Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mooc-rr
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
39781cc7cca0dc30af9d6060ede9947c
mooc-rr
Commits
3e91a689
Commit
3e91a689
authored
Apr 18, 2020
by
39781cc7cca0dc30af9d6060ede9947c
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Précisions sur les IC (avec nouveau code séparé pour essai)
parent
67b34b0d
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
123 additions
and
76 deletions
+123
-76
Essai_CI_band.ipynb
module3/exo3/Essai_CI_band.ipynb
+6
-0
exercice.ipynb
module3/exo3/exercice.ipynb
+117
-76
No files found.
module3/exo3/Essai_CI_band.ipynb
0 → 100644
View file @
3e91a689
{
"cells": [],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 4
}
module3/exo3/exercice.ipynb
View file @
3e91a689
...
@@ -385,7 +385,7 @@
...
@@ -385,7 +385,7 @@
"cell_type": "code",
"cell_type": "code",
"execution_count": 5,
"execution_count": 5,
"metadata": {
"metadata": {
"hideCode":
fals
e,
"hideCode":
tru
e,
"hidePrompt": true
"hidePrompt": true
},
},
"outputs": [],
"outputs": [],
...
@@ -492,11 +492,11 @@
...
@@ -492,11 +492,11 @@
"name": "stdout",
"name": "stdout",
"output_type": "stream",
"output_type": "stream",
"text": [
"text": [
"Requirement already satisfied: lmfit in /opt/conda/lib/python3.6/site-packages (1.0.0)\n",
"Requirement already satisfied: lmfit in /opt/conda/lib/python3.6/site-packages (1.0.0)\
r\
n",
"Requirement already satisfied:
scipy>=1.2 in /opt/conda/lib/python3.6/site-packages (from lmfit) (1.4.1)
\n",
"Requirement already satisfied:
asteval>=0.9.16 in /opt/conda/lib/python3.6/site-packages (from lmfit) (0.9.18)\r
\n",
"Requirement already satisfied:
uncertainties>=3.0.1 in /opt/conda/lib/python3.6/site-packages (from lmfit) (3.1.2)
\n",
"Requirement already satisfied:
numpy>=1.16 in /opt/conda/lib/python3.6/site-packages (from lmfit) (1.18.2)\r
\n",
"Requirement already satisfied:
numpy>=1.16 in /opt/conda/lib/python3.6/site-packages (from lmfit) (1.18.2)
\n",
"Requirement already satisfied:
scipy>=1.2 in /opt/conda/lib/python3.6/site-packages (from lmfit) (1.4.1)\r
\n",
"Requirement already satisfied:
asteval>=0.9.16 in /opt/conda/lib/python3.6/site-packages (from lmfit) (0.9.18)
\n"
"Requirement already satisfied:
uncertainties>=3.0.1 in /opt/conda/lib/python3.6/site-packages (from lmfit) (3.1.2)\r
\n"
]
]
}
}
],
],
...
@@ -516,6 +516,7 @@
...
@@ -516,6 +516,7 @@
"source": [
"source": [
"# Import des librairies\n",
"# Import des librairies\n",
"from lmfit.models import QuadraticModel, Model\n",
"from lmfit.models import QuadraticModel, Model\n",
"import lmfit\n",
"from sklearn.metrics import r2_score"
"from sklearn.metrics import r2_score"
]
]
},
},
...
@@ -567,41 +568,58 @@
...
@@ -567,41 +568,58 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 11,
"execution_count": 37,
"metadata": {
"hideCode": false,
"hideOutput": true,
"hidePrompt": true
},
"outputs": [],
"source": [
"# Mise en dictionnaire des meilleures paramètres calculés\n",
"coeffs_long_trend = result_long_trend.params.valuesdict() "
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"metadata": {
"hideCode": true,
"hidePrompt": true
"hidePrompt": true
},
},
"outputs": [
"outputs": [
{
{
"data": {
"name": "stdout",
"text/plain": [
"output_type": "stream",
"OrderedDict([('a', 0.012977452801551667),\n",
"text": [
" ('b', 0.7677869942992783),\n",
"[[Variables]]\n",
" ('c', 314.5704951470056)])"
" a: 0.01297745 +/- 1.4176e-04 (1.09%) (init = 0.01297745)\n",
]
" b: 0.76778699 +/- 0.00913468 (1.19%) (init = 0.767787)\n",
},
" c: 314.570495 +/- 0.12419930 (0.04%) (init = 314.5705)\n",
"execution_count": 11,
"[[Correlations]] (unreported correlations are < 0.100)\n",
"metadata": {},
" C(a, b) = -0.969\n",
"output_type": "execute_result"
" C(b, c) = -0.873\n",
" C(a, c) = 0.756\n"
]
}
}
],
],
"source": [
"source": [
"# Affichage des meilleures paramètres calculés\n",
"#Affichage des meilleures paramètres calculés avec les intervalles de confiances\n",
"coeffs_long_trend = result_long_trend.params.valuesdict()\n",
"print(lmfit.fit_report(result_long_trend.params))"
"coeffs_long_trend "
]
]
},
},
{
{
"cell_type": "markdown",
"cell_type": "markdown",
"metadata": {},
"metadata": {
"hideCode": false,
"hidePrompt": true
},
"source": [
"source": [
"Ci-dessus, les différents paramètres de la courbe d'ajustement à long terme (fonction quadratique)."
"Ci-dessus, les différents paramètres de la courbe d'ajustement à long terme (fonction quadratique)."
]
]
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 1
2
,
"execution_count": 1
3
,
"metadata": {
"metadata": {
"hideCode": false,
"hideCode": false,
"hidePrompt": true
"hidePrompt": true
...
@@ -618,7 +636,7 @@
...
@@ -618,7 +636,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 1
3
,
"execution_count": 1
4
,
"metadata": {
"metadata": {
"hideCode": false,
"hideCode": false,
"hidePrompt": true
"hidePrompt": true
...
@@ -631,7 +649,7 @@
...
@@ -631,7 +649,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 1
4
,
"execution_count": 1
5
,
"metadata": {
"metadata": {
"hideCode": false,
"hideCode": false,
"hidePrompt": true
"hidePrompt": true
...
@@ -643,7 +661,7 @@
...
@@ -643,7 +661,7 @@
"0.9936252499490063"
"0.9936252499490063"
]
]
},
},
"execution_count": 1
4
,
"execution_count": 1
5
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
...
@@ -666,9 +684,9 @@
...
@@ -666,9 +684,9 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 1
5
,
"execution_count": 1
6
,
"metadata": {
"metadata": {
"hideCode":
tru
e,
"hideCode":
fals
e,
"hidePrompt": true
"hidePrompt": true
},
},
"outputs": [
"outputs": [
...
@@ -714,6 +732,16 @@
...
@@ -714,6 +732,16 @@
"fig.tight_layout()"
"fig.tight_layout()"
]
]
},
},
{
"cell_type": "markdown",
"metadata": {
"hidePrompt": true
},
"source": [
"L'intervalle de confiance de la courbe ajustée n'est pas tracée sur les graphes précédents car il est très etroit. \n",
"Celui-ci dégraderait la lisibilité des graphiques."
]
},
{
{
"cell_type": "markdown",
"cell_type": "markdown",
"metadata": {
"metadata": {
...
@@ -736,7 +764,7 @@
...
@@ -736,7 +764,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 1
6
,
"execution_count": 1
7
,
"metadata": {
"metadata": {
"hideCode": false,
"hideCode": false,
"hidePrompt": true
"hidePrompt": true
...
@@ -749,7 +777,7 @@
...
@@ -749,7 +777,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 1
7
,
"execution_count": 1
8
,
"metadata": {
"metadata": {
"hideCode": true,
"hideCode": true,
"hidePrompt": true
"hidePrompt": true
...
@@ -758,10 +786,10 @@
...
@@ -758,10 +786,10 @@
{
{
"data": {
"data": {
"text/plain": [
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7f
4bee2fec88
>"
"<matplotlib.axes._subplots.AxesSubplot at 0x7f
a3f4fdc5c0
>"
]
]
},
},
"execution_count": 1
7
,
"execution_count": 1
8
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
},
},
...
@@ -810,7 +838,7 @@
...
@@ -810,7 +838,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 1
8
,
"execution_count": 1
9
,
"metadata": {
"metadata": {
"hidePrompt": true
"hidePrompt": true
},
},
...
@@ -823,7 +851,7 @@
...
@@ -823,7 +851,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
19
,
"execution_count":
20
,
"metadata": {
"metadata": {
"hidePrompt": true
"hidePrompt": true
},
},
...
@@ -838,28 +866,38 @@
...
@@ -838,28 +866,38 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 20,
"execution_count": 38,
"metadata": {
"hideOutput": true,
"hidePrompt": true
},
"outputs": [],
"source": [
"# Affichage des meilleures paramètres calculés\n",
"coeffs_seasonal_oscillation = result_seasonal_oscillation.params.valuesdict()"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"metadata": {
"hidePrompt": true
"hidePrompt": true
},
},
"outputs": [
"outputs": [
{
{
"data": {
"name": "stdout",
"text/plain": [
"output_type": "stream",
"OrderedDict([('amp', 2.5022539354204705),\n",
"text": [
" ('freq', 1.0044805631567757),\n",
"[[Variables]]\n",
" ('shift', 316.19947719002874)])"
" amp: 2.50225394 +/- 0.03484620 (1.39%) (init = 7)\n",
]
" freq: 1.00448056 +/- 6.1469e-05 (0.01%) (init = 1)\n",
},
" shift: 316.199477 +/- 0.02463756 (0.01%) (init = 0)\n"
"execution_count": 20,
]
"metadata": {},
"output_type": "execute_result"
}
}
],
],
"source": [
"source": [
"# Affichage des meilleures paramètres calculés\n",
"#Affichage des meilleures paramètres calculés avec les intervalles de confiances\n",
"coeffs_seasonal_oscillation = result_seasonal_oscillation.params.valuesdict()\n",
"print(lmfit.fit_report(result_seasonal_oscillation.params))"
"coeffs_seasonal_oscillation"
]
]
},
},
{
{
...
@@ -871,12 +909,14 @@
...
@@ -871,12 +909,14 @@
"Avec ces résulats nous pouvons caractériser l'oscillation saisonnière comme suit :\n",
"Avec ces résulats nous pouvons caractériser l'oscillation saisonnière comme suit :\n",
"- +/- 2.5 *ppm* sur une année.\n",
"- +/- 2.5 *ppm* sur une année.\n",
"- Une féquence de 1 année pour chaque oscillation. Ce qui conforme aux observations.\n",
"- Une féquence de 1 année pour chaque oscillation. Ce qui conforme aux observations.\n",
"- Un décalage de 316.20 *ppm* qui correspond à la première mesure de la base de données."
"- Un décalage de 316.20 *ppm* qui correspond à la première mesure de la base de données. \n",
"\n",
"Les intervalles de confiance sont là aussi très restreints. Nous faisons le choix de ne pas les représenter sur les graphiques à venir."
]
]
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 2
1
,
"execution_count": 2
3
,
"metadata": {
"metadata": {
"hidePrompt": true
"hidePrompt": true
},
},
...
@@ -891,7 +931,7 @@
...
@@ -891,7 +931,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 2
2
,
"execution_count": 2
4
,
"metadata": {
"metadata": {
"hidePrompt": true
"hidePrompt": true
},
},
...
@@ -903,7 +943,7 @@
...
@@ -903,7 +943,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 2
3
,
"execution_count": 2
5
,
"metadata": {
"metadata": {
"hideCode": true,
"hideCode": true,
"hidePrompt": true
"hidePrompt": true
...
@@ -912,10 +952,10 @@
...
@@ -912,10 +952,10 @@
{
{
"data": {
"data": {
"text/plain": [
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7f
4bea999f9
8>"
"<matplotlib.axes._subplots.AxesSubplot at 0x7f
a3db00027
8>"
]
]
},
},
"execution_count": 2
3
,
"execution_count": 2
5
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
},
},
...
@@ -977,7 +1017,7 @@
...
@@ -977,7 +1017,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 2
4
,
"execution_count": 2
6
,
"metadata": {
"metadata": {
"hidePrompt": true
"hidePrompt": true
},
},
...
@@ -991,7 +1031,7 @@
...
@@ -991,7 +1031,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 2
5
,
"execution_count": 2
7
,
"metadata": {
"metadata": {
"hideCode": true,
"hideCode": true,
"hidePrompt": true
"hidePrompt": true
...
@@ -1000,10 +1040,10 @@
...
@@ -1000,10 +1040,10 @@
{
{
"data": {
"data": {
"text/plain": [
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7f
4c13b6dac8
>"
"<matplotlib.axes._subplots.AxesSubplot at 0x7f
a4041c7550
>"
]
]
},
},
"execution_count": 2
5
,
"execution_count": 2
7
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
},
},
...
@@ -1039,7 +1079,7 @@
...
@@ -1039,7 +1079,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 2
6
,
"execution_count": 2
8
,
"metadata": {
"metadata": {
"hidePrompt": true
"hidePrompt": true
},
},
...
@@ -1050,7 +1090,7 @@
...
@@ -1050,7 +1090,7 @@
"0.997596462036615"
"0.997596462036615"
]
]
},
},
"execution_count": 2
6
,
"execution_count": 2
8
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
...
@@ -1090,7 +1130,7 @@
...
@@ -1090,7 +1130,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 2
7
,
"execution_count": 2
9
,
"metadata": {
"metadata": {
"hideOutput": true,
"hideOutput": true,
"hidePrompt": true
"hidePrompt": true
...
@@ -1102,7 +1142,7 @@
...
@@ -1102,7 +1142,7 @@
"(52,)"
"(52,)"
]
]
},
},
"execution_count": 2
7
,
"execution_count": 2
9
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
...
@@ -1116,7 +1156,7 @@
...
@@ -1116,7 +1156,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
28
,
"execution_count":
30
,
"metadata": {
"metadata": {
"hidePrompt": true
"hidePrompt": true
},
},
...
@@ -1128,7 +1168,7 @@
...
@@ -1128,7 +1168,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
29
,
"execution_count":
31
,
"metadata": {
"metadata": {
"hidePrompt": true
"hidePrompt": true
},
},
...
@@ -1146,7 +1186,7 @@
...
@@ -1146,7 +1186,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 3
0
,
"execution_count": 3
2
,
"metadata": {
"metadata": {
"hidePrompt": true
"hidePrompt": true
},
},
...
@@ -1157,7 +1197,7 @@
...
@@ -1157,7 +1197,7 @@
"425.0"
"425.0"
]
]
},
},
"execution_count": 3
0
,
"execution_count": 3
2
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
...
@@ -1170,7 +1210,7 @@
...
@@ -1170,7 +1210,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 3
1
,
"execution_count": 3
3
,
"metadata": {
"metadata": {
"hidePrompt": true
"hidePrompt": true
},
},
...
@@ -1181,7 +1221,7 @@
...
@@ -1181,7 +1221,7 @@
"425.0"
"425.0"
]
]
},
},
"execution_count": 3
1
,
"execution_count": 3
3
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
}
}
...
@@ -1203,7 +1243,7 @@
...
@@ -1203,7 +1243,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 3
2
,
"execution_count": 3
4
,
"metadata": {
"metadata": {
"hideCode": true,
"hideCode": true,
"hidePrompt": true
"hidePrompt": true
...
@@ -1212,10 +1252,10 @@
...
@@ -1212,10 +1252,10 @@
{
{
"data": {
"data": {
"text/plain": [
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7f
4c13bd0710
>"
"<matplotlib.axes._subplots.AxesSubplot at 0x7f
a40643fdd8
>"
]
]
},
},
"execution_count": 3
2
,
"execution_count": 3
4
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
},
},
...
@@ -1266,7 +1306,7 @@
...
@@ -1266,7 +1306,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 3
3
,
"execution_count": 3
5
,
"metadata": {
"metadata": {
"hidePrompt": true
"hidePrompt": true
},
},
...
@@ -1281,7 +1321,7 @@
...
@@ -1281,7 +1321,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 3
4
,
"execution_count": 3
6
,
"metadata": {
"metadata": {
"hideCode": true,
"hideCode": true,
"hidePrompt": true
"hidePrompt": true
...
@@ -1290,10 +1330,10 @@
...
@@ -1290,10 +1330,10 @@
{
{
"data": {
"data": {
"text/plain": [
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7f
4c1373e470
>"
"<matplotlib.axes._subplots.AxesSubplot at 0x7f
a4043843c8
>"
]
]
},
},
"execution_count": 3
4
,
"execution_count": 3
6
,
"metadata": {},
"metadata": {},
"output_type": "execute_result"
"output_type": "execute_result"
},
},
...
@@ -1335,7 +1375,8 @@
...
@@ -1335,7 +1375,8 @@
"hidePrompt": true
"hidePrompt": true
},
},
"source": [
"source": [
"Ci-dessus la prédiction pour l'année 2025 complète (courbe verte) et sa tendance à long terme (courbe orange)."
"Ci-dessus la prédiction pour l'année 2025 complète (courbe verte) et sa tendance à long terme (courbe orange). \n",
"Pour assurer une bonne lisibilité du graphique, les intervalles de confiance (très étroits) ne sont pas représentés."
]
]
},
},
{
{
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment