{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Incidence de la varicelle" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import isoweek" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "data_url = \"https://www.sentiweb.fr/datasets/incidence-PAY-7.csv\"" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
02022467304113904692537FRFrance
12022457382717205934639FRFrance
22022447427122316311639FRFrance
320224375863330284249513FRFrance
42022427377019505590639FRFrance
52022417417722196135639FRFrance
620224074883147282947212FRFrance
7202239720413313751306FRFrance
8202238717714193123315FRFrance
9202237717254992951315FRFrance
10202236710691781960213FRFrance
11202235715814002762204FRFrance
12202234722667883744315FRFrance
132022337734001739911026FRFrance
142022327780140861151612618FRFrance
15202231768964170962210614FRFrance
162022307903957701230814919FRFrance
172022297148511006019642221529FRFrance
182022287154711102819914231630FRFrance
192022277211911619826184322440FRFrance
202022267168541280620902251931FRFrance
212022257222461801126481342840FRFrance
222022247224581810526811342741FRFrance
232022237187721487522669282234FRFrance
242022227189161494122891292335FRFrance
252022217203101630724313312537FRFrance
262022207235851900428166362943FRFrance
272022197185931418123005282135FRFrance
282022187178511396321739272133FRFrance
292022177203141600124627312438FRFrance
.................................
16381991267176081130423912312042FRFrance
16391991257161691070021638281838FRFrance
16401991247161711007122271281739FRFrance
1641199123711947767116223211329FRFrance
1642199122715452995320951271737FRFrance
1643199121714903897520831261636FRFrance
16441991207190531274225364342345FRFrance
16451991197167391124622232291939FRFrance
16461991187213851388228888382551FRFrance
1647199117713462887718047241632FRFrance
16481991167148571006819646261834FRFrance
1649199115713975978118169251832FRFrance
1650199114712265768416846221430FRFrance
165119911379567604113093171123FRFrance
1652199112710864733114397191325FRFrance
16531991117155741118419964271935FRFrance
16541991107166431137221914292038FRFrance
1655199109713741878018702241533FRFrance
1656199108713289881317765231531FRFrance
1657199107712337807716597221529FRFrance
1658199106710877701314741191226FRFrance
1659199105710442654414340181125FRFrance
16601991047791345631126314820FRFrance
16611991037153871048420290271836FRFrance
16621991027162771104621508292038FRFrance
16631991017155651027120859271836FRFrance
16641990527193751329525455342345FRFrance
16651990517190801380724353342543FRFrance
1666199050711079666015498201228FRFrance
16671990497114302610205FRFrance
\n", "

1668 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low \\\n", "0 202246 7 3041 1390 4692 5 3 \n", "1 202245 7 3827 1720 5934 6 3 \n", "2 202244 7 4271 2231 6311 6 3 \n", "3 202243 7 5863 3302 8424 9 5 \n", "4 202242 7 3770 1950 5590 6 3 \n", "5 202241 7 4177 2219 6135 6 3 \n", "6 202240 7 4883 1472 8294 7 2 \n", "7 202239 7 2041 331 3751 3 0 \n", "8 202238 7 1771 419 3123 3 1 \n", "9 202237 7 1725 499 2951 3 1 \n", "10 202236 7 1069 178 1960 2 1 \n", "11 202235 7 1581 400 2762 2 0 \n", "12 202234 7 2266 788 3744 3 1 \n", "13 202233 7 7340 0 17399 11 0 \n", "14 202232 7 7801 4086 11516 12 6 \n", "15 202231 7 6896 4170 9622 10 6 \n", "16 202230 7 9039 5770 12308 14 9 \n", "17 202229 7 14851 10060 19642 22 15 \n", "18 202228 7 15471 11028 19914 23 16 \n", "19 202227 7 21191 16198 26184 32 24 \n", "20 202226 7 16854 12806 20902 25 19 \n", "21 202225 7 22246 18011 26481 34 28 \n", "22 202224 7 22458 18105 26811 34 27 \n", "23 202223 7 18772 14875 22669 28 22 \n", "24 202222 7 18916 14941 22891 29 23 \n", "25 202221 7 20310 16307 24313 31 25 \n", "26 202220 7 23585 19004 28166 36 29 \n", "27 202219 7 18593 14181 23005 28 21 \n", "28 202218 7 17851 13963 21739 27 21 \n", "29 202217 7 20314 16001 24627 31 24 \n", "... ... ... ... ... ... ... ... \n", "1638 199126 7 17608 11304 23912 31 20 \n", "1639 199125 7 16169 10700 21638 28 18 \n", "1640 199124 7 16171 10071 22271 28 17 \n", "1641 199123 7 11947 7671 16223 21 13 \n", "1642 199122 7 15452 9953 20951 27 17 \n", "1643 199121 7 14903 8975 20831 26 16 \n", "1644 199120 7 19053 12742 25364 34 23 \n", "1645 199119 7 16739 11246 22232 29 19 \n", "1646 199118 7 21385 13882 28888 38 25 \n", "1647 199117 7 13462 8877 18047 24 16 \n", "1648 199116 7 14857 10068 19646 26 18 \n", "1649 199115 7 13975 9781 18169 25 18 \n", "1650 199114 7 12265 7684 16846 22 14 \n", "1651 199113 7 9567 6041 13093 17 11 \n", "1652 199112 7 10864 7331 14397 19 13 \n", "1653 199111 7 15574 11184 19964 27 19 \n", "1654 199110 7 16643 11372 21914 29 20 \n", "1655 199109 7 13741 8780 18702 24 15 \n", "1656 199108 7 13289 8813 17765 23 15 \n", "1657 199107 7 12337 8077 16597 22 15 \n", "1658 199106 7 10877 7013 14741 19 12 \n", "1659 199105 7 10442 6544 14340 18 11 \n", "1660 199104 7 7913 4563 11263 14 8 \n", "1661 199103 7 15387 10484 20290 27 18 \n", "1662 199102 7 16277 11046 21508 29 20 \n", "1663 199101 7 15565 10271 20859 27 18 \n", "1664 199052 7 19375 13295 25455 34 23 \n", "1665 199051 7 19080 13807 24353 34 25 \n", "1666 199050 7 11079 6660 15498 20 12 \n", "1667 199049 7 1143 0 2610 2 0 \n", "\n", " inc100_up geo_insee geo_name \n", "0 7 FR France \n", "1 9 FR France \n", "2 9 FR France \n", "3 13 FR France \n", "4 9 FR France \n", "5 9 FR France \n", "6 12 FR France \n", "7 6 FR France \n", "8 5 FR France \n", "9 5 FR France \n", "10 3 FR France \n", "11 4 FR France \n", "12 5 FR France \n", "13 26 FR France \n", "14 18 FR France \n", "15 14 FR France \n", "16 19 FR France \n", "17 29 FR France \n", "18 30 FR France \n", "19 40 FR France \n", "20 31 FR France \n", "21 40 FR France \n", "22 41 FR France \n", "23 34 FR France \n", "24 35 FR France \n", "25 37 FR France \n", "26 43 FR France \n", "27 35 FR France \n", "28 33 FR France \n", "29 38 FR France \n", "... ... ... ... \n", "1638 42 FR France \n", "1639 38 FR France \n", "1640 39 FR France \n", "1641 29 FR France \n", "1642 37 FR France \n", "1643 36 FR France \n", "1644 45 FR France \n", "1645 39 FR France \n", "1646 51 FR France \n", "1647 32 FR France \n", "1648 34 FR France \n", "1649 32 FR France \n", "1650 30 FR France \n", "1651 23 FR France \n", "1652 25 FR France \n", "1653 35 FR France \n", "1654 38 FR France \n", "1655 33 FR France \n", "1656 31 FR France \n", "1657 29 FR France \n", "1658 26 FR France \n", "1659 25 FR France \n", "1660 20 FR France \n", "1661 36 FR France \n", "1662 38 FR France \n", "1663 36 FR France \n", "1664 45 FR France \n", "1665 43 FR France \n", "1666 28 FR France \n", "1667 5 FR France \n", "\n", "[1668 rows x 10 columns]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data = pd.read_csv(data_url, skiprows=1)\n", "raw_data" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
\n", "
" ], "text/plain": [ "Empty DataFrame\n", "Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n", "Index: []" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data[raw_data.isnull().any(axis=1)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "On remarque qu'il n'y a pas de données manquantes. " ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "def convert_week(year_and_week_int):\n", " year_and_week_str = str(year_and_week_int)\n", " year = int(year_and_week_str[:4])\n", " week = int(year_and_week_str[4:])\n", " w = isoweek.Week(year, week)\n", " return pd.Period(w.day(0), 'W')\n", "\n", "raw_data['period'] = [convert_week(yw) for yw in raw_data['week']]" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "sorted_data = raw_data.set_index('period').sort_index()" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "periods = sorted_data.index\n", "for p1, p2 in zip(periods[:-1], periods[1:]):\n", " delta = p2.to_timestamp() - p1.end_time\n", " if delta > pd.Timedelta('1s'):\n", " print(p1, p2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "On vérifie bien qu'il ne manque pas de données dans le jeu de données, et on fait une prepière représentation des données. " ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsfXm4HUWZ9+89527ZdyAkQFjCGiGQAAFEZBGCzAj6wTfBEXBEUURcv0/RGRdGGXVUUPQDRVF2AUWFYZNNBCEELklICBCyELLve3LXc+r7o7u6q6tr63P6nHtzb/2e5z63T3V1VXV3db317sQYg4eHh4eHh4hCTw/Aw8PDw6P3wRMHDw8PD48UPHHw8PDw8EjBEwcPDw8PjxQ8cfDw8PDwSMETBw8PDw+PFDxx8PDw8PBIwRMHDw8PD48UPHHw8PDw8EihoacHUClGjx7NJkyY0NPD8PDw8Nij8Oqrr25kjI2x1dtjicOECRPQ2tra08Pw8PDw2KNARO+61PNiJQ8PDw+PFDxx8PDw8PBIwRMHDw8PD48UPHHw8PDw8EjBEwcPDw8PjxQ8cfDw8PDwSMETBw8PDw+PFDxx8NijwRjDA6+uRFtnqaeH4uHRp+CJg8cejZlLN+Erf3gN333kjZ4eiodHn4InDh57NHa2dwMA1m/v6OGReHj0LXji4OHh4eGRgicOHh4eHh4pWIkDEbUQ0ctE9BoRLSCia8Py7xDRKiKaG/59ULjm60S0mIgWEtE5QvkUIpofnruRiCgsbyai+8LyWUQ0If9b9ejbYD09AA+PPgUXzqEDwBmMsWMATAYwnYimheduYIxNDv8eBQAiOhLADABHAZgO4CYiKob1bwZwBYCJ4d/0sPxyAFsYY4cAuAHAD6u/NY/+gHB/4eHhkTOsxIEF2Bn+bAz/TNu08wHcyxjrYIy9A2AxgBOIaCyAoYyxmYwxBuAOABcI19weHv8RwJnkv3oPDw+PHoOTzoGIikQ0F8B6AE8yxmaFpz5HRPOI6LdENCIsGwdghXD5yrBsXHgslyeuYYx1A9gGYJRiHFcQUSsRtW7YsMHpBj08PDw8ssOJODDGSoyxyQDGI+ACJiEQER2MQNS0BsBPwuqqHT8zlJuukcdxC2NsKmNs6pgx1kRGHh5azFu5FUs37LRX9PDop8hkrcQY2wrgWQDTGWPrQqJRBvBrACeE1VYC2E+4bDyA1WH5eEV54hoiagAwDMDmTHfi4ZEBH/rFCzjjJ3/v6WF4ePRauFgrjSGi4eHxAABnAXgr1CFwfBjA6+HxQwBmhBZIByJQPL/MGFsDYAcRTQv1CZcCeFC45rLw+EIAz4R6CQ8PJ/jZ4uGRL1xySI8FcHtocVQAcD9j7GEiupOIJiMQ/ywD8GkAYIwtIKL7AbwBoBvAVYwxHvjmSgC3ARgA4LHwDwBuBXAnES1GwDHMyOHePPoBvNWCh0dtYCUOjLF5AI5VlF9iuOY6ANcpylsBTFKUtwO4yDYWDw8PD4/6wHtIe/QZrN/ejjN+8ixWbN7d00Px8Njj4YmDR5/BA7NXYemGXbhr1rs9PRQPjz0enjh4eHh4eKTgiYOHh4eHRwqeOHh41AgLVm/DNQ/MQ7ns7Ww99jx44uDRZ8B6WWTWT9z2Cu59ZQXW7/CJiDz2PHji4OHh4eGRgicOHn0CvYtn8PDY8+GJg8ceDVVgd/J+0x4eVcMTBw8PDw+PFDxx8PDw8PBIwROHXo7F63di1da2nh5Gr4cP4uvhkS9corJ69CDOuj7IObDsB+f18Eg8PDz6Ezzn4LFHw2ca9/CoDTxx8Ogz6G2Spd42Hg+PLPDEwcPDY4/Dg3NX4d1Nu3p6GH0anjh4eNQIXuRVG2zd3Ykv3DsXn7jtlZ4eSp+GJw4efQ69ZVH2YqXaoKsUPNglGzznUEtYiQMRtRDRy0T0GhEtIKJrw/KRRPQkES0K/48Qrvk6ES0mooVEdI5QPoWI5ofnbiQKPmMiaiai+8LyWUQ0If9b9egv6K+L8tNvrsOEax7B8k19OxNebwuw2Ffhwjl0ADiDMXYMgMkAphPRNADXAHiaMTYRwNPhbxDRkQBmADgKwHQANxFRMWzrZgBXAJgY/k0Pyy8HsIUxdgiAGwD8MId7yw2MMdwzazm2t3f19FA89iDUm4P50+xVAIDXVm6tb8f1hqcNdYGVOLAAO8OfjeEfA3A+gNvD8tsBXBAenw/gXsZYB2PsHQCLAZxARGMBDGWMzWSBx9Id0jW8rT8COJNzFb0Bs5dvxTf+PB/f+NP8nh6KhwN6y8zpKQ6mt9y/x54NJ50DERWJaC6A9QCeZIzNArA3Y2wNAIT/9wqrjwOwQrh8ZVg2LjyWyxPXMMa6AWwDMKqSG6oF2rtKAIDNuzp7eCQeHnr0F3FL/7jLnocTcWCMlRhjkwGMR8AFTDJUV+1bmKHcdE2yYaIriKiViFo3bNhgG7aHR4+i3jt4zqn09ai0/VWnVG9kslZijG0F8CwCXcG6UFSE8P/6sNpKAPsJl40HsDosH68oT1xDRA0AhgHYrOj/FsbYVMbY1DFjxmQZukcvQXepjNX9JFZULRaxZxeuxwZNZrmIOPRt2tBvOKSehou10hgiGh4eDwBwFoC3ADwE4LKw2mUAHgyPHwIwI7RAOhCB4vnlUPS0g4imhfqES6VreFsXAniG9cJIam+t3YHrn3y7p4exR+P7j72Fk3/wjHaBk/GLZxY5PfNeN1lqhI//7hVc9MsXjXX6OG3wnEOd4MI5jAXwNyKaB+AVBDqHhwH8AMAHiGgRgA+Ev8EYWwDgfgBvAHgcwFWMsVLY1pUAfoNASb0EwGNh+a0ARhHRYgBfRmj51NuweVcnbnx6UaSDqAbLNu7Cpp39L7fwswsDBnPrbjf9zY+feBs3Pr1Ie35PWCiq3el2dpfx0tJNUeTZZRpTVb+j9sgT1qisjLF5AI5VlG8CcKbmmusAXKcobwWQ0lcwxtoBXOQw3l6BrlIZLY1Fe0UD3v/jZ9HUUMDb3zs3p1HtGeBGaHkvY88u3IDjJ4wM+si57Z7Gfz36Jm57cRke/fypTvX7vljJox7wHtIVoLO73Kva2ZPA1628dvyqdnrb4lHtvb69bgcAYNMuM6e5J3BReaAXSpz7JDxxqACdpf63qOeFvHe1e8IyUe0Y+TMrWxqKT/dt1sHThvrAE4cK0B93/HmBm1nmJR9X7SL72tLIn1nZcVXkxOTR+Wtw2wvv1GpYHn0cPhNcBfDEoXLwhSs3sVI+zdQU1YpB4memb2fjzo6Ukv+zd88GAHz8lAOr6t+jf8IThwrQ4YlD1ailzqG3odoxciV+2TDtpn7vqbh+dd31euwJ77wvwIuVKoAre18tdnV016WfnkB+ZpdBOy2NhT6rqCyEq32pj95fVniT3frAE4dejMdeX9vTQ8gdkSlrzpzDwKa+ywTHFl6uOoe+zTt4GlkfeOJQAfzkrBx5L1t7wquodr4UuFjJsZ2+TRr2jHfeF+CJQwWo1+Tsi2KS3E1ZFY+or22cY1PWbNZKHh7VwBOHCtAXF+16IX9rpaChLsH3JK+2r7ijFR/82fOJssdfX4u2zmzhU6qXkWfjHPo6/PdXH3jiUAH81Kwe+fk5BP93tHfjpaWpQL5V4Yk31uGNNduj3/NWbsVn7noV337o9UztuKxlD85dhVeWpcf/8jub8dSb6wAAux0NFPo65+C/v/qg72rxagi/cakceecaEEUt/1i8MeijRovjjvZgcV65Jf+Q41+4dy4AYNkPzkuUP/b6muj4Gp+JEID//uoFzzlUBD87K4VKrDRzySY8Mm+N+gILuktu72JbW1e0M19VZT6JrItTNbOlEmLa15P9+O+vPvDEoQL4nUvliMwyhbKLf/0SrrpndkXtlRwF8Vfc0YqLfjkTbZ0lnP7jZyvqq1KUGcN3HlqAxet32itLqIQLau8qoewVFB5VwhOHCuA/OzsYY7j+ybexYrMm90BOFLbL5DYsYGEY2bStq1R1+JOsC/ayjbtw24vL8Kk7WjP3VaiAOFx592z8918XZr9wD4HfnNUHnjhUAD857Vi6cRdufHoRrrjz1eSJnPM5uHIOTcVgqucRFyuzWKmKm63Uoe2Xf19Seae9HOLj/POclXhtxdYeG0tfhldIVwBvSmcHf0ad3Umzz7zzObjqHJoaAuLQ0V15Fr9KJflV6Rz6uvqgAohz50v3vQYgrcj3qB6ec6gAnjTYoVv8817snDmHkDi05ZDi1RV8ZLOXbwFQGXHp+8rl7PCxleoDK3Egov2I6G9E9CYRLSCiL4Tl3yGiVUQ0N/z7oHDN14loMREtJKJzhPIpRDQ/PHcjhTwzETUT0X1h+SwimpD/rXr0BGSxSPyrvjoHLlZq76p/RN2bnw1FPBWs872Fc5i3cqvnmPsZXDiHbgBfYYwdAWAagKuI6Mjw3A2Mscnh36MAEJ6bAeAoANMB3EREPOHyzQCuADAx/Jsell8OYAtj7BAANwD4YfW3Vjv4b8QO3SPKO/BeyVGs1NzAiUP9OAd5Xdet8yrnN45KFNJ547H5a/ChX7yAB2av6umhAPDfX71gJQ6MsTWMsdnh8Q4AbwIYZ7jkfAD3MsY6GGPvAFgM4AQiGgtgKGNsJgu2IHcAuEC45vbw+I8AziR5y9mL4Nna6pHXE+xWiJVUopieFCtx6Ka0SaHaG8RK72zaBQBYtH6H8vyGHR14/4/+hnc27qrLeDxxqA8y6RxCcc+xAGaFRZ8jonlE9FsiGhGWjQOwQrhsZVg2LjyWyxPXMMa6AWwDMCrL2OoKPzmt0C1peSukXXQOTyxYi9Vb2wEAHTkQh0o3B9pnYtgH9YYtUkSgNLf96Pw1WLZpN35Xp5SkfnNWHzgTByIaDOABAF9kjG1HICI6GMBkAGsA/IRXVVzODOWma+QxXEFErUTUumHDBteh547+NjXfXLMd//Pa6kzX6MVK4fmcqINLpNIr7nw18oquSueQcaF2rW6qpyMcf5lTPxGPjUDxoIcNhfrYt3jOoT5weptE1IiAMNzNGPsTADDG1jHGSoyxMoBfAzghrL4SwH7C5eMBrA7LxyvKE9cQUQOAYQBSgljG2C2MsamMsaljxoxxu8MaoL9NznN/9jyu/v2ciq5Ny93z3QpnfRUPzF5pr5RTZ2mxkrqeafHVnfrifXOzDaYKqLzaRXDR3pwVW/DS0k11GZNH7eFirUQAbgXwJmPseqF8rFDtwwB4qMqHAMwILZAORKB4fpkxtgbADiKaFrZ5KYAHhWsuC48vBPAM68WmEX2Zrb1z5jJ8+f7qFx7t2zNLKPLrR4PnF23MqWc7NuzoSPzWEUYz55DjgCpElE9CI8LrDjmHOcu3YsYtL9V0LPe9shwfufnFmvbhEcDFCe4UAJcAmE9EfNX4BoCLiWgygu98GYBPAwBjbAER3Q/gDQSWTlcxxrig90oAtwEYAOCx8A8IiM+dRLQYAccwo7rbyo4Fq7ehpbGIg8cMttbtvWSrenzzwQUAgOv/9+Rc2pMXt7x1DnUl1FUu1JUs9IVeQB04UdM96S5Hi7E88LUHfGTaesFKHBhj/4D6s3jUcM11AK5TlLcCmKQobwdwkW0stcR5N/4DgJunZR+mDblDRwT6MveVFUaFdB3HoYMtQVO3o68JAGzb3YXt7V3Yb+TAHEbmUUt4D+kK0IslXrnBdo9Pv7kOm3Z2GOuoQDYBdlb0wKvI+/WbmINCb3B0CKEj6K4hTADgrBv+jlP/+295DcmjhvDEoQLULYd0nfpRwWQh2tZZwuW3t+Ljv3vF2k5arJRv4L09iUzrOITevtcoWBwXXXNbA2k9jEfvhScOGsxbuRUTrnmk5tYXprj7PblnNH3wpfDcMoPTk26XGSk3c1oRVRxOrcX0ebdv4tJ6gcohd/NjD3dc8P9ewDf+3DN6Fk8cNHhhcUAU/rZwffpkjt9IZ0kvr+Xd9IRkwbR480VCV2NbWxdufT5wiNJZ6OSmkN6DxEq612hqrjd4SNtG0IuDGezxmLtiK+6ZtbxH+vYhuytANcrUDTs6sHBtHIagq1RGS2NRWZcvwvX6+L7z0ILoOIOOMYVvPfg6HpyrdprLnXPIpRU3VLtQ616j6VHU49W/smwzBjc34IixQ431PN/Qv+CJgwVtnSVslBSv1axr/3LLTCzdEItjTMlnuMSpXvuy215cJvStvsnVW9swQEPMOLa1dWnP5a5z2INWLC1xMF1Tk5EkcdEvZwLQW+rZgiV6vqFvwouVLLhj5rv4wr1Jp7BqFiSRMABmG/FyxDlU3l+lUBGHts4STv7BM/jaA/Mqbjdv+fWeZBKr4zyGD2jUXtMr/Bwix8XqnvW23fpNA8er727G9J8+h7bO+gVI9FDDEwcNTN9kpZ+ISnboxjnUf4FQiZV4FrUn31zn3A7P3SwjD9qwra0LT77hPpaehm5OcQX/QaMHOV8D1E9BzDkH2XZi7bb2wKDCcXoe970no2Pd2L/3yJt4a+0OvLFmW0Vj9cgPnjhUgEo/SpXVgVEhzeosVxKg4hwikVAVa5JuoakEx1z7BFZuaXOuP2pQU/Wd1gA3Pr0oOMj4nlXhymsBlVf78k27Me37T+P//W2xcfPy2btfxaH/HgRCECPo6sbe0hCILDt6IClTb8Zba7fXvU9PHCpAnp+kkXMIP6CeECwodQ45DqQnzCLzciirdOS63jmByypCyuJ8JqOju4Qtuzqd6sbDivtbvS0Ysy1W1aPz1yo3QLpQ682NwZL00d/MwguL6xcHq7fjk7e31r1PTxwqQJ7rmslqJxIr9QjnoCjM4b75rdRp05tAscoHWfV7sDSQlXa5pkhV4d9+9wqO/e6T9oqIiZc4VcWhVvJcdJwDT+cKANc/+Xb2hvsoNjsS8jzhiUNFyG9lMxGaSCHdEzoHxcDyMD9V7ULzhu5pVcs41JrZKWbMh+CaIlWFF5e4O3dGObBzRLdGnNpQjF+SSyKn/oKeMEzwxEED06v4yv2v5daPyQKE9SjnUCPiELVVdVOZ0dNximy9FwvpHaLJx6UazqESqF4/A6to66INyCiUVzvfHn99DZ55a88xWDChJ2auJw4VYFeOZnamRTIvR7FKoBqX64IuT2SVfqEnbq1YJXGolkirrhd1Tq+v2o7jvvsk1m5rj8pMuplqdA4cD89zz/AnzsdqHTNdRl7t/P/MXbPxidvykdV3lcp4d1N9cmT3FvR74nD9EwtxYQ8mDzF9/PV2gkv0raAElSqRE7LqyFqp/tShWp1DtVD1rkqstH5Hu6JmGnkQh8/dk87wN2f5FqV1jK63Sh6r7v2LxQZDvrrjuw+/gdN+9Kzzu8kdPTB1+z1xuPGZxWh9d0uP9e/COfRE7BrVxyuX7OzoztxW3hG7syA3sVKlsZUU7/GvC9ZmvoajVmKlD9/0Iqb/9PlUud5DOvtzdcnzYQpKmQXfeWiB0SrQBVxH4+LIVwvsaHf71vJEvycOPQ97gLt6kIYXlyTNBtVipXSh6qOTFzSWOBeW9XHOQflcpN9bdnUqPeRdF9t6P8I8vdF17z/BOeR0g7e9uCyT+MwjgCcOGtRrHTFzDuGBZSwPz1uNCdc8gg/+LL3b4+gulbFI460MAB/99azE7+2K+EiqsbpkAUsSleod6SpFbpyDQzMuntufukMtD3efe/aH2JCjEn799nQuBsYq+1Z0IxfnWJ6ix7wMIPqT/ZQnDj0MN1NWM7jc+I01ei/KHz2xEB+44Tks3bDTaVwqUZtaD2FvK6lzCNvqCc4hr9luGfrqrW1YqJDZy4uoizjT9O5dFrxqlfAi/iE4pVW7edK//vjEis27q+tEQM9HqNrzYP1ciGg/IvobEb1JRAuI6Ath+UgiepKIFoX/RwjXfJ2IFhPRQiI6RyifQkTzw3M3Uih/IKJmIrovLJ9FRBPyv9XeCRcnuDwwO1yINu50c6b57sNvYGdHN+avjGPcqIbqwvorTSB7xFrJnTps3Z1+Tq4LzCW3zsKNzyxWXJ/vEuVEmHPtMUBHdyniLBkqW3hdFNJdJebsxW1DXpKAPSkKcLVw+Vq6AXyFMXYEgGkAriKiIwFcA+BpxthEAE+HvxGemwHgKADTAdxERDzG880ArgAwMfybHpZfDmALY+wQADcA+GEO97ZHwDTZbEl1ao0NOzqwaVcsSlD6PigomPwdqhTSNeUcNCtBcwbWoZrIs0s2aEwec96+Oj3DnB8zYwwf/fUsXJ4xnIOsY3Ad1vb2fBTAVZsh5zKKbLj/lRU90GsM69fCGFvDGJsdHu8A8CaAcQDOB3B7WO12ABeEx+cDuJcx1sEYewfAYgAnENFYAEMZYzNZMFPukK7hbf0RwJlkMtPoQzCbsobneog6kNS1ajFy8WJN2scH/5XROWq8LeNxe1xgsg55ednmqsdiTA/rOPPdaEO+z5Qx4FVZHOYw4GWbkiIi3buWw2p05WTPmhfXVs9VScyv0hPIJIUNxT3HApgFYG/G2BogICAA9gqrjQMgkryVYdm48FguT1zDGOsGsA3AKEX/VxBRKxG1btiwIcvQM6NeIStMn265Z2lDqnPVOJzESsJxHNm1/o5xjRk4h8HN+efBEmfU84agcq5zz4VzyPuZys0x5uYh/ZMnFkrXqevJjmYdjiaoto3FnihWau/q2ZwWzl8LEQ0G8ACALzLGTPFjVa9BJ5o02eOkXgNj7BbG2FTG2NQxY8bYhrxHwKxzCMVKPSjoFHeeqnGojJXkD5GV0+fUoRhqiyy27rXYIYpttnW62a2b8zlUOaCc4PKsHp63JvFbN3bZtNeUDEtEreMw9YQco21PIA5E1IiAMNzNGPtTWLwuFBUh/L8+LF8JYD/h8vEAVofl4xXliWuIqAHAMADV8+49gHc37cKEax7B044Jccw6h/B/DuOqBPIHofr+XDgHlVhJ1VatiaDK7FbXZ605R9cdsQk2kdGnTzso97mjel4VOcE5jsyVoPfFGH15zJFq4GKtRABuBfAmY+x64dRDAC4Ljy8D8KBQPiO0QDoQgeL55VD0tIOIpoVtXipdw9u6EMAzrIYrxT///B/4zfNLa9L2nOVbAQAPznVzujFyDmXOOVQ/Lh1sj1k8rQrX4OLFqtQvKEp7gnOo5+5bXERdd8Qm2B59gSh3gqtqbc6K7BEGXBdzk87hY9P2F9qrz4tcumEnduSkJLehJ2OrAW6cwykALgFwBhHNDf8+COAHAD5ARIsAfCD8DcbYAgD3A3gDwOMArmKMcf7oSgC/QaCkXgLgsbD8VgCjiGgxgC8jtHyqBUplhvmrtuF7j7xZk/b5oudqXm56/XxXXq1SceaSTXhlWfoD3rKrEwd+/VHcblB8ifPz588sSo8xq0Ia+kxwpo9h3fbqY9ocf+DIVJmuR5UYQax7/ysrMOGaR7BxZ9oxTAexTdOi57oo2Bb+AuVPcFVdPrswu/5Py7FJz93EOTQIpsm2eVjtOsvn7ZV3z8bFv36pusYc0dMhy61aN8bYP6C35DpTc811AK5TlLcCmKQobwdwkW0seWCLwn5dBdXicOX7DzbGtm/vKuGttTvC611DIOgnQCkHzqGts6SdzMtC5d+f5qxSnidQYnF55q31qTpqsZIUPoMpTmVUSC9ZvxN7D23Rnh89uNm6UB84Kp2jOXj+6Xdle303PBUkonln4y6MHtxsrqxo00QcXN+3be0oEtVAIV2ZSaoM3djl525KhSp6f9sIal5WT0AQPbcekDl1xlhd46z1Ow/paoJ5vW9iWgleLrMoccmX75+LX/09EFe5vkLTnOYfhmnEtt1jR3dSqSXOrd1h6PFBTUWoIM9DlQzUSayk9HOwXpbAR38zCxOueUR7vzd/7DhrGzZuIFFX8QbFrteEYbWzLDpim6YdsSunuHKLxYO4BgtJfsTGTddj2j2L3t+2KC66cT+xYC3O/Mmz2uRD0bikR7lNEV4mb8g6snozEv2OONier2mxHT24CYfvMwRnH7l3VPaF++bikDCB+ktLYx26K4U3vfAo05ehjm3CmHZePKrqwCY9A2kjPm4Kabd2XRae1dvU4iXSHCfrmBf8TTs78J5v/xVzV2xVXq9atLOEzU5yDiYrNeEaQ3tfuDcd7jvRn+O4qkGlxMKdO3IjDrZ5qGvnaw/Mw5INuzIv9nl5bpsgf7v1tlrsf8TB8nxN5wsFQoEo8fH+z2tqxbO7I5O+Qz45TB+ITS5pWrz47rW5QT8NbNPRRS4qLqqcaN4+8108Nn9NIvOZi6y92tDLprG9tHQzdnR045bnljgaV7sFHlTBdB95KyLzXFTyaspVrORKHOR6MkenIx48/aZrWBmORsM3kxfkIXvOocawseymswUiEOk/NpX4xAYj5xAuPKYxvW2ItApYZNv8QDNYl4XAxc9hk/Dh8VPvbNyFK++enYhM6jL3xWc8pCXmeJyIsUqspFukhONNBl1GZzfDxbe8hL8p9DEmmIhKYh5VIRoy+ZRUirw8rl3bMW0+xLzKsnhzzdYkh6knRkEb5/z0Oafx6PqrB/L2dreh/xEHy/M17VQKFJoH6tqubESJXzc8+TY+fWewYEY6B8OYfm0xye10kInrlh8GVtXz4vivR2PLMHmtE+XmLjtc8ZtsSng82xfRLMusuCjz6Kmq0e1o78LMpZvw2btnZ2rTxb8lOK58QYi80Su8/tT/fga/fi45v+ThVNq27rYK0gSpVKwk/9Yt5pUGrTWJa2uFelu25h8joJfDrnPQnysQoUBuC6JrohJ5jv3s6dhctGRRSM9fuc3qT1GNlUbQfXZOS85lIO7+5BDS4mLg9sTiWi7hMGy7cH76nY27UiEeOAY0FhN1RWRZJMTe6xGNN5lYKXnvJx00CjOXbjJev2JzG657NGnyLQ/tNY1+xgbd/TcWZYW0vo2kWCl5Tiaquv5kYqSDPHdKNcrCZ0K9iUM/5Bxsi52BcygQSNI5JNuOj129Rv9usBG3mbKu2dZmbb8aGT1j+XAOTYJ8tlEKm50gDg5DFbsTFwfx2xUJrA18/Kf/+Fks3RiY9pL09gZorLmAbMSXaY51YwKSi9KPLzrGuS9AsBpWnGsoVrhlzgm6aZOSsxsopfgty/Xkq3TN9GYoWtklAAAgAElEQVTOYfTgpsTvejvF9UPiUPn5QKykJzCVvLz7WvVhefNwgtlchVWFmw7AXkcU/8jZ2MRF3UWmqpUda+onCXYaJcaU71NMm9rSUNSOr6MrA3EQ+jE9N908OuuIvZTlrZoosSadQ6ULTa0tZuTWTRy4OBfkb8WVyFSq08lipVYphg1oxHlHj41+11uQ1e+IQzUoErdW0m174sM8TMzF3UmWj/LmZ5dE0S2zWmGIYMy+XLuMa+SgJu25BHFwuMVqlHKqd9JdYspdoPjcTItslsiZW3d3CTk6TEoHdfHwgU247d+OT5WrvN//8/yjtAvfc29vwDwhiVMWZDUa0EH3Dcnl4qIv+yKIVdPtOYqVHFdAOVpsPXbxXSWW2Fh5zqHGqIZzoJA4uOzo82DaSwnioB6PjC27OvHDx9/CR389C4/OX4Ob/pbOSOYKxhyel0M7Jx4kRl9PXiHmTcjKqWS16lESh3I5LRrKYE6ZJXLm/FXbcC9P4GLkHIShSGNRychVhObSkyZoz1/625eN+SpMcFmfXDYk2nYMugPulxNXFcRKUoNy+zZTVhO+cv9rkcMoRz3ESl2lckIH43UONYbdlDU4r1oQChTIalXE4Yv3zsFOIQxztZzDpp0dCXNH13nBP4K2rhI+e/fsSI5eCRgcnpfLbt8gTkmYI1ax49RbXJlRKjN0dSdrbdieNF3lXarayhpW+flFG6zjMlvMpe+0aJlsuS4qDm394LG3rHUq4RxkD/2kWEluJ/nb1ToqeQ3DtrYuPDB7ZepcPeIeBcQhXqK9E1yNYXu+q0P7aNXOoFggNDcUlGEk/jJ3dUUKaR2mfO8pvLvJbOZp6sGld9tka+8qYcFqcxwZp4QziT6T5wpZxUoi52CvnoDqnXSXWMrcV870ZsqrYRMr/a/jxid+88XI9OxdnxeHbAHGYdugnHJIKp+WFS5iPVOd/zjviLCO7tokRNF+WnJk4BygJzIixGcki60emL0Kx1z7hPK6eugcOrtl4lDzLhPof8RBOJ5wzSOp879/eTkAIXSFACJCc0PRSQmZh85hjRAqwnVe2CbQ72ctT5XpRDLf/MvrxkCDLv0BQdA8DvkjTpqyZpv9CWKsdeRjxjrdZWa1ODKNqq3TTBwuO/mAxO+YOOjHLD4jmYio3pVu9xtn3VP3M7CpAbd/4gT1SQmH7T3E2FYChjoH7zXY2I5JkWwK+mdVSDuIlc6+4blEfzOX6E19K/WMz4KuEkNTQwGfPu0gAF7nUHNYYwWFk2OUItJmgYI8xHIwOxVcicMJijDSKrjOC/4B6fr/05xVWLJhp/qkhNcclJYurO6vBEcquXaCODjcI/9AVm1tw1ohjHelnFpJpXOQkFWsJD57eVx8k19mwCBNTCvTM1UxCTpzzDhft7q9xiI5p0Pl3EmVtCESgbla/JUShDL4//kzJ+Lhq9+LUYKhg03n8NOn7ObNSzfuwh9eja0Hhw9s1Nathw8c1zmMHz4AgLdW6nHwHYFqcTWJldJwDa7kVm3RenOYjCx47u388m9nnbDyRywu8FnESvMcna9sTXaVHDgHA3VoU3CRooWJTqHMEOdeTtmzC02miKmCEmjFSrwNzUNoKBSc7fy5X0S1cu+YYKmRUiQLq/Cfw9Dy44a3YNK4YbjkpAk4f/K+ABQ6BleXSqnDLbvjAHzDBuiJQ63l/+VyYEXXWCxED81zDjWGi4ISUH9QBS5WyjH4m+skfkFKSM8Yw9MZ4/nE11Z0mRJZJ6ypups8Ww0XTk0UyfAFvFRWm7K69AkAnQousqUxdppLEYeCIOoh4Ln/ezqe+NJpOHyfIcr+XHQOOrGg7Zk0FMnZzj8manaYOR+zqEu+lv8ulxl+9NfAg31ruIAXC4QPHzsOgF2spB2r4ZyZOLi1Xym4HqyxKBBwr3OoLWwvlYevVi1URMGEdLNUcN25OFVDc0PSS/cPrSsj/Yi62/p4wGb9SIyKWIe2fvfCO9k6FECIg/V974Ig51R32cELPApjkq6oEj23NAqcg0asxMez/6iBGDmoCXdcHsv+OcHd1dGNR+evSd6DylrJsv3X3V5jBs6B13PzRdGDd6fbVMil/FMTxUvi/fLjSnfVJqIy0OAZX+sgeJybbSoWjNkTa4l+Rxxsi/bYYUG2MdVcszrBCXDVV4ktmRKONEkhgldtTYfOEENvmzaE8uh1Ycdd4PpRvr5qW1i/urZ4LCn3kOjJ3/uPHAggJhKlctnZl0NVT6WYFOvJTlaR7J4ls3qNGBiLljgB/eZfXo+C/kXtKW5cF5k3Vkirb7BYpIpjC5lgfJ6RzsVN58B/i4u4mAGOjz8VPsNxIRUtAmWYmqi1Pprn+2gsUkyYe1tUViL6LRGtJ6LXhbLvENEqKac0P/d1IlpMRAuJ6ByhfAoRzQ/P3UjhbCOiZiK6LyyfRUQT8r3FJKphN3ngPZc2XAPviTCJq8TdKGA3Bdywwz23cTVwvUse0tpEAKph1d3ESsDtnzgBv7pkCgaHxIEx+0enG9fBYwYpU0buMyxOZypzDiSIZ8QxJ/09gv9rFImN5J3+w/NW43cvLFOOzybfb3IIXBi1Bd5WdQtUMVrMk+WL1u1AKeTiPnLcOLz13elhPb2YF4ifm/y9uYxzzvK0Z3miDUdz41qAcw6NDYXoPfZGzuE2ANMV5TcwxiaHf48CABEdCWAGgKPCa24iIs6b3QzgCgATwz/e5uUAtjDGDgFwA4AfVngvTrA9X8aCZPbf/MvrqXOFAqFQiDkHU1Cwh+cld+O6TFOJ4GGGyThmsJQ/2XHnVQmOGT/MvbJjd7aFqhq0/sdZWmulRKIhEEYPbsY5R+0T7ziZnShFIS+kequ3titDootWSGmFNG9Tn72O96MKjiff58K1dkMF3f0NaCo6cw6FDC/QVKUhJEhdAnVYtG4HPnDDc/jZU2+DIRChtjQWUSyQUqwkIhIrSa9BVf2JBWsTvz9804upOmJMrWq53GrAzeWbioXI16Er50RXNliJA2PsOQDqyF5pnA/gXsZYB2PsHQCLAZxARGMBDGWMzWTBl3YHgAuEa24Pj/8I4EzKwsNmhF2EwPDGGr3jF1E8Me6a9a62XrtkxfKipFCO+4thYlVdnc3cLH7MlWwybBGuH0m0Y64B5zBaYXasHkP6OIsTnxzEUOcdLRKkAgF3f/LE6HdkygmWWJjFsfExqd5DlkxpZFnQBzYW3f1xDE2NHZbcuJjeMQ8HITqR8dSvc1ZsDcVtQbkYHj8RSkZor6B5j6oRXHHnq9pxcTy/KP5OjcYTNSYOu7uCaAuDmhsic2M5fEitUY3O4XNENC8UO40Iy8YBEMOMrgzLxoXHcnniGsZYN4BtALK7bjrCRYQgfrQLrj0ncV5ME7pyiz1kNkdXeNHPZkxO9cdhcqxJs80KMHtmOF3fIlx3k6Y2KqlfzW4s63YiVvK5hyX/6gPznNpOvlOGUw4ZLYwz5liSxEoUKwUNNCiIg/xuTFa4tkei4hx0i55JIT190j6WnmLwXbCoX5PDq/C+xPD42mQ9BY1YKYfFu1YiUBfwWE4Dmop7HHG4GcDBACYDWAPgJ2G5aj4yQ7npmhSI6AoiaiWi1g0bKrPVd1E+it/kIMlJSAzZ3ZIhjyy/5oixQ1P9cZisoNImfup6LhnJ4r7NH5wLXBf0WIxTGzmu3kNaqJMYT9xpHvGjEvWFY5mDjBXS8ojSaFCEDJWLXBZB3f0FxCFZpg+JHnM8qTHJBMYwFs45dCk4AQqNPXhf4reWyHEhtBfrMJK9Llrv5ugJAIeEXtsyTPdRa/n/7o6AOAxqaojWoF17AnFgjK1jjJUYY2UAvwbA7fBWAthPqDoewOqwfLyiPHENETUAGAaNGIsxdgtjbCpjbOqYMWMqGbqDfNm8cxY5h+ZGvambDK2oQBiQyd4+JVNVTF0G5hRCmnep5xysTQh9usFFqVZrVj2hAI5MIN02DLb2dBd0SO8j1iMw7fXRXFHoHIYPcE8AYwo1DgSciauYihMl1enUKA3PkxO8hGVeWP+5tzdgy+4uQawUm40nPKXFcQmcmIiv/tGNywOAQ/fWEAfjRqa2c5V/xy2NhWjNqEewPxEVEYdQh8DxYQBce/sQgBmhBdKBCBTPLzPG1gDYQUTTQn3CpQAeFK65LDy+EMAzrIarhEtU1i279SGH+e4GyCibD78FUwRN08u3hQeI69nHwp9BPmIlR51DVN80rsrhFj5DNIEM/peZ/TPXLZjiu0wuXvGxzHnyTHiyQjrRXzhXVGKlfYa14DeXThXGph+3wByFfTL86u9xrKwCpZ3gdO/HlI86C6fJieOX738t7lNqlc+/YkKspG6PE61qFk6ditNkcFLrdZpvFIsCAa+3tZI1sAoR/R7A+wGMJqKVAL4N4P1ENBnBXFkG4NMAwBhbQET3A3gDQDeAqxhjfOt0JQLLpwEAHgv/AOBWAHcS0WIEHMOMPG5MB9tatr2tG5+7Z06i7IErT8LIQYHSk5uyMsYyTUi+wJhYcCPn4KJzcETEOWjO10LnwJt86s112jrV7Aky6xwEMZe1Xx0RDTSmAJLpWBkDjp8wAlefMRGTxiUtv+IwFPbAe7rNx+FjY29q0xyUjQBeW7kN3xfCaRcLaZKqDYkecSHp83IbJnKryvutJUiCQjoZjDCuY3OC+9mMyXhh8Ubc35oOu82hm++mWVGr/evmXZ1oaSwk5kBMGOtLHazEgTF2saL4VkP96wBcpyhvBTBJUd4O4CLbOOqFHe1pk9MpB8TB8UT3f9POQgavmZYZx8empOUu8emzK4fNC4ELXB+By86+Ft9bQucgipWE95gH55DoE4FD4vsOTYs++eIYxFYyL0oqzgFILmZzDDGmZGOl3Z1JmXWx4O4EZwt7IcJUR3VPcv1IrFSgaI7qiCAXU+niY40c1IQBFvGvLp22WQRqbLJiHPfdJwHEepAiEVDgBLI2ferQ7zykq32pojgiy8vikzzNOZh1DnpTvcpvhEn/ZfDd2KRxQzU19OPYtlvjz+Ew3mx3RIZf9iv4sYu1ku681pSV6Rf+BkEhbQszrg3FLRS/ZiIOUXvB/y4pDL2KOOhDW2u7SUFnMffQ505JKNm5XF3ukUcDEPV7unENDZ0ZdZntCGSdV1rOwTAxau3nsDhUqBcKZA29Xiv0P+JgmSq2jZRoimibICJnwQ/TpoPx8VcEOSxHUVCc2pB17ujNFrkFiEsbyd/ffijtPAgE41+xWR+qAEguKoy5Kdc5sgbeS+6EbXqobGCG8TREnIN+UeLvWicLdxb7SfVkJ6oipRXSehGPO3VYskGdffDo8cMTnPOyMC+z/B21hHHEChTrcnScw9AwON52BcfP27Auqg6Wbi7nHn99DdbvSHu1i+gqlbVhclTlRerF4TP6GmwTxSb+EE0yba9KVFLGOgf9eFRZ1yJilI5JXDVs1kriRzvtIHXeCfnD/stcdZwmxoDvP/amcTzfeeiN6Piul97F4d983FjfBbq3JDrB2eZEnpFndZygqj9tnoZMo4mfgexHU8hgrXRolmQ/Boh6FF0E5ObGmHOITVnV7TU3BNY8WjNPcjBC0ZyWn8VZR+ylPdfeVcJn7pqNj/1mlrGv03/8LE754TPKc+0KD+ieVEj3P+JgOW/bIInOQK6JgwD1bvD9h9nNcRs0Crdq5olNIc2dbsQ+LxMS1lfbrw4DmuLp+D+vrTHUVL0n+5Ip1kiEz7BcV4mfg7zTvuvyE5NtKcRKd4RZ2Vg0V9Tt23bx/HRUK2yvUxYrqayVFO1dMu0ATOQZ3BQ1TNZ9MhIxpMK1UNbzxZxDrIzVK8qD7ZzJysr2/nRiMNNl8jn+rdscY1duacO67eq4Z6rskwEBTxoW1Av9jzhYHrB4+uozDkmdFzmH+avMmdK6FF6g4m6woVCwLkxFYRFLjrPyiRLnRFafHxtmnhJl6jrLGdddNQOz1m1pcPcbkeHiBCcuYrHdvovOIfuzlofznjBeVfTskR7zkfsOTfTnonOQcc25h2Pet89O1OOjT4mVhIifHEwh8Rjc0mD0mbi/daWzTiLBOYSN/V/JJyHmHOzhM4DgPnVvyHSO45j9hivLVebjf/zMSeFxfps1DlWEhAK5mYHXAv2POFjPxzVOOigdxUMURzy70OylvVvIL8zFQnI8HdvCU9BwDiq4LmKcaGk9Z0PrjhWb412QygQx6NOpS4wa1GRli3kY7Vph9vJYeZsMvJevzkH1UNKy/bTSOlaSJ8cow6RzGNTcgCEtjWF7SUVmavFhaTGqMo8J0oQmy5h09XR6BL5JICKrziEYn547MHEVTQ0FXDB5X3z7n49UnlddN37EQOU5/n1mFfmJUN0jTxMAeJ1DzWGXL8fHpmTuLvK/BatjzkL84Lk4yWUiTQ53NS7hM1ynDrfJ1z0LFZeg5xzc+mwsFqyL8PmTxxnPm6B7lmKPYrRZ0VpJh8ZicnF1hYorkHd/qjoFSXygFSsZ+haVmvGCHrQni5XaukpO4TMKJFrMqB+GO3EQ+9IQh3BzUigIz8v0Dgx6BRL0FikwYJ9hA1KJtKLTBiKf4uTLcX+VQmmtKOoc6huUtf8RB6tlijAhTMncXXbpn7itNTqOdhYF4NbLjsei684NOYf0db/82BS0/sdZ+MtVp+C75weuIbIhg6p310WsTWNCyKGyRVeFjw76jFuZuWSTts/Auss8rizmkjJUcYhknHF4rFAU8yrohlVplrF5K7elQrSTtPtjLL3IyxsPccEVI5+aFmJx9ykTpNZlyag0XaWywkNavSDaOAfVkNRtxRW7FTJ2IE5aVRSiEZjyo5BhYLpvLLiEGefcj594O/H7PeOHaaP5lhw4B5tflI5zMHmn1xL9jjhYOQdhEVaFBRBj8uigEo8w4YMvFgiNYfo/1Y5n1OAmjB7cjMn7DUdLqKR1DZ/hguij1DSi4hJcxEpLNuiDnQV+IeZBi880KwvtQBsSX65I5LVih2L87H/61NvqShL4gjhnedL/QFyoO7pLeOi11djZkTTVpfAeVNZKj33h1FQ9FRLEQXqND0qWZB3dZYW1UrpNMVS53sIt2dD6He3W4HdWzkHwczB7ghuIFvRzSY6Ma8PVZ0zULtTR+AztqXJ/iLByDl4hXVsYuVNKvgBTMneTmefJBwe6Cp78XKwvNukyMWVRgw5fOutQ7Tk53wFf/J8Os7MByXy5Ks5BJ1YSPzxTJjvG7E6DWSZ/W6cU0E5DHcTnJsrXkybJ6cUYiH0SXn5nM3761CLjeD74nn3C9tTnCwKn8uqyIAPZxp1JqxV5py8uuMOFNKJGsZJiALqn2tldNjplJsYW1XN7R9P+62mcfcNzxjq6BZ8rpMXvMRnWO3ldoHNQt8Vg4BwUeh8TAqdB9RiY4vuWYfo+AHWEBNGUtd6sQ/8jDoYHTHDROQT/xYXs3itOSvWx77CWxILKa5uc4FTQ6TjSwcr0bXzl7CTh4JNUVKiL91NUcAm6UA7i+E1Oay6K3yx23F+8b27itwvnoAqfUS4jejkygeHvL0usKVtsojJj6NDsIGXFYyVOcEmxknljceKBI9NxkbQ6B/35H190TOL3MfsNd3qXOlFRs+ghzaOy2jgHzelSWc+DMmQXZerCiNjSAnd2l/G5e5Lh9J98Yx1+8sTC6LeKsHuFdB1hWqBk5ZXqI3SJMcNluWKdu156N+xD7E+9GRB75ZNX/jgeeDUZSIyLu6YcMCIqGz04Gd6Zo6M7vYiLzTc6JJlpUIjXTDsjtzAV5goDm4o47+ixynNazkE4VmVeE50Z5Sb4PTY55O3gQ7dxP4zpYzKldQ7qNky0KrHARLtcdd2Jew9x3qyYdA77Do/1ISMHNWFwc1LBO/2offDMV05LXccX/lMnjk6UcwVxseCuc9CdLZcZJowKLIzk98gYssmVAL3OoWwm6Es37kxkmQOAT93Rip8/szj6rdLBFAp6JXit0e+IgwqPfv5ULLj2nJBzsIiVwv+mRaCtqxQu/HEd7hyTWKAM7HA0Bo1SdLsmloy4OPDQAgDw/Y+8Jzru6Eov4h878YDo2MVaSQwgx6G6l/s/fVI4fodwI+H5bW1deGVZOvn72GEt2lVAJ/a6+dk4RLVKpCeKHa4+Y2LiWv6uVMThoDGDlGO3La7ysaoOX2h096TjHIa0NOCiKXHaFNOyx8WQsv5Cy/kYWhPH01iklFXNGUfshYPGpHMm6KIQ8+edzASn7T61ERNRYgyXv/cgAMAJE2Lxr4sYSNdXcH2ynP/WvVud8j0xVmVsNXLakNYC/Y44qJ7vkJYg21Ig44zLVR+Eiylre1dZy+omvncd5yDMMJeJcc25h0f1RFNG8aOdMCpezFScw3+cd0R0rFqU5AWJm3ny57B4/U6s2pr2Dj04XESZoJA+bO8hqXpBneD/p+5oVZ4vkFqBrxszIBEHhViJCTqHqQLXBSTDa8s4TYq4ajO5FEU8ujqcU4l2oepqWrxwzRnYb+TAuE+HuZMSK1n6UBEPUS7eWCyk3lGzhvPSWe/wuaXLBCfDpnQe0FTElANGJOosDL2is1qeWjkHzXVy/S/eOydVZ1dnesMXGK6o26g1+h9xUDxfvrAQKPECVBMntjnWv6i9hjRruYIk54DE17jXkEBxfKzgsSnrOOat3IoNO5KKzEP3HhyNS9yhiOvlSQePwuNfPBXH7j9cKf4pFCgKkdCg0DnIRdFumjFs2tmBs67/O/40e5X2ftu7SnhpaWBKOWJQY6pecI/B/wUaz/NNuzrx6Py1CesZDp1ORISK6IqZ4GTrtDilZ/o9nnjgKIwfMSD6zWvY8yEYQoCH/XVbRBRaz2nD77+/rXbYTEVlVSq046x1725KB08UH1tTsZDaODVpLN10oiJVVFajTN+gcygLi7ZYZ/pPnwcQ5G/R4cix6ajENp2D7p3JXJIqBtk7G9UBC0Wz63qi/xEHxSOOFhaSxUrZdQ6/+Oix+NFFxwS7Ht6nhuDIE2nU4GacdcTeiUVKXMRmL9+CD/3iBVz625cT15XK8QfaVVZzDgBw+D5D0dxQUIqVgHiCqxZaeayxmac5JSMfw5pt7akyGbadEScK972yQtuPCUnOIe6TSWUc8k5exPRJ+0RWaUB6h/uJUw5Ujo/B5CtAaChQZLWi95DWX68CA8Nl0pyJr9EMRtOnSjwyQrCkaiwWUjeo09lorZWKQlTWsI5pM2a6hVgXEH+zoj/Ozo50NFfe16DmtHMcnxOyWapNTOWS+0Uneoo3FvUlD7WNV9AbYeQcZD+HdF1eplvI/unofYO2hF2PuFM3BTrrLpUjljquH/e3Nlxg31yTjN5aKscmeeIHpxK1NBQKaCuprYrKBlm3/CE3NvB0l0wbSx+IZdri49KaxTpOftWC5sQ5JNoQOQemqGEXIYpix1ghHfwfJ3AVYsu2zHPFAqG7xFAuM7ywZKOyjqsXrsit6M655nPgfari/4j6hMYGSrXhotBX1S8ICmnT2mrygo6d02KR5PLN8Q5dxTmUGUMBpOyzuaGAxmI6CqzFhcGY5TFuQ13H6xzqBNXz5ZYuaT8HPefAY9FzHDBqYOJ3wMYGbel26mIdIJgc8sIZBd5TnOMY3NygFCup6sv3KMLEOfB4SzzeVKPAOZhM7HS733s+eSL+ctUpiTJXawwxgB7XX7jkMRYXVXE3xqQyjoZIr2Le0Yl1VAEWk/2ZlauNxQK6ywy3vbgML78TiOH+/NmTE3VcQ3mbLIz0tv/qMj4POzUWabzvYqGQJg6SWOlj0/YHoFfixzqHWNEsZrGT6+us/gBBrCRwDkVh16cidqYEQ0SEwc0NqQ2RyKGYxmGC3hjAfL5WsBIHIvotEa0noteFspFE9CQRLQr/jxDOfZ2IFhPRQiI6RyifQkTzw3M3UvilElEzEd0Xls8iogn53mISSiVx+BRI2i2YnOD+uiCZC/mhz70Xj3/xVKFiPGHbQwXwdy9IZkmVJ3VXuZzyRBZ3ryoTyJ/+y2SccsioqF5nSc+l8DL5GfBIkzf/6xScP3lf7D9yYOq6/UYOxPNfPR2/+7fjccbhe0XWTwzmHY06BAnh5ENG46h9kzJd0+Q/f/K+0fHv/rEsOv76Bw/Xd24YS2I3FnYrD/XQvYZYx8UR6xyS7XOIcmPe3hEKmXbAOZQTm49j908qynWcg1xs8nPQia60meDCaanbAU8NLYGai+lIwzLn8KlTDwrHpe6T67x4VNZn3lqHL9yb9GsRIesTRMSh8uM6InfOy0Szbxu3Mqi5IcU5xPfgpnMQYVO6mzjAWsKFc7gNwHSp7BoATzPGJgJ4OvwNIjoSwAwAR4XX3EREXHB3M4ArAEwM/3iblwPYwhg7BMANAH5Y6c24QK1ziDmHpH5AxTkE/+UY9MMGNOLwfYYK9eKVnzuHDZRy2cqTulRKcweiWKmoiG90wbHjQBRbi4isqS42FGMMr74bx9nhH/akccPwsxnHanfh+40ciJbGIn778eNx2D48+YvZNUfl4c2blwmhaXMl+jGI4j6Tc5SMpIc07zO2VpLf9/8557CojrK9BOeARF0tI8NiT/GfSM5jQLBwdZdZRdE9U1FeDZwDD8KXCtmta1thDSfipn89Dg9f/V60NBVT71F+z3ycvJ7e/DcQKz339kapPF1Pb62UFiuJ35iKe1F5ZYtoaiikdA62DYRJoR7pVTQcVK9VSDPGngOwWSo+H8Dt4fHtAC4Qyu9ljHUwxt4BsBjACUQ0FsBQxthMFjzxO6RreFt/BHAm6bZGOcBsreQuVtqpyzwVQmyLB2FrkYmDNKm7ykyhc6BIFGSSq/M+REseFafBLUDe2ahP2eny8HkdxvQfEaBeoLSKU0M7RwsRVXVhJX7/qWn6ASO5qCR1DmEZkk6EfFHTyZOvPO0QTBo3FBNGDUzt/tRcG+e0woVZ8fVt3NmJu2ct1/qxcKi5WnVd1aoeOYgAACAASURBVGPli7xL4D2G+JmLeagf/fypUcynQc0NmDRuWDAuqQ3ZlFU2BzXlrVaJ4LLsoPm4Rc5B/I5UTcWLtbqjxkIhkasFiJ+LHBKFwyRW0oUlf/jqU6OxA/VXSFeqc9ibMbYGAML/PNzlOACiKcnKsGxceCyXJ65hjHUD2AYgnUghJ6geL58sohIZ0O+8Ab0egUOcjB/6xQsAFB+JdI1K5wDE0Sl1nrVAMvdCNFaVzgHBpDdNVhfLH1eX/niXGNdTJVES6+yS4iZdfML+uPSkA6Lf4nMQF3POzWjHkhArBf9FvwMi4IErT07VFz/KvYc2Y9F15wIA9h81EA9ffSpGDooJFK+qeoaMBea4OtGTiKWGIIYA8KFj9jWeD8avb5+LOeQp8k8//wcA4Owj98b/CcOuEOJnLi6KR+47NCUaC+ZXss2UqDR6+Il/KXAPadt0FOkRYyyxQTrnqL2DOoIIV9Q5iO+eQ+V4d/cnT4zvp4ESRBJAiljIMImVdBZZ/DH1FYW06jUyQ7npmnTjRFcQUSsRtW7YYE60o4PS9yAD58A/OJs4QxVxVeYcgvHEx12lsjIMBN/t6xTSAHDxCfsprlOMK9Q5GMMROLAO8e5P/bImjRuKX10yRQj/EZ8TZeji4qJ7pBP3Gpz0UajQ2kkUu4gBFP80Z2XqfPCbjz1ut6mhkBaTEKV2wbpXdc+s5YKoQw9bkDYdZ6JG+rlwRSwRYZRA3NrDTc/nz5wYedgHXrr8OvMzVjkqpkSl4f8yY+gqlbUblQKlLZ8A4ORDkntHceG/75UVOO67TwIAvvyBQyP9heh3JI5G1b5KB3DKIXGIj8ZiknN4fdU2XPs/cf5zFUybMZ4UTK7CRVfi86onKiUO60JREcL/PLznSgDiKjUewOqwfLyiPHENETUAGIa0GAsAwBi7hTE2lTE2dcwYe/5lZRumk5RcrFUfGycYsdOLpikCtuzuwpV3vRqViTtMVX+lslp0xMVKJuKgclxr4hm1EuMPOQcTcXAQLIm7GVVTd11+Is45ah8hwJ19YrvOfdNzMEHFOby7aTcenb82dT6oExRsEEQFSoMG4T2KClAVDhozyCh64l7atvDOWUV/Mi4+Yf/o+J+P2RdDpTDzew1tTlj68LHqrJWiPikdPkMm5qLPx8R/fwyt76ZDpURtseR8/MfXTsdR+w6Ta0b3+LeFcaRhkYiLBESc+zHHEbdm2/jJYqWP3Pxiyrxchomonh9KFuQN2wFhVAPxedUTlRKHhwBcFh5fBuBBoXxGaIF0IALF88uh6GkHEU0L9QmXStfwti4E8AyrpXDN0LKbziH4z1+2TtRDRHj5nc147PW1UdmYIcnQ2fIi3F1iykWeR6c0iQlU6+XXph+Gy046AB8+Lg4dzsVdZrtx/TkZohOZqS1b1Eog2LGt2KzXhXBkiZKaGIuiDZfnIEavVd2G6FkfL6jpMR67/3CMGx77P6je2dVnBvGdbIuwijpkUUiLC6zoiczR3FBMsPacINvEJ3wjI0Jn1mvbCReUbek4prTcXhbj8qaS+aiDY9Hb3WTKCqTFSi7LleleV21tw86ObvzimWRY+MHNAcF2fV55w8WU9fcAZgI4jIhWEtHlAH4A4ANEtAjAB8LfYIwtAHA/gDcAPA7gKsYYFyBfCeA3CJTUSwA8FpbfCmAUES0G8GWElk+1griUnXLIKMz55gei36J4ADArpCNTQM0uVlUqm/Rx66j2rhK+89ACdJbKSs4h+EiC0eugGuvIQU249vxJiTSInO13USKbkOhP0Va8gw4V6ppVWGbx5VDcQLCzFdHSaI/AqoIqKqtIi1VWMC4Q9Uuqvji47igWPSkWuvD/fiPS5sTJenaxkpxDmuP6/520kioW0gtPc0NBkMfHYqUtu9MexSJUn4O8gYp1Oem6Yj5nLlYSL1f67oRtPfnGuoRlk+jhHBh/BBA3KpzLufXjx2O/kQGBeC4MNaLbODQWCwmrLZc12xZ470ePv5XoTwzsaHpetYTVQ5oxdrHm1Jma+tcBuE5R3gpgkqK8HcBFtnHkBfEBtzQUMUIQ9QSLWHzeZBHC54aec0iXpXZQCBa0P7y6Ere9uAyAOh0n9xSVJ4eoJDMRMrmszGzx8e2LYrSbKas5B5nIunAOSW/lGDLHpQvkZkNSrGTXHakeg9oxKp43Jp1DgQilMovqmt6ZmHxJBVW4Irk13vzqbUljhY8cNz7xm49LRHNDQRB/xXPi9y8vN45Ljk8WXC/rHPTPftpBsT6hoBJRaTgHxtIBGzfujBXTAXOR5i747B09uBl7DWnBis1t+POcVfhfU8Zrd+oNhUIiH7fLjt42/9ukXCh7CXPelpejVuh34TOSOoW0oizxok06h3DWZgmr7BI2Qs05kFIUdIwYoE8V6kPzIQW7V+VQwuv056J2wv+6ZkYKJqYF0stcxVJXtlk3dvHycpmluDpV4D1RPMA/wlsvm4qdHd1K7k9JHEBgKCfGplz4CwERERfdVJ2wzKZzMBlLxOMKwMPFa9sqmBd0AjnNiaCt9A5XnvdRHDDFPYrXcrGSeLWac1D7OXQIC66ocxCJgziXODcQB1xMNQkAaGqgxNhdXG1segyVOJkj9smx95Mn+h9xEI7l95FFrBRHzlT3Y1Jmi3UYS36Iap2DOiaPSEhciRG3VjIHMrOvBIk0m0JTrf9xFoa2NCYWZiLKVSGt+9DklKUDDLtvPjpVzuUzjwjMH2UvWN0YCwWAC09NCz/3fo7MXQ0BDm3WSvcqgg/qOAeTCTQ/z5/DwWMGRYYTsVmuu55H/ob49XIdwI0ApsV1qj7V7+V8IU0vFz0BUoRa4Tq+UWgsEp5ftEEbJVUWK7lAnGd//MxJuPCXM5NtGqgv/46zOHzmgf4XW8mw+AecA7Tng7Lgv92UNY10f8GORyzVcQ6lcnq3X7QQB5OHtNFayYVz0MhBRw9uTulWTJyDCFfOwaYUBZKxeFTg4+9WEAfdb0DNKYmilDi2kuY9JnQO+nG53KMrDJvSYBwFikR6BaJIjCcSOhexIJBchMX2E7/5s1fI4UUCXygE/Yp5DnS+O6rRHSwEBBQdTheu3RGVi3OOm/c2FAq45FZ1FFt+XvZziM+pPx5xvVCZtBcNeW6JCMVCWvRXa/Q/4iAcq3fyIvFIX5/yc9C8L5XcXhUag7HkOJTEIfx4/zInmS9B3BEqCYGG0JSZPe2iDaJLv80RTswFbOrLlThoc1ULl8sy3FS/oaJcTOouc0yqBX6A4sMWRRZGsVL47G11gMqIg9ycq/NUFNyRcUdMnuWPt5t+f7Inv9in3J1qUwTY75ErpH//cswlqbggVbywEQOTOUNEb+vjxYxwQh0eZl0U1wLAw1e/N/FbFiuJ6C6rjT3EhV32kwnOJ9u7aErSb6lYIKcNVp7of2KlhM5BPps06TPFVrKJSZwU0sRDE8RlmxSJbPhu/77WpChBlfcheZ16l6VSbifH5SpCCLkQyzq2u7OEp99ab64Ed5mqbeEHgLZOe50CJU0SXXZmd15+Qqoskc7SqJAO5s0fXg3eo5q7DP5bTVkVkN9bc0jIdlueBV+rSmWGbsHXJrZWSj+b1759tmYMaSKfslYK+5N331MOGIEjpPhkNv0Fh83xDlBbK4kL+alhdr+RUjKqSeOSfhWyE5yMIEhmskwlvhQhzullPzgvdV7M81Ev9DviIO4VVJxD2cI58AWZU3HdcqKawulFl6J+OcREJOI47TbhCk7FsMsy6hzcaIOgKM9nR+PaTLsmdIlo1WSTZwPB+xU/Wjl8s/wc7rr8xMgxSW6HD543odM5zBey3Omi5gIxcZB3wFnArbpEEdupE0en6ol5ysUQLmLQOnFBbW4oYGCTeulQLegpcV34X1xgzz5yb9xy6VSprfTcUj1XUsiV1Fw6f0dqhTT/XmxTxyRWAoL7KhaSHKb4/FSf16Fh6Pnj9h+uONsznEP/EysJz3fqBCkUMrLrHHTmZa67b1kh/bVz0yGoA52DuR2VyFLHvTCLtZIjbYi4ENFkMCsmjYt3ioyZHf2s4xGuddlkESXFA/LHp9o8KNtBPG/4vFDJkOV7M+scGEYPbsacb6l36C7guh8xVtUo2Usf4qLI0F1O+9oQQTLx1r8jPidEj+u0tVLwW/Qq1ovhzFwIH588nVPcinAsbgi+eNbEuD/OQQl98tD0IhoNYiVAzbUmOYf0PfAAkj+bcayyzR3t3XhQkVq0luh3nAN/Rb+6ZArOPnLvxLm0zkG/s7NxDk7moBS0IPaTCrEBbh5YAedQoc7B1TKFy5c37VJHolThq9MPS/z+z/Mn4V+O3x+fu2d2ymyxGrgoUAnJj1YWnaT4PB1xEJSdPE2ryl9FXrB0cbSAwFpJJ9d3RcQ5CFZXJl1YSeIcxFhEJQtHLbbPmFnkyX++KHDJao4g7eegNWWV3vd+Uk4S0aKpxBjGDR+AF645I9k2170I82D4gDTn1iSIlVREYndXCSOkMj63TjlklLP/jAxV7vRaot9yDhNGDVI654gvSb3zjndZYnsyXMxBuTRCnO+N2sB72YmDWrSlNouV63C0NBZwxyfScnbegai/UCWvkXHQ6KRYpqWxiCkHjIiIVl5w0R8UKMmqy9YzOkVqup14HvA2lO9RKlLl5xB9AFQEJgu4Z7zIOZjmdFmjcygQYeJeScsfHThnSlKZqr/DhSi66s2NSqzkxjnc/LEpyTqCLwRjaiIji9OC41S1MFps8Lw+cdsrqfNtCks5Ps/uuvxE9Sziz7rCuGG1QP8jDlFil/Q5WfGmmrA85aHWYiZqzD6WWCEdV1Z6SDssnOKc+sQpB+JHFx6t9JngYQT4ZJ1+1D6pOuIzuOzkCXjfoeogh53dZbwuyNBlT2Y11A9GpcisBr95fqm1TltXKUrFCSg4B1lWrn2n8fvpNjhHyvNJZ7YMBM9WxVlkAZ+ros5BjO3EIdrRBwmngus+NHlfNDUU8JHjxmHf4QMifYWJsQzeY3IR1xGTxK5bQ7Rc5gTfZHGcftiYFAfeUKRIj6MLja+KuLy9PR0uRAyE9/yiOFxHrONJrw3lMkOBEIYiSfftEqkXyNfE2Yb+Rxy4BYbinKz0URHx5jCuTyxW0ugcHMbCnY/EuaIiDi4Lp7jjOGDUQFw0NR3CG4h3dtyJ52cXT07VGSzKiy0iphcWx6KBJoedrq45rsg0Kd0Ot+RrEPHY62utvg4yhkvKX53HsYyn3lyHN9dsR3epHHMOGiIvwhRdtksTZysLOG0RLZ8+c9rBinqxWKm7zKI5eMCoQXj7e+fioNBfgI/XJHbksbtMI5cdSXVtyvlVdCBK+gCIscQ4xg0fgNVb21EuM5QYU37bKs5hpyLpks7XiRNj1RwuMZbIOCmDX2ET6dbT16HfEQcO1TtoLBbQJXxIqheli/Qow0Vuv729G9vaurB4fZzYJQ+xkok15Tu7rhLDkJYG5YfU3FDEMWHmtSzhsVX226ZxJsuDj3Luiq3SWOI2fzojTchMOPJbf81UXzZZlGFTlu/qLMWOVIpnIT9LXaY+AOEiXd3nyfsTva1V74gPizH9rhoQk2Lp+4w5B3MdAIlvTVWdb2RsICSt01SBGYe0NKCzVMa2ti48Mm+NWlyksFaSc0cASesuEZyoqhbwUpklctWrzgN2S8F6Rmbttwpp1XQsFghdFntk2fv3do083kWn+1q4EP78mcVRmU6RabO+Eb9n044z2KEzbNndaVzM4yTv7sTBZTHTtaYSne0ztCVKQwkAgzTmk/WC7VF0dJciE0ddXg4RSidF4RFWq5Dmi11HYsOjrzdzySZtZODgWjvnoHJI07XTZeHSC0RulnCUFLeMG5EWnfFnfcNTbwOAMjQGf/ZlxjB2WAtOnThakTtC71wYp5VNP4BnF66PTLBVjy9O25o+F7Qd+OTU05q133EOkQWG4iU0FJImaqqdorjTPnyfIYkokiJc1lRV7B/Vgp1VrGQSBRWIsGV3Fx6cu9po/cDbyMY52OvqxOiqe9xnWEsiam4t8TMHrsR2d+2dolhJwTk4TAqbtzzHMMmKRqnjKMT6C1X7cj0eLl3LORQ5cdAOS9jtGwhI+H/rbiFqqmJc63e06zuS2hO/272HtqTqRITSkN5XtFYqlZmRywUUnEMhvl7G2+ti6YCSOITX6Pr82vTAxL2ekVn7HXHgUL2CxmLBmhtaFHOYFk4XayXV9Wq230Uh7S5WcgFfxF2IA38m3/jgEda6uudClDZHdNlp54V9FYpaGbZn195dMiqkXZ6lWMOkkP7VJUlrHBXh4WUicVDdQ9rEVj3O2HfDPO9tG5lIrFQSOYd0m2u3u5lIExG6us1tFR1EYpElYugHpBMj8nqy4jnydbHef7pd/ix0w4vT2hqbzhX9jjjEIQHUE4i7sd/zqRNT53kdDtPOzmURVlVR7wDdsmY5jcvRk8BF+cgtXwpE+NSpB2L0YLW1ktiEXiGdZtNTzliWMZswYVQ6ec4hgnmmm/jMXKets2RUSLvlyRDml4ETGzEwyVGZQrZ3Wrhhec5t1ST0aYjmhHZYwXsEYEq9pB6Dui2OscNa8JerTlG3h+Q9qkV6lPivQkHY+TPGtAELeRtX3T07Uc7HUElQTi5WsnErnnOoISJTVsU58YM+UmOznwh2ZyQOyXMqT0vX11wku+u8K+fguvnm7ZnUCOdP3hcNBUJnqZzSxYgQn5lpNyZ/VHL0yiz6DxnjFZnVjh4vpspUXyeGM9B1/81/CrKXlRmLFgiVot9Fv5wg8g4x/qO2leKi4L8tTpM8X95cq86H7LJh4EH6su5wbaa/Hz95Aibvpw4tQZQUKym5NuJt2sfBI+faFuqXlyVT3fPnXIlPUpdFIe0aRDFP9D/iEHEO6XPipNKJABJmpxkW4RnHq01LXUBEaJUmYro/YewOuyMbGhwWAu5EViozNBX1uRPENkxss2zDbfM7yALVB9vg8L6v/VCcvFDX/cFhSscyixPMqLLVuRA3sY4pxn86FIeeI1huycstz5ftbWoTYF7PZonEkN2qxhYbzJT9j5CcO0qjDof5zPsslYN3qaurmytfOftQAOnYTDZxKSAqpM3rzufvnYMTrntKN/xc0f+slQxzVpT364lDXC6bXYpIx6dJt+f6/RQoKd984MqTcNDowak6HGZdiBvcbNrj48YGNxGbaTcmBzOTiUU1xEH1rMX4R9pxJXJM67mesJfIMkjFSYl97DssrTQN+oiPTWIlJ8snxwcmMyifeO8Edb2iy5ywB3ZUj0HP+QBAk4ITEyEGY1TFteLPx/ZIuAhXzl0tQjUPvnjWRJx4YGCcIkdPlee1qtmuSKxk7lN0uqs1quIciGgZEc0norlE1BqWjSSiJ4loUfh/hFD/60S0mIgWEtE5QvmUsJ3FRHQjVRN9zQL+mlSyd1vyHBmmyIyiMvHaDx2lGYvbBySPZdiAxpQVT4JzyLDjtPXp2laTUQQiipX0dWTxh5zr2FVfooLqWYtD1hMtcU6o2+ZVyiw2G7VxDj/VBFhLesu7PVPAzSPbpa1jxg/Dh48dr6zn5OcAe0h42xjithw5B2nzpOLoORdieyaFUCwm51lJ1kmXXTR1P8HTPHkuHe1XIVbiCukMfdYaeYiVTmeMTWaM8Xi71wB4mjE2EcDT4W8Q0ZEAZgA4CsB0ADcREd8O3AzgCgATw7/pOYxLCZMpq8jGVuudynd944YPwGUnT6iqrfQkVXxICc7B1JZbnxHnYPGZ4DB9vGITutYKlFQqPvXl96VEcUMEz+1/PXF/PPGl92n7lKFarEQCrjMMEhddfWylWB58/ZOBHb3aCU68Rt2f+LyziC1dAy+qkNgUGa5xsvgpEHZ3lrBDkWJVxKdOPVA7hrit+LhZ4dgmQvSGN5n12lAkUeegrqN61uOGD4jzYkiTTbSkAnSmrBbOIbeQlO6ohc7hfAC3h8e3A7hAKL+XMdbBGHsHwGIAJxDRWABDGWMzWbBy3yFckztMGxqRamex71eBi6hM7bjursTQxoB6ciXH7r7j1NYLx232mYiPxZAbpj51HzlJnMMhew1J7aJaGouR9+tBYwZHMfBdoHrULnqaBGHTfrgBsigidTtEUdxkMmWVFwubtY9xXI4EyUUP5frVZOV8VAr+qE8iZ87BGt24wBXqdoW0bryySE3OLaK6vDsyZe07nAMD8AQRvUpEV4RlezPG1gBA+H+vsHwcADGV2cqwbFx4LJenQERXEFErEbVu2LBBVcVtxFB/6PwFELmLX3Tgkz0LkTlF4aoPILULUwVPS/Sdg1QudoLT1xEXlf1HppPgRBCGo/vIZc7BhqycnSq9pyjTt+sT9IhSptp8UZwMHgj7h+GmTU6F8rB0iZ1ckEw3a+Ic7F7zcp+ih7uIdF5pM3EYPVjvDClfafIxuX3mu9p2eL1SmN1QrxxWl4sBDEXIujOltVJJL9HQXVNrVEscTmGMHQfgXABXEZGJz1fdnc6VUvmZMcZuYYxNZYxNHTNGHSnUhjgqq140U61ICYg/bNM7veJ9B0XHpx82Bnd/cpq13Ze/caYyQbkIUzBPkeXdyxBF1c1sMT42W5PE0I1dtFY67z1jtW1FYaQ17+hboVmpiL2GNOPHFx2TKnexVnLRl/Bye84N9bEMzh2ZFNKpxbWKOSs+B1OffKNg6kl+Rrow7ilTXMX0Ed+JzodG1aeK45Lr6MLeFCJrpWxiJbE8JVYK5/VPwjmoCtXeaQmf0QNSpeqIA2Nsdfh/PYA/AzgBwLpQVITwP08evBKAKEQeD2B1WD5eUV4TmKKyRjFfDIpmV/AJatrFnz95XLSonnHE3tp6ew+NPwyT+EbuWwVR9HHn5WpHP0CQoxv6sYUa5xDb0Cemj+3EzzpyL2UdIH5/OgJ+7nvSIci/e8EkZThxUS/gshBovbv52NRNRHDdofNQC08sWKetI18tbjR0kJPbcCSfg51zMC1UzjotWayk5BzEMZrGlTxnMmXlOOVgNZdeLPBMiXqxEn9cckrPKKqrhnNoDL/1oS1x6JPf/dvxAIDVW9sAuBlGAPVxhquYOBDRICIawo8BnA3gdQAPAbgsrHYZgAfD44cAzCCiZiI6EIHi+eVQ9LSDiKaFVkqXCtfkjshaSSlWyo88NziY/QGxdYvJpn3G8fsDCHbnKvGIDJMoSJy4JkLD2zCZJCY+XsfcAy6cg0lnwjk/HdFVlQ9pVt+nGGLczZRVPSa+a//l35eoK0j1TG2JWL9DHz5CHO+TX3ofLj1pgrU9nTjSxb8HcOOoXb+hlJ+GRedg2mTJIWdU30iKGBk4RR7gTkeQVCHHgfj5yOXXPDAfgDqk/ZiQI3r13S2JttN9Jn/nsYG1oRo/h70B/Dl8yQ0A7mGMPU5ErwC4n4guB7AcwEUAwBhbQET3A3gDQDeAqxhjXIt0JYDbAAwA8Fj4VxPEnINerJQHIuWd41bK9Kr5RB4+sNFJjmz6QEXxp2loZYv4Ru7HVRSnCooGBB+vC6G0jUtVrlOCJ3bMDmIlHdfDS2026Emz2Oomm3h5tfM2Yelm5BzUO+NEW8Kx0Wteet4LVqe9ssXF2TQPZTNq1QZEvt6kY+IiHl3UYn7tvJXbEuW6UN6t4cKvak8OoKiVKkknOrpLxuebByomDoyxpQBSglzG2CYAZ2quuQ7AdYryVgCT0lfkD3MmuDw5B668c6tvqsY/JHkiaft2FCuZFihez1X5aExp6bDJKRRi9ttk38/ZaVtYaRE67+2EzsGiZNS1DWRQ/Gb0ozEhSRyqa0sci8uCbtq1irvmq08/xNBn8veTb6RFaK6cgzxmFVfgupAWCxR5uevnmOZarnMQnkGnJZfGsFSCKXXb8nzZursLQ1rc1oNK0X/DZyjO5cg4RLvfak1ixTaGOk4Go0Lakq+Cg+8OTcPPKla683JNLmog4QRn4kL46HU7SdUiouMcxAXD5uAWjEu3k0z+/vCxSmM7yVNc3Z8rXH1MZLm4uq342NTWX+asAgCsCuXjKsxeviU6vvrMifo+M4qoTMRUXnRVTZvuS8TyzbvxREioNmjEenoRZJo4iIm8xHk9Psw5IYs8XS2kdMER80T/Iw78QPEO8pTimeTmmdsKJ4Yq/4MKpg9BtKQw7cYi8Y2hjqtCmsNscRKHJTcqty0KadVj1z2PpBOcndiorEyA9DPSWYEVHXfoHF8wLK5ijyYfAFVaUBmu/gTvbjLHaALU+ZNtfQLAvyvCvSed8/Rtie/3winjMWFU2qzalTiIeGvtDmW5lnNQiJVE7+hRwvz/2/95P97+3rnOXJ9ca6fFyTAP9DviwFcXlc4ha7Cwy997oPYcX+Bc2zTNkdgz1W0imT5wUV7sIlYydZnkHKrThYiXu3BbWYKiDdIopBN+Dg796O5RLtW9cTH+j4k48C7PPkpvwSbep8l72M1PIz42taWLiirCFgGWQ96YnHjQyFQd15Awoi7oW/98pIbQZ2fVdBuGwc1qDl6VZpSL4L46/TAcJuRAbywWMukM5PfY1uWJQ+4wWStlZR2ufL9+V8YXkl0dbjspEw2JfQ7cxmWadCVH4vCVsw/D8RNG4IzD9WalWT3KzYQmPumSi9rFL4FDx7GcJZgP6x6/ywIl96mLM/Xayq3WOkA8F1zSuAJAi2Ez4MLAihul1yQlq4hvfyjtQyKjPZTXq/xKEn1Kj1Id/sN8nmOAkD5WR8Aryb2sY2BVZtFA/KzFvvj3dsx4O2E1Qb4tVw6tqj5r3kMvg0nnsGW3Q75aAaaP9x+LA8sVVa7arChExMGVc3ATK5Hh7R84ehD+8JmTjUqv5K7aPpVMo8/KhbgqpE2imZGDmiLPW93iIYqStJyDVKx7/uJmwmXX6BLKArB5UgfnRhrSre4jhOzYZRBXuOTw5smydN7+HDKhVU1tVwW+GHJEV89VXydC19agZp2BQ/BOuwWF2GtPSQAAD21JREFUfXdknl2dkkkeiicONUAceC/9sl5csgmAu2WD6ePN+vJM675LBi4ReYiVXOCqyOQLr2uEVxdCo9URSOX/dsoEYzvXfmgSRg9uxvAB6sVzsCCScsnxAehFM6JYxmWOGTmHhM+EXS+kW9CAJOEwcTQuHN3ZRwZOiDbLOpnQqMS8vC3APHeGCn3p6h22zxCn7+e6D8dGk4ePVcfuMoWAAZIbMG695ZJf3QSX/B15o//lcwj/mx7tMUKGMBNcQ0a4wBQSwzXcMIdp4RFN1FuqtJNOWJM4+CaYFv1ERFyHD8nVzNCmpznv6LE472h9uI5knxprJeltf/TEAzTXCwpph4XWtBi77kR5Nde502LQObgscN/+5yPxxbMmYqCFyxg7POnvonq0pwsiTdPtJvKwGO5z2kGjog2gDuL1XzrrUGUd3fdFRChQvAF7fdW2yFqpWgMV8a4e+8Kp2rAkeaL/EQdD4D0O24Ly2rfORmMDGe3xsxL2fzp6X+051yxWcn0V+K7mxouPNY6/2n5ERD4Thu62tsUivWqU2/K7y3ODpdU5hPfVUAiC5g3WKMDFsbkYFwwdoP88s+blcBdJ6jcpLvOloVhIWOXoMFCyvNtH4xzJYbpfV2e5bgev4kSEWs39yptCcew8cB8A/NPP/xG3VaVYqRKH02rR74gDhyk+uu3Ry44rWdtXwbTQjgzl4nLSEBmvX3uOdXfHdzV5TDDXzRBz4BxeWhqnQXVZhNx3zvl9SHprpaC8u8ycuB5XuIRKsSEmDm71vzr9MO25Ic0NmH7UPrj0JDVnlAXiXFh83blVbVRcuDAAmBsaBJiiGnPOwcR9i/398TMn4bj9o3xm4MmCZFQ7L8RPp5ogi5n6rEsvvQgmP4foVA7P/r8+kp/D93H7jcD+IwemMqPJGNzcYNz5AbH1RB6LpqsBSMmBcxCR584oz89IH2IjPnaNMWXCv3/wCEzca3AuHvtZxUqmHBmFAuGXl0zByYeMrnpc4mJZLQfL25p6wAhjPW5me9ph+ojOfNMxxsD9iPOgsVhIhWKXQ3YD1c8LUSyVR0h+F/Q7zsGUCY4jj4XzAIUjTqUYNrARz3319FzaisNi5NFWtj5dPxCXXZbqA1ShHoo7sYtqFY8A8Kn3HYRPOURZdUFWS7c8PPpd4KLcdgVfLE1OliI+azBB58/LpMBP9C09L55JTobLhsfksDhYGE+93lG/4xxckMd64rr7veeTJ+LGi9X5hGsBvqjmIf7ghPYjx6nDRcT1gv+uk9qFiJhCFl8yLRZ71GOTlYwx1bs+Kf7IXZ9DvRaePLlDVw8Gnidk/IiB2jqc0NgU6hzyd9TYUEgl9wHMBiccJqda0fFO52eRN/oh5xD8N03NPPK1EhGOGT8MH5tmls/mwaJnAdfJ5SJWQra23ImDA+dgIA4HjNJ//LWAONp6KQs5dOHIOSijQrpeIgtXzuF9h47Bc2+bsz6qFmMVbrz4WFz/L2bnPD4sVw5Qft8DGosJT3gOl/AdpkVfDK/vQmjyQP8jDoZMcBzDHRTOLnjwc+/NpZ08Uc5V58BDkbjBdeGsVqwk0o087nPm189QfvCqPrgTmA6nHTpGGSqiEjz9ldMwYqDeuQ2Ivadtxgwc9VJ2unKuv7l0Ktq7zc/06ND7+KMn7m+sVywQigVLFsWsxFTiclsaC2jrLKWU0tUu6EMcknzljf5HHBw4h/88vy7Rw3sUeYgPXILziXCt57KrNCnDjxoX24DnsREeO8ycs1vsQ47xL0OXnrISHDxmsLUON6uth0dtFrjqn5oa7DGIDhw9CO98/4O5KPD5d+FKvFKcQ1MRbV0lzFmxNVFuuocfXXi0lXi4eKfnjd4lIK0DjLGVQgx3zJuwJ+KHFx6Nj037/+3dfYxcVRnH8e9vu6XQFiiUgvSNFlIJpbyUrmCxFWMCUnzZItaUEFpBAwQIaGIiKMYEMIJRwpuxNNim+IYhgraCEjQWRFGgUl5KLaXVSKHhRXnZghTXPP5xz6TDztud6Z177mWfTzLZu2fvnH322bt75px75pypnDB991+9Vl7NpB0DTd1zaHJeZX787CZLUZ942K6hujxuSMfY/D2tykq+zXo+QCbTU9tRSVnaPUpa15fN76DdnsNQo0f28tY7g2x5ece7ypu9GFvUN4VPHtP4fU6tnt8tw67nsGDW+3j/QWObTvnMq2sdw6Rxe3H1wqMyqeu0WQdzzacHOb3FDemKtHltdlP36StPTVXH3EPH89DWf8XYl71QDhi7B0vmHsJn+6Y0Pe/K/lm59pjH7TWSIyfuw5dPafy+ihjSLPVSbegr/rcH/8cT215/1/t2snLFx4/gmBQr42Zl2DUOh4wf03Ca6aI5k7lj3bacIyqvnh6x+Pjm47yQ3MPJY3OSarcu7eP51/6TS0Nf/T3+kNGU46xIKuQwae+IHu6+ZH7sMGpUXjTubNHTuvPCE3llYGdNr7nesOJdF56YSWxfmJ/N9Oa0CtM4SDoVuAEYAdxqZtfkHcO1ZxzNVQuL94dUdmsuntdyLP78kw7llvu3ZrYv7phRvU3f0JWl6uanssOXK6fKmk/7jWk+3FX9ruhGRvX2sOnqBZnEFUMh7jlIGgF8D1gAzATOlNR68fiM9fQot2liw8mU/Ue3XNyusshZmg1liqb6mslyH3KXv8MmjOX7Zx3Ht04/erfrmpfzNPWsFaXncDzwrJltBZB0O9APPB01KpebPUeO4I4L5r5rt6yy2C+jqc+uGBYclW6V3noWHjuRX6x/AYCZE7u/cmo3FaVxmAQ8V/X5NuCESLG4SD4wLZv5/3mTxFX9RzJrUrql3t171/WLZ3P94tlsfnGAaQdkt4RODEVpHOr1xWtmsks6DzgPYOrU1jdCncvL2XOnxQ7BFciMnO53dVMh7jmQ9BSq59pNBl4YepKZLTezPjPrmzCh8cqKzjnndk9RGodHgBmSpkvaA1gMrI4ck3PODVuFGFYys0FJFwP3kkxlXWFmGyKH5Zxzw1YhGgcAM7sHuCd2HM4554ozrOScc65AvHFwzjlXwxsH55xzNbxxcM45V0PN9uItMkkDwKYGX54K/LNFFfsCzVeDS39elnWliT1GXGnr8txnH1dRc5/2vKLGP1yvncPNrPW79MyslA/g0SZfeznF85en/D4tz8u4rpaxR4orbV2e+2GS+7LHP1yvnWb/O6sf79Vhpddan8KalHWlOS/LutLEnrauGD+j5z79OVnXlXfu055X1Pj92mmizMNKj5pZX7tfK7oyxw7ljr/MsYPHH1OZYk8ba5l7Dss7/FrRlTl2KHf8ZY4dPP6YyhR7qlhL23NwzjnXPWXuOTjnnOuSUjQOklZIeknSU1Vlx0h6SNKTktZI2ieU7yFpZSh/XNJHqp4zJ5Q/K+lG5bCnY4axr5W0SdL68Diw27GH7ztF0u8lbZS0QdKloXx/SfdJ2hw+7lf1nMtDjjdJ+lhVea75zzj23PPfbvySxofzd0i6eUhdMa79LOPPNf8dxH6ypHUhx+skfbSqrtxzn4k0U5piP4APA8cBT1WVPQKcFI7PBa4KxxcBK8PxgcA6oCd8/jAwl2RzoV8DC0oU+1qgL0LuDwaOC8d7A8+Q7PP9beCyUH4ZcG04ngk8DowCpgNbgBEx8p9x7Lnnv4P4xwDzgAuAm4fUFePazzL+XPPfQeyzgYnheBbwfMzcZ/EoRc/BzB4A/j2k+HDggXB8H3BGOJ4J/C487yWSKWZ9kg4G9jGzhyz5jd0GLCxD7N2OsRkz225mfw3HA8BGkm1d+4FV4bRV7MplP3C7me00s78DzwLHx8h/VrF3M8Zm2o3fzN40sweBt6vriXjtZxJ/DB3E/piZVTYo2wDsKWlUrNxnoRSNQwNPAZ8Kx4vYtZPc40C/pF5J04E54WuTSHacq9gWymJoN/aKlaFL/fUYXVNJ00heIf0FOMjMtkPyh0TS04H6+4FPInL+dzP2imj5Txl/I9Gv/d2MvyJK/juI/QzgMTPbSQFy36kyNw7nAhdJWkfS7XsnlK8g+QU8ClwP/AkYJOU+1TlpN3aAs8zsKGB+eJydZ8CSxgI/B75oZm80O7VOmTUp77oMYoeI+W8j/oZV1CnL7drPIH6IlP92Y5d0JHAtcH6lqM5ppZgiWtrGwcz+ZmanmNkc4Kck48OY2aCZfcnMjjWzfmAcsJnkn+7kqirq7lOdhw5ix8yeDx8HgJ+Q43CHpJEkfyA/NrM7Q/GLoctcGbZ4KZQ32g88Sv4zij1a/tuMv5Fo135G8UfJf7uxS5oM3AUsMbMtobgw/3faVdrGoTJbQVIPcAWwLHw+WtKYcHwyMGhmT4cu4ICkD4Yu6RLgl2WIPQwzHRDKRwKfIBmayiNWAT8ANprZdVVfWg0sDcdL2ZXL1cDiMN46HZgBPBwj/1nFHiv/HcRfV6xrP6v4Y+S/3dgljQPuBi43sz9WTi7S/522xboT3s6D5NX1duC/JC3x54FLSWYQPANcw6439E0jWa11I/Bb4JCqevpILqotwM2V5xQ9dpJZHOuAJ0hudt1AmEWTQ/zzSLrBTwDrw+M0YDzJzfPN4eP+Vc/5WsjxJqpmZuSd/6xij5X/DuP/B8kEiB3hepsZ8drPJP4Y+W83dpIXeW9WnbseODBW7rN4+DuknXPO1SjtsJJzzrnu8cbBOedcDW8cnHPO1fDGwTnnXA1vHJxzztXwxsG5LpB0gaQlbZw/TVUr9zoXW2/sAJx7r5HUa2bLYsfh3O7wxsG5OsJia78hWWxtNskbFpcARwDXAWOBV4DPmdl2SWtJ1sL6ELBa0t7ADjP7jqRjSd4FP5rkjVDnmtmrkuaQrKf1FvBgfj+dc635sJJzjR0OLDezo4E3SPbbuAn4jCXrYq0Avll1/jgzO8nMvjukntuAr4R6ngS+EcpXApeY2dxu/hDOdcJ7Ds419pztWifnR8BXSTZyuS+sGD2CZGmUip8NrUDSviSNxv2haBVwR53yHwILsv8RnOuMNw7ONTZ0bZkBYEOTV/pvtlG36tTvXGH4sJJzjU2VVGkIzgT+DEyolEkaGdbvb8jMXgdelTQ/FJ0N3G9mrwGvS5oXys/KPnznOuc9B+ca2wgslXQLySqcNwH3AjeGYaFekk2ZNrSoZymwTNJoYCtwTig/B1gh6a1Qr3OF4auyOldHmK30KzObFTkU56LwYSXnnHM1vOfgnHOuhvccnHPO1fDGwTnnXA1vHJxzztXwxsE551wNbxycc87V8MbBOedcjf8Dsc3zIt6JgOgAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'].plot()" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEVCAYAAAALsCk2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xd8XGeZ6PHfMxrNqIx6s1wk2ZK702wnsZMQElIIATbUJcAmgYWbhaUty+5e2HLh7m4ucHeBhV0IS00CLEmWchNKAiG92rGdxN2W5G5ZvY3aSDPz3j/OOeORNOqaIs3z/Xz8kfTOOWdeyWfmmbc9rxhjUEoppaK5kl0BpZRSqUeDg1JKqXE0OCillBpHg4NSSqlxNDgopZQaR4ODUkqpcTQ4KKWUGkeDg1JKqXE0OCillBrHnewKzFZpaampqalJdjWUUmpB2b17d7sxpmyq4xZscKipqWHXrl3JroZSSi0oInJyOsdpt5JSSqlxNDgopZQaR4ODUkqpcTQ4KKWUGkeDg1JKqXE0OCillBpHg0OSGGMIh3UXPqVUatLgkCRffvQIt373pWRXQymlYtLgkCQNrX6ONPuTXQ2llIpJg0OS9A4G6R0aIRgKJ7sqSik1jgaHJOkdGsEY6BkcSXZVlFJqHA0OSdJrB4WuAQ0OSqnUo8EhSfxDQQC6BoaTXBOllBpPg0MShMIGf8AODv0aHJRSqUeDQxL02a0G0JaDUio1aXBIgt6h8+MMOuaglEpFGhySIHqGknYrKaVSkQaHJIhuOXRqcFBKpaApg4OIrBCRJ0XkkIgcEJFP2eXFIvKYiNTbX4uizvmciDSIyBEReWNU+RYR2Wc/9g0REbvcKyIP2OU7RKRm/n/V1NE7aI05ZLhEu5WUUilpOi2HIPAZY8x6YBvwMRHZAHwWeNwYsxp43P4Z+7FbgY3ATcC3RCTDvtbdwJ3AavvfTXb5h4AuY0wd8DXgy/Pwu6Usp+WwrDBbB6SVUilpyuBgjDlnjNljf+8HDgHLgFuAe+3D7gXeZn9/C3C/MSZgjDkONACXiUglkG+MedEYY4D7xpzjXOtnwHVOq2IxchbAVZfkaHBQSqWkGY052N09lwA7gApjzDmwAghQbh+2DDgdddoZu2yZ/f3Y8lHnGGOCQA9QEuP57xSRXSKyq62tbSZVTyn+oSAisKI4RweklVIpadrBQUR8wM+BvzDG9E52aIwyM0n5ZOeMLjDmO8aYrcaYrWVlZVNVOWX1Do3g87opyfXQMzhCSPd1UEqlmGkFBxHJxAoMPzHG/MIubrG7irC/ttrlZ4AVUacvB5rs8uUxykedIyJuoADonOkvs1D0DgbJz8qkKMdD2JzvZlJKqVQxndlKAnwfOGSM+WrUQw8Dd9jf3wE8FFV+qz0DaSXWwPNOu+vJLyLb7GvePuYc51rvAp6wxyUWpd6hEfKzMynKzQSgU8cdlFIpxj2NY64EbgP2icirdtnfAl8CHhSRDwGngHcDGGMOiMiDwEGsmU4fM8aE7PM+CtwDZAOP2P/ACj4/EpEGrBbDrXP8vVJa7+AI+VluinI8AHRrcFBKpZgpg4Mx5jlijwkAXDfBOXcBd8Uo3wVsilE+hB1c0kHvUJBlhdkU51rBobNfu5WUUqlFV0gnQe/gCPnZ51sO8ZjOGg4bPv/Qfg409cz7tZVSi990upXUPOsdGrEGpO2WQzymszb1DHLviycp8XnZuLRg3q+vlFrctOWQYOGwoS8QJD87k1xPBpkZ8UmhcapjAIC+QHCKI5VSajwNDgnWNxzEGMjPciMiFOV44tJyOGEHB/+QBgel1MxpcEgwZ01DfrY1jbUoxxOXMYeTnf0A+IcmbpUYY/j0A6/yn083zvvzK6UWNg0OCeZkZM3PsoNDbmZcgsN0upUefq2JX75ylkf2N8/78yulFjYNDgnmZGTNz7bmAhTleOKyp8NJJzhM0K3UOzTCP/36EADH2vpYxGsOlVKzoMEhwSLdSpGWg4fueR6QNsZwqnPyMYev/v4oHf0B3nbxUnqHgrqvhFJqFA0OCdY7NLpbqdgecwjPY/K9zv7hSHdSrG6l/Wd7uO/FE9y2rZq3XrQUgOPt/fP2/EqphU+DQ4KdH5C2upUKczIJm/mdVXTSbjVUFefEHJD+598cpDjXw2duXMvK0lxAg4NSajQNDgnmjDn4vFZwiKTQmMdB6ZMd1hv9xqX59AWC48YTDpzt5S0XLqUgO5MVxTlkuIQTGhyUUlE0OCRY72AQn9eNO8P608cjhcbJjgFEYH1lPmEDA8OhyGOhsMEfCFKYY3VrZWa4WFGUrS0HpdQoGhwSzEqdcT5rSTxSaJzqGKAyP4tSnxcYPe7gdGsV2OssAFaW5mpwUEqNosEhwfz2Xg6OIvsT/HzOFjrZOUBVSQ4+OwhFjzt0xwgONXZw0OmsSimHBocEc3aBc8Sj5XCyY4Dq4lzyvE5wON9y6IkRHFaV5jI4EqKlNzBvdVBKLWwaHBLM2gXufLdSnteN2yXzNiDdHwjS3hegqiSHvKzpBYcanbGklBpDg0OC9Q6NkBfVchARCnM8s94Nrql7kO1ffJyXT1hbbjsro6ujupWixxxiBQedzqqUGkuDQ4JZ3Uqjt9Eozs2cdQqNZ462ca5niK//oR6AU3bCvZqS3Mh02b5YLYec88FhaUE2HreLEx0aHJRSFt3sJ86CoTAGa8poOGzGDUgDFOZ4Zj0gvdNuMTzX0M6+Mz2RlkNVSQ7O+HJv1IB0rNlKLpdQU5LDsTYNDkopi7YcpuG5+naCofCszr3zR7v59AOvAtA/HCRsGDUgDXYKjVm2HF4+0cmVdSXked18+5lGTnYOUJSTSX5W5vmWw5hupaxMF153xqjrrCzN1ZaDUipCg8MUjrf38yff38GjB2aX1vpgUy+PHWxhaCR0Pq9S9ugGW9Esu5Wae4Y43TnItWvLed+2Kh7Zd46XGjuoKrHGEDJcQo4nY1S3UvfA8KhWg6OmNJdTHQOE5jHHk1Jq4dLgMAVn5fK57qEZnxsKG9r6AgSCYV5s7BiXkdVRV55HR/8wZ7sHZ3R9ZxD6spXFfOjKlbhdLo6191NdnBM5Ji/LPW62UqzgsKo0l+FQmKYZ1kEptThpcJjCQMBKPdHqn3lwaO8LRD6JP3G4NfImPXbM4cq6EgCeb2if0fVfPtFJjieDDZX5lOdn8Y7NywBrppLD53WP61aKFRxWlvoAOKYzlpRSaHCYUv+w9cba5p/5ArHmHiug5HgyePJIa2Sm0NiWw9qKPEp9nhkHh53HO9lcVRTJ03Tn1avIynRxwbKCyDG+rEz8o4JDcIJuJSugHG/rm1EdlFKLkwaHKQzYwaF1FsGhpdcKDrdcvJQzXYPsOdUFEFmc5hARtteW8kJjx4QpLIaDYV5oaI883jM4wpEWP5fWFEeOWVXm45V/uJEbNlREyvKz3KPSZ/QOjlCQ7Rl3/TKfF5/XzQl7tpNSKr1pcJhCv92tNJuWgxMcbr20CoCHX20CxncrAVxVV0KbP0B9a+xP7r870Mz7vreDH+84BcCek10YA5fWFI06LtuTgYhEfvZ53ePWOcRqOYgINaU5uhBOKQVocJjSXFoOzb1DZLiETcsKWLckLzLgPLblAHBFbSkw8biDs+3nXb85SENrHztPdOJ2CZdUFcU83hE95hAMhekLxO5WAqv1EI/9rJVSC48Ghyk4LYeewRECwdAUR4/W3BOgPM9Lhku4dl05YI0/ZGaM/7OvKM6hqjiH5xs6Yl7rbPcgPq+bHI+bT93/Ci80drBpWQHZnoyYxzvysjIjA+HOVNqC7NhrH/OzM0ctmFNKpS8NDlNwWg4A7X0z+1Td0jtERX4WANeutYLD2MHoaFfWlbDjWEfMBXdN3YPUlObw5XdeyIGmXl473T2uSykWX5bVcgiHTSR/U3TqjGj5WZmR6bZKqfSmwWEKfYHzrYXW3plNZ23uHWKJHRw2VxWSn+UetwAu2hW1pfgDQfad7Rn3WFP3IJUF2dywoYL3XmaNYUQPRk/ESdvdNxyMmXQvWn62tSZC93VQSmlupSlEtxxmOijd0jPEVXXWWII7w8UdV9QwODxx19QVtdZ6hxcaO8aNJZzrHoqMS3z+rRvYXFXIG+yuqsk44xt9Q9HBYfxsJevYTIJhw+BIiByP3hpKpTNtOUyhPxCixN6QZyaD0v2BIP5AMNKtBPCZG9fy92/ZMOE5JT4v65bkjRuU7h0awR8IsrTQulZWZgbv3roisr5hMtFpu6dsOdhdXr2DwZiPK6XShwaHKQwMB1lRnIPIzFoOzXYX1JIC74ye78q6Unad7GIkatzBSWmxtDB7RtcCIntH+IdGYmZkjeZ0eemgtFJKg8MU+odD5GdnUpLroa1v+sGhxV4dHd1ymI4NlfkMB8OR1NtwPjhUFsw8OPiitgqdfstBg4NS6U6DwxQGAkFyPRmU+ry0zmCP5UjLYYbBoa7cynHUELUYrslO+rdsVi2H0d1K2ZkZeNyx/9udxXnRifqUUulJg8MUBoatwdny/KwZtRzOdyvNLDjU2sGhsS06OAzidglleTProgJG7SPdPRB7dfTYY7VbSSmlU1Km0D8cJNebAXhpaPFP+7yWniHystwznvXj87qpLMga03IYZElBFhkumeTMia8H52crTRYctFtJKeXQ4DCFgYDVcsjxuGnrC2CMGZW7aCLRaxxmqq7cN65baeksxhsAcj1uRMBvdytNtAAOolsO2q2kVLqbsltJRH4gIq0isj+q7AsiclZEXrX/3Rz12OdEpEFEjojIG6PKt4jIPvuxb4j9DisiXhF5wC7fISI18/srzt5wMMxwKEyuJ4PyPC8jIUP3NPd6bu4NzLhLyVFb5qOxrY+wvRdEU89gZBrrTLlcgs9jZWadquWQlZmB1+3SloNSalpjDvcAN8Uo/5ox5mL7328BRGQDcCuw0T7nWyLiJP+5G7gTWG3/c675IaDLGFMHfA348ix/l3nnLFjL9boj/f3THXdo6Rma8UwlR125j4HhEOd6hwiFDc09Q7OaxurwZVmZWXunCA5gTX3VloNSasrgYIx5Buic5vVuAe43xgSMMceBBuAyEakE8o0xLxorN8N9wNuizrnX/v5nwHUynX6bBOizV0fneq2WA0xvrYOzPehcupXAmrHU5g8QDJu5BQc7M+tULQew1jrogLRSai6zlT4uInvtbicn18My4HTUMWfssmX292PLR51jjAkCPUBJrCcUkTtFZJeI7Gpra5tD1adnwE51neM533KYznahzvagFbPsVooODmcjC+Bmdy2wxhK6BobpHw5NHRw0+Z5SitkHh7uBWuBi4BzwFbs81id+M0n5ZOeMLzTmO8aYrcaYrWVlZTOr8Sz0R7qVMs53K02j5eBsDzrblkNJrofCnEwa2/o41zP71dEOX1ZmJMhM3XLQbiWl1CyDgzGmxRgTMsaEge8Cl9kPnQFWRB26HGiyy5fHKB91joi4gQKm340VV9EtB5/XTXZmxrQWws12AZxDRKgrs2YszSV1hiPP6+acvZBu6pbD6G1FlVLpaVbBwR5DcLwdcGYyPQzcas9AWok18LzTGHMO8IvINns84Xbgoahz7rC/fxfwhEmRnNGRloPHjYi1CG06A9LO9qAVM8yrFK2u3Edjax9N3UPked2T7gMxlbwsN0F75tNkU1mtYzM18Z5Saup1DiLyU+AaoFREzgCfB64RkYuxun9OAH8GYIw5ICIPAgeBIPAxY4yTo/qjWDOfsoFH7H8A3wd+JCINWC2GW+fjF5sPTrruHK814ao8b3opNFp6h3C7hNLcuQWH+18+zYGmHirnMN4A5xfCwXS6lXRAWik1jeBgjHlvjOLvT3L8XcBdMcp3AZtilA8B756qHsngbBGaa69yLsvzUh+1OG0izvagrlmsaHY4aTReOdXNVatLZ30dOJ+2G6bTrZTJcDDM0EiIrMzJtyBVSi1emltpEmNbDmV53mkNSLf0Ds16ppKjrswKDnOdxgrn03bD9AakQfMrKZXuNDhMYmzLoTzPS8/gCEMjVvnx9n6GgzH2e+4ZnPVgtGNZYTZZma7I93ORN5NupahEfUqp9KXBYRIDw0GyMl2RhHfOdNb2vgA/232GN3zlKe5+qnHUOX2BICfa+1lTkTen53a5hFWlVuuhco6tECdnUo4ng8wpdo/T5HtKKdDgMKn+4WCk1QBQnme9SX/v2eP89c9ewxh4vnH0lp6vne4mbGBz9eg9oGfDWQw3124lZ8yhcIpWA0TvBqctB6XSmWZlnUR/IBQZb4DzLYd7XjjBtlXFrCrz8fPdZwgEQ3jd1nG7T3YBcPGKwjk/fyQ4zDIjq8OZrZQ/neCgLQelFNpymFR/YHTLYUlBFiJwaU0R37/jUq5eXUogGGb/2d7IMXtOdbGmwjdl3/50vHvrcj77pnWsKJ6fAenp1EkHpFNbfYufFFkGpBY5DQ5RRkKjB5etXeDOtxxKfV5+9pEruO9PLyfX62ZLdTEAu05YC7rDYcMrp7rZXDX3LiWw9oz+yOtrp7V/xGScMYfpBIc8HZBOWQeaerjha8/w8omuZFdFpQENDrYnD7ey8fO/40zXQKTM2gVudM/bluoisj3np7auLM2NvFiPtffTMzgyb8FhvjjdStMJDtmZGbhdot1KKehEu3Vvnu0emOJIpeZOgwNgjOHf/nCU4WCYxrb+SLm1C9zkC8G2Vhex+2Qn4bBhzykrSGyunvt4w3zK8Vhv+EW5nimPFRE7+Z4Gh1TjpGWZ7oZTSs2FBgfgxWMdvHamBzj/AoTxs5ViubSmmK6BEY6197HnZBf5We7IFNRUISL8x/su4bZt1dM6Pj/LrfmVUlCLX4ODShydrQTc/VQjJbkeOvqHaY0KDgPDoXHdSmNtrbG6kF4+0cWeU11cUlU0p7QZ8XLTpsqpD7JZu8HpG1CqabFTwfdol59KgLRvOew/28Oz9e18+HWrKMjOpDUqPUZ/IDhqKmssK0tzKfV5ePxQK/WtfWyZh/UNyZaf7dYB6RTUYid97BoYTnJNVDpI++Bw99ON5HndvH9bFeV53ki3UjAUJhAMT9mtJCJsrS7m8cMtGEPKDUbPhu4Gl5q0W0klUloHhxPt/Tyy7xx/sr2a/KxMKvKzIp/OBuz8SVMNSIPVtWQMiMBFKwriWudEyNdupZTkdCt1a+BWCZDWweHBXacRET54RQ0A5fnns64OOEn3phhzAGtQGmBtRd6oDKgLVX62Dkinmr5AMLL5VLd2K6kESNvgYIzhV3ubuKqulHI7g2p5Xhat/iHCYUO/k657Gi2HDUvzyctyc9nK4rjWOVHysjIZHAmNWxSoksfp7szPcmu3kkqItJ2t9Orpbk53DvKp69ZEyiryvYyEDF0Dw/Tb+0dPNeYAkJnh4uGPX0WJb+p1BAtBdNru4mmsjVDx53QprVuSz8snOwmFTSRbsFLxkLYth1+9dg5PhosbN1ZEypysq63+QGQvh6lmKzlWlubOaZ/nVBLJr6R92ynDGYxes8SHMeDXMSEVZ2kZHEJhw6/3NnHN2rJRb+gV+VbW1ZbeocgucNNpOSw2kcys+gaUMpyJEmuX5APQpV1LKs7SMjjsPN5Jqz/AH128dFR5hT320NobiAz+TWdAerFxku/poHTqaO4Zwud1s9ze20MHpVW8pWVw+NXeJnI8GbxhXfmocme/hlb/EAPOmMM0u5UWE6dbSbsuUkerf4iKfC8FOdb/jU5nVfGWdh+LR0JhHtl3juvXV5AzpssoKzODguxMWnoDZHucrTXT7k+kezqkoJbeABX5WZHd/LTloOIt7VoOzzW00zUwwlsvWhrz8Yp876iWw3Smsi42+dqtlHKae4aoyM+iKMeaPabTWVW8pV1wONM1yJL8LK5eUxrz8fI8a5V0/3AIj9tFZkba/YnI9bhxibYcUoUxxu5Wyoq06jQ4qHhLuz6T27ZV895LV+Ce4E2/PN/LscY+BoaD5KZhqwHA5RJ8XrdOZU0RXQMjjIQMFfleMlxCfpZbM7OquEu/j8UwYWAAa8ZSW1+AvqFgWo43OPKzMzUza4pothfAObPpCnM8mplVxV1aBofJlOdZq6TPdA+m5UwlhybfSx3OAjgnOBTlZGq3koo7DQ5jOC/A4+39ad5y0OR7qcLZgMpZpFmQ49GprCruNDiMUW6vdWjzB9K65VCY7eF014Am30sBzT3W6mgnvUthdqZOZVVxp8FhDKflAOmZOsPxzi3LOdczxP07TyW7KmmvxT9ESa4Hj9t6uWq3kkoEDQ5jOKukIT1TZziuX1/OtlXFfO0P9Tr2kGStvUORtPJgdSv1Do0QCpsk1kotdhocxnBWSUN6LoBziAh/d/MGOvuHufupxmRXJ6219AZYkn/+Q0thdqZmZlVxp8EhBmfgL51bDgAXLC/gHZcs4/vPHedM10Cyq5O2mnuHRnV3Ftr5lTQzq4onDQ4xOC/EdG45OP7qjWsR4F9/dyTZVUlLwVCY9r7AqG6l8yk0dFBaxY8GhxiccYd0HpB2LC3M5o+3ruCR/c0EdeZSwrX3DWMMLBk15qCZWdNVfyDI+7/3Eo8faon7c2lwiCHSckjjqazRLqkqJBAMc7y9P9lVSTvNY9Y4AJqZNY21+QM839CRkPQpGhxiKNeWwyjrK63dxw6e601yTdLPyQ4rIC+1N/kBNDNrGmv1W2teomdVxsuUwUFEfiAirSKyP6qsWEQeE5F6+2tR1GOfE5EGETkiIm+MKt8iIvvsx74hImKXe0XkAbt8h4jUzO+vOHM65jBabZmPzAzR4JAEe052kePJYHW5L1IWKzPr0RY/gWAo4fVTidWWSsEBuAe4aUzZZ4HHjTGrgcftnxGRDcCtwEb7nG+JiPMOezdwJ7Da/udc80NAlzGmDvga8OXZ/jLzZe2SPDIzhOqS3GRXJSV43C5Wl+dx6Jw/2VVJO3tOdXPR8sJRySLHZmZt6h7kTV9/lvt3nk5WNVWCtNl5tsp8KRAcjDHPAJ1jim8B7rW/vxd4W1T5/caYgDHmONAAXCYilUC+MeZFY4wB7htzjnOtnwHXOa2KZKkt83Hgf9/E2iV5yaxGSllfmc8hbTkk1MBwkIPnetlSXTTusejMrM8cbSMUNhxs0v+fxa6tL4DbJZGuxXia7ZhDhTHmHID91dmMeRkQ/fHljF22zP5+bPmoc4wxQaAHKIn1pCJyp4jsEpFdbW1ts6z69DipCpRlw9J82vyBSLNWxd9rp3sIhU3M4BCdQuOZeuu10NjWl9D6qcRr8wco9XlxueL/+Xm+3wFj1dhMUj7ZOeMLjfmOMWarMWZrWVnZLKuoZmN9pdWK0tbDxD7/0H6+/fT8rSbfc6oLsGaLjeVkZg2Gwjxb3w5AQ1sfVsNcLVZt/kBCxhtg9sGhxe4qwv7aapefAVZEHbccaLLLl8coH3WOiLiBAsZ3Y6kk26AzliZljOEXe87yxKHWqQ+epj0nu6gty6UwRheCk5n1tTPd+IeCbK0uontghI5+nd66mLX1pX5weBi4w/7+DuChqPJb7RlIK7EGnnfaXU9+EdlmjyfcPuYc51rvAp4w+vEn5RTmeFhakKUthwk09QzhDwRptQcM58oYw+5TXTG7lOB8t9LTR9txCdx+RQ0ADa3atbSYtfkDCRmMhulNZf0p8CKwVkTOiMiHgC8BN4hIPXCD/TPGmAPAg8BB4FHgY8YYZ37dR4HvYQ1SNwKP2OXfB0pEpAH4S+yZTyr16KD0xI40W3+Xlt7AvHTtHGvvp3tghM1VsYODk5n1qSOtXLyikM1215OOOyxeobChvW84YS2HKVd5GWPeO8FD101w/F3AXTHKdwGbYpQPAe+eqh4q+TYszeepo20MjYTIytQ1INGONFtvyoMjIfyBIPlZmXO63p6T1njDRC0HJzPr3jM9/MX1q1lakE12Zoa2HBaxroFhQmGT8t1KKg2tr8wnFDbUt+gb0FhOywGgtXfmM7pOdw7wzScbGBqxGtp7TnWRn+WmtswX83gnMyvA1WvKcLmE2vJcDQ6LWCIXwIEGBzUD59No9CS5JqnnSEsfPjvFu7Pn80x86ZHD/MvvjvCBH+7EPzTC7pNdXFJVNOGURWeee0F2Jhctt7qU6sp8NGpwWLQ0OKiUVV2cQ44nQ1dKjzESCtPY2sf2Wmt5TusM14Kc7R7k0QPNXFpTxK4TXbznP1+ivrVvwi4lOJ+Z9aq6UjLsAFJb5qOpZ4j+QHCWv4lKZZHgkCoD0ko5XC5h3ZI8nc46xon2foZDYa5eY629aZlhy+G+F09gjOFr77mY796+lca2PoyZeLwBoLIgC5fA9RvKI2V1dv6lY22aPXcxautLbMtB046qGdmwNJ+HXmkiHDYJWaW5EBxpsVpSm6sKyfVk0DKDMYeB4SD37zzNTZuWsLwoh+VFOfzkw5fz8GtNUwSHbJ78q2uoKs6JlDnBoaHNzwXLC2b526hU1eYPkOvJSNgOldpyUDOypboIfyCorYcoR5r9ZLiE2jIf5flZM1rr8Is9Z+kZHOGDV66MlG2tKeYfb9k05Yyw6pJcotOQVZfkkuESHZRepBK5Oho0OKgZuqK2FIAXGtuTXJPUcaTZT01JDlmZGZTneac9W8kYwz0vnOCCZQVsnaSVMF0et4vq4hwaW7VbaTHS4KBSWkV+FnXlPp5v6Eh2VVLGkRY/65ZYM7kqZtByeKa+nYbWPj54ZQ3zlYi4ttxHgy6EW5Ra/UMaHFRqu6K2hJ3HOxkO6p7SA8NBTnUORNK7l+d5p7VKejgY5ou/PURlQRZvvrBy3upTV+7jRHs/I7rf96KTyNQZoMFBzcIVtaUMjoR49XR3squSdPUt1syiNRVWcKjIz4qskp7Mfz7dyOFmP/94yya87vlbbV5X5iMYNpzsGJi3a6rkGxoJ0TsU1JaDSm3bV5XgEni+QccdjjRbM5XWOS2HfOvFO9m4Q0NrH//+RANvvrCSGzZUzGt9au0ZS5pjaXFpT/A0VtDgoGahICeTTcsKdFAaa7whK9MVmVJanmftPz7RKulw2PC5X+wl25PBF966cd7rU1tmbW2rCRIXl0SvjgYNDmqWtteW8MqXWGpQAAAgAElEQVSpbgaG03s17pFmP2sq8iJrPiIthwlWSf/37tO8fKKLv3/z+ri80POyMrmspphf7DlLOKyZ7xcLJzg4Hz4SQYODmpUra0sJhg07j6f3vkxHWvyR8Qawxhxg4lXSTxxupaYkh3dtWR7z8fnwJ9urOdU5ENk+VC18iV4dDRoc1CxdWlOMJ8PFC43pO6W1d2iENn+A1eXnM6f6vO5JV0nXt/axbkn+vE1djeWmjUso9Xn48Usn4/YcKrHa/AFEoDh3/K6A8aLBQc1KtieDS6oK03pQ2slhtGpMWu2JVkkHgiFOdgywuiJ2Gu754nG7uPXSKh4/3MrpTp21tBi0+gMU53jIzEjcW7YGBzVr21aVcPBc74LOAjoSCnP/zlMEZ7EuwEmP7QwCOyZaJX2ifYBQ2ERyIMXTey+vQoCf7jwV9+dS8Zfo1dGgwUHNwfKibIw5P81uIXrpWAef/cU+nq2feQuosa2PzAxhRVTyO5i45eDkPFpdnjfusfm2rDCb69ZX8MDLpwkEQ1OfoFKaBge1oJT4rP7Pjv7hJNdk9jrtuh9tmfkeFY1tfVSX5I5r6ldMsEq6vtWPCKwa09KIl9u2VdPRP8wj+5oT8nwqfhK9Oho0OKg5KM61btbOvoUbHHoGRwA4OoutTxvb+sd1KYE1nTXWKun61j6qinMStv/2VXWllOR6dD3KAmeMoa1PWw5qASmxZ050LuCWQ8+AFRwaWmfWchgJhTnZ0R9zj2dnOuvYcYeGlr5RM5vizeUSKguzInPk1cLUOxRkOBjW4KAWjsXQreS0HOpb+6ZMlhftdOcAIyETMzjEWiUdDIU53t4fSW+RKGU+74y3LVWpxbmPNDioBSPH4yYr00Vn/8J983GCw8BwiLPdg9M+rzEyjTV2txKMXiV9qnOA4VA4IYPRo+qSpy2Hhc6511aWJmasyqHBQc1JSa6XjgU85tA9OIKzHq1+BjuoOYntxq5xgNirpOsjM5US3HLI89LeFyCkqTQWLOdei9VKjScNDmpOinM9C75baY39ab5+BjOWGlv7KMvzUpCdOe4xn9dNzphV0s401kR3K5XnewmbhT0ulC76AkG+9+yxcYG8vsXPssLshO0d7dDgoOakONezoN94egdHqC7JodTnpT5qxlJX/zBv+Nen+Nwv9tEV4/drbOuLOVPJMXZHuPoWP0sLsvAl+AXuTH+cyb7WKjl+9VoT//ybQ+w4NjolTUNbX8I/VIAGBzVHJb6FHRx6BkcoyM5kdbmPo1HdSo8fbuVYez/3v3yKa7/yFD/ZcTLyic4YY09jnfgFW1mQxYGm3sjK64a2PuoqEjveAOfHP3TcIfXtP9sDwD77K1gp3htaEzvLzaHBQc1JSa6Hjv6pt8VMVd0DVnBYU+GjocUf+T3+cLCFJflZPPKp17G2Io+/++V+vv54PWB10fQMjkwaHG7fXs3x9n7+a+eppL7Ay3z2zCkNDilvf5O1B0d0cDjbPcjQSDghKVfG0uCg5qQ418vQSJiB4eSlaPjVa038y+8Oz/i84WCYwZEQBdmZ1FXk0T8c4lzPEEMjIZ6pb+P6DeWsW5LP/Xdu480XVvKdZxpp7hmadKaS440bl3BFbQlf+f1R9jf1MDQSTk5wyNOWw0IwEgpHNmjaHxUcGpI0kQE0OKg5SoWFcA/uOs1/Pn2MwRkGKGcaa2FOJmvsF9/RFj8vNnYwMBzi+vXWFp4iwmdvWkc4DF997Mi0Zo+ICJ9/60b6AkH+8sHXAJLy6S/bk0Ge163BIcU1tvUxHAyzpsLHiY6ByL3pBAdtOagFJxUWwh1r6ycYNuw90z2j85wXYH52Jqvt8YCG1j4eO9RCrieD7bUlkWNXFOdw+/Zq/nv3GX677xxet4tlhdmTXn/tkjz+5PKqpL7AAcryvRocUtz+s1ar4dZLqwA4YLce6lv9lPo8FOYkbh8HhwYHNSfFkZZDct58BoaDkcVru091zejcnkEroBVkZ1Kc66Ek18ORZj+PH2rh9WvL8LpH50D6+BvqyPO6eba+nVVlvsjWoJP59A1rKMrJpNTnTcoLHJxV0jpbKZXtP9tDjieDt160FDg/7tDQ2pe0DxUaHNSclNjJ95K1EO54e3/k+90nZhocrJaDs1ZhdYWP3x1opqU3EOlSilaY4+Hjb6gDxu/hMJHCHA/ffN9m/vcfbZxR3eZTeb6ukk51+8/2sKEyn7I8L8sKs9l3tgdjDPUaHNRCVZzkbiVnN7YLlxew+1TXqFlTh8718rXHjk44k+r8mIP1O6wuz6N3KEiGS3jDuvKY59y+vYZLa4q4dm3sx2O5oq6UN19YOe3j55vmV0ptobDh4LleNi0rAGDTsnz2n+2hzR/APxRMeMoVhwYHNSe5ngw8blfSBqSPtfUjAu/aspzugZHITCKArz52lK8/Xs+xqNZFNCcja3TLAWBrddGEXUBZmRn890eu4J1bls/nrxFX5fleBoZDC3rHvsXseHs/A8OhSHC4YFkBJzoG2GN3k2rLQS1IIkJpridp3UqNbX0sLcjmitpSAPactF5Qnf3DPHm4FYDnJtjlrWfQerPMz7JWLTuf0G7YML5LaSE7v0paWw+p6ECTNb6waVm+/dUKEv/vlSYgOdNYQYODmgfFPk/SBqSPtVupBVaV5lKYk8muk50APPzqWYJhQ57XzXMNsYND9+AwPq8bt72T26U1Rfzdzet5z6UrElb/RNBV0qlt/9kevG4XdfbU6Avs4PDE4VbystwJT9Xt0OCg5qw415uUbiVjDMfa+llVmovLJWypKmK33XL4+Z6zbFyaz1suquSlxo5IGotoTuoMhzvDxf+4ehV5WeOT6S1kzpuLzlhKTfvO9rCuMj/yIaXE52VpQZad4t2HyNSz4uJhTsFBRE6IyD4ReVVEdtllxSLymIjU21+Loo7/nIg0iMgREXljVPkW+zoNIvINSdZfQ81KSa6H9iR0KzX3DjEwHIokJdtcXURjWz87j3ey72wP79i8nKvqyvAHgrx2pmfc+b1jgsNi5Ww+pC2H1BMOGw6c7eUCu0vJ4XQtJWu8Aean5XCtMeZiY8xW++fPAo8bY1YDj9s/IyIbgFuBjcBNwLdExJlIfjdwJ7Da/nfTPNRLJUiyMrM6M5Vq7U1QtlZbn0P+10P7yXAJt1y8lCtqSxCB52N0LY1tOSxWhdmZuF2iYw4p6HTXAP5AkE1LC0aVO11LyZqpBPHpVroFuNf+/l7gbVHl9xtjAsaY40ADcJmIVAL5xpgXjTXn8L6oc9QCUOLzMDgSmnH6irk6NmbDnQuXF+J2CYeb/VyzpoxSn5eiXA+blhbEHHdwku4tdi6XUJanq6RTkbPYzWkpOC6uKgRgXeXCDQ4G+L2I7BaRO+2yCmPMOQD7qzMhfBlwOurcM3bZMvv7seXjiMidIrJLRHa1tbXNsepqvjj5lToSPCjd2NZPrieDCnvANduTwcalVvM8eqrplXWlvHKqa9xUzp7BEQpzFn9wAGvcQVsOqWfHsU5yPRmsXTI6CFxVV8pPPnw5V9WVJqlmcw8OVxpjNgNvAj4mIldPcmyscQQzSfn4QmO+Y4zZaozZWlZWNvPaqrgotldJJ7prqbGtj1Vlowfsrl5TRlmed9QitqvqShkJGXYe7xx1frp0KwGUa8shJT3f0M7lq0rIzBj9ViwiXFlXmrTBaJhjcDDGNNlfW4FfApcBLXZXEfbXVvvwM0D0HMHlQJNdvjxGuVognPxKiV7rcKytf1za7E9dt5onPvN6sjLP50XaWlOE1+3i2aj1DkMjIQLBMPlpEhysbiWdrZRKznYPcqy9nyuT2DqYzKyDg4jkikie8z1wI7AfeBi4wz7sDuAh+/uHgVtFxCsiK7EGnnfaXU9+Edlmz1K6PeoctQCUJiGFxuBwiKaewXFps90ZrnFTUbMyM7i0pnjUoPTYvEqLXVleFh39wzGn9KrkcO7HK+tKpjgyOeayoW0F8Eu72eMG/ssY86iIvAw8KCIfAk4B7wYwxhwQkQeBg0AQ+JgxxhnB/ChwD5ANPGL/UwtEMjKzHm/vx5jJN9yJdmVdKV9+9DAdfQFKfN5Rezmkg7I8L8ZYAbwiPyvZ1Vm0jDG09QUYCIToHw5SlueNTCUe64WGdkp9HtYmYfvY6Zh1cDDGHAMuilHeAVw3wTl3AXfFKN8FbJptXVRy+bxuPBmuhLYcjrVPveFOtAuXW7NBDjf7ubLOm3Yth/KoHeE0OMRHIBjiT+95mecbOiJlZXlenvnra8n2jE7/bozhuYaOpI8rTEZXSKs5ExFrrUOcxxyeq2/nnuePc7Cpl4bWPkRgZen0Wg7r7NkgzlaMY5PuLXa6Sjq+wmHDZx58jecbOvjkdav56h9fxP96ywba/AEe3HV63PFHW/po7wtwZW1qjjfA3LqVlIoozvXEteUQDhs+/eCro2bcLCvMHjXwPJkSn5dSn5fDzX4AutO45aDm35cfPcyv957js29ax0deXxsp/+2+c3znmWO87/KqUTOSnHU3V67W4KAWuRJffIPDXju//d/evI5Sn5edxzu5YHnB1CdGWV+ZxxE7OETGHLKTsztbokVaDr0aHOZDR1+AvWd7aOoeZP/ZXn668xS3bavmz65eNeq4j11bxwfveZmHXm3iXVFrb55vaGdlae6UW80mkwYHNS9Kcj2c6Ii9b8J8eOxgMxku4Y+3rqAwx8M7Ns98P4W1FXn86KWThMKGnsERRCAvKz1eAl53BgXZmbT1aXCYD3/y/Z2RLsoMl/C2i5fyhT/aOG784Jq1ZayvzOfupxp4xyXLcLmEkVCYHcc6ePvmmGt9U0Z6vDJU3BXneuM65vDYwRYurZl4E57pWFeZTyAY5kRHP72DI+R53dPaB3qxqCzI4mzXYLKrseANjYQ40tzL+y+v4uNvqKM8L4uMCe4jEeHPr6nlEz99hd8fbOaGDUt46kgb/cOhlB5vAA0Oap6U+Dz0D4cYGglNexxguk529HO0pY9/eMuGOV3HGZQ+fM5vrY5Ok2msjtpyH/tiZKdVM9PQ2kfYwBW1pVQWTN0tdPMFlXzl90f46//ey3DoVQLBMJ4MF9trU3N9g0ODg5oXTp/200fbeOPGJfN67ccOtgBww/q57dBWV+4jwyUcbu6le2A4bcYbHGvK8/jN3nMMDAfJ8ehLf7accaux+ZAmkuESPv/Wjdz34glWlflYW5HHJVWFc2oFJ4LeIWpe3HxBJfe9eIJP/vQV7vngZfP6qeixgy2srcijqiRnTtfJysxgZWkuh5v9aZVXybHG3iO7obWPC5cXJrk2C9eRFj8et4uaGdyP164r59qofF8Lga5zUPPC53Vz359eTlVxDh++92VesTdHn6uu/mFePtE5b/s6r12Sx+Hm3rQMDqvtlbhHW/qSXJOF7XCzn9XlvsjObYvV4v7tVEIV53r48Ycvp8Tn5QM/fHleFlw9eaSVsIHr5yk4rF+Sx+nOQVp6A2mTdM9RU5KDJ8NFfYs/2VVZ0I409067S2kh0+Cg5lVFfhbffN9megZHeOrI7PbcMMZwtnuQJw638JMdpyjP83LhspmtaZjIuiXWfg99gWDa5FVyuDNcrCrL5agGh1nrHhimpTcQmdywmOmYg5p3m5blU5Lr4aXGDv5464qpTxjjHXe/wCunuiM/f+INdfM25TT6E1+6dSsBrKnIY/fJ+enyS0fOCvs1KZosbz5pcFDzTkTYXlvCC40dGGNmlFisd2iEV051c8vFS7ltWzVrluSRnzV/b+LLi7Lxed30BYJpGhx8PPxaE/2BILleffnPlDNTyWmBLmbaraTi4oraUpp7hzjePrNV08farOPffEElW2uK5zUwgBW4nNZDOgYHZ1C6vlUHpWfjcLOfguzMyNa0i5kGBxUXV9hTWV9o7JjiyNEa7Tet2vLppeKeDae/uDANg8OayIwlHXeYDWcwOlXTbM8nDQ4qLqpLclhakMWLMw0ObX24XUJV8dzWNExmXaXVJZBus5UAqopz8LoX34yln+0+w81ff5ZQOOb28/PCGMPRlr60GIwGHXNQcSIibKst4akjbYTDZtoDyo1tfVSX5IzbcH0+/dGFS+nsG2Z95eLvNx4rwyXUlvkW3VqHX73WxMFzvRw618umeZrZNtbZ7kH6AsG0mMYK2nJQcXRFbSmd/cMcmcGn1Ma2/mnv7jZbBTmZfOr61RMmS1vs1lT4FlXLIRgKR2Zg7TzeGbfniaTNSIOZSqDBQcXR9hmOO4yEwpzs6I/reIOyBqWbeoboHRpJdlXmxcFzvfQFgsD44DAwHOShV89izPS7mxrb+hgOhseVR6axastBqblZVphNTUkOLza2T+v4050DjIQMdXFuOaQ7Z1C6fpF0Le04ZgWE160uZeeJzlGB4IfPn+BT97/Ka9PMRnu0xc8NX32aHz5/fNxjR5r9LCvMnvcZdKlKg4OKq+21pew41kkwNP6T2FiN9jRWbTnEl5OAb7F0Le043sHK0lzeeuFSOvuHaWw7H/R+vfccALtOTK+76RuP1xM28MTh1nGPHWn2p814A2hwUHF2RW0J/kCQfWen/uTmvKhXleXGu1ppbUVRDlmZrkUxKB0OG3Ye7+SymmIuW1kMwA67a+lYW19kt7bprAqvb/Hzm33nKMjOZM+prkhXFUBr7xBHW/1cvCJ9stlqcFBxdVVdKS6J/UlsrMbWPsrzvGnTbE8Wl0tYU5HHwXMLf+Ofw81+eoeCXL6qmOqSHMryvJFxh9/us1oNl60sZtfJrinHHf79iQayMzO46+2bGAkZdhw7P1b2+4MtGMO871WSyjQ4qLgqyvWwtaY4smHPZBrb+uI+U0lZtq0qYc/JbvqjPh0vRDuOW2/gl68qQUS4bGUxO49b4w6/2dfM5qpC3nphJW3+AGcm2SK1obWPX+1t4rbt1dywoYKsTBfPHD2fOPJ3B5pZWZob6ZJLBxocVNzdsL6Cw81+TncOTHiMMcaaxlquXUqJcM2aMoZD4RmvYE81O493sqwwm2WF1nadl68s5lzPEM/Wt3PoXC9vvnApm6uLgMm7lr75ZANZ7gz+x+tW4XVnsG1VCc/WWxMpugeGebGxgzduXJIWK6MdGhxU3Dkb9UzWeujoH6ZncERbDgmytaaYXE8GTx2ZursvVRljjTdcvqo4UuaMO/zTrw8CcPMFS1i3JJ9cT8aEweF4ez8PvXqWP9lWRanPypl09eoyjrX3c7pzgMcPtRIMG960KX26lECDg0qAmtJcVpf7+MOhiYNDg5NTSYNDQnjcLq6oK+WpI20zWgOQbP2BIGe6BjDG0NDaR0f/MNtWnt+Sdk15HgXZmdS39rGluojKgmwyXMIlVUXsmiA4/PsT9XjcLu68ujZSdvWaUgCea2jn0QPNVBZkceHy+Ky8TlUaHFRC3LChgh3HO+kZOL/wqrV3iLCdC8eZqaTTWBPnmrVlnO0eHDX1M5UZY/jgPS9z1Zef5IovPcFf/WwvwKiWg8slXFpj/XzzBZWR8i3VRRxp7sU/ZuHfifZ+Hnq1ifdfXk1Z3vlMq7VlPioLsnh0fzPPHG1Luy4l0OCgEuT6DRWEwoanjlrdGI/sO8e2Lz7OnT/axdBIiMbWfrIzM6jMz0pyTdPH69eUAcx6x75E+/mes+w83sl7L6tic3URZ7sGWLckb1ySxqvXlOLJcHHzBee7gbZUFxE28Orp7lHH/seTDbhdwp+9ftWochHh6tVlPH20jUAwzE1p1qUEmnhPJcjFywspy/Py+4MtFOd6+NT9r1JVnMPjh1u54wc7CRvDqrLcedvxTU1teVEOdeU+njrSxodft2rqE5KoZ2CEL/72EJurCrnrbZtwuSTSHTb2E/37Lqvi+vUVVBZkR8ouqSpExBqUft1qKyie7Ojnl6+c5fbt1ZTnjf9Q8ro1pTyw6zQluZ5IaySdaMtBJYTLJVy/vpwnD7fyZz/azaqyXB762FX823suZvfJLl4+0UWddikl3DVryth5vJOB4eRPaX10fzN7z3THfOxff3+EroFh/skODGAFhVhdPe4MF0sLs0eV5WVlsnbMFqnffLKBDJfwkdfXjr0EAFfWlpLhEm7cWJGWSRo1OKiEuX59BQPDIcryvNz3ocsoyMnklouX8d3bt5KV6eKCOKVaVhO7Zm05w6FwzH03QmFDZ/9w3OsQDhu++MghPvLj3bzjWy9wz/PHRw2S7z3TzY93nOT27TVsXDr7e2RrTRGvnOrmV6818Tc/e41f7DnL+y6romKCrsyiXA8/+fDl/NWNa2f9nAuZdiuphHn9mjL+7ub1vOmCJaOa8deuK2fH315Pnu5pnHCXriwix5PBU0fauG59xajH/vq/X+Oxgy387tNXj/ok/vBrTXzpt4f4yxvX8s7Ny+Y0UBsIhvibn+3loVebeN/lVbT2DvGFXx3kldPd3LhhCb/e28QTh1spyfXylzeumfXzAGytLubHL53iEz99hfwsN2+6oJJPXrd60nO2rSqZ9PHFTBbSNLZoW7duNbt27Up2NZRa8D7yo90839jO7z99daSffvfJLt559wsA3LRxCd++bQsAbf4A13/1aYZGQgSCYa5fX87/eccFMfvspxIMhfngPS/zbH07f3PTWj76+lqMgW891cBXHjuKMVDq8/DmCyq5bXvNnLsdA8EQP9t9hvWV+Vy0vDAtu4oARGS3MWbrlMdpcFAqvZ1o7+dNX3+WS1cWc+8HL8UYePvdL9DcM8i7tiznm0828sMPXMq168r5+H/t4fcHWvjNJ6/i6aNt/MvvjpDtyeD7d1zKFnslMsDgcIgHXj7F69eWs7I09qr3f/vDUf7tD/V88R0X8N7LqkY9tv9sD/6hIJetLE7bN/F4mW5w0Ha8UmmupjSXv715Hf/w0AF+uvM02R4Xr53u5ivvvoi3XrSUR/c3878e3s9nh9fz673n+MwNa1hdkcfqijyuXVfOh+55mTt+sJN7PngpW2uKae0d4sP37WLvmR4yfnOId21ezieuq2N50fkpp7tPdvGNx+t5+yXLxgUGIG5bfarp05aDUopw2HD7D3ay51QXPq+byoIsfvnnV+JyCS80tPO+7+3AJdZGQQ9//Co87vNzWZp7hnjfd1+iuXeIf3jLBv798Xq6B0f457dtYt/ZHn7y0ikMhndtWcGfX1NLYU4mN3/jWcJheOQvXqdZeBNswXUrichNwNeBDOB7xpgvTXa8Bgel5tfZ7kFu+toz+ANBfv7R7WypPj+3/9MPvMpDr57lF39+Zcw9DVp7h3jvd1+isa2fJflZfP8DWyMzi5q6B/nWUw08+PIZQsawsjSXY219PPBn29Ny/UCyLajgICIZwFHgBuAM8DLwXmPMwYnO0eCg1Px7vqGdY+393LatelT5cDDM2e7BCccPAFr9Q9z3wklu214dc3poc88Q33nmGP+18yR/fk3dlDOFVHwstOCwHfiCMeaN9s+fAzDGfHGiczQ4KLUwhcJGB5mTaLrBIVUWwS0DTkf9fMYuG0VE7hSRXSKyq61tYeSDUUqNpoFhYUiV4BDrbhnXpDHGfMcYs9UYs7WsrCwB1VJKqfSUKsHhDLAi6uflQFOS6qKUUmkvVYLDy8BqEVkpIh7gVuDhJNdJKaXSVkosgjPGBEXk48DvsKay/sAYcyDJ1VJKqbSVEsEBwBjzW+C3ya6HUkqp1OlWUkoplUI0OCillBonJRbBzYaI+IEjMR6qAk7N4FIFQM8Mn3425zi0flq/uT5XqtdvLudr/eZ2/kT1KwXa7e+rjTFTrwUwxizIf8CuCcrbZnid78ziuWd8jtZP65cu9ZvL+Vq/+NRvovfLyf4txm6l2JvQTuxXs3iO2Zzj0Ppp/eb6XKlev7mcr/Wb2/kzrd+EFnK30i4TIz/IROWpQus3N1q/udH6zc1Crd9s6r2QWw7fmWF5qtD6zY3Wb260fnOzUOs343ov2JaDUkqp+FnILQellFJxosFBKaXUOAs2OIhIX7LrMBERebuIGBFZl+y6TGaqv6GIPCUiCR98E5HlIvKQiNSLSKOIfN1OyDjR8X8hIjkTPR6nOur9N0d6/82pjnG//xZscEhx7wWew8ouO232dqlpTUQE+AXw/4wxq4E1gA+4a5LT/gJI6Iszxen9N0t6/523oIODiPhE5HER2SMi+0TkFru8RkQOich3ReSAiPxeRLITVSfgSuBD2C9OEblGRJ4RkV+KyEER+baIuOzH+kTkH0VkB7A9EXUcU99rROTXUT//h4h8INH1iPIGYMgY80MAY0wI+DTwpyKSKyL/av9f7xWRT4jIJ4GlwJMi8mQiK6r337zUV++/WYr3/beggwMwBLzdGLMZuBb4ih35AVYD3zTGbMRaGPLOBNXpbcCjxpijQKeIbLbLLwM+A1wA1ALvsMtzgf3GmMuNMc8lqI6pbCOwO7rAGNOLlRLgw8BK4BJjzIXAT4wx38DaGOpaY8y1Ca6r3n+Lj95/toUeHAT4PyKyF/gD1r7TFfZjx40xr9rf7wZqElSn9wL329/fb/8MsNMYc8z+JPJT4Cq7PAT8PEF1WwiEGFvE2uVXA982xgQBjDGdiaxYDHr/LT56/9lSZj+HWXo/UAZsMcaMiMgJIMt+LBB1XAiIe7NeREqwmqWbRMRgbVxksPapGHvDOT8P2S/YZAky+kNC1kQHJsgBxnzKEZF8rG1kjxH7hZssev/Nnd5/sxfX+2+htxwKgFb7D3MtUJ3k+rwLuM8YU22MqTHGrACOY31Ku0ysbVBdwHuwBgxTwUlgg4h4RaQAuC7J9XkcyBGR2yEySPoV4B7g98BHRMRtP1Zsn+MH8hJfVb3/5oHef7MX1/tvQQYH+z8nAPwE2Coiu7Ci6OGkVsxqwv9yTNnPgfcBLwJfAvZjvWDHHpdQzt/QGHMaeBDYi/X3fCWZ9TLWkv23A+8WkXrgKFbf6t8C320RSi8AAATwSURBVMPq+90rIq9h/V3BSg3wSKIGBPX+mzu9/2YvUfffgkyfISIXAd81xlyW7LpMh4hcA/yVMeYtya6LY6H9DVPJQvvb6f23uCTqb7fgWg4i8hGsAbW/T3ZdFir9G86e/u3mTv+Gs5fIv92CbDkopZSKrwXXclBKKRV/KR8cRGSFiDxpr/g7ICKfssuLReQxsfKfPCYiRXZ5iX18n4j8x5hrvcde2XhARP5vMn4ftbDM4v67QUR22ytWd4vIG6KutcUubxCRb0QtWFIqpnm+/+4SkdMyzbxMKd+tJCKVQKUxZo+I5GEt6Hgb8AGg0xjzJRH5LFBkjPmfIpILXAJsAjYZYz5uX6cEaybEFmNMm4jcizXt7/Ek/FpqgZjF/XcJ0GKMaRKRTcDvjDHL7GvtBD4FvIS19uAbxphHkvBrqQVinu+/bVhTh+uNMb6pnjvlWw7GmHPGmD32937gENZKwFuAe+3D7sX6g2GM6bfTAAyNudQq4Kgxps3++Q8kLqWBWqBmcf+9YoxpsssPAFn2HP5KIN8Y86I9XfI+5xylJjJf95/92EvGmHPTfe6UDw7RRKQGq1WwA6hwflH7a/kUpzcA68RKSuXG+mOuiF9t1WIzi/vvncArxpgA1gv6TNRjZ+wypaZljvffjC2Y9BliZZv8OfAXxpjemXbXGmO6ROSjwANAGHgBqzWh1JRmev+JyEbgy8CNTlGMw1K7T1eljHm4/2ZsQbQcRCQT6w/zE2PML+ziFrup7vTLtU51HWPMr+zsk9uBI0B9vOqsFo+Z3n8ishxrBfLtxphGu/gMsDzqssuxsnkqNal5uv9mLOWDgz2j4/vAIWPMV6Meehi4w/7+DuChaVyr3P5aBPw51nJ4pSY00/tPRAqB3wCfM8Y87xxsN/39IrLNvubtTOOeVeltvu6/WT33ApitdBXwLLAPqzsIrDwnO7ByslRh5Tt5t5NCV6zshPmAByuX+Y3GmIMi8lPgIvsa/2iMcVIbKxXTTO8/Efl74HOMbpXeaIxpFWvLy3uwMmQ+AnzCpPoLUCXVPN9//xcrH9RSrFbr94wxX5jwufXeVEopNVbKdysppZRKPA0OSimlxtHgoJRSahwNDkoppcbR4KCUUmocDQ5KxYGIfETsfYineXyNiOyPZ52UmokFkz5DqYVCRNzGmG8nux5KzYUGB6VisJOcPYq12OgSrI3mbwfWA18FfEA78AFjzDkReQorX9eVwMN2euU+Y8y/isjFwLeBHKAR+FM719cW4AfAAPBc4n47paam3UpKTWwt8B1jzIVAL/Ax4N+BdxljnDf2u6KOLzTGvN4Y85Ux17kP+J/2dfYBn7fLfwh80s71pVRK0ZaDUhM7HZWf5sdYaQs2AY/ZWTEzgOj8+A+MvYCIFGAFjaftonuB/45R/iPgTfP/Kyg1OxoclJrY2NwyfuDAJJ/0+2dwbYlxfaVShnYrKTWxKhFxAsF7sbb3LHPKRCTTzps/IWNMD9AlIq+zi24DnjbGdAM9dmI1gPfPf/WVmj1tOSg1sUPAHSLyn1hZLv8d+B3wDbtbyA38G9Z2jJO5A/i2iOQAx4AP2uUfBH4gIgP2dZVKGZqVVakY7NlKvzbGbEpyVZRKCu1WUkopNY62HJRSSo2jLQellFLjaHBQSik1jgYHpZRS42hwUEopNY4GB6WUUuP8fy7ihA+UD/hLAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'][-200:-100].plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Etude de l'incidence" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "On remarque que le creux de l'épidémie semble se situer en septembre, on va donc choisir le \n", "1er septembre comme date de début de l'année. \n", "\n", "Notre tâche est un peu compliquée par le fait que l'année ne comporte\n", "pas un nombre entier de semaines. Nous modifions donc un peu nos périodes\n", "de référence: à la place du 1er septembre de chaque année, nous utilisons le\n", "premier jour de la semaine qui contient le 1er septembre.\n", "\n", "Comme l'incidence de syndrome grippal est très faible en septembre, cette\n", "modification ne risque pas de fausser nos conclusions.\n", "\n", "Encore un petit détail: les données commencent en septembre 1984, ce qui\n", "rend la première année incomplète. Nous commençons donc l'analyse en 1985." ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "first_september_week = [pd.Period(pd.Timestamp(y, 9, 1), 'W')\n", " for y in range(1985,\n", " sorted_data.index[-1].year)]" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }