lk/z37r53kv8wrQNgTsZcAxw43t3dVydJVX0kyZum5R9M8sPT9EOSHFtVO55zWFXdsruvW9dKAZaUcA1w4Lh+xfQ3Vsx/I9/89+A7kty3u7+6noUB7C8MCwFgpTcl+bkdM1V13AbWArB0hGsAVnpGkuOr6gNV9aEkT9voggCWiUvxAQDAIHquAQBgEOEaAAAGEa4BAGAQ4RoAAAYRrgEAYBDhGgAABhGuAQBgEOEaAAAG+b9FSN1lTDMmYQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(12,8))\n",
+ "#plt.plot(data['Year'],data['Wheat'],color='red')\n",
+ "plt.bar(data['Year'],data['Wheat'],color=\"grey\",width=5)\n",
+ "plt.title(\"Time evolution of mean wheat cost\", loc=\"center\")\n",
+ "plt.xlabel(\"Time\")\n",
+ "plt.ylabel(\"Mean wheat cost\")\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtcAAAHwCAYAAABtz0NOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XucXXV97//XZy6Z3CbJhGSAkCshJJBRQEEFAVG0XlpFbVWgrVRtrf0dL72cc5TaNnCObT2tPaf2diytF7yLVZGf1guigFcQaigTkkDuCQmZJDMhk5Bkbt/zx14z7ExmJjvJ2rNnz7yej8d67HXbe332fPdK3vOd714rUkpIkiRJOn01lS5AkiRJGi8M15IkSVJODNeSJElSTgzXkiRJUk4M15IkSVJODNeSJElSTgzX0gQSEX8cEf9a6TpOVUT8VkT86DSe/7GI+NM8ayrxuL8XEbsj4mBEnDHax9fxTvezlL3GNRGxI6+aJI0PdZUuQFJ+IuJg0eJU4CjQmy3/bkrpL0a/qsqIiN8CfjuldGX/upTSuypQRz3wv4EXpZQeGe3jqzpFxL3AZ1NKo/bLcEQkYFlKacNoHVMajwzX0jiSUprePx8RWyiEy+9VriIBZwKTgTWVLkSSVH4OC5EmkIi4JSI+m80vjogUEW+LiO0R0RER74qIyyLiPyNif0T8w6Dnvz0i1mb7ficiFo1wrBdFxE+y13kkIq7J1l8fEQ8N2vcPIuKubH5mRHw6IvZExNaI+JOIOO7fqqL664rW3RsRvx0RFwAfAy7PhmLsz7Z/KiI+VLT/70TEhohoj4i7ImJe0baU/TyeyN7vP0ZEDPNeGyLibyNiZzb9bbbufGB9ttv+iPj+CO8jl3aIiI9mr3MgIh6OiKuKtt0SEXdkP9/OiFgTEZcO855ujYi/z+brI+JQRPxVtjwlIo5ERFO2/OWIeCoino6I+yNiZdHrnBER/39Wz88j4kPFwzEiYkVE3J21wfqIePNQ9WT7vi17350RsSkifrdo2zURsSMi/igi2iJiV0S8bVAdd2V1PAgsHeE4t0fEH2Xz52Tt8/9ly+dltUbR/sMdsyEiPhIR26IwLOhjETEl29YUEd/IPucd2fz8bNufA1cB/5B9fo9p/6LXvzKePce2R+GvNSOeQ1n992VttTcivpStvz972UeyY75luJ+PpJEZriW9EFgGvAX4W+CDwMuBlcCbI+IlABHxeuCPgTcCc4EfAl8Y6gUj4hzgm8CHgNnAfwW+EhFzgbuA5RGxrOgpNwKfz+b/HpgJnAu8BHgr8DZOQkppLfAu4KcppekppVlD1Pgy4C+BNwNnA1uBLw7a7VeAy4CLsv1eOcwhPwi8CLg42/cFwJ+klB6n8HMEmJVSetkIZefVDj/P6phN4Wf65YiYXLT9ddn7nEWhLYYMbsB9wDXZ/GXAUxTaA+ByYH1KqSNb/lZWezPwH8Dnil7nH4FDwFnATdlE9l6mAXdndTYDNwD/VBzOB2mj0CYzKHwm/k9EPK9o+1kUPjvnAO8A/rH/F4CsjiMU2vrt2TSc4vf+EmBT0Xu/GvhhSimVcMz/BZxPoT3Oy/b5s2xbDfBJYBGwEDhM1hYppQ9SaNd3Z5/fdw8uMCIWUvi5/z2Fz8HFwOps80jn0P8Evgs0AfOzfUkpXZ1tvyg75pdG+PlIGklKycnJaRxOwBbg5YPW3UJhHCfAYiAB5xRt3we8pWj5K8DvZ/PfAt5RtK0GeAZYNMSx3w98ZtC67wA3ZfOfBf4sm18GdFIYI15LYZz4hUXP+13g3mz+t4AfDaq/rmjfeykMhTlm36LtnwI+lM1/HPirom3TgW5gcbacgCuLtt8BfGCYn/VG4DVFy68EtgxX56Dnlq0dsu0dFAJTf/t/r2jbhcDhYZ43hUIYPQP4AIVAvyP7Od0K/N0wz5uVvZ+ZWXt2A8uLtn+oqA3fQiGoFj//n4FVJX7G7wTel81fQyGgFn8e2ij80tNfx4qibX8x+PNRtG0psD/72X4s+wzuyLbdDvxhCccMCr9ULC3adjmweZhjXgx0DPVZHmb/m4GvDbH+ROfQp4HbgPlDPDcB55Xys3dychp+suda0u6i+cNDLPeP414EfDT7E/R+oJ1CgDhniNdcBLypf99s/ysp9BpCoafyhmz+RuDOlNIzwBxgEoVe5H5bhznG6ZpXfJyU0kEKobb4WE8VzT/Dsz+LEV8rm583zL7DyaUdsiEKa7M/+++nEHLnFL3W4Pc0OYqG1vRLKR0GHqLQ83k1hd7cnwAvztbdlx2vNiI+HBEbI+IAhV/qyI45l8J3e7YXvXTx/CLghYM+J79OoTf4OBHx6oj4WTYsYz/wmkHvbV9KqWfQ+5s+TB3F7TX4vW8EDlIIvFcB3wB2RsTy4vdewjGnAg8XvbdvZ+uJiKkR8c/ZsI0DwP3ArIioHa6uQRZQ+KVusBOdQ/+dwuflwSgMCxqpB1/SKTBcSyrVdgpXHJlVNE1JKf1kmH0/M2jfaSmlD2fbvwvMiYiLKYTs/iEheyn0MBaP5V4IPDnEMQ5lj1OL1hWHssTIdhYfJxuicMYwxzqRY16LQs07T+F1SjFsO0RhfPX7KQxhaUqF4TBPUwhTp+I+4GXAJRSGm9xHoVf+BRTCIBR+ObqOwhCWmRR64smOuQfooTD8oN+CQe/lvkHvZXpK6fcGFxIRDRR68D8CnJm9t38v8b3111F87IUneM59wK8Bk1JKT2bLb6UwnGL1SE/M7KXwS9HKovc2Mz37peM/ApYDL0wpzaDwCwxF7+dEn9/tDD1ufMRzKKX0VErpd1JK8yj0aP9TRJxXwvuRVCLDtaRSfQy4uX88bPalqTcNs+9ngddGxCuzns3J2RfO5gNkPX3/Bvw1hbHBd2freykMv/jziGiMwhf1/jB7vWOklPZQCAy/kR3j7RwbNnYD8yNi0jA1fh54W0RcnAW3vwAeSCltKfkn8qwvAH8SEXMjYg6FcbXH1ZyTkdqhkUKI3APURcSfURiffKr6A+VjKaUusqEKFIY27Ck65lEKvf5TKfwcgYH2/CpwS9ZTuyJ7vX7fAM6PiN+Mwpcm66PwRc4LhqhlEtCQvbeeiHg18EulvIkh6riQorHfI7z3d/PsLxH3Au+hMJSkd7gnFR2zD/gXCuPCm2Hgy5H94/YbKYTv/RExG1g16CV2UxgzPZzPAS+PiDdHRF0UvrB58YnOoYh4U/95SGHIUOLZy3We6JiSSmC4llSSlNLXKHxB64vZn7FbgVcPs+92Cr2Zf0whDG0H/hvH/pvzeQq9nV8e9Gf191Dold4E/Cjb7xPDlPU72evuo/DFv+Je9O9TuPzdUxGxd4ga7wH+lEJv6C4Kwfz6YY5zIh+iMITiP4FHKXyp70MjPuMUnaAdvkNhTPbjFIYCHOHYoRAn6ycUxl73B8zHste8v2ifT2fHejLb/rNBr/FuCj3aTwGfofCLyNHsvXRSCMjXU+jpfyp7bw2DC8n2fS+F4NhBocf8rpN4L++mMFzjKQpj7z95gv3voxCA+9/rjyj88nD/sM843vuBDcDPsrb6HoXeaih8aXUKhZ7mn1EYMlLso8CvReFKIn83+IVTStsoDIv5IwpDg1ZT+DItjHwOXQY8EIVr4t9FYcz65mzbLcDt2TCWYa/aImlkkdKJ/vIkSVI+IuJ/AWellE7UcyxJVcmea0lS2UThOtbPjYIXULhc3dcqXZcklYt3aJQklVMjhaEg8yhcpu5vgK9XtCJJKiOHhUiSJEk5cViIJEmSlBPDtSRJkpSTqh5zPWfOnLR48eJKlyFJkqRx7uGHH96bUpp7ov2qOlwvXryYhx56qNJlSJIkaZyLiK2l7OewEEmSJCknhmtJkiQpJ4ZrSZIkKSeGa0mSJCknhmtJkiQpJ4ZrSZIkKSeGa0mSJCknhmtJkiQpJ4ZrSZIkKSeGa0mSJCknhmtJkiQpJ2UL1xHxiYhoi4jWonWzI+LuiHgie2wq2nZzRGyIiPUR8cpy1SVJkiSVSzl7rj8FvGrQug8A96SUlgH3ZMtExIXA9cDK7Dn/FBG1ZaxNkiRJyl3ZwnVK6X6gfdDq64Dbs/nbgdcXrf9iSuloSmkzsAF4QblqkyRJksphtMdcn5lS2gWQPTZn688BthfttyNbd5yIeGdEPBQRD+3Zs6esxUqSJEknY6x8oTGGWJeG2jGldFtK6dKU0qVz584tc1mSJElS6UY7XO+OiLMBsse2bP0OYEHRfvOBnaNcmyRJknRaRjtc3wXclM3fBHy9aP31EdEQEUuAZcCDo1ybJEmSdFrqyvXCEfEF4BpgTkTsAFYBHwbuiIh3ANuANwGklNZExB3AY0AP8F9SSr3lqk2SJEkqh7KF65TSDcNsunaY/f8c+PNy1SNJkqSx5dZbbz2p/VetWlWmSvIzVr7QKEmSJFU9w7UkSZKUE8O1JEmSlBPDtSRJkpQTw7UkSZKUE8O1JEmSlBPDtSRJkpQTw7UkSZKUE8O1JEmSlBPDtSRJkpQTw7UkSZKUE8O1JEmSlBPDtSRJkpQTw7UkSZKUE8O1JEmSlBPDtSRJkpQTw7UkSZKUE8O1JEmSlBPDtSRJkpQTw7UkSZKUE8O1JEmSlBPDtSRJkpQTw7UkSZKUE8O1JEmSlBPDtSRJkpQTw7UkSZKUE8O1JEmSlBPDtSRJkpQTw7UkSZKUE8O1JEmSlBPDtSRJkpQTw7UkSZKUE8O1JEmSlBPDtSRJkpQTw7UkSZKUE8O1JEmSlBPDtSRJkpQTw7UkSZKUE8O1JEmSlBPDtSRJkpQTw7UkSZKUE8O1JEmSlBPDtSRJkpQTw7UkSZKUE8O1JEmSlBPDtSRJkpQTw7UkSZKUE8O1JEmSlBPDtSRJkpQTw7UkSZKUE8O1JEmSlBPDtSRJkpQTw7UkSZKUE8O1JEmSlBPDtSRJkpQTw7UkSZKUE8O1JEmSlBPDtSRJkpQTw7UkSZKUE8O1JEmSlBPDtSRJkpQTw7UkSZKUE8O1JEmSlBPDtSRJkpQTw7UkSZKUE8O1JEmSlBPDtSRJkpQTw7UkSZKUE8O1JEmSlBPDtSRJkpQTw7UkSZKUE8O1JEmSlBPDtSRJkpQTw7UkSZKUk7pKHDQi/gD4bSABjwJvA6YCXwIWA1uAN6eUOipRnyRJkk7erbfeWukSKm7Ue64j4hzgvcClKaUWoBa4HvgAcE9KaRlwT7YsSZIkVY1KDQupA6ZERB2FHuudwHXA7dn224HXV6g2SZIk6ZSMerhOKT0JfATYBuwCnk4pfRc4M6W0K9tnF9A82rVJkiRJp6MSw0KaKPRSLwHmAdMi4jdO4vnvjIiHIuKhPXv2lKtMSZIk6aRVYljIy4HNKaU9KaVu4KvAFcDuiDgbIHtsG+rJKaXbUkqXppQunTt37qgVLUmSJJ1IJcL1NuBFETE1IgK4FlgL3AXclO1zE/D1CtQmSZIknbJRvxRfSumBiPg34D+AHuAXwG3AdOCOiHgHhQD+ptGuTZIkSTodFbnOdUppFbBq0OqjFHqxJUmSNAZ43eqT5x0aJUmSpJwYriVJkqScGK4lSZKknBiuJUmSpJwYriVJkqScGK4lSZKknBiuJUmSpJwYriVJkqScGK4lSZKknBiuJUmSpJwYriVJkqScGK4lSZKknNRVugBJkiSNjltvvbXSJYx79lxLkiRJOTFcS5IkSTkxXEuSJEk5MVxLkiRJOTFcS5IkSTkxXEuSJEk5MVxLkiRJOTFcS5IkSTkxXEuSJEk5MVxLkiRJOTFcS5IkSTkxXEuSJEk5MVxLkiRJOTFcS5IkSTkxXEuSJEk5MVxLkiRJOTFcS5IkSTkxXEuSJEk5MVxLkiRJOTFcS5IkSTkxXEuSJEk5MVxLkiRJOTFcS5IkSTkxXEuSJEk5MVxLkiRJOTFcS5IkSTkxXEuSJEk5MVxLkiRJOTFcS5IkSTkxXEuSJEk5MVxLkiRJOTFcS5IkSTkxXEuSJEk5MVxLkiRJOTFcS5IkSTkxXEuSJEk5MVxLkiRJOTFcS5IkSTkxXEuSJEk5MVxLkiRJOTFcS5IkSTkxXEuSJEk5MVxLkiRJOTFcS5IkSTkxXEuSJEk5MVxLkiRJOTFcS5IkSTkxXEuSJEk5MVxLkiRJOamrdAEav2699daT2n/VqlVlqkSSJGl02HMtSZIk5cRwLUmSJOXEcC1JkiTlxHAtSZIk5cRwLUmSJOXEcC1JkiTlxHAtSZIk5cRwLUmSJOXkhOE6It5XyjpJkiRpoiul5/qmIdb9Vs51SJIkSVVv2NufR8QNwI3Akoi4q2jTDGBfuQuTJEmSqs2w4Rr4CbALmAP8TdH6TuA/y1mUJEmSVI2GHRaSUtqaUroXeDnww5TSfRTC9nwgTuegETErIv4tItZFxNqIuDwiZkfE3RHxRPbYdDrHkCRJkkZbKWOu7wcmR8Q5wD3A24BPneZxPwp8O6W0ArgIWAt8ALgnpbQsO84HTvMYkiRJ0qgqJVxHSukZ4I3A36eU3gBceKoHjIgZwNXAxwFSSl0ppf3AdcDt2W63A68/1WNIkiRJlVBSuI6Iy4FfB76ZrRtprPaJnAvsAT4ZEb+IiH+NiGnAmSmlXQDZY/NpHEOSJEkadaWE698Hbga+llJaExHnAj84jWPWAc8D/m9K6RLgECcxBCQi3hkRD0XEQ3v27DmNMiRJkqR8nTBcp5TuSym9DviniJieUtqUUnrvaRxzB7AjpfRAtvxvFML27og4GyB7bBumnttSSpemlC6dO3fuaZQhSZIk5auUOzQ+JyJ+AbQCj0XEwxGx8lQPmFJ6CtgeEcuzVdcCjwF38ewNa24Cvn6qx5AkSZIqoZSx0/8M/GFK6QcAEXEN8C/AFadx3PcAn4uIScAmClcgqQHuiIh3ANuAN53G60uSJEmjrpRwPa0/WAOklO7NvoB4ylJKq4FLh9h07em8riRJklRJpYTrTRHxp8BnsuXfADaXryRJkiSpOpVytZC3A3OBr2bTHArDOCRJkiQVOWHPdUqpAzidq4NIkiRJE0IpVwu5OyJmFS03RcR3yluWJEmSVH1KGRYyJ7s9OTDQk+3dEyVJkqRBSgnXfRGxsH8hIhYBqXwlSZIkSdWplKuFfBD4UUTcly1fDbyzfCVJkiRJ1amULzR+OyKeB7wICOAPUkp7y16ZJEmSVGVK6bkmC9PfKHMtkiRJUlUrZcy1JEmSpBIYriVJkqSclHKd68+Usk6SJEma6ErpuV5ZvBARtcDzy1OOJEmSVL2GDdcRcXNEdALPjYgD2dQJtAFfH7UKJUmSpCoxbLhOKf1lSqkR+OuU0oxsakwpnZFSunkUa5QkSZKqQinXub45IpqAZcDkovX3l7MwSZIkqdqcMFxHxG8D7wPmA6sp3Ezmp8DLyluaJEmSVF1K+ULj+4DLgK0ppZcClwB7ylqVJEmSVIVKCddHUkpHACKiIaW0Dlhe3rIkSZKk6lPK7c93RMQs4E7g7ojoAHaWtyxJkiSp+pTyhcY3ZLO3RMQPgJnAt8talSRJklSFSum5JiKuBJallD4ZEXOBc4DNZa1MkiRJqjKl3P58FfB+oP/a1vXAZ8tZlCRJklSNSvlC4xuA1wGHAFJKO4HGchYlSZIkVaNShoV0pZRSRCSAiJhW5pokVZFbb731pPZftWpVmSqRJKnySum5viMi/hmYFRG/A3wP+JfyliVJkiRVn1KuFvKRiHgFcIDC9a3/LKV0d9krkyRJkqpMSVcLycK0gVqSJEkaQSlXC3ljRDwREU9HxIGI6IyIA6NRnCRJklRNSum5/ivgtSmlteUuRpIkSapmpXyhcbfBWpIkSTqxYXuuI+KN2exDEfEl4E7gaP/2lNJXy1ybJEmSVFVGGhby2qL5Z4BfKlpOgOFakiRJKjJsuE4pvQ0gIianlI6MXkmSJElSdSrlC42tEbEb+CFwP/DjlNLT5S1LkiRJqj4n/EJjSuk84AbgUeBXgEciYnW5C5MkSZKqzQl7riNiPvBi4CrgImAN8KMy1yVJkiRVnVKGhWwDfg78RUrpXWWuR5I0xtx6660ntf+qVavKVIkkjX2lXOf6EuDTwI0R8dOI+HREvKPMdUmSJElV54Q91ymlRyJiI7CRwtCQ3wCuBj5e5tokSZKkqlLKmOuHgAbgJxTGWl+dUtpa7sIkSZKkalPKmOtXp5T2lL0SnRbHREqSJFVeKZfiM1hLkiRJJSjlC42SJEmSSmC4liRJknJSyphrIuIKYHHx/imlT5epJkmSJKkqlXK1kM8AS4HVQG+2OlG49rUkSZKkTCk915cCF6aUUrmLkSRJUulO9mphKr9Sxly3AmeVuxBJkiSp2pXScz0HeCwiHgSO9q9MKb2ubFVpTPK3Y0nSeOI9IlQOpYTrW8pdhCRJkjQenDBcp5TuG41CJCkP9kRJkirphGOuI+JFEfHziDgYEV0R0RsRB0ajOEmSJKmalDIs5B+A64EvU7hyyFuBZeUsSpIkqdr5l7SJqaSbyKSUNkREbUqpF/hkRPykzHVJkiRJVaeUcP1MREwCVkfEXwG7gGnlLUuSJEmqPqVc5/o3s/3eDRwCFgC/Ws6iJEmSpGpUytVCtkbEFODslJIXOpYkSZKGccJwHRGvBT4CTAKWRMTFwP/wJjInxy81KA9+jiRJGttKGRZyC/ACYD9ASmk1sLh8JUmSJEnVqZRw3ZNSerrslUiSJElVrpSrhbRGxI1AbUQsA94LeCk+SZIkaZBSwvV7gA8CR4EvAN8B/mc5i5IkaSR+/0CVcLKfO01MpVwt5BkK4fqD5S9HkiRJql7DhuuIuGukJ3q1EEmSJOlYI/VcXw5spzAU5AEgRqUiSZIkqUqNFK7PAl4B3ADcCHwT+EJKac1oFCZJ44Xjg6XR4ZhojQXDXoovpdSbUvp2Sukm4EXABuDeiHjPqFUnSZIkVZERv9AYEQ3AL1PovV4M/B3w1fKXJUmSJFWfkb7QeDvQAnwLuDWl1DpqVUmSJElVaKSe698EDgHnA++NGPg+YwAppTSjzLVNaI4b03jl+GNJGpr/948Pw4brlFIpt0aXJEmSlCnlDo0ah/ztWJIkKX/2TkuSJEk5sef6FNnzK0mSpMEq1nMdEbUR8YuI+Ea2PDsi7o6IJ7LHpkrVJkmSJJ2KSvZcvw9YC/RfdeQDwD0ppQ9HxAey5fdXqjhJY4N/JZIkVZOK9FxHxHwKN6f516LV1wG3Z/O3A68f7bokSZKk01Gpnuu/Bf470Fi07syU0i6AlNKuiGge6okR8U7gnQALFy4sd52SNO741wBJKp9R77mOiF8B2lJKD5/K81NKt6WULk0pXTp37tycq5MkSZJOXSV6rl8MvC4iXgNMBmZExGeB3RFxdtZrfTbQVoHaJEmSpFM26j3XKaWbU0rzU0qLgeuB76eUfgO4C7gp2+0m4OujXZskSZJ0OsbSTWQ+DLwiIp4AXpEtS5IkSVWjojeRSSndC9ybze8Drq1kPdJE5xfdpFNzKufOqlWrylCJpEobSz3XkiRJUlUzXEuSJEk5MVxLkiRJOTFcS5IkSTkxXEuSJEk5MVxLkiRJOTFcS5IkSTmp6HWuJanaeC1wSdJI7LmWJEmScmK4liRJknJiuJYkSZJyYriWJEmScmK4liRJknLi1UIkSVLZncqVdlatWlWGSqTysudakiRJyok911KOTrZnxl4ZDcXPkSRVL3uuJUmSpJwYriVJkqScGK4lSZKknBiuJUmSpJwYriVJkqScGK4lSZKknBiuJUmSpJwYriVJkqSceBMZVa3RuNHGqdyudyK9vlQtvDGPpNFiz7UkSZKUE8O1JEmSlBPDtSRJkpQTx1xrwnD8sYbi52JssB1OzHHjUnWw51qSJEnKieFakiRJyonhWpIkScqJY64lSdJJG41x8o7FVzWy51qSJEnKieFakiRJyonDQiRJklRx0ddHU0cHzW1tNLe18ZMrrqCnvr7SZZ00w7UkKVeOk5U0opSYceDAQIie2/+4Zw/1PT0Du61bsYK2M8+sYKGnxnAtSZKkspmzZw/nbtp0TJCefPTowPYDjY20NTfz0GWX0dbcTFtzM3vmzKG7oaGCVZ86w7UkSZJyNau9nZY1a1jZ2spZu3cD8MyUKbQ1N/Poc587EKLb5s7lyNSpFa42X4ZrSZIknbbGAwdYmQXq+U8+CcC2BQv41qtfzboVKzgwYwZEVLjK8jNcS5I0iOPGpdJMPXiQC9euZWVrK4u2biWAnWefzd2veAVrVq7k6VmzKl3iqDNcS5IkqWQNhw9zwbp1rGxt5dxNm6hJiT1z5nDvS19K68qVtM+ZU+kSK8pwLUmSpBHVHz3K8vXrWblmDcueeILavj7am5r40ZVXsqalhbbm5gkx5KMUhmtJkiQdp667m/OeeIKW1lbOf/xx6nt6eHrGDB584QtpbWlh57x5BuohGK4lSZIEQE1vL+du3EhLaysr1q2joauLQ1OnsvqSS3i0pYXtCxZAjTf4HonhWpIkaQKLvj4WbdlCS2srF6xdy9TDhzk8eTKPrVxJa0sLmxcvJtXWVrrMqmG4liRJmqAWbNvGdXfeyRnt7XTV17NuxQpaW1rYuHQpfXXGxFPhT02SJHn5wQmmtqeHa+69lyt+/GOenjmTf/vVX2X98uX0TJpU6dKqnuFakiRpAml+6ine8LWvcdbu3fzH857Hd175Srqq9FbjY5HhWmOGvSbSqfHc0VD8XGiw6Ovjih//mJf+4AccnjKFz99wA08sX17pssYdw7UkSdI417RvH6+/804Wbt/OYxdcwDd+5Vc4PG1apcsalwzXkiRJ41VKPP+hh/il736XvpoavvrGN/Loc57j9anLyHAtSZI0DjUeOMBr77qLZRs2sPHcc7nruus4MHNmpcsa9wzXkiRVgGOiVU4rH32UX/7mN6nr6eHfX/Mafn7ppd78ZZQYriVJksaJ+q4uXnvXXTyntZUd55zD197wBtrnzKl0WROK4VqSJGkcmN7ZyQ2f/zxnPfUU33/pS/nRlVd6Z8UKMFxLkiRVuebdu7nxc59jyuHDfPH6673EXgUZriVJkqrY0g0beNMdd3C0oYFPvv3tPHX22ZUuaUIzXEvsNs58AAAXQ0lEQVSSJFWp5z/0EK/55jdpa27m8zfeSKdXA6k4w7UkSVK16evjFd/7Hlf85Cc8vmwZX/m1X/MW5mOE4VqSJKmK1HV18YavfY0L167lwcsu49uvepVfXBxDDNeSJElVYlpnJzd84QvM27mTb7/qVTzwwhd6t8UxxnAtSZJUBea2tXHj5z7H1Gee4UvXX8/6FSsqXZKGYLiWJEka45Zs3Mib77iD7vp6PvW2t7Fr3rxKl6RhGK4lSZLGsEsefphf/uY32TtnDp+/8UYOzJpV6ZI0AsO1JEnSGNRw5Aiv+ta3uPiRR9iwdClfftOb6Jo8udJl6QQM15IkSWPMkk2buO7OO2ns7OS+q6/mvpe8xCuCVAnDtSRJ0hhR19XFy++5hxc+8AB7zziDj7/jHeycP7/SZekkGK4lSZLGgHlPPskbvvpV5uzbxwMvfCHfu/ZaeiZNqnRZOkmGa0mSpAqq6e3l6vvv56r776ezsZFPv/WtbD733EqXpVNkuJYkSaqQOW1tvOFrX2Perl2svugivv3qV3PULy1WNcO1JEnSaOvr40UPPMC13/seRxsa+NJb3sK6Cy6odFXKgeFakiRpFM3s6OD1d97J4q1bWbd8Od947Ws5NH16pctSTgzXkiRJo6C+q4vLHnyQq++/H4A7r7uORy6+GCIqXJnyNOrhOiIWAJ8GzgL6gNtSSh+NiNnAl4DFwBbgzSmljtGuT5IkKU+13d08/+GHueqHP2T6oUM8vmwZ//7Lv8zT3mlxXKpEz3UP8Ecppf+IiEbg4Yi4G/gt4J6U0ocj4gPAB4D3V6A+SZKk01bT08Mlq1dz1f33M/PAATYvXswdb3kL2xcurHRpKqNRD9cppV3Army+MyLWAucA1wHXZLvdDtyL4VqSJFWZ6O3luY8+ykvuvZem/fvZPn8+d77+9Wzx8noTQkXHXEfEYuAS4AHgzCx4k1LaFRHNFSxNkiTp5PT1sfKxx7jmBz9gzr597DrrLD53441sWLbMcdUTSMXCdURMB74C/H5K6UCU+KGLiHcC7wRY6J9VJElSpaXE8vXreen3v8+ZbW20zZ3Ll9785sKl9QzVE05FwnVE1FMI1p9LKX01W707Is7Oeq3PBtqGem5K6TbgNoBLL700jUrBkiRJg9R3dXH++vVc/tOfcs7OneybPZuvvPGNrGlpIdXUVLo8VUglrhYSwMeBtSml/1206S7gJuDD2ePXR7s2SZKkkdR2d3Pehg20tLZy/uOPM6m7m45Zs/j6617HIxddRKqtrXSJqrBK9Fy/GPhN4NGIWJ2t+2MKofqOiHgHsA14UwVqkyRJOkZNby9LNm2ipbWVFevWMfnoUQ5NncojF11Ea0sL2xYuBHuqlanE1UJ+BAw3AOna0axFkiRpKNHXx8KtW2lpbeXCxx5j6uHDHGloYO0FF9Da0sLmJUvspdaQvEOjJEkShUB9zo4drFyzhpVr1tB48CBd9fWsX76c1pYWNp53Hr11RieNzE+IJEmasOq6uzl30yaWr1vH+Y8/zvRDh+ipreWJZctobWnhifPPp3vSpEqXqSpiuJYkSRPKlEOHOP+JJ1i+bh1LN25kUnc3Rxoa2HDeeaxbsYINy5ZxdPLkSpepKmW4liRJ415TezvL161j+fr1LNy2jZqUONDYyCMXX8y65cvZsngxfQ75UA78FEmSpHGpqb2dix55hBVr13JmW+H2Gbubm/nhVVexfsUKdp19tjd5Ue4M15IkadyoP3qUlY89xkWrV7N461b6Iti2cCHffuUrWb9iBfubmipdosY5w7UkSapuKbFw61YuXr2alWvWMKm7m32zZ3PPtdfyyEUX0TljRqUr1ARiuJYkSVVpxv79XPzII1y0ejWzOzo4OmkSrc95DqsvvpjtCxY45EMVYbiWJElVo667mwvWruWi1as5d9MmAti8eDH3XXMNay+4wMvmqeIM15IkaexKiab2ds7buJFzN25kyebNNHR10TFrFvddcw2PXHSR46g1phiuJUnSmNJw5AhLNm9m6YYNLN24kab9+wHomDWLR5/zHNa0tLBl0SKoqalwpdLxDNeSJKmioq+PeU8+ydKNG1m6cSPzd+ygJiWOTprE5iVL+OkVV7Bh6VI6Zs92HLXGPMO1JEkaXX19NLe1sWjrVhZv2cKSzZuZcuQICdg5bx4/uvJKNp53Hjvmz6evtrbS1UonxXAtSZLKqqa3l7N37mTRtm0s3LqVhdu2MeXIEQCenjGDdRdcwMalS9l07rkcnjq1wtVKp8dwLUmSclXX1cX8J59k0datLNy6lfk7djCpuxuAvWecwdoLL2TrokVsXbSIp2fNqnC1Ur4M15Ik6ZRNPnyYuW1tNGfT2bt2MW/nTmr7+kjAU2edxS+e9zy2LlrEtoULOTR9eqVLlsrKcC1Jkk6ovquLOXv2DITo/mlGZ+fAPkcnTWL3mWfy0yuuYOvChWxfsICjU6ZUsGpp9BmuJUnSgJqeHs7Yt++4EN3U0UH/dTp6amvZM3cum5csoa25eWA6MHOmV/PQhGe4liRpAoq+PmZ1dBwXos/Yt4/avj4A+iLYd8YZ7Dr7bB656KKBEN0xezbJa0xLQzJcS5I0jk06coTZHR3Mbm+nqb2dOXv30tzWxtw9e6jv6RnYr2PWLNqam1m/fPlAiN43Zw69dUYF6WR4xkiSVM1SYtrBg8zu6KCpvf3Zx/Z2mjo6mPbMM8fs3jl9Om3NzTx06aUDIXrP3Ll0NzRU6A1I44vhWpKkMSr6+ph28CCNnZ3M6OyksX86cGBgvqmjY+Ayd1AYynFgxgzaZ89m3YoVdMyeTfvs2bQ3NdHR1ETX5MkVfEfS+Ge4liRptKXE5MOHRwzNjZ2dTD94kJqUjnlqXwQHp0+ns7GRjqYmNi9ZckyA3j9rFn0O5ZAqxrNPkqSc1XZ3M2fvXubs3cuMQYG5fyoe79zvmSlT6GxspLOxkbYzz6SzsZED2XJnYyOdM2ZwaNo0v0wojWGGa0mSTlH09jK7vf24K27Mbm8/pse5q76eAzNm0NnYyI75858Ny1lg7mxspHP6dHrr6yv4biTlwXAtSVIJph46xDk7dhwToufs3Utdby9QGK7RPns2bc3NrGlpKXxRcM4cnp45k66GBq//LE0QhmtJkobQcOQIi7ZuZcnmzSzevJmzdu8e2LZ/5kzampvZeN55A1fc2DtnDj32PEsTnuFakiSgrquLhdu3D4TpeTt3UpMS3XV1bFu4kHuuvZatCxfSduaZHPWKG5KGYbiWJE1INT09zH/yyYEwvWD7dmr7+uitqWHH/Pn88Oqr2bxkCTvmz/dGKpJK5r8WkqQJIXp7OfuppwbC9KKtW6nv6SEBO+fN42eXX87mJUvYtmCBN1SRdMoM15Kk8amvj+a2tkKY3rKFxVu2MPnoUQB2NzfzH897HpuXLGHr4sUcmTKlwsVKGi8M15Kk8SElZu/bx5LNmwcCdf+tv/fNns2alhY2L1nClsWLOTR9eoWLlTReGa4lSdUrJc586ila1qxhZWsrTfv3A/D0jBk8sWwZW5YsYfPixRyYNavChUqaKAzXkqSqc8aePbS0ttLS2sqcffvoi2Dj0qX8+MUvZvO559I+e7bXlZZUEYZrSVJVmNXRwcosUJ+1ezcJ2LJ4MT+9/HLWXnABh6dNq3SJkmS4liSNXY0HDnDhmjW0tLYy/8knAdg+fz7fetWreOzCCzk4Y0aFK5SkYxmuJUljytRDh7jgscdoaW1l0datBLDrrLO4++UvZ83KlTzd1FTpEiVpWIZrSVLFNRw+zIp162hpbeXcTZuoSYk9c+Zw7zXXsKalhX1z5lS6REkqieFaklQR9V1dnL9+PS2trZy3YQN1vb20NzXx4xe/mNaWFtrOPNMvJUqqOoZrSdKoqe3uZtmGDaxsbWX5+vXU9/RwoLGRn7/gBbS2tLBz3jwDtaSqZriWJJVHSkw7dIjmtjaa29qY9+STnP/440w+epRDU6ey+pJLaG1pYduCBVBTU+lqJSkXhmtJ0mlrOHyY5j17BoL03Oyx/w6JAIemTmXthRfS2tLC5sWLSbW1FaxYksrDcC1JKlldVxdz9+49LkTPPHBgYJ+jkybR1tzM+hUraGtuHpgOTZvmkA9J457hWpJ0nJreXs7Yt++4ED27vZ3+eNxTW8ueuXPZsngxe4pC9NMzZxqiJU1YhmtJmsAajhyhqb2d2R0dnLFv30CInrN3L7V9fQD0RbDvjDN46qyzePS5zx0I0e1NTQ7tkKRBDNeSNJ6lxLSDB5nd0VEI0e3tNHV0DDwWj4kG6Jg1i7bmZp44//yBEL33jDPora+v0BuQpOpiuJakapUSU555hsbOTho7O5mRPTZ2dtJ44AAzn36a2e3tTOruHnhKXwQHZsygffZs1l1wAe1NTXTMnj3w2NXQUME3JEnVz3AtSWNQ/dGjQwbmxuLlzk7qenuPe+6hqVPpbGzk6Zkz2bJ4Me2zZw8E6P2zZtFX5z/9klQu/gsrSeWSErW9vdR1d1PX00N9Tw913d3U9/RQ393NtEOHhgzMMw4coKGr67iXOzppEp2NjXQ2NrJ9wQI6Z8ygs7GRA9m6zsZGDjY20mt4lqSK8V9gSeNTXx+Turpo6Oqi4ehR6rq7qe3ro6avj5re3sJjX99x64qXi8Pw4IBclwXkup6eY+YHryvlmhm9NTUD4XjP3LlsWrr0uNDc2dhI1+TJZf+xSZJOj+FaUvmlNGyA7V+uHRxcRwi29T091Hd1FcLz0aMDj8XzxeOMT7t8oLu+np66Onrq6o6bPzJ5Mp2NjQPreurr6c4ee+rqBua7B20/NG0anTNm8MyUKd6hUJLGCcO1NE5Eby91vb3U9vSc8LG2t/eYqW7Q8sA0aN/+Htn++ZEea4t6h2tSyu199kUMhNqjDQ0cbWiga9IkDk6fTnv2hbyjkyYV1mfzXQ0NdNfX01tTQ19tLX01NfTV1BSWi9YNLGfr+kNxb22t122WJJXEcC3lLeulPSaUdndTXzTWtr67+9l1w20r6rEdadhB/3yeARYKNwjpHTT11NUd93hk8uRj1vXW1dFTW3t8YB0mwPbPF/fwjtTb22fQlSSNYYZrTTjR1zcQSOuyANs/LrfhyJGB4QUjTcU9uUP1+J5O9OseYthB8fCDg9OnP7u9aL+BwFsUcE/4OHjKXqOvpsYAK0nSKTBca9REXx9TDx2ioatr6CEIIw1ZGGqIwwjDEgYPXzhmXXbXuVL01tQMDD3onw5On/5sL23WQzsQaoeZeurr6e6fsqDcXV9/3PqeujrH3kqSVMUM1zpt0ddXuKRYZyfT+y8ndvDgwPL0/vmDB0976EL/eNvhhigUD1UY6M0t6tkdbhocoPunnro6e3AlSVLJDNejadAVE4q/7BUpEYPmI6XC8qD5mux1ouj5/a81eN3g1yzlWCdzubH67m6mHD48ZGjuv5FFZ2MjbWeeSef06RxsbBwYo9t7oh7fot7h/qEMyV5dSZI0hhmuc/Tbt91W6J0tCs7lumJCOfVkvb9DjfvtmjSJZ6ZOPWbdM9OmFUL09OkDN7E4OG2ad4GTJEkTjuknRzvmz2dSV9eQV0IY7ooJqaaGvghSTQ0p4vj5bPmY+Wx54PlFy4PXnfD1hziWwyAkSZJOjeE6R99+zWsqXYIkSZIqyAGskiRJUk4M15IkSVJODNeSJElSTgzXkiRJUk4M15IkSVJODNeSJElSTgzXkiRJUk4M15IkSVJODNeSJElSTgzXkiRJUk4M15IkSVJODNeSJElSTgzXkiRJUk4M15IkSVJODNeSJElSTsZcuI6IV0XE+ojYEBEfqHQ9kiRJUqnGVLiOiFrgH4FXAxcCN0TEhZWtSpIkSSrNmArXwAuADSmlTSmlLuCLwHUVrkmSJEkqyVgL1+cA24uWd2TrJEmSpDGvrtIFDBJDrEvH7BDxTuCd2eLRiGgte1Ulqq2rq523ZOnymqgZa7+0VLXO/R21jbOaeitdh8rLdp4YbOfxzzaeGMrdzgnYu3PH1mcOdnYWr7/lllvKdchSLCplp0gpnXivURIRlwO3pJRemS3fDJBS+sth9n8opXTpKJaoCrCdJwbbeWKwncc/23hisJ2HN9Z6WH8OLIuIJRExCbgeuKvCNUmSJEklGVPDQlJKPRHxbuA7QC3wiZTSmgqXJUmSJJVkTIVrgJTSvwP/XuLut5WzFo0ZtvPEYDtPDLbz+GcbTwy28zDG1JhrSZIkqZqNtTHXkiRJUtUac+E6Ij4REW3Fl9iLiFsi4smIWJ1Nr8nWL46Iw0XrP1b0nOdHxKPZbdT/LiKGusyfKmCoNs7Wvyci1kfEmoj4q6L1N2ftuD4iXlm03jYew06mnT2Xq9cw/2Z/qagtt0TE6qJtns9V6GTa2fO5Og3TxhdHxM+ydnwoIl5QtM1zeTgppTE1AVcDzwNai9bdAvzXIfZdXLzfoG0PApdTuHb2t4BXV/q9OY3Yxi8Fvgc0ZMvN2eOFwCNAA7AE2AjU2sZjfzrJdvZcrtJpqHYetP1vgD/L5j2fq3Q6yXb2fK7CaZh/s7/b30bAa4B7s3nP5RGmMddznVK6H2g/ndeIiLOBGSmln6ZCS38aeH0e9en0DdPGvwd8OKV0NNunLVt/HfDFlNLRlNJmYAPwAtt47DvJdh6S7Tz2jfRvdtZj9WbgC9kqz+cqdZLtPCTbeWwbpo0TMCObnwnszOY9l0cw5sL1CN4dEf+Z/dmiqWj9koj4RUTcFxFXZevOoXDr9H7eRn3sOx+4KiIeyNrysmz9OcD2ov3629I2rk7DtTN4Lo9HVwG7U0pPZMuez+PT4HYGz+fx4veBv46I7cBHgJuz9Z7LI6iWcP1/gaXAxcAuCn9+IptfmFK6BPhD4PMRMYMSbqOuMacOaAJeBPw34I6sN2S4trSNq9Nw7ey5PD7dwLG9mZ7P49PgdvZ8Hj9+D/iDlNIC4A+Aj2frPZdHMOaucz2UlNLu/vmI+BfgG9n6o0D/n5cfjoiNFHrGdgDzi15iPs/+KUNj0w7gq9mfkR6MiD5gTrZ+QdF+/W1pG1enIds5pbQHz+VxJSLqgDcCzy9a7fk8zgzVzv7fPK7cBLwvm/8y8K/ZvOfyCKqi5zobw9PvDUBrtn5uRNRm8+cCy4BNKaVdQGdEvCjrFXsr8PVRLlsn507gZQARcT4wCdgL3AVcHxENEbGEQhs/aBtXrSHb2XN5XHo5sC6lVPwnYs/n8ee4dvZ8Hld2Ai/J5l8G9A/98VwewZjruY6ILwDXAHMiYgewCrgmIi6m8KeFLcDvZrtfDfyPiOgBeoF3pZT6B+P/HvApYAqFb6t+a5Tegk5gmDb+BPCJ7BJAXcBNWe/mmoi4A3gM6AH+S0qpN3sp23gMO5l2jgjP5So1VDunlD4OXM+gL7illDyfq9TJtDP+31yVhvk3+3eAj2Z/oTgCvBM8l0/EOzRKkiRJOamKYSGSJElSNTBcS5IkSTkxXEuSJEk5MVxLkiRJOTFcS5IkSTkZc5fikySdnIg4A7gnWzyLwuXP9mTLz6SUrqhIYZI0AXkpPkkaRyLiFuBgSukjla5FkiYih4VI0jgWEQezx2si4r6IuCMiHo+ID0fEr0fEgxHxaEQszfabGxFfiYifZ9OLK/sOJKm6GK4laeK4CHgf8BzgN4HzU0ovAP4VeE+2z0eB/5NSugz41WybJKlEjrmWpInj5ymlXQARsRH4brb+UeCl2fzLgQsjov85MyKiMaXUOaqVSlKVMlxL0sRxtGi+r2i5j2f/P6gBLk8pHR7NwiRpvHBYiCSp2HeBd/cvRMTFFaxFkqqO4VqSVOy9wKUR8Z8R8RjwrkoXJEnVxEvxSZIkSTmx51qSJEnKieFakiRJyonhWpIkScqJ4VqSJEnKieFakiRJyonhWpIkScqJ4VqSJEnKieFakiRJysn/A6qi7y8DrN6mAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(12,8))\n",
+ "plt.bar(data['Year'],data['Wheat'],color=\"grey\",width=5)\n",
+ "plt.plot(data['Year'],data['Wages'],color='red')\n",
+ "plt.fill_between(data['Year'],np.zeros(50),data['Wages'],color='lightblue',alpha=1)\n",
+ "plt.title(\"Time evolution of mean wage and wheat cost\", loc=\"center\")\n",
+ "plt.xlabel(\"Time\")\n",
+ "plt.ylabel(\"Mean wheat cost\")\n",
+ "plt.show()"
+ ]
},
{
"cell_type": "code",
--
2.18.1