From f9d39cb2c6ba6509e238b4270e86d53a3ace2358 Mon Sep 17 00:00:00 2001
From: 39781cc7cca0dc30af9d6060ede9947c
<39781cc7cca0dc30af9d6060ede9947c@app-learninglab.inria.fr>
Date: Mon, 20 Apr 2020 08:14:33 +0000
Subject: [PATCH] =?UTF-8?q?Finalisation=20du=20document=20:=20premi=C3=A8r?=
=?UTF-8?q?e=20version.?=
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
---
module3/exo2/exercice.ipynb | 2461 +++++------------------------------
1 file changed, 304 insertions(+), 2157 deletions(-)
diff --git a/module3/exo2/exercice.ipynb b/module3/exo2/exercice.ipynb
index e307b20..6d43be7 100644
--- a/module3/exo2/exercice.ipynb
+++ b/module3/exo2/exercice.ipynb
@@ -38,2094 +38,185 @@
},
{
"cell_type": "code",
- "execution_count": 8,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Fichier non trouvé sur le serveur\n",
- "Téléchargement du fichier sur le site Web\n"
- ]
- }
- ],
- "source": [
- "# Vérification de la présence du fichier en local\n",
- "# Si non, téléchargement à partir de l'URL\n",
- "import os.path\n",
- "# Vérifier si le fichier existe ou non\n",
- "if os.path.isfile('incidence-PAY-7.csv'):\n",
- " print(\"Fichier trouvé sur le serveur\")\n",
- " raw_data = pd.read_csv('incidence-PAY-7.csv', skiprows=1)\n",
- "else:\n",
- " print(\"Fichier non trouvé sur le serveur\")\n",
- " print(\"Téléchargement du fichier sur le site Web\")\n",
- " raw_data = pd.read_csv(data_url, skiprows=1)\n",
- " # Ecriture du fichier en local\n",
- " raw_data.to_csv('incidence-PAY-7.csv')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Voici l'explication des colonnes données [sur le site d'origine](https://ns.sentiweb.fr/incidence/csv-schema-v1.json):\n",
- "\n",
- "| Nom de colonne | Libellé de colonne |\n",
- "|----------------|-----------------------------------------------------------------------------------------------------------------------------------|\n",
- "| week | Semaine calendaire (ISO 8601) |\n",
- "| indicator | Code de l'indicateur de surveillance |\n",
- "| inc | Estimation de l'incidence de consultations en nombre de cas |\n",
- "| inc_low | Estimation de la borne inférieure de l'IC95% du nombre de cas de consultation |\n",
- "| inc_up | Estimation de la borne supérieure de l'IC95% du nombre de cas de consultation |\n",
- "| inc100 | Estimation du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
- "| inc100_low | Estimation de la borne inférieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
- "| inc100_up | Estimation de la borne supérieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
- "| geo_insee | Code de la zone géographique concernée (Code INSEE) http://www.insee.fr/fr/methodes/nomenclatures/cog/ |\n",
- "| geo_name | Libellé de la zone géographique (ce libellé peut être modifié sans préavis) |\n",
- "\n",
- "La première ligne du fichier CSV est un commentaire, que nous ignorons en précisant `skiprows=1`."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " week \n",
- " indicator \n",
- " inc \n",
- " inc_low \n",
- " inc_up \n",
- " inc100 \n",
- " inc100_low \n",
- " inc100_up \n",
- " geo_insee \n",
- " geo_name \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " 0 \n",
- " 201842 \n",
- " 3 \n",
- " 7832 \n",
- " 5145.0 \n",
- " 10519.0 \n",
- " 12 \n",
- " 8.0 \n",
- " 16.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1 \n",
- " 201841 \n",
- " 3 \n",
- " 8048 \n",
- " 5098.0 \n",
- " 10998.0 \n",
- " 12 \n",
- " 8.0 \n",
- " 16.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2 \n",
- " 201840 \n",
- " 3 \n",
- " 7409 \n",
- " 4717.0 \n",
- " 10101.0 \n",
- " 11 \n",
- " 7.0 \n",
- " 15.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 3 \n",
- " 201839 \n",
- " 3 \n",
- " 7174 \n",
- " 4235.0 \n",
- " 10113.0 \n",
- " 11 \n",
- " 7.0 \n",
- " 15.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 4 \n",
- " 201838 \n",
- " 3 \n",
- " 6127 \n",
- " 3482.0 \n",
- " 8772.0 \n",
- " 9 \n",
- " 5.0 \n",
- " 13.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 5 \n",
- " 201837 \n",
- " 3 \n",
- " 4644 \n",
- " 2200.0 \n",
- " 7088.0 \n",
- " 7 \n",
- " 3.0 \n",
- " 11.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 6 \n",
- " 201836 \n",
- " 3 \n",
- " 3215 \n",
- " 1349.0 \n",
- " 5081.0 \n",
- " 5 \n",
- " 2.0 \n",
- " 8.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 7 \n",
- " 201835 \n",
- " 3 \n",
- " 1506 \n",
- " 239.0 \n",
- " 2773.0 \n",
- " 2 \n",
- " 0.0 \n",
- " 4.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 8 \n",
- " 201834 \n",
- " 3 \n",
- " 1368 \n",
- " 116.0 \n",
- " 2620.0 \n",
- " 2 \n",
- " 0.0 \n",
- " 4.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 9 \n",
- " 201833 \n",
- " 3 \n",
- " 1962 \n",
- " 5.0 \n",
- " 3919.0 \n",
- " 3 \n",
- " 0.0 \n",
- " 6.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 10 \n",
- " 201832 \n",
- " 3 \n",
- " 1839 \n",
- " 183.0 \n",
- " 3495.0 \n",
- " 3 \n",
- " 0.0 \n",
- " 6.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 11 \n",
- " 201831 \n",
- " 3 \n",
- " 2048 \n",
- " 242.0 \n",
- " 3854.0 \n",
- " 3 \n",
- " 0.0 \n",
- " 6.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 12 \n",
- " 201830 \n",
- " 3 \n",
- " 1951 \n",
- " 202.0 \n",
- " 3700.0 \n",
- " 3 \n",
- " 0.0 \n",
- " 6.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 13 \n",
- " 201829 \n",
- " 3 \n",
- " 1951 \n",
- " 252.0 \n",
- " 3650.0 \n",
- " 3 \n",
- " 0.0 \n",
- " 6.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 14 \n",
- " 201828 \n",
- " 3 \n",
- " 1654 \n",
- " 52.0 \n",
- " 3256.0 \n",
- " 3 \n",
- " 1.0 \n",
- " 5.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 15 \n",
- " 201827 \n",
- " 3 \n",
- " 3269 \n",
- " 1145.0 \n",
- " 5393.0 \n",
- " 5 \n",
- " 2.0 \n",
- " 8.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 16 \n",
- " 201826 \n",
- " 3 \n",
- " 3758 \n",
- " 1493.0 \n",
- " 6023.0 \n",
- " 6 \n",
- " 3.0 \n",
- " 9.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 17 \n",
- " 201825 \n",
- " 3 \n",
- " 4580 \n",
- " 2220.0 \n",
- " 6940.0 \n",
- " 7 \n",
- " 3.0 \n",
- " 11.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 18 \n",
- " 201824 \n",
- " 3 \n",
- " 3223 \n",
- " 1351.0 \n",
- " 5095.0 \n",
- " 5 \n",
- " 2.0 \n",
- " 8.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 19 \n",
- " 201823 \n",
- " 3 \n",
- " 1207 \n",
- " 136.0 \n",
- " 2278.0 \n",
- " 2 \n",
- " 0.0 \n",
- " 4.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 20 \n",
- " 201822 \n",
- " 3 \n",
- " 3202 \n",
- " 1330.0 \n",
- " 5074.0 \n",
- " 5 \n",
- " 2.0 \n",
- " 8.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 21 \n",
- " 201821 \n",
- " 3 \n",
- " 2537 \n",
- " 763.0 \n",
- " 4311.0 \n",
- " 4 \n",
- " 1.0 \n",
- " 7.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 22 \n",
- " 201820 \n",
- " 3 \n",
- " 2694 \n",
- " 967.0 \n",
- " 4421.0 \n",
- " 4 \n",
- " 1.0 \n",
- " 7.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 23 \n",
- " 201819 \n",
- " 3 \n",
- " 1025 \n",
- " 0.0 \n",
- " 2098.0 \n",
- " 2 \n",
- " 0.0 \n",
- " 4.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 24 \n",
- " 201818 \n",
- " 3 \n",
- " 3541 \n",
- " 1416.0 \n",
- " 5666.0 \n",
- " 5 \n",
- " 2.0 \n",
- " 8.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 25 \n",
- " 201817 \n",
- " 3 \n",
- " 2573 \n",
- " 1003.0 \n",
- " 4143.0 \n",
- " 4 \n",
- " 2.0 \n",
- " 6.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 26 \n",
- " 201816 \n",
- " 3 \n",
- " 4818 \n",
- " 2724.0 \n",
- " 6912.0 \n",
- " 7 \n",
- " 4.0 \n",
- " 10.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 27 \n",
- " 201815 \n",
- " 3 \n",
- " 16311 \n",
- " 12168.0 \n",
- " 20454.0 \n",
- " 25 \n",
- " 19.0 \n",
- " 31.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 28 \n",
- " 201814 \n",
- " 3 \n",
- " 22666 \n",
- " 18092.0 \n",
- " 27240.0 \n",
- " 35 \n",
- " 28.0 \n",
- " 42.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 29 \n",
- " 201813 \n",
- " 3 \n",
- " 32680 \n",
- " 25536.0 \n",
- " 39824.0 \n",
- " 50 \n",
- " 39.0 \n",
- " 61.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " \n",
- " \n",
- " 1743 \n",
- " 198521 \n",
- " 3 \n",
- " 26096 \n",
- " 19621.0 \n",
- " 32571.0 \n",
- " 47 \n",
- " 35.0 \n",
- " 59.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1744 \n",
- " 198520 \n",
- " 3 \n",
- " 27896 \n",
- " 20885.0 \n",
- " 34907.0 \n",
- " 51 \n",
- " 38.0 \n",
- " 64.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1745 \n",
- " 198519 \n",
- " 3 \n",
- " 43154 \n",
- " 32821.0 \n",
- " 53487.0 \n",
- " 78 \n",
- " 59.0 \n",
- " 97.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1746 \n",
- " 198518 \n",
- " 3 \n",
- " 40555 \n",
- " 29935.0 \n",
- " 51175.0 \n",
- " 74 \n",
- " 55.0 \n",
- " 93.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1747 \n",
- " 198517 \n",
- " 3 \n",
- " 34053 \n",
- " 24366.0 \n",
- " 43740.0 \n",
- " 62 \n",
- " 44.0 \n",
- " 80.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1748 \n",
- " 198516 \n",
- " 3 \n",
- " 50362 \n",
- " 36451.0 \n",
- " 64273.0 \n",
- " 91 \n",
- " 66.0 \n",
- " 116.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1749 \n",
- " 198515 \n",
- " 3 \n",
- " 63881 \n",
- " 45538.0 \n",
- " 82224.0 \n",
- " 116 \n",
- " 83.0 \n",
- " 149.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1750 \n",
- " 198514 \n",
- " 3 \n",
- " 134545 \n",
- " 114400.0 \n",
- " 154690.0 \n",
- " 244 \n",
- " 207.0 \n",
- " 281.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1751 \n",
- " 198513 \n",
- " 3 \n",
- " 197206 \n",
- " 176080.0 \n",
- " 218332.0 \n",
- " 357 \n",
- " 319.0 \n",
- " 395.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1752 \n",
- " 198512 \n",
- " 3 \n",
- " 245240 \n",
- " 223304.0 \n",
- " 267176.0 \n",
- " 445 \n",
- " 405.0 \n",
- " 485.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1753 \n",
- " 198511 \n",
- " 3 \n",
- " 276205 \n",
- " 252399.0 \n",
- " 300011.0 \n",
- " 501 \n",
- " 458.0 \n",
- " 544.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1754 \n",
- " 198510 \n",
- " 3 \n",
- " 353231 \n",
- " 326279.0 \n",
- " 380183.0 \n",
- " 640 \n",
- " 591.0 \n",
- " 689.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1755 \n",
- " 198509 \n",
- " 3 \n",
- " 369895 \n",
- " 341109.0 \n",
- " 398681.0 \n",
- " 670 \n",
- " 618.0 \n",
- " 722.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1756 \n",
- " 198508 \n",
- " 3 \n",
- " 389886 \n",
- " 359529.0 \n",
- " 420243.0 \n",
- " 707 \n",
- " 652.0 \n",
- " 762.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1757 \n",
- " 198507 \n",
- " 3 \n",
- " 471852 \n",
- " 432599.0 \n",
- " 511105.0 \n",
- " 855 \n",
- " 784.0 \n",
- " 926.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1758 \n",
- " 198506 \n",
- " 3 \n",
- " 565825 \n",
- " 518011.0 \n",
- " 613639.0 \n",
- " 1026 \n",
- " 939.0 \n",
- " 1113.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1759 \n",
- " 198505 \n",
- " 3 \n",
- " 637302 \n",
- " 592795.0 \n",
- " 681809.0 \n",
- " 1155 \n",
- " 1074.0 \n",
- " 1236.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1760 \n",
- " 198504 \n",
- " 3 \n",
- " 424937 \n",
- " 390794.0 \n",
- " 459080.0 \n",
- " 770 \n",
- " 708.0 \n",
- " 832.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1761 \n",
- " 198503 \n",
- " 3 \n",
- " 213901 \n",
- " 174689.0 \n",
- " 253113.0 \n",
- " 388 \n",
- " 317.0 \n",
- " 459.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1762 \n",
- " 198502 \n",
- " 3 \n",
- " 97586 \n",
- " 80949.0 \n",
- " 114223.0 \n",
- " 177 \n",
- " 147.0 \n",
- " 207.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1763 \n",
- " 198501 \n",
- " 3 \n",
- " 85489 \n",
- " 65918.0 \n",
- " 105060.0 \n",
- " 155 \n",
- " 120.0 \n",
- " 190.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1764 \n",
- " 198452 \n",
- " 3 \n",
- " 84830 \n",
- " 60602.0 \n",
- " 109058.0 \n",
- " 154 \n",
- " 110.0 \n",
- " 198.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1765 \n",
- " 198451 \n",
- " 3 \n",
- " 101726 \n",
- " 80242.0 \n",
- " 123210.0 \n",
- " 185 \n",
- " 146.0 \n",
- " 224.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1766 \n",
- " 198450 \n",
- " 3 \n",
- " 123680 \n",
- " 101401.0 \n",
- " 145959.0 \n",
- " 225 \n",
- " 184.0 \n",
- " 266.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1767 \n",
- " 198449 \n",
- " 3 \n",
- " 101073 \n",
- " 81684.0 \n",
- " 120462.0 \n",
- " 184 \n",
- " 149.0 \n",
- " 219.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1768 \n",
- " 198448 \n",
- " 3 \n",
- " 78620 \n",
- " 60634.0 \n",
- " 96606.0 \n",
- " 143 \n",
- " 110.0 \n",
- " 176.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1769 \n",
- " 198447 \n",
- " 3 \n",
- " 72029 \n",
- " 54274.0 \n",
- " 89784.0 \n",
- " 131 \n",
- " 99.0 \n",
- " 163.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1770 \n",
- " 198446 \n",
- " 3 \n",
- " 87330 \n",
- " 67686.0 \n",
- " 106974.0 \n",
- " 159 \n",
- " 123.0 \n",
- " 195.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1771 \n",
- " 198445 \n",
- " 3 \n",
- " 135223 \n",
- " 101414.0 \n",
- " 169032.0 \n",
- " 246 \n",
- " 184.0 \n",
- " 308.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1772 \n",
- " 198444 \n",
- " 3 \n",
- " 68422 \n",
- " 20056.0 \n",
- " 116788.0 \n",
- " 125 \n",
- " 37.0 \n",
- " 213.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- "
\n",
- "
1773 rows × 10 columns
\n",
- "
"
- ],
- "text/plain": [
- " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
- "0 201842 3 7832 5145.0 10519.0 12 8.0 \n",
- "1 201841 3 8048 5098.0 10998.0 12 8.0 \n",
- "2 201840 3 7409 4717.0 10101.0 11 7.0 \n",
- "3 201839 3 7174 4235.0 10113.0 11 7.0 \n",
- "4 201838 3 6127 3482.0 8772.0 9 5.0 \n",
- "5 201837 3 4644 2200.0 7088.0 7 3.0 \n",
- "6 201836 3 3215 1349.0 5081.0 5 2.0 \n",
- "7 201835 3 1506 239.0 2773.0 2 0.0 \n",
- "8 201834 3 1368 116.0 2620.0 2 0.0 \n",
- "9 201833 3 1962 5.0 3919.0 3 0.0 \n",
- "10 201832 3 1839 183.0 3495.0 3 0.0 \n",
- "11 201831 3 2048 242.0 3854.0 3 0.0 \n",
- "12 201830 3 1951 202.0 3700.0 3 0.0 \n",
- "13 201829 3 1951 252.0 3650.0 3 0.0 \n",
- "14 201828 3 1654 52.0 3256.0 3 1.0 \n",
- "15 201827 3 3269 1145.0 5393.0 5 2.0 \n",
- "16 201826 3 3758 1493.0 6023.0 6 3.0 \n",
- "17 201825 3 4580 2220.0 6940.0 7 3.0 \n",
- "18 201824 3 3223 1351.0 5095.0 5 2.0 \n",
- "19 201823 3 1207 136.0 2278.0 2 0.0 \n",
- "20 201822 3 3202 1330.0 5074.0 5 2.0 \n",
- "21 201821 3 2537 763.0 4311.0 4 1.0 \n",
- "22 201820 3 2694 967.0 4421.0 4 1.0 \n",
- "23 201819 3 1025 0.0 2098.0 2 0.0 \n",
- "24 201818 3 3541 1416.0 5666.0 5 2.0 \n",
- "25 201817 3 2573 1003.0 4143.0 4 2.0 \n",
- "26 201816 3 4818 2724.0 6912.0 7 4.0 \n",
- "27 201815 3 16311 12168.0 20454.0 25 19.0 \n",
- "28 201814 3 22666 18092.0 27240.0 35 28.0 \n",
- "29 201813 3 32680 25536.0 39824.0 50 39.0 \n",
- "... ... ... ... ... ... ... ... \n",
- "1743 198521 3 26096 19621.0 32571.0 47 35.0 \n",
- "1744 198520 3 27896 20885.0 34907.0 51 38.0 \n",
- "1745 198519 3 43154 32821.0 53487.0 78 59.0 \n",
- "1746 198518 3 40555 29935.0 51175.0 74 55.0 \n",
- "1747 198517 3 34053 24366.0 43740.0 62 44.0 \n",
- "1748 198516 3 50362 36451.0 64273.0 91 66.0 \n",
- "1749 198515 3 63881 45538.0 82224.0 116 83.0 \n",
- "1750 198514 3 134545 114400.0 154690.0 244 207.0 \n",
- "1751 198513 3 197206 176080.0 218332.0 357 319.0 \n",
- "1752 198512 3 245240 223304.0 267176.0 445 405.0 \n",
- "1753 198511 3 276205 252399.0 300011.0 501 458.0 \n",
- "1754 198510 3 353231 326279.0 380183.0 640 591.0 \n",
- "1755 198509 3 369895 341109.0 398681.0 670 618.0 \n",
- "1756 198508 3 389886 359529.0 420243.0 707 652.0 \n",
- "1757 198507 3 471852 432599.0 511105.0 855 784.0 \n",
- "1758 198506 3 565825 518011.0 613639.0 1026 939.0 \n",
- "1759 198505 3 637302 592795.0 681809.0 1155 1074.0 \n",
- "1760 198504 3 424937 390794.0 459080.0 770 708.0 \n",
- "1761 198503 3 213901 174689.0 253113.0 388 317.0 \n",
- "1762 198502 3 97586 80949.0 114223.0 177 147.0 \n",
- "1763 198501 3 85489 65918.0 105060.0 155 120.0 \n",
- "1764 198452 3 84830 60602.0 109058.0 154 110.0 \n",
- "1765 198451 3 101726 80242.0 123210.0 185 146.0 \n",
- "1766 198450 3 123680 101401.0 145959.0 225 184.0 \n",
- "1767 198449 3 101073 81684.0 120462.0 184 149.0 \n",
- "1768 198448 3 78620 60634.0 96606.0 143 110.0 \n",
- "1769 198447 3 72029 54274.0 89784.0 131 99.0 \n",
- "1770 198446 3 87330 67686.0 106974.0 159 123.0 \n",
- "1771 198445 3 135223 101414.0 169032.0 246 184.0 \n",
- "1772 198444 3 68422 20056.0 116788.0 125 37.0 \n",
- "\n",
- " inc100_up geo_insee geo_name \n",
- "0 16.0 FR France \n",
- "1 16.0 FR France \n",
- "2 15.0 FR France \n",
- "3 15.0 FR France \n",
- "4 13.0 FR France \n",
- "5 11.0 FR France \n",
- "6 8.0 FR France \n",
- "7 4.0 FR France \n",
- "8 4.0 FR France \n",
- "9 6.0 FR France \n",
- "10 6.0 FR France \n",
- "11 6.0 FR France \n",
- "12 6.0 FR France \n",
- "13 6.0 FR France \n",
- "14 5.0 FR France \n",
- "15 8.0 FR France \n",
- "16 9.0 FR France \n",
- "17 11.0 FR France \n",
- "18 8.0 FR France \n",
- "19 4.0 FR France \n",
- "20 8.0 FR France \n",
- "21 7.0 FR France \n",
- "22 7.0 FR France \n",
- "23 4.0 FR France \n",
- "24 8.0 FR France \n",
- "25 6.0 FR France \n",
- "26 10.0 FR France \n",
- "27 31.0 FR France \n",
- "28 42.0 FR France \n",
- "29 61.0 FR France \n",
- "... ... ... ... \n",
- "1743 59.0 FR France \n",
- "1744 64.0 FR France \n",
- "1745 97.0 FR France \n",
- "1746 93.0 FR France \n",
- "1747 80.0 FR France \n",
- "1748 116.0 FR France \n",
- "1749 149.0 FR France \n",
- "1750 281.0 FR France \n",
- "1751 395.0 FR France \n",
- "1752 485.0 FR France \n",
- "1753 544.0 FR France \n",
- "1754 689.0 FR France \n",
- "1755 722.0 FR France \n",
- "1756 762.0 FR France \n",
- "1757 926.0 FR France \n",
- "1758 1113.0 FR France \n",
- "1759 1236.0 FR France \n",
- "1760 832.0 FR France \n",
- "1761 459.0 FR France \n",
- "1762 207.0 FR France \n",
- "1763 190.0 FR France \n",
- "1764 198.0 FR France \n",
- "1765 224.0 FR France \n",
- "1766 266.0 FR France \n",
- "1767 219.0 FR France \n",
- "1768 176.0 FR France \n",
- "1769 163.0 FR France \n",
- "1770 195.0 FR France \n",
- "1771 308.0 FR France \n",
- "1772 213.0 FR France \n",
- "\n",
- "[1773 rows x 10 columns]"
- ]
- },
- "execution_count": 3,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "raw_data = pd.read_csv(data_url, skiprows=1)\n",
- "raw_data"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Y a-t-il des points manquants dans ce jeux de données ? Oui, la semaine 19 de l'année 1989 n'a pas de valeurs associées."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " week \n",
- " indicator \n",
- " inc \n",
- " inc_low \n",
- " inc_up \n",
- " inc100 \n",
- " inc100_low \n",
- " inc100_up \n",
- " geo_insee \n",
- " geo_name \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " 1536 \n",
- " 198919 \n",
- " 3 \n",
- " 0 \n",
- " NaN \n",
- " NaN \n",
- " 0 \n",
- " NaN \n",
- " NaN \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n",
- "1536 198919 3 0 NaN NaN 0 NaN NaN \n",
- "\n",
- " geo_insee geo_name \n",
- "1536 FR France "
- ]
- },
- "execution_count": 4,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "raw_data[raw_data.isnull().any(axis=1)]"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Nous éliminons ce point, ce qui n'a pas d'impact fort sur notre analyse qui est assez simple."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " week \n",
- " indicator \n",
- " inc \n",
- " inc_low \n",
- " inc_up \n",
- " inc100 \n",
- " inc100_low \n",
- " inc100_up \n",
- " geo_insee \n",
- " geo_name \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " 0 \n",
- " 201842 \n",
- " 3 \n",
- " 7832 \n",
- " 5145.0 \n",
- " 10519.0 \n",
- " 12 \n",
- " 8.0 \n",
- " 16.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1 \n",
- " 201841 \n",
- " 3 \n",
- " 8048 \n",
- " 5098.0 \n",
- " 10998.0 \n",
- " 12 \n",
- " 8.0 \n",
- " 16.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 2 \n",
- " 201840 \n",
- " 3 \n",
- " 7409 \n",
- " 4717.0 \n",
- " 10101.0 \n",
- " 11 \n",
- " 7.0 \n",
- " 15.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 3 \n",
- " 201839 \n",
- " 3 \n",
- " 7174 \n",
- " 4235.0 \n",
- " 10113.0 \n",
- " 11 \n",
- " 7.0 \n",
- " 15.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 4 \n",
- " 201838 \n",
- " 3 \n",
- " 6127 \n",
- " 3482.0 \n",
- " 8772.0 \n",
- " 9 \n",
- " 5.0 \n",
- " 13.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 5 \n",
- " 201837 \n",
- " 3 \n",
- " 4644 \n",
- " 2200.0 \n",
- " 7088.0 \n",
- " 7 \n",
- " 3.0 \n",
- " 11.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 6 \n",
- " 201836 \n",
- " 3 \n",
- " 3215 \n",
- " 1349.0 \n",
- " 5081.0 \n",
- " 5 \n",
- " 2.0 \n",
- " 8.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 7 \n",
- " 201835 \n",
- " 3 \n",
- " 1506 \n",
- " 239.0 \n",
- " 2773.0 \n",
- " 2 \n",
- " 0.0 \n",
- " 4.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 8 \n",
- " 201834 \n",
- " 3 \n",
- " 1368 \n",
- " 116.0 \n",
- " 2620.0 \n",
- " 2 \n",
- " 0.0 \n",
- " 4.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 9 \n",
- " 201833 \n",
- " 3 \n",
- " 1962 \n",
- " 5.0 \n",
- " 3919.0 \n",
- " 3 \n",
- " 0.0 \n",
- " 6.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 10 \n",
- " 201832 \n",
- " 3 \n",
- " 1839 \n",
- " 183.0 \n",
- " 3495.0 \n",
- " 3 \n",
- " 0.0 \n",
- " 6.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 11 \n",
- " 201831 \n",
- " 3 \n",
- " 2048 \n",
- " 242.0 \n",
- " 3854.0 \n",
- " 3 \n",
- " 0.0 \n",
- " 6.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 12 \n",
- " 201830 \n",
- " 3 \n",
- " 1951 \n",
- " 202.0 \n",
- " 3700.0 \n",
- " 3 \n",
- " 0.0 \n",
- " 6.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 13 \n",
- " 201829 \n",
- " 3 \n",
- " 1951 \n",
- " 252.0 \n",
- " 3650.0 \n",
- " 3 \n",
- " 0.0 \n",
- " 6.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 14 \n",
- " 201828 \n",
- " 3 \n",
- " 1654 \n",
- " 52.0 \n",
- " 3256.0 \n",
- " 3 \n",
- " 1.0 \n",
- " 5.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 15 \n",
- " 201827 \n",
- " 3 \n",
- " 3269 \n",
- " 1145.0 \n",
- " 5393.0 \n",
- " 5 \n",
- " 2.0 \n",
- " 8.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 16 \n",
- " 201826 \n",
- " 3 \n",
- " 3758 \n",
- " 1493.0 \n",
- " 6023.0 \n",
- " 6 \n",
- " 3.0 \n",
- " 9.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 17 \n",
- " 201825 \n",
- " 3 \n",
- " 4580 \n",
- " 2220.0 \n",
- " 6940.0 \n",
- " 7 \n",
- " 3.0 \n",
- " 11.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 18 \n",
- " 201824 \n",
- " 3 \n",
- " 3223 \n",
- " 1351.0 \n",
- " 5095.0 \n",
- " 5 \n",
- " 2.0 \n",
- " 8.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 19 \n",
- " 201823 \n",
- " 3 \n",
- " 1207 \n",
- " 136.0 \n",
- " 2278.0 \n",
- " 2 \n",
- " 0.0 \n",
- " 4.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 20 \n",
- " 201822 \n",
- " 3 \n",
- " 3202 \n",
- " 1330.0 \n",
- " 5074.0 \n",
- " 5 \n",
- " 2.0 \n",
- " 8.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 21 \n",
- " 201821 \n",
- " 3 \n",
- " 2537 \n",
- " 763.0 \n",
- " 4311.0 \n",
- " 4 \n",
- " 1.0 \n",
- " 7.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 22 \n",
- " 201820 \n",
- " 3 \n",
- " 2694 \n",
- " 967.0 \n",
- " 4421.0 \n",
- " 4 \n",
- " 1.0 \n",
- " 7.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 23 \n",
- " 201819 \n",
- " 3 \n",
- " 1025 \n",
- " 0.0 \n",
- " 2098.0 \n",
- " 2 \n",
- " 0.0 \n",
- " 4.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 24 \n",
- " 201818 \n",
- " 3 \n",
- " 3541 \n",
- " 1416.0 \n",
- " 5666.0 \n",
- " 5 \n",
- " 2.0 \n",
- " 8.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 25 \n",
- " 201817 \n",
- " 3 \n",
- " 2573 \n",
- " 1003.0 \n",
- " 4143.0 \n",
- " 4 \n",
- " 2.0 \n",
- " 6.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 26 \n",
- " 201816 \n",
- " 3 \n",
- " 4818 \n",
- " 2724.0 \n",
- " 6912.0 \n",
- " 7 \n",
- " 4.0 \n",
- " 10.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 27 \n",
- " 201815 \n",
- " 3 \n",
- " 16311 \n",
- " 12168.0 \n",
- " 20454.0 \n",
- " 25 \n",
- " 19.0 \n",
- " 31.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 28 \n",
- " 201814 \n",
- " 3 \n",
- " 22666 \n",
- " 18092.0 \n",
- " 27240.0 \n",
- " 35 \n",
- " 28.0 \n",
- " 42.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 29 \n",
- " 201813 \n",
- " 3 \n",
- " 32680 \n",
- " 25536.0 \n",
- " 39824.0 \n",
- " 50 \n",
- " 39.0 \n",
- " 61.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " \n",
- " \n",
- " 1743 \n",
- " 198521 \n",
- " 3 \n",
- " 26096 \n",
- " 19621.0 \n",
- " 32571.0 \n",
- " 47 \n",
- " 35.0 \n",
- " 59.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1744 \n",
- " 198520 \n",
- " 3 \n",
- " 27896 \n",
- " 20885.0 \n",
- " 34907.0 \n",
- " 51 \n",
- " 38.0 \n",
- " 64.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1745 \n",
- " 198519 \n",
- " 3 \n",
- " 43154 \n",
- " 32821.0 \n",
- " 53487.0 \n",
- " 78 \n",
- " 59.0 \n",
- " 97.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1746 \n",
- " 198518 \n",
- " 3 \n",
- " 40555 \n",
- " 29935.0 \n",
- " 51175.0 \n",
- " 74 \n",
- " 55.0 \n",
- " 93.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1747 \n",
- " 198517 \n",
- " 3 \n",
- " 34053 \n",
- " 24366.0 \n",
- " 43740.0 \n",
- " 62 \n",
- " 44.0 \n",
- " 80.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1748 \n",
- " 198516 \n",
- " 3 \n",
- " 50362 \n",
- " 36451.0 \n",
- " 64273.0 \n",
- " 91 \n",
- " 66.0 \n",
- " 116.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1749 \n",
- " 198515 \n",
- " 3 \n",
- " 63881 \n",
- " 45538.0 \n",
- " 82224.0 \n",
- " 116 \n",
- " 83.0 \n",
- " 149.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1750 \n",
- " 198514 \n",
- " 3 \n",
- " 134545 \n",
- " 114400.0 \n",
- " 154690.0 \n",
- " 244 \n",
- " 207.0 \n",
- " 281.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1751 \n",
- " 198513 \n",
- " 3 \n",
- " 197206 \n",
- " 176080.0 \n",
- " 218332.0 \n",
- " 357 \n",
- " 319.0 \n",
- " 395.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1752 \n",
- " 198512 \n",
- " 3 \n",
- " 245240 \n",
- " 223304.0 \n",
- " 267176.0 \n",
- " 445 \n",
- " 405.0 \n",
- " 485.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1753 \n",
- " 198511 \n",
- " 3 \n",
- " 276205 \n",
- " 252399.0 \n",
- " 300011.0 \n",
- " 501 \n",
- " 458.0 \n",
- " 544.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1754 \n",
- " 198510 \n",
- " 3 \n",
- " 353231 \n",
- " 326279.0 \n",
- " 380183.0 \n",
- " 640 \n",
- " 591.0 \n",
- " 689.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1755 \n",
- " 198509 \n",
- " 3 \n",
- " 369895 \n",
- " 341109.0 \n",
- " 398681.0 \n",
- " 670 \n",
- " 618.0 \n",
- " 722.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1756 \n",
- " 198508 \n",
- " 3 \n",
- " 389886 \n",
- " 359529.0 \n",
- " 420243.0 \n",
- " 707 \n",
- " 652.0 \n",
- " 762.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1757 \n",
- " 198507 \n",
- " 3 \n",
- " 471852 \n",
- " 432599.0 \n",
- " 511105.0 \n",
- " 855 \n",
- " 784.0 \n",
- " 926.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1758 \n",
- " 198506 \n",
- " 3 \n",
- " 565825 \n",
- " 518011.0 \n",
- " 613639.0 \n",
- " 1026 \n",
- " 939.0 \n",
- " 1113.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1759 \n",
- " 198505 \n",
- " 3 \n",
- " 637302 \n",
- " 592795.0 \n",
- " 681809.0 \n",
- " 1155 \n",
- " 1074.0 \n",
- " 1236.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1760 \n",
- " 198504 \n",
- " 3 \n",
- " 424937 \n",
- " 390794.0 \n",
- " 459080.0 \n",
- " 770 \n",
- " 708.0 \n",
- " 832.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1761 \n",
- " 198503 \n",
- " 3 \n",
- " 213901 \n",
- " 174689.0 \n",
- " 253113.0 \n",
- " 388 \n",
- " 317.0 \n",
- " 459.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1762 \n",
- " 198502 \n",
- " 3 \n",
- " 97586 \n",
- " 80949.0 \n",
- " 114223.0 \n",
- " 177 \n",
- " 147.0 \n",
- " 207.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1763 \n",
- " 198501 \n",
- " 3 \n",
- " 85489 \n",
- " 65918.0 \n",
- " 105060.0 \n",
- " 155 \n",
- " 120.0 \n",
- " 190.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1764 \n",
- " 198452 \n",
- " 3 \n",
- " 84830 \n",
- " 60602.0 \n",
- " 109058.0 \n",
- " 154 \n",
- " 110.0 \n",
- " 198.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1765 \n",
- " 198451 \n",
- " 3 \n",
- " 101726 \n",
- " 80242.0 \n",
- " 123210.0 \n",
- " 185 \n",
- " 146.0 \n",
- " 224.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1766 \n",
- " 198450 \n",
- " 3 \n",
- " 123680 \n",
- " 101401.0 \n",
- " 145959.0 \n",
- " 225 \n",
- " 184.0 \n",
- " 266.0 \n",
- " FR \n",
- " France \n",
- " \n",
- " \n",
- " 1767 \n",
- " 198449 \n",
- " 3 \n",
- " 101073 \n",
- " 81684.0 \n",
- " 120462.0 \n",
- " 184 \n",
- " 149.0 \n",
- " 219.0 \n",
- " FR \n",
- " France \n",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Fichier trouvé sur le serveur\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Vérification de la présence du fichier en local\n",
+ "# Si non, téléchargement à partir de l'URL\n",
+ "import os.path\n",
+ "# Vérifier si le fichier existe ou non\n",
+ "if os.path.isfile('incidence-PAY-7.csv'):\n",
+ " print(\"Fichier trouvé sur le serveur\")\n",
+ " raw_data = pd.read_csv('incidence-PAY-7.csv')\n",
+ "else:\n",
+ " print(\"Fichier non trouvé sur le serveur\")\n",
+ " print(\"Téléchargement du fichier sur le site Web\")\n",
+ " raw_data = pd.read_csv(data_url)\n",
+ " # Ecriture du fichier en local\n",
+ " raw_data.to_csv('incidence-PAY-7.csv')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Voici l'explication des colonnes données [sur le site d'origine](https://ns.sentiweb.fr/incidence/csv-schema-v1.json):\n",
+ "\n",
+ "| Nom de colonne | Libellé de colonne |\n",
+ "|----------------|-----------------------------------------------------------------------------------------------------------------------------------|\n",
+ "| week | Semaine calendaire (ISO 8601) |\n",
+ "| indicator | Code de l'indicateur de surveillance |\n",
+ "| inc | Estimation de l'incidence de consultations en nombre de cas |\n",
+ "| inc_low | Estimation de la borne inférieure de l'IC95% du nombre de cas de consultation |\n",
+ "| inc_up | Estimation de la borne supérieure de l'IC95% du nombre de cas de consultation |\n",
+ "| inc100 | Estimation du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
+ "| inc100_low | Estimation de la borne inférieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
+ "| inc100_up | Estimation de la borne supérieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
+ "| geo_insee | Code de la zone géographique concernée (Code INSEE) http://www.insee.fr/fr/methodes/nomenclatures/cog/ |\n",
+ "| geo_name | Libellé de la zone géographique (ce libellé peut être modifié sans préavis) |"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Effacement de la première colonne qui est un ndex en double\n",
+ "data = raw_data.drop(['Unnamed: 0'], axis=1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
" \n",
+ " \n",
+ " \n",
" \n",
- " 1768 \n",
- " 198448 \n",
+ " 0 \n",
+ " 202015 \n",
+ " 7 \n",
+ " 2003 \n",
+ " 609 \n",
+ " 3397 \n",
" 3 \n",
- " 78620 \n",
- " 60634.0 \n",
- " 96606.0 \n",
- " 143 \n",
- " 110.0 \n",
- " 176.0 \n",
+ " 1 \n",
+ " 5 \n",
" FR \n",
" France \n",
" \n",
" \n",
- " 1769 \n",
- " 198447 \n",
+ " 1 \n",
+ " 202014 \n",
+ " 7 \n",
+ " 3881 \n",
+ " 2223 \n",
+ " 5539 \n",
+ " 6 \n",
" 3 \n",
- " 72029 \n",
- " 54274.0 \n",
- " 89784.0 \n",
- " 131 \n",
- " 99.0 \n",
- " 163.0 \n",
+ " 9 \n",
" FR \n",
" France \n",
" \n",
" \n",
- " 1770 \n",
- " 198446 \n",
- " 3 \n",
- " 87330 \n",
- " 67686.0 \n",
- " 106974.0 \n",
- " 159 \n",
- " 123.0 \n",
- " 195.0 \n",
+ " 2 \n",
+ " 202013 \n",
+ " 7 \n",
+ " 7341 \n",
+ " 5247 \n",
+ " 9435 \n",
+ " 11 \n",
+ " 8 \n",
+ " 14 \n",
" FR \n",
" France \n",
" \n",
" \n",
- " 1771 \n",
- " 198445 \n",
- " 3 \n",
- " 135223 \n",
- " 101414.0 \n",
- " 169032.0 \n",
- " 246 \n",
- " 184.0 \n",
- " 308.0 \n",
+ " 3 \n",
+ " 202012 \n",
+ " 7 \n",
+ " 8123 \n",
+ " 5790 \n",
+ " 10456 \n",
+ " 12 \n",
+ " 8 \n",
+ " 16 \n",
" FR \n",
" France \n",
" \n",
" \n",
- " 1772 \n",
- " 198444 \n",
- " 3 \n",
- " 68422 \n",
- " 20056.0 \n",
- " 116788.0 \n",
- " 125 \n",
- " 37.0 \n",
- " 213.0 \n",
+ " 4 \n",
+ " 202011 \n",
+ " 7 \n",
+ " 10198 \n",
+ " 7568 \n",
+ " 12828 \n",
+ " 15 \n",
+ " 11 \n",
+ " 19 \n",
" FR \n",
" France \n",
" \n",
" \n",
"
\n",
- "
1772 rows × 10 columns
\n",
"
"
],
"text/plain": [
- " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
- "0 201842 3 7832 5145.0 10519.0 12 8.0 \n",
- "1 201841 3 8048 5098.0 10998.0 12 8.0 \n",
- "2 201840 3 7409 4717.0 10101.0 11 7.0 \n",
- "3 201839 3 7174 4235.0 10113.0 11 7.0 \n",
- "4 201838 3 6127 3482.0 8772.0 9 5.0 \n",
- "5 201837 3 4644 2200.0 7088.0 7 3.0 \n",
- "6 201836 3 3215 1349.0 5081.0 5 2.0 \n",
- "7 201835 3 1506 239.0 2773.0 2 0.0 \n",
- "8 201834 3 1368 116.0 2620.0 2 0.0 \n",
- "9 201833 3 1962 5.0 3919.0 3 0.0 \n",
- "10 201832 3 1839 183.0 3495.0 3 0.0 \n",
- "11 201831 3 2048 242.0 3854.0 3 0.0 \n",
- "12 201830 3 1951 202.0 3700.0 3 0.0 \n",
- "13 201829 3 1951 252.0 3650.0 3 0.0 \n",
- "14 201828 3 1654 52.0 3256.0 3 1.0 \n",
- "15 201827 3 3269 1145.0 5393.0 5 2.0 \n",
- "16 201826 3 3758 1493.0 6023.0 6 3.0 \n",
- "17 201825 3 4580 2220.0 6940.0 7 3.0 \n",
- "18 201824 3 3223 1351.0 5095.0 5 2.0 \n",
- "19 201823 3 1207 136.0 2278.0 2 0.0 \n",
- "20 201822 3 3202 1330.0 5074.0 5 2.0 \n",
- "21 201821 3 2537 763.0 4311.0 4 1.0 \n",
- "22 201820 3 2694 967.0 4421.0 4 1.0 \n",
- "23 201819 3 1025 0.0 2098.0 2 0.0 \n",
- "24 201818 3 3541 1416.0 5666.0 5 2.0 \n",
- "25 201817 3 2573 1003.0 4143.0 4 2.0 \n",
- "26 201816 3 4818 2724.0 6912.0 7 4.0 \n",
- "27 201815 3 16311 12168.0 20454.0 25 19.0 \n",
- "28 201814 3 22666 18092.0 27240.0 35 28.0 \n",
- "29 201813 3 32680 25536.0 39824.0 50 39.0 \n",
- "... ... ... ... ... ... ... ... \n",
- "1743 198521 3 26096 19621.0 32571.0 47 35.0 \n",
- "1744 198520 3 27896 20885.0 34907.0 51 38.0 \n",
- "1745 198519 3 43154 32821.0 53487.0 78 59.0 \n",
- "1746 198518 3 40555 29935.0 51175.0 74 55.0 \n",
- "1747 198517 3 34053 24366.0 43740.0 62 44.0 \n",
- "1748 198516 3 50362 36451.0 64273.0 91 66.0 \n",
- "1749 198515 3 63881 45538.0 82224.0 116 83.0 \n",
- "1750 198514 3 134545 114400.0 154690.0 244 207.0 \n",
- "1751 198513 3 197206 176080.0 218332.0 357 319.0 \n",
- "1752 198512 3 245240 223304.0 267176.0 445 405.0 \n",
- "1753 198511 3 276205 252399.0 300011.0 501 458.0 \n",
- "1754 198510 3 353231 326279.0 380183.0 640 591.0 \n",
- "1755 198509 3 369895 341109.0 398681.0 670 618.0 \n",
- "1756 198508 3 389886 359529.0 420243.0 707 652.0 \n",
- "1757 198507 3 471852 432599.0 511105.0 855 784.0 \n",
- "1758 198506 3 565825 518011.0 613639.0 1026 939.0 \n",
- "1759 198505 3 637302 592795.0 681809.0 1155 1074.0 \n",
- "1760 198504 3 424937 390794.0 459080.0 770 708.0 \n",
- "1761 198503 3 213901 174689.0 253113.0 388 317.0 \n",
- "1762 198502 3 97586 80949.0 114223.0 177 147.0 \n",
- "1763 198501 3 85489 65918.0 105060.0 155 120.0 \n",
- "1764 198452 3 84830 60602.0 109058.0 154 110.0 \n",
- "1765 198451 3 101726 80242.0 123210.0 185 146.0 \n",
- "1766 198450 3 123680 101401.0 145959.0 225 184.0 \n",
- "1767 198449 3 101073 81684.0 120462.0 184 149.0 \n",
- "1768 198448 3 78620 60634.0 96606.0 143 110.0 \n",
- "1769 198447 3 72029 54274.0 89784.0 131 99.0 \n",
- "1770 198446 3 87330 67686.0 106974.0 159 123.0 \n",
- "1771 198445 3 135223 101414.0 169032.0 246 184.0 \n",
- "1772 198444 3 68422 20056.0 116788.0 125 37.0 \n",
- "\n",
- " inc100_up geo_insee geo_name \n",
- "0 16.0 FR France \n",
- "1 16.0 FR France \n",
- "2 15.0 FR France \n",
- "3 15.0 FR France \n",
- "4 13.0 FR France \n",
- "5 11.0 FR France \n",
- "6 8.0 FR France \n",
- "7 4.0 FR France \n",
- "8 4.0 FR France \n",
- "9 6.0 FR France \n",
- "10 6.0 FR France \n",
- "11 6.0 FR France \n",
- "12 6.0 FR France \n",
- "13 6.0 FR France \n",
- "14 5.0 FR France \n",
- "15 8.0 FR France \n",
- "16 9.0 FR France \n",
- "17 11.0 FR France \n",
- "18 8.0 FR France \n",
- "19 4.0 FR France \n",
- "20 8.0 FR France \n",
- "21 7.0 FR France \n",
- "22 7.0 FR France \n",
- "23 4.0 FR France \n",
- "24 8.0 FR France \n",
- "25 6.0 FR France \n",
- "26 10.0 FR France \n",
- "27 31.0 FR France \n",
- "28 42.0 FR France \n",
- "29 61.0 FR France \n",
- "... ... ... ... \n",
- "1743 59.0 FR France \n",
- "1744 64.0 FR France \n",
- "1745 97.0 FR France \n",
- "1746 93.0 FR France \n",
- "1747 80.0 FR France \n",
- "1748 116.0 FR France \n",
- "1749 149.0 FR France \n",
- "1750 281.0 FR France \n",
- "1751 395.0 FR France \n",
- "1752 485.0 FR France \n",
- "1753 544.0 FR France \n",
- "1754 689.0 FR France \n",
- "1755 722.0 FR France \n",
- "1756 762.0 FR France \n",
- "1757 926.0 FR France \n",
- "1758 1113.0 FR France \n",
- "1759 1236.0 FR France \n",
- "1760 832.0 FR France \n",
- "1761 459.0 FR France \n",
- "1762 207.0 FR France \n",
- "1763 190.0 FR France \n",
- "1764 198.0 FR France \n",
- "1765 224.0 FR France \n",
- "1766 266.0 FR France \n",
- "1767 219.0 FR France \n",
- "1768 176.0 FR France \n",
- "1769 163.0 FR France \n",
- "1770 195.0 FR France \n",
- "1771 308.0 FR France \n",
- "1772 213.0 FR France \n",
+ " week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n",
+ "0 202015 7 2003 609 3397 3 1 5 \n",
+ "1 202014 7 3881 2223 5539 6 3 9 \n",
+ "2 202013 7 7341 5247 9435 11 8 14 \n",
+ "3 202012 7 8123 5790 10456 12 8 16 \n",
+ "4 202011 7 10198 7568 12828 15 11 19 \n",
"\n",
- "[1772 rows x 10 columns]"
+ " geo_insee geo_name \n",
+ "0 FR France \n",
+ "1 FR France \n",
+ "2 FR France \n",
+ "3 FR France \n",
+ "4 FR France "
]
},
"execution_count": 5,
@@ -2134,8 +225,73 @@
}
],
"source": [
- "data = raw_data.dropna().copy()\n",
- "data"
+ "# Affichage de quelques données.\n",
+ "data.head(5)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Y a-t-il des points manquants dans ce jeux de données ? Non, il n'y a pas de manquants."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ "Empty DataFrame\n",
+ "Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n",
+ "Index: []"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data[data.isnull().any(axis=1)]"
]
},
{
@@ -2158,7 +314,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
@@ -2188,10 +344,8 @@
},
{
"cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": true
- },
+ "execution_count": 8,
+ "metadata": {},
"outputs": [],
"source": [
"sorted_data = data.set_index('period').sort_index()"
@@ -2215,17 +369,9 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 9,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "1989-05-01/1989-05-07 1989-05-15/1989-05-21\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"periods = sorted_data.index\n",
"for p1, p2 in zip(periods[:-1], periods[1:]):\n",
@@ -2243,27 +389,29 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
- ""
+ ""
]
},
- "execution_count": 9,
+ "execution_count": 10,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEPCAYAAAC+35gCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXmcHVWZ979PliYJWUggBAy7EhYFEVmccesBMTCOgL6C\noCNRecdxwOUjDqM4owF3mFHRGWVm3gFZBCPgKFEiCQ40igMCsm8hypoEQkKSJnsved4/Th1u9e1b\nVae663bV7ft8P5/+3Nt1T506p86p8zvP85yqElXFMAzDMEIYU3YBDMMwjNbBRMMwDMMIxkTDMAzD\nCMZEwzAMwwjGRMMwDMMIxkTDMAzDCCZTNETkUhFZJSIPxrZdJCKPicj9IvJTEZka++08EVkW/f7O\n2PbDReRBEXlCRC6Obe8QkQXRPneIyF6x3+ZF6ZeKyBmx7fuIyJ3Rbz8WkXHDPRGGYRhGNiGWxg+B\nuXXblgCvVdXDgGXAeQAicjBwKnAQcALwAxGRaJ9LgDNVdQ4wR0R8nmcCa1V1f+Bi4KIor+nAl4Aj\ngaOB+SIyLdrnQuBbUV7rozwMwzCMJpMpGqp6O7CubtuvVXV79O+dwB7R9xOBBarap6pP4wTlKBHZ\nDZiiqndH6a4ETo6+nwRcEX2/Hjgm+j4XWKKq3aq6HidUx0e/HQP8NPp+BfCegLoahmEYw6SImMZH\ngUXR99nAc7HfVkTbZgPLY9uXR9sG7KOq/UC3iMxIyktEdgbWxURrOfCqAuphGIZhZDAs0RCRfwR6\nVfXHBZUHQLKTBKUxDMMwCmbIAWQR+TDwl9TcSeCsgT1j/+8RbUvaHt9npYiMBaaq6loRWQF01u1z\nq6q+JCLTRGRMZG3E82pUTnu4lmEYxhBQ1UET9FBLQ4jN7kXkeOBc4ERV3RZLtxA4LVoRtS/wGuAu\nVX0B53Y6KgqMnwHcENtnXvT9FOCW6Pti4LhIIKYDx0XbAG6N0hLt6/NqiKry9re/HVVN/Zs/f35m\nmjLThdQhNL/RUIei042GOhRdj9FQh7LK1+p1SCLT0hCRa3Az/p1F5FlgPvAFoAO4OVocdaeqnqWq\nj4rItcCjQC9wltaOfjZwOTABWKSqN0XbLwWuEpFlwEvAadFAv05EvgLcAyhwgbqAOMDngQXR7/dF\neaSyzz77ZCWhs7MzM02Z6ULqEJrfaKhD0elGQx3ypLNrornpRkMdGhKiSK3856qoOn/+fG11rA7V\nYDTUQXV01MPq0DyisXPQmNo2d4QPWVUrhNWhGoyGOsDoqIfVYeQRTfFdjQZEREd7HQ3DMIpGRNBh\nBMINwzAMw0TDMAzDCMdEwzAMwwjGRMMwDMMIxkTDMAzDCMZEwzAMwwjGRMMwDMMIxkTDMAzDCMZE\nwzAMwwjGRMMwDMMIxkTDMAzDCMZEwzAMwwjGRMMwDMMIxkTDMAzDCMZEwzAMwwjGRMMwDMMIxkTD\nMAzDCMZEwzAMwwjGRMMwDMMIxkTDMAzDCMZEwzAMwwjGRMMwDMMIxkTDMAzDCMZEwzAMwwjGRMMw\nDMMIxkTDMAzDCCZTNETkUhFZJSIPxrZNF5ElIrJURBaLyLTYb+eJyDIReUxE3hnbfriIPCgiT4jI\nxbHtHSKyINrnDhHZK/bbvCj9UhE5I7Z9HxG5M/rtxyIybrgnwjAMw8gmxNL4ITC3btvngV+r6gHA\nLcB5ACJyMHAqcBBwAvADEZFon0uAM1V1DjBHRHyeZwJrVXV/4GLgoiiv6cCXgCOBo4H5MXG6EPhW\nlNf6KA/DMAyjyWSKhqreDqyr23wScEX0/Qrg5Oj7icACVe1T1aeBZcBRIrIbMEVV747SXRnbJ57X\n9cAx0fe5wBJV7VbV9cAS4Pjot2OAn8aO/56sehiGYRjDZ6gxjV1VdRWAqr4A7Bptnw08F0u3Ito2\nG1ge27482jZgH1XtB7pFZEZSXiKyM7BOVbfH8nrVEOthGIZh5KCoQLgWlA+AZCcJSlN51q4FGRU1\nMQyjXRhqAHmViMxS1VWR6+nFaPsKYM9Yuj2ibUnb4/usFJGxwFRVXSsiK4DOun1uVdWXRGSaiIyJ\nrI14Xg05//zzX/ne2dlJZ2dnYtqRZF29088wDKMkurq66OrqykwnqtlGgojsA/xCVQ+J/r8QF7y+\nUEQ+B0xX1c9HgfCrcYHr2cDNwP6qqiJyJ/Ap4G7gRuB7qnqTiJwFvE5VzxKR04CTVfW0KBB+D3A4\nziK6B3ijqq4XkZ8A/62qPxGRS4AHVPXfE8quIXUsg8cfh4MOgooWzzCMNkZEUNVBvpBMS0NErsHN\n+HcWkWeB+cA3getE5KPAM7gVU6jqoyJyLfAo0AucFRuxzwYuByYAi1T1pmj7pcBVIrIMeAk4Lcpr\nnYh8BScWClwQBcTBrd5aEP1+X5RHy9HbW3YJDMMw8hFkabQyVbY07r0X3vhGszQMw6geSZaG3RFe\nIj09ZZfAMAwjHyYaJWLuKcMwWg0TjRLZHt1pYu4pwzBaBRONEvFiYaJhGEarYKJRIl4svMVhGIZR\ndUw0KoCJhmEYrYKJRomYpWEYRqtholEiJhqGYbQaJholYqJhGEarYaJRAUw0DMNoFUw0SsQsDcMw\nWg0TjRIx0TAMo9Uw0agAJhqGYbQKJholYpaGYRitholGiYwW0XjrW2Hz5rJLYRjGSGCiUSKjRTRu\nvx1Wriy7FIZhjAQmGhWg1UXDMIz2wUSjRLyl0d9fbjkMwzBCMdEokdHinjIMo30w0SiR0SQa9k4Q\nw2gPTDQqwGgYcEdDHQzDyMZEo0RsoDUMo9Uw0SgRe92rYRitholGBTDRMAyjVTDRKJHRZGmMhjoY\nhpGNiUaJmGgYhtFqmGiUiA20hmG0GiYaFcDEwzCMVsFEo0RC3VOqcN11zS+PYRhGFsMSDRH5jIg8\nLCIPisjVItIhItNFZImILBWRxSIyLZb+PBFZJiKPicg7Y9sPj/J4QkQujm3vEJEF0T53iMhesd/m\nRemXisgZw6lHWYSKxurVcOqpzS+PYRhGFkMWDRF5FfBJ4HBVPRQYB5wOfB74taoeANwCnBelPxg4\nFTgIOAH4gYhIlN0lwJmqOgeYIyJzo+1nAmtVdX/gYuCiKK/pwJeAI4GjgflxcRpttMIDDc3FZhjt\nwXDdU2OBHUVkHDARWAGcBFwR/X4FcHL0/URggar2qerTwDLgKBHZDZiiqndH6a6M7RPP63rgmOj7\nXGCJqnar6npgCXD8MOsy4oRaGq3wbCoTDcNoD4YsGqq6EvgW8CxOLLpV9dfALFVdFaV5Adg12mU2\n8FwsixXRttnA8tj25dG2Afuoaj/QLSIzUvJqKUJFoxUsDcMw2oNxQ91RRHbCWQJ7A93AdSLyQaB+\nCCxyDirZSQZz/vnnv/K9s7OTzs7OgoozPEaTpWEYRmvT1dVFV1dXZrohiwbwDuBJVV0LICI/A/4c\nWCUis1R1VeR6ejFKvwLYM7b/HtG2pO3xfVaKyFhgqqquFZEVQGfdPrcmFTQuGlXELA3DMMqmfkJ9\nwQUXNEw3nJjGs8CbRGRCFNA+FngUWAh8OEozD7gh+r4QOC1aEbUv8BrgrsiF1S0iR0X5nFG3z7zo\n+ym4wDrAYuA4EZkWBcWPi7a1FKFxgFYQDYtpGEZ7MGRLQ1XvEpHrgfuA3ujzP4EpwLUi8lHgGdyK\nKVT1URG5FicsvcBZqq8MNWcDlwMTgEWqelO0/VLgKhFZBrwEnBbltU5EvgLcg3N/XRAFxFuK0eSe\nMtEwjPZAdJRf7SKiVa3jj38MH/gA3HsvvOENyekeeQRe97pqDsyqMGYMPPggHHJI2aUxDKMoRARV\nHRRHtjvCK0ArWxqj6aGLhmFkY6JRInljGlUcmE00DKO9MNEokdABt68vLF2ZVLlshmEUh4lGBQhd\nclvFgbkZlsaaNcXlZRhGsZholMhosDSaIRozZ8KyZcXlZxhGcZholEieR6NDNQPizSrbxo3F5mcY\nRjGYaJRI3tl5u1gaADKkB8YYhtFsTDQqQKilUUXR8FS5bIZhFIeJRonkdU9VcWA2S8Mw2gsTjRLJ\nO+C2k2gYhlFNTDRKJK9YVHFgNkvDMNoLE40K0MruKU8VV3YZhlE8JholYu6pZMzSMIxqYqJRIhYI\nNwyj1TDRqAAmGoZhtAomGiViN/clY+4pw6gmJholMhrcUx4LhBtGe2CiUSKjQTTM0jCM9sJEowLY\n6inDMFoFE40SySsWVXQBmaVhGO2FiUaJmHvKMIxWw0SjArSye8pTVNmqXEfDMEw0SmU0WRpFuc6q\nXFfDMEw0SmU0iUbRlkYV62oYRpuIxvbtsHJl2aUYjN3cNxhvsWTlt349dHQUc0zDMMJpC9G45hqY\nPbvsUiRjlkb+/FauhN7eYo5pGEY4bSEaa9eWXYLGjAb3lGekLY0qnwvDGM20hWiMqWgt7dHoQ8+v\niufCMNqBYQ2nIjJNRK4TkcdE5BEROVpEpovIEhFZKiKLRWRaLP15IrIsSv/O2PbDReRBEXlCRC6O\nbe8QkQXRPneIyF6x3+ZF6ZeKyBlp5Rw7dji1bB6j6c19I716qornwjDageHOwb8LLFLVg4DXA48D\nnwd+raoHALcA5wGIyMHAqcBBwAnAD0Reue/3EuBMVZ0DzBGRudH2M4G1qro/cDFwUZTXdOBLwJHA\n0cD8uDjVU1XR8LSye6qsQHgVz4VhtANDFg0RmQq8VVV/CKCqfaraDZwEXBEluwI4Ofp+IrAgSvc0\nsAw4SkR2A6ao6t1Ruitj+8Tzuh44Jvo+F1iiqt2quh5YAhyfVNaqioa5p4aeXxXPhWG0A8OxNPYF\n1ojID0XkXhH5TxGZBMxS1VUAqvoCsGuUfjbwXGz/FdG22cDy2Pbl0bYB+6hqP9AtIjNS8mpIq8c0\nqmxpeMzSMIz2YNww9z0cOFtV7xGR7+BcU/WXc5GX95AeY7dw4fkAnH8+dHZ20tnZWVyJCiB0gGyH\nBxaapWEY5dDV1UVXV1dmuuGIxnLgOVW9J/r/pzjRWCUis1R1VeR6ejH6fQWwZ2z/PaJtSdvj+6wU\nkbHAVFVdKyIrgM66fW5NKuj73nc+P/+5E40qYTf3DcYsDcMoh/oJ9QUXXNAw3ZAdN5EL6jkRmRNt\nOhZ4BFgIfDjaNg+4Ifq+EDgtWhG1L/Aa4K7IhdUtIkdFgfEz6vaZF30/BRdYB1gMHBet3poOHBdt\na0irxzSq7J6y1VOG0V4Mx9IA+BRwtYiMB54EPgKMBa4VkY8Cz+BWTKGqj4rItcCjQC9wluorl/7Z\nwOXABNxqrJui7ZcCV4nIMuAl4LQor3Ui8hXgHpz764IoIN4Qi2k0D7M0DKO9GJZoqOoDuGWv9bwj\nIf03gG802P4H4JAG27cRiU6D3y7HCU0mVRUNT+gAWMWYhsdiGobRHlR8OC2GqrunQtP19zevLEPF\nAuGty623wpYtZZfCaDVMNEok7wDZDqJh7qmR45hj4D/+o+xSGK1GW4iGd09VdaAJLVc7iEZofqHi\nYqRTZZenUU3aQjQ8VbtARpOlUdS5DRUDfy6q1qZlcsopcNJJ+fYx0TXyMtzVUy2BvzD6+qrlqhoN\nouExS6N8fv5z18dHA1u2wMSJZZfCaERbWBpVHXTzDnhVKz+UF9Pw6Uba0lCF664b2WOGIkN6XkI1\nmTQJ7ruv7FIYjWgr0ajqLKyVLY2yYhr+XIy0pbFhA5x6ajUtnKGIRhXr4enuLrsERiPaQjT8bLRq\nojEa3FNlB8JH2tLwiyqquFS16vcj5aVd3FPXXANve1vZpQhnlHWzxlTV0sg74FZRNDwjHQhvVkxj\n3br0uvjfNm4s9rhFMBTRqKKl4cvULqJx003w29+WXYpwTDRKxG7uG3p+zXq0yowZ8P3vJ//uRWPD\nhmKPWwSjxT21dav7HE0xmjSmTi27BPkw0agA5p6qUYVA+IsvJv/my+UHtioxWpYf9/a6zyoKWjOY\nMqXsEuSjLUTDYhrNY7RZGgA77JD8m+9LVRSN0TLIVvn9Mc2g1WJRLVbcoVFVSyPvwFfFi2g0Whod\nHdnH3batuON9//vFrBQabTGNKvZ3w0SjErSypeFpF0vDH69I0fjEJ2DhwuHnU+aMde1atxS5CNpN\nNFotdtNWolG1QXc0BcJH+iVMzbQ0QtxTRYoGFNO2ZVoa991X3E2PVRcNVVi1quxSlEdbiUaWpdHb\nO7KqPxqW3Jb9lNtmWBo77pj8W7NEowgruExLo8hjV100liyB3XYrLj+zNCpIaCDcr9oYqcHZAuFD\nz68ZlobvH5MmJadphnsKyrM0iqLIga/qorF5c9klKJe2EI1QS8NfuF48RgoTjRplWhohwehmrcQr\ny9Io6vy1k2ikWaJDwSyNChIqGv73np7mlsczGh5Y6BkNT7n1M8iQO8KLHtBaPaZRJCGicd118PGP\nj0x56vGiUcVzNxKYaMQoSzTM0qhR5pLbkGM3qy1aPaZR5Gw5pG2/+MXy3jo4LnqhxEMPFZOfWRoV\nJNSlYKKRn7JWTzXDPRUyWJmlUdyxkwjpU2U++6vKN3iOBG0hGlW1NDy2eqpGmZZGyNsAmyUaZmnU\nCBGNMmfnRfcBszQqSOhM3V+4Ra+MSWI0WRqj4ea+Mt1TRdRjKKJR1IDVjqJRxetxJGgr0Qhdclu1\nQHiVRcMzGpbclmlpFEE7WRplYpZGG5A3plHGK0RDqKJojKYlt3liGlW0NIZClS2NtHNilkZ5tIVo\n5I1p2M194Yymm/vyuKeqOAsucwmoH8SLKEOVzzEUfz2apVFBTDSaR9EXeJmWRh73VBXbokyK7Aet\nEtMY6RWDVcFEI8ZIu6fydpIqzrzKtjRGy5LbIihz0ClSTKtuaRQ9cah6fesZtmiIyBgRuVdEFkb/\nTxeRJSKyVEQWi8i0WNrzRGSZiDwmIu+MbT9cRB4UkSdE5OLY9g4RWRDtc4eI7BX7bV6UfqmInJFW\nxqpaGp5WtjQ8ZcU0Rot7qki3Th6KmrGPtGiMJkuj1azXIiyNTwOPxv7/PPBrVT0AuAU4D0BEDgZO\nBQ4CTgB+IPJK018CnKmqc4A5IjI32n4msFZV9wcuBi6K8poOfAk4EjgamB8Xp3ryBsLNPRXOaLI0\nzD01dIo8LyGDchVEo6g+ENLvqsSwRENE9gD+Eviv2OaTgCui71cAJ0ffTwQWqGqfqj4NLAOOEpHd\ngCmqeneU7srYPvG8rgeOib7PBZaoareqrgeWAMcnlTPvktuRdk/Z6qn8+TXT0mgn91RRg6/FNIaf\nXxWv70YM19L4DnAuEO+us1R1FYCqvgDsGm2fDTwXS7ci2jYbWB7bvjzaNmAfVe0HukVkRkpeDcl7\nc19V3VPbtlUvWFb2HeHNsDRa9ea+PHkU3Y8spjH8/Kpa33rGDXVHEXkXsEpV7xeRzpSkRXbPIc0v\nFi06H4Abb4TXv76Tzs7OhunKck+Fpvvnf4b99ivv6Z6NKOvZU81cctsOlkaVZ8utIhpVPHfDoaur\ni66ursx0QxYN4M3AiSLyl8BEYIqIXAW8ICKzVHVV5Hp6MUq/Atgztv8e0bak7fF9VorIWGCqqq4V\nkRVAZ90+tyYVdO7c81m8GI49FhL0AqhuTCPOY481pyzDxW7uK5+hiEbR7dZOgfDRZml0dg6cUF9w\nwQUN0w3ZPaWqX1DVvVR1P+A04BZV/RDwC+DDUbJ5wA3R94XAadGKqH2B1wB3RS6sbhE5KgqMn1G3\nz7zo+ym4wDrAYuA4EZkWBcWPi7YllNV9VnXJbegAWUXKDoQ34zEirbp6Kg/NutfARKP8/JrNcCyN\nJL4JXCsiHwWewa2YQlUfFZFrcSuteoGzVF+5VM4GLgcmAItU9aZo+6XAVSKyDHgJJ06o6joR+Qpw\nD879dUEUEG/IaFlyC8VcLKrur4hnFbXbY0R83yh6jX5ZMQ2zNPLTLPdU2ZZGKIWIhqreBtwWfV8L\nvCMh3TeAbzTY/gfgkAbbtxGJToPfLscJTUD53GfVRKMsC+Izn4Grr4bVq4efV7tZGqPlbuCy/PKL\nFsH3vgc33ZScplViGu1qabTFHeG+UbLe/V3VJbdFWxr33Qdr1gw/HygvEF62pVHFWWYVYhpZ9bj2\nWlic6EgeWCazNKpJW4iGKnR0wJYt6emqGghXrb1isggmTCguL89oWHJbRiC8GW6dPMcdaUsj5Hjt\ndnOfWRoVRBWmT4f1iVEPx+bN7rNqMQ2AsWOLO94OOxSX12i6uS/EPVVlS2Moxy263bKunZBrqyyX\nXShmabQBqrDTTtDdnZ7Oi0oVLQ0vGkXMsIq0NEbTzX1lWhpluadG2tLIIxpVHUTN0mgDVGHy5OyX\n0XvRGOmYRki6qrqnRqOlUUZMoyz31EivnipKNKrgnjJLYxSzfTuMH5/dYavqnipaNIp0dXlGk6UR\nsnpqtFgaJhr5MUujDVANE42i1+Bnoeo6f8gAOX58ccct8l3SZa+eGi2WxkiLRrPaLSs/E43k/MzS\nqBB+ph4iGmPGjKxojBmTz9Io4mJphmiMJktjJG/uM/fUYFolplFFF+VI0DaiMX582M19HR0jG9MI\nEYGi3VNVFo0qWBojeXNf2aunWjUQXqalUeQjU8AsjUoSGtPo73eiMZKKH+KeKtrSKPKCa5ZoZFG2\npVFF0WgnS6MK7imzNEYxoe6pvj53D0ORjfenP8Hddzf+bSjuqSIo0tLwtIJ76m//Fg4Z9LCaGmW8\nua9s0WhVS6NMiu4DrfbmvmY8sLByhLqn+vtduiIb76/+Ch5/vPEFnUc0Ojrc93axNJrhnlq0CJYv\nT/49RIiqvOR2KMctut2KCIQXLWjPPecmg7vump02BLM02oA8lkbR7qm0VU95RGPHHYsrU5VXTzXT\n0vBLqpMItTRCXJ2hjDZLo4qrp044AQ47LDx9FmVam+vXw1NPFXPcodIWopEnplG0eyprqWxoIHzS\npGLKA+0bCN+0Kf330JhGkdZo2aJRtFuxiqLxpz/B88+Hp8+iTNH40Ifc2zuHy8MPD738bSEaedxT\nIZbGZZfBiSeGHTvL0ggNhFfd0miFmMa2bem/h66eaoalUdYNpa0uGiHlLzIeCOW6p9auLeaYhxzi\nnjg8FNpGNPK4p7I6w403wi9+EXbsotxT3tIo4z6NkAuzFSwNSG+P0Jv7RpOl0ao39+URvTyi0dcH\nPT3pacq0NIqc8GVZ3ollKK4I1SXPzX0hlsbOO4cfO8Q9FTJATpwYfsws8gjP5s3w6lcn/16We2qo\n7pW09gjJ01sao0U0RtpCzLL243mELEgIGbjzPE3hv/4LvvSl9DTbt7vBuwxLoxmLWPLSNqIRenNf\nSEwjT8OlPecpz819RT4vKs9sZdOm9BVHZbmnhmpppM06+/vdeQ6xNEIu8IcfhjvvTE9T9h3hIy1+\nWbN4CHsZWp7z5ts8yz0J8PLL7i+N7dvDJqGh5GmLIkVjqG3fFqLhZ4ehS26r/BiRIsjT8Xp73V9S\nB2vWM4xCLY3QtvIrp/zS5aQ8x40LWz0VUt93vAP+7M/S05R1N7A/XsjMP09+RYiGL1NRojFlivtc\nujTs2Flv+GyGtSky8paGiUYKqu5x4FkdthmPEUlr5FDR2L692Pdp5LE0/AWUdO7KtjSyLnDPAQe4\nz6yYxrhx2W6R0IlFSFuV7Z7Keptl3vyy6hHSXnlEI+S8vfa1+Y6dJaTNsDSKEiFVuPXW8LRDoW1E\nY4cdwlbPFL3kNovQmEbZopF17sqKaYTOlL2LLc1iC7l4R1tMI+velbzHLkI0inZP+TQhfaUsSyNU\nhLLq8PDDcMwxYX3BLI0U4pZG1iyy6Jv7irA0io5peEI6jbcwkkSjbEsjr3slxNIoKqaRx9Io647w\nEEtj0aJwER9pSyOPaIQKVoholGVpZJVt2TL3mfVqa3/codAWouEbecyY9EGmGZZGlmiUEQj3A0BI\nPbMsjbJXT+UVjZCYRlGrp0IsurItjRDReNe74Nlnw/Iroh5FWxq+jxRtaRQpGqEilFW2J590nyYa\nw8QPzjvskB7X8KunigoOhpDXPVUEVRANEfdMoKHmlzem4amqpTHSouGviVD31Lp16b8XWY8QSyPP\nM8DyWBpluadC88sam/wkIM8zvvLSVqLR0ZHum/eWRlbDFDmrzuueKiKmkWeWFuqeGkoHbLSUN9Q9\nNVRLIyumUeTqqZF2T+W1NHbcMTwQ3t0dduys8xJyTprhnuroqLZ7qqiYhm/PkOvCRCMFPzhnBcND\nRaMo/KqodrQ0ksjjnuroaE5MIyvulSUsnqItjR/+ED73uex0IWzfDpMnZ1saobGj0HqEtG+oe2rs\n2HDRCL2uW93S2LrVfYYIpK2eSsGvg+7oSHdP+RlJkaKRNnBs3x7m9y5aNPLM0kJFo+jVRCFCmqet\nvFhk3RGedfHmcU8VHdP4znfgoouSf2+GpeHrmbV6LrQeIX0v1NIIbYf+frcQpkj3lFkao5x4TCOt\n8/f1uc5V5Zv7inBP5Vl5lCUaw/FlN6p3Hktj/PjwmEaIaIRYEWW6pyZPTv+9GaLh+0jo85iyzkvI\n4z96e7PvzM/TDnlEI497qsqWRiVFQ0T2EJFbROQREXlIRD4VbZ8uIktEZKmILBaRabF9zhORZSLy\nmIi8M7b9cBF5UESeEJGLY9s7RGRBtM8dIrJX7Ld5UfqlInJGWllDA+F5YxrDdcnkcU8V+aCyZsQ0\nhiK0jeqdx83RDEsjxD1V5LLsPKJb5JOOvWiEvmNkpC2NHXbItvjyrDiaOLE491TR793JU5esOvh2\nSks3XO/AcIaiPuAcVX0t8GfA2SJyIPB54NeqegBwC3AegIgcDJwKHAScAPxA5JW52CXAmao6B5gj\nInOj7WcCa1V1f+Bi4KIor+nAl4AjgaOB+XFxqqfoQHieh6VluadCRcPnE9LQH/oQfOYz6flBMe6p\nou8zCC1b3piGL2eam69oSyP0BqvQh99lWS55LY0JE9z5C1mllGVphA5EoZZGiJswdHl8X58TjaLc\nUz097qnTZVgaIWWD9OtiqItIPEMWDVV9QVXvj75vBB4D9gBOAq6Ikl0BnBx9PxFYoKp9qvo0sAw4\nSkR2A6Yp0kLHAAAgAElEQVSoqn+T9pWxfeJ5XQ8cE32fCyxR1W5VXQ8sAY5PKqu/MIsKhOdZ912U\naHhLI6Rj/ehH6Y9uLzoQntdUT5uVhpYtr6XhZ9RZ92AUueQ2hDyujizRCI0H+bRjxmTH+fz5LdLS\nyDp/IY/zCX24KNQsjaLcU9u2hbuxf/SjcFdrSJ9fsyY9jS971v1o8bR5KcTpISL7AIcBdwKzVHUV\nOGEB/Jt5ZwPxlfkrom2zgfjiy+XRtgH7qGo/0C0iM1LyaogfnEMuED/7SiOPaKQR6nbygXz/PYRp\niXZXsYHwPAFJT1qnDS1b3phGyAuWQgShGStnQl0TofGsENHIs6IQsi2N0PsmQtx7XhCKegaYtzSK\nck95SyNkkP/Qh8KemhvSp+64I/13CBON0DhVEsMWDRGZjLMCPh1ZHPVNXdBiTHe4oexUpqWRVa6Q\nASPungp1QaSly2NpZMU0hiIavmM3ujj7+lxbFW1pvOlNtfIm4V02aYNGMyyNIgLrvk1DhaVoS6NI\n0ejtzbY0fD6hLp1Jk4p7YGFPjxOhUFdcVtwodBwIeWmSX0TQTEtjWA/cFpFxOMG4SlVviDavEpFZ\nqroqcj29GG1fAewZ232PaFvS9vg+K0VkLDBVVdeKyAqgs26fxGc73nvv+axbB08/DX/4Qydz53Y2\nTFeGaISapXktjazjQjGrp7x7Ks8gmnb+QgPNeWMa06e7OM8DDySnCVll04yYRhHuqbg1msc9FWpp\nZIlGyDJZ/3uIeyorEJ7HPVV0TGPbNthll+xj+3O2YQPsvntyutA+FXIjphe0rIlPo/y6urro6urK\nPMZw39JwGfCoqn43tm0h8GHgQmAecENs+9Ui8h2cK+k1wF2qqiLSLSJHAXcDZwDfi+0zD/g9cAou\nsA6wGPhaFPweAxyHC8A35JBDzmduFFo/+ODkyox0TEO1HNHIE8hvhnvKn7ckSyPERbh9e74bMb2F\nkGVp7LBDujvB95Ey3FNpxJdvFykaoa6MEEvD/5ZV3yxLIzSfeH6h7qmQmEaopeHP2YYN6elC+8Da\ntXD66XDddclpfF1D7oOpL1dnZyednZ2v/H/BBRc03H/IoiEibwY+CDwkIvfh3FBfwInFtSLyUeAZ\n3IopVPVREbkWeBToBc5SfaV7nw1cDkwAFqnqTdH2S4GrRGQZ8BJwWpTXOhH5CnBPdNwLooB4Q3xM\nY9y4bF9f0TGN+PLcegEJnS2XaWmELLnNGwjPEo2QGaQ/d3liGiHLaSdMgJdeSj9uFd1TcUsj9Lje\nPVWEpREqGmPHZt/JnRUI920Zekd4MyyNkEB41rXjCe0DL70EM2dmC27IcmXIFrMkhiwaqvo7IGkB\n4zsS9vkG8I0G2/8AHNJg+zYi0Wnw2+U4ocnEXyBZotEMSyO+qqR+uafvLHlEo4jHdeTxaYZYGkN1\nTzU6frPcU6GWxqRJ2ffyNCMQXkRMw8eC8lgaWQKYJxAe8qrcMWPCRCNt4Ovrc3mELlUu+j6NjRvd\nQpOsY/trJkQ0Qq6h9eth551r1mSj/tDbmy1o/rdVq9KPl0Rb3BEeIhq+A4QMRHlEwzdQo7Shwdxm\nWRqhoiHSnJjGcC2Nobinsi6mrJhGyEXpyRPTGK7l4i2NkKcm+/QhE6k8gfDx47MtuRBLI8s99fLL\nrjzNsDRC3FNeNEItjZC76UMmItu2uT6ftlDEu86yRHmnneDBB9OPl0RbiUbaqgLfobMuIhiapdGo\nEZtpaWRdvACLF2fn09vrHl/RjJjGSAbCQ24G80KUNmiEBGnzkMfSSOtLvo/kXT0VYn1DuGgU5Z5K\nO8df/KL7DBWNvKunstJt2FC8aIRMHPxNj2n1DnVPTZvm0g5l2W1biIY3i9MukL4+93vRopEWdB7K\n6qmJE7OPmYXvUAlxrgH09GSLRt6ZctaS22bENPxy2pDHyGSJRtGPEcl7N3CjOsTv+Qm1NETCBvCk\nY8YJWQIbd0+lXTtZlob3xee1NELdU9u3p9cj1NLI454K6QNeNNLccqHuqXHjYOrUocU12kI04oHw\npJMZN51HSjTyuqfe9z549auzjxlaphB6e2HKlHT3VF4ff5GB8DyWRpbryQtkVS2NtMBqXveUF5mi\nLI2+vux+EJ+YDXfJLWTHUKAmAFmTAU/ahMazZYu7JqpoafT0ZIuGjwlNnZr9npRGtI1oZF0ged1T\nIsOPaeRdPbXrrsUEwvMMeCHuqbIC4XljGhMnpl/AW7a4GWRaGj8LLiOmEWJphIpGiPUN+SyNUNEY\n7uopT8hNoF7MQp8ekNY3wR3PWy5FiUZofUPdUxMmZFt8Y8e6vp51t3ojTDQi4qIR0hFDlub6fOOf\n9eXKE9MIHRBCyxRClnuq6Jv7Qi0NLy55RSNrBjl1ajGWxurVjV9nW08e91TaIBS3NELwg2no3cNF\nxDTixxxOIHzPPd1niHuqt9f1z5DrzJfR79eILVtcPwo5dqh7KnRxRR7RCHVPmWgk0IyYRhGi4V07\nIaKRZxbp90kir6WR5p5qxs19zQqEZ8U0vNuhCNF4z3vCylWUe8oPKBDWR0JdRUWKhh/AQwPhjdKs\nXu3eGfHZz4YN3F6oxo0rxtLIIxqhlkZI8NqnK8LS8O6p22+HT34y/ZiNaAvRaIZ7Kq9opLmnQgbI\nPLPILLZvh9e8Jixtlnuq6CW3IaucIJ+f2ueb5Z7aujXM0ghps9Wrw8pVlHvKz85DJxahk6Si3VOh\nlsaUKbUXCsV5z3vgX//VtX1ITCNuaYTGNMaMyRaNkDYLFY2QOIQvWxExDT/WnXEGzE58zGsybSMa\nWYLQLNHwna9qS24/8QnYb7/sfEJjGmUEwvPENPzqqRD3VFZMI2RWGPKcIF+uPO6ppJsPe3pqohFC\nqGj097tjjrSlMWVK43PohSTrfoV4Xt7SCHVPpbkx45ZGVn4hd4Sr1saT4VoaPq+s68e7p049dWju\n7rYQjf/5n3yWRsibu4oQjbyrp4qKaeSZpTczptFo8POWRtY5aZZ7yq9fTyJU1LIGWU8e0U0T8J6e\nobmnQgbwadOy3+MQEswNtTTSRGPqVPc5YUL+mEaoe2ry5OR+MpSYRtZThEPuXYFs0fB5ZfUnn27K\nFFtym0poTCPrUdFQ8xuGDFj+Yk56d0RZgfA870wuOqbhz+9IL7kdyUB4vFxZN7yFiq4X8CxLo0j3\nVH8/HHYYPPNMuhB6t0iIpZF1TN/n0kTDu6fyrJ4KneRNntzYNQbFxzS8WzHU1ZZ2n0ZPT5gF5ifI\nJhoZZInGscfCU09lP/UT8lsaO+6YvOIlZMD1jVxkTCPPuvWi7wj3F+RIP7DQ1zlpUI2vv09KE59R\npw3O8b6RdQGHnr800YjHNELIE9MYPx5mzIB169LLFhKAHTfOpUsalH26JNHwLxfLG9PIEwgvWjSy\nxNYLwXAtDT9xyCqbd0+ZaGSQdePeM8+4T38BZ3X+IkQj1D3lRcPvM1ziA2gWzQiE+7xG+j6NtMGj\nv78Wr0gbYPyFmzWj9+0d8u6I0EdcZLmnOjrc3crXX5+dV6h7yve9GTPSn/4bumpn/Hg36KbFfHp7\nnUXRaOD2lkZHR/H3afiYQFGisW2b6ydZloYXguHGNOKiYe6pAgi5kQlcI2c9Ljqve2rHHZPdU6Gi\nMW5cmOsh/ij2JPIMuD092e6pIkWjme4p/8rfRsfdutUd17d/0oXuB6GsJ6z6QSfLLdLbG/4wvSz3\nlI9pBLxHJ5elMW6cO27am+PyuKeyRCPN0vB0dxd/n4YfTCdOzBaN0NVTU6aki4Yf6Iu0NMw9VRCh\nogHZLqqtW90JL8o9FdqZQ0Qj7b6QeJo8MY0QSyPP6in/PoLhWhoTJ7oAbcix46LRqC22bq091ytt\nVuoH0awLc8IE9xnyyAx/d3HWK3p7e93TSTduHPy7d09B49+T6pF1TfjzkjXQh4jGxo2uL4VYGl40\n6s+Jb7vOzuLv0/BPkU1zn+VdPZUlGhs2uDQh5SvaPeWfxxXq4vW0jWjMmBE+I04TDX+Ci5gdhopG\n3NLIwueVFdzM8u97mhHT2LYt+ZzksTT228+lT3ObxNOPHZssCH4wgDDRyHIBzJkD990X9nC+kEGt\nv9+1/+67N34Pgh8wIPud1PF6ZF0T3gKbNCk93xDR8ANkiKUxYULj+yV6euDSS+ENb3DlClm0Erp6\nyp/DCROS+3te91TatQO1czJpUvYy7XhfadSn4qKRZT36SejkyfmtjbYRjZkzG5/sTZsGD8ZpouE7\nTUgQtr/f/SVZGn7dfWggHLIH+ZCbsbzvPsQk3rTJzW6LjmkkPRgwj2iMHeteShPyKAR/oSRZGqGi\n4QehrHO3ZYtr2xBLI2RQ8wPCrrs2vnEw7p4KvVEw5DEiW7e6QTRrUAsRjZdfdjGJENFIin3ELaqJ\nE7MFMs/qqbyWRoh7Km35LrhzMmWKGyOy6uLbLKkPb9uWLXowcDwZiouqLUTjK19xA18j0fCztoMP\nhl/+0n1PEw1vrmfFPQBeeMFd5EmumG3bXGdphnsqbXWKH4BCZl/d3TBrVvGWRtLjOkLdU/39buCe\nMiVMNPxgk1TnNWtq5ywkppFlaWzeHObGyJo91pc/6SFzcUsjxG3qXYQh7qkJE9IH6L4+ePJJJyxF\niIYX5gkTBqeLi2NWPvG8inZPhayy3LwZpk/Pdk9NnerOXVrMCGp1Typf3FJKu/695wJMNBI55xz3\n2egC8bO2F1+sPQgtzezt7HT7hHSa3/0OdtkleRDyQfIiA+F9fS5d1kUZepdsd7erg19ZUs9QAuFb\ntxZnaUyfHuae8hdUUlu8//2wYoX7XkRMw1saWff95LE0xo9Pfpx1fAYeIhpeDELcU97SSBKN//f/\n3Oeuu2a7p/JaGvWDX1wc87h0QiZIeUWjvz+9bTdudG7xEPdUHktjuKLhJ6FgopHIpEnus9Eg6YOG\na9a4hoN0QXjssVqaLH/q+98PDz2Ubk5OmhS+5DZENLZtc7PRtE4TeiH19LjfJ01KPiehj9WoL+Nw\nRcNbGnPmwBNPpKfdvj375s1DYm+oD3FPhVgakya5tli/PjldaFt4Udh5Z7jjjsF9Jj4Dnz49OR+P\nj1VkTRy8RZI20Pt+EeKe8jGNrP6ZtMpqKO6p0AeRhgy6XjREXF3SFh1s3OjaK8Q9FWJp+LZIcj/5\n8med37h7aigvYmoL0fA0MlHjJ9dfbEkDpB+wH3nENc6jjyYfy6f9zW/cxZwkGlmBMhjYyFls3Ogs\ng56e5AvYDzBZA1V3txv0RNwA3Wjw80tGi4pphLqnsnz89WX0N74l1fmQQ+DrX3ffh2tpLF5cm6FP\nn55+U1xeS+Od73QTnOefH/x7Rwdce21tUE3Dly9PTCNpgJ4+HU45JXsZcp6YRpJoxMWxaEvDC0KI\naED2LH3DBmdphLinQiwN3xZFuKfM0ghkxx0Hq7nvdCef7BoYkkXDz84OPtjdDHj11Y1n/qrwt3/r\nvr/1remWxuzZzr1SxMtroLascYcdkjtOln/fs369iwUBHHoo3H//4DQ9PUMTjaSYRug9MP6RCVmD\nsk/rB9KktvDnDZJFHsLa4uKL3aeIK1+IpRGypLWjwx17jz0GxzV8m2atcvLE3VPDFY2NG91CkzFj\n0i1hP0BOnZp+TooOhIeunnr5ZTdJmjgxedafRzTWr0+PB8LA1VNpdVEd6BpLEo0s9xrULJaQOjSi\nrURj+nRYu3bgtq1bXWf/xjdq25JEY+3amjXi82k0YC1b5vy8732v+7/RSitV18hTp7qB+emnk8vt\nZwYhcZRNm9zgl9Zx/Gwt66JbvdqZ1+DiPY1McS8aWY/ViJO25NbfA+PP1yOPNM7X+5932il9APJl\n9ANN0uCxaVPNPZk0g+3vrz1GJG0QiotJlqht3OiOm+XqiA+WjV6es3VrTTSy3BxQC9SHxjTSRM0L\nboilMWWKE73ly5PTpbmn8gbC8y76mDo1/UbGuGhkLVdduxZ22y3sPo1GE9o4PlaZ9hiWUEvDu07B\nRCOTRs/P+dCHXEc/8MDatqQLb+VKeNWr3PfLLnOdZuXKgWm6u+H3v3ff/XNyGs1u77mn5uaYOxdu\nvTW53KGisWULLFqUfQOVn91mzYKfeqr2+PSkzuVnNyLhcY20lx1t3erOsQ9uv+51yRZOR0eYWZ/X\n0kiqq7/YRNKXNcYH4Z/9DM48MzntSy85d2LWAPTd79bO18yZg/vdihXuvIWcj23b4N57neCGuKey\n7tPYsMGVPy2vVauc227qVDf7fvzxxpOBvr7airxGE4K8gfB161w/zxqUwbn9pk1LF/B6SyNN6Neu\ndffV5IlpJE284jefFiEaPq+smFsj2ko0pk93QdNf/9r9733hhx8+MN3ee7tOXc+KFbWXluy8Mxx1\n1GDf8m67uZebQG0QrR+oXnzR7esHgb33HjwIePbc05Vz3Lhs0bj8cvjmN2vvjmjUcbyZG+Jv/9Of\nYN993fekQS0efAt9h8QLL7h6JYnG7ru7CyjtgvSWRog7ZssWlxaS76/JIxqQ7CJ4+eWBN99dcon7\nbGRJ3n47LFzo+tKUKcltsX27s1yXLXP/H3hg7bvnmWdcP5o8OXsJ8mc/647lb3hNmoFv3+4sghD3\n1JQp6TP0m25yn9Onu+O+/DLceOPgdPE42i67DH4ke3zQDnFPrVnj8vEuzzRr4+Mfd5O3yZOT+95j\njw2cSDVayQbu3IW4p5591qXx1lBSfVaurLmKswLheSyNEPduPW0nGuBmbeCCqAA/+MHAdMcd52ZF\n9bznPQOXd+6++2DRiDeWv2mw3kf+7LMD90masWzc6C7aP/7RdYYs0fAus6efTh7E16+vBfvSOoyq\nOy/HH18rY5poJC0Free3v4XbboPXvrZxx/Yzqp12qg2MjeoRammougHVt31SvCLunkqqazxN0oV7\nzjnOpfaRj7j/Tz8d3v722nLeOD/6kfvcZRc3ifjf/21ch/olxZMmDT53XjRmz3bHSnMV/ulP7nPm\nzMZ5eb76VddeWZarF9y0e2a8D33ffWsPHWx0XC8aAPvv7yzyOGvX1mKPu+/urOG0unrR8Kudslwx\nn/hE8gSpu9tdj4ce6v7fZx93/EZ0d7t8kl6a5XnwQTjiCPd9xozB7nPP44+7u+AhecLiJ0d5LI2s\npxc3oq1Ew5u1u+8+cPusWQP/P/zwwb70Y45xn342Cs4dELcQkl5UU9/I69e7ALkfZJM6abxDTpuW\n3Rn8aq5t29z3RjO5lStr9d9pp8YdprfXLetUhbe9zW1LErZt29xAPG1atmhs3w4nnui+H3mkm5HH\nz3FfX+0O86lTYcECt73+uN6/O3ZstqXx1a+6tvMzzKSbMl9+eaCl0Wjwq7c0kvIBZ3F6ktyAvh1m\nzHADUSPrFmqWi++/9cfets0Nrnvv7dphzJj0gcCLk/ffJw2kDz/sPt/4xmz31JQpjWMtns2b4aST\n3GA1Zgy8+92NYylr1tTiaIcd5m4a9Dz2mDsXfgIwZ47rL14EG+Hdf5AuGv/0T+7zk59MtjReeMG1\nmV95tNdeybGZJ55w40PafTqbNrk/P3lNm8S9+GJNTJPGgQ0bwsaJuPCmCVUSbSUa4GIR9TO3etHY\nbTc3wL34ovtftRZziD92ut7SeOgh9/nXfz0wv112GXjMl15yx/AzrqSLLX7BTJuWviIK3EX+7nfD\nF7/o/vcXgueXv3QxAk+jhQHg3sH85je7mahn0iR3s2I9fsXJrFmDra56xo51g+ehh7oZe0fHQKGJ\nxwymTYMlS9z2+iW1L71U6/TTpqV3ej9IPPKI+5w5c6D7qK/P7f/887VBvNHa9Z12cu0av5enUVv4\nwSY+qI8f75bCelSdi7S3180ed90VDjrI9Z9Gs+ZVq1yZ/NNr6weFRYvcp+/H++xTu58ozvLlLt72\n8svOAoLGA+T998PXvgbXXQef+Yzrv5MmJbts1q937bDnnq7PNqrDunU1V6cva6NJxtNPu/KDs5qW\nLq25eQ8+2OXtZ8kirk7vf3/jcsFAEUqzhL72Nfe5ww7JE6TVq2sCBC7fpBtLf/YzdyNw2pMjnnrK\n1dV7JNJE42Mfq4ljozvloRbIT1v9BW5c80LVdqIhIseLyOMi8oSIfC5kn/e+F/77v+HHP65t852w\nlq9zn/iBZvlyN8ivX+86lGf33d3MXQRuvrnWuS+7bGB+s2YNtBrigx64i63eZQVuH3+hTZ3qZjYL\nFsB55w1Mt2aNc3U8+aT7/cwzXf3+8i8HpvODvh8Qk1ax+EH69a+vbXviicHuk23b4IEHXF1e97qa\naDYifnH5hQL+/HlWrar5bVevdoPXEUcMzvf552sz+b33hueea3wRPflkzS30mc+4z333defVz3K/\n+EV38a9bVxt0G81Iu7tdXbNWzviL/tvfrm078kj4yU/cMbu7XZmOO84NVJ/9rOs/c+a43+utDVX4\n1a9cv/2zP3Pb6kXj6afh0592M3iAt7zF/dUP3n/1V/CmN7nvl15aq2v94P3Vr9YmHP/4j+7zgAPc\npCSepyp87nNu0Jk2zQ3yO+ww2GWzerWzeuM3HSatevMDKbjYTV/fwMlIo/fa33vv4G3gyvXii9mW\nxj/8g/v88z93n43a9g9/gJ//3PU3T5Jo3H47XHihc+36R6vUP2Ty29+G004bWJ9Gk7gtW2pi4ds3\naaB/+mn32047pVv9q1fXJoQ775z9Kt96WlY0RGQM8G/AXOC1wOkicmBS+q5omjZtmuskH/iA2540\nUzj0UPje99z3Rx5xIuLNw3gab3k89pjL673vrS0J9LzjHc536Rs/bh4CvOY1znd8/PEDG/upp5y5\n3NPjXDYbN7o6fPObA/P/0Y/cKrA99qi5T/bYwwVZ4zOX1avd/Sg/+Yn7/9WvbmzaP/II/Od/usC6\n57zzasFkz9FH16ymt7wFfvrTwXlt2gR/8zdw9tnwrnfBr37V9Yp/e/LkmjXxwANu4PQitmiRiyGd\ne647d3Gee642wE+a5AT1wAMHXugrVrj6XXONCyL7QXz2bPf9oIPc/17AZs2quR122WXwRe7F+ze/\ncX3Ji8/KlQPdNi+84D5vuKG27dxz3fF+/3vX1n7ghlrMSMSdnwUL4KqranU44AD41recO9NT7556\n8MHazBFqg3NcuKA2CQInfl1dXey3n4uZxYlbuH6Wvscerg8+91zttz/+ES66yLnG/CN4DjpocJB+\n113hlltcHp4kd2Z8oiTi2vDxx2sLCX7724Hpv//9rgEWjOfFF13Z778/3dK4+mr4539236+7zn3O\nmuXaMb4a8IgjXDvE9/eice65tfL19NTGliOOcGPByScP7A8AX/6ya49dd62NTbvtNnhBzLve5foM\n1Npzr70GTzIffdSJ2gknuOtq8+bBK9m6u107/OEPtf5SP4kKoWVFAzgKWKaqz6hqL7AAOCkpsW8Y\ncLMAT3zwjnPkka6hFy6EL3yhNgOOE1+m+8QTbsZzwAG1bT5gtuOOLhj6f/+vCwLffHNtFRbUlvEu\nXuyOc+KJbib50EOuUb0I/f73XfzsZy5NT09ttuFdET//eS3PN7zBDaYXXlgbAJ95xpm5b3lLrfw3\n3+xMaU9Pj7Mojj9+oPjtvLO7iDZscJ2vv98N9J/+tCv/Kae4watehO++G/7rv5xQnX8+3Hln1yu/\ndXTULAAfj5kzx30ecoizCI88Eu66qzazvu02d37irrKFC91FFF/QcPPNte/xR4T4875smRuU/Bsb\n/+ZvamnqraZf/MJdWH7frq4utmxxQe/Zs2uzelV3rh9+uBa78Zx4onNJrVnjxMD3Jz+ggZt1XnKJ\nW32n6gZZPwB3dtbSTZniJgB+Rv+rXzl3oufYY93n3/+9E9+lS93/e+8Nf/d3bvDz9dhvP1dmfx7A\n/X/jjQPPIbj+dNtttf+9uL3jHTVB2GcfN4B6UfOWSUcHnHpqbd+ZMwdOWFRdP/yP/xh4bfzFX7hB\neO5c93/cPQTwwgtddHfX4i9+4hDvHz6/Qw4Z7GL1Y8E3v1m7DqdMce3jJzB9fbV28oIAbtvq1fAv\n/+ImJwAf/KAT1o9/vJbfYYcNFOyXX3bX0Pvf7yw5PzYdcECtrcAd37vFb73VLZYAJxpx8e7pcZPa\nzZvdeDFmjBNlXybPRRfV+oZ3xU6a5OobtzZUBwv/AFS1Jf+A/wP8Z+z/vwa+1yCdqqrOmzdP4zz1\nlLvM49x6662vfN+0SfWMM/xQoHrttY3TPfSQ6kUX1dLdfrvb3t+vessttXRPPllLA6q/+93A/Hp6\nVM8/f2AaUL3//lo6X4fp02u/P/ec6tFHq9522+DyXXllLd0jj6hOnar67LMD01x1lft9991VOzvd\n94kTG9e1o6OW38EHq06ePDDdm9/sfpszR/VVr1L9+tfd/52dqn/608A6qKr29amOHat62WWq55yj\n+oUvND7u296m+slPql53nercuS7PeD36+lT33Vf1oINUjz3WnTNQ/djHVN/+9oH5PfHE4HPc3z8w\nzebNbvuUKao77VRL19Xl2nrevHm6dOnAPC67TPXv/m5gn4rX4fLLB6b/6EdV164dmO7nPx9cNlDt\n6RmY7oUXBqfZvn3gcS+9dODvBx7o6uLzireFT9PRoXrkkY3PSTzdRz6i2tur+pa3qO64o+pdd9XS\nfeUrtXTXX6/63e+6fH35fLpnnnFpPv95105+n09+0h3bp3v44dpvP/2pDmLevHn65S+7tjrsMJfu\nmGNcfb/4RdWvfa123Pvuc79/8IOq3/iGK9vUqY3re8QRg8/x5s0Dz/G2bbXfZs5U/fCH3feTTlJd\nt66W10031dIdd5zq6ae771u3DmyHRYvc9q9+1Y0rn/qUq1N9f9qyxaV74xtV3/1u1bPOcmPCjTfW\n0n3pS+7a6upSvece1y6ve53qoYeqfuITA/ObOVP1vPNcmjVrXBvsvrtqNHYOHnsbbWyFv7yi8XY/\neqqDJgkAAAgKSURBVKQwf/78Af9v3OjO0NSpAy/K+nRPPaV6wgluAE/L7/nnXSf2wtIo3dq1rlFB\n9Vvfchenx9fB/z5mjPucMcOVtVF+q1apvu99Lt3rX1+rh0/T3+8GsA98wHXS/fd3Ha1RXv/zP6pv\nepMbKA47zAlOPN0DDzgBq7/YbrhhcB08P/6x6/BTp6r+8Y+Njxu/6OqF1Kd77jlXv3i6Rvn196su\nXFgbeM85p/ExP/Yxd4H5vK65ZnAdtm9XvfRS1dNOq6U76aTG+W3aVBuQwfWZ+nTbt6v+0z8NPO5D\nDzXO79xzB9Y1jk936aWuzfzk59vfHpjO1+O731WdNKmW1z77ND7mb35TE23/t27dwHT1kyNwfaJR\nfvPnD0w3YcLg/qmq+tJLqrfcog3xdfjCFwbmNWNGrWzx/M4/X/XVr66l+8d/bHxtf+c7A/P7/e8H\nHtenO/54dyyf7i/+oibMPs2GDbXJx5w5qgccMHCS5+uwZYu7vl77WjeQg+ovf9n43F15pbteG11j\n8+fP161bB5b/bW9z1+zzzw/O78wzXRoRN2GcM0d1/fpk0RB1A2vLISJvAs5X1eOj/z+Pq+SFdela\ns4KGYRglo6qD3hfayqIxFlgKHAs8D9wFnK6qDRYbGoZhGEUwruwCDBVV7ReRTwBLcAH9S00wDMMw\nmkvLWhqGYRjGyNOyS25F5FIRWSUiD8a2HSoi/ysiD4jIDSIyOdo+TkQuF5EHReSRKP7h97k1ukHw\nPhG5V0R2aXS8CtRhvIhcFtXhPhF5e2yfw6PtT4jIxSNV/oLrUGY77CEit0R94yER+VS0fbqILBGR\npSKyWESmxfY5T0SWichjIvLO2PYy26LIepTSHnnrICIzovQbROR7dXmV0hYF16G06yKRRtHxVvgD\n3gIcBjwY23YX8Jbo+4eBL0ffTweuib5PBJ4C9or+vxV4QwvU4SycCw5gJnBPbJ/fA0dG3xcBc1uw\nDmW2w27AYdH3ybhY2YHAhcA/RNs/B3wz+n4wcB/OvbsP8EdqVnuZbVFkPUppjyHUYRLw58DHqFs9\nWVZbFFyH0q6LpL+WtTRU9Xag/kkt+0fbAX6NW5YLoMCO4oLnk4BtQPze0FLOQ2Adolc5cTBwS7Tf\namC9iBwhIrsBU1T17ijdlcDJzS15jSLqENuvrHZ4QVXvj75vBB4D9sDdLHpFlOwKauf1RGCBqvap\n6tPAMuCoCrRFIfWIZTni7ZG3Dqq6WVX/F3dNv0KZbVFUHWJUapyuVGEK4BER8ffinoprKIDrgc24\nVVZPA/+iqvEn31wemX51j/grhfo6RA9o4AHgRBEZKyL7Am+MfpsNxJ8gtTzaViZ56+ApvR1EZB+c\n5XQnMEtVV4EbCAD/sI7ZQOyeXFZE2yrTFsOsh6fU9gisQxKVaIth1sFT+nURZ7SJxkeBs0XkbmBH\nwD+U+GigD2c27gf8fdSYAB9Q1UOAtwJvFZG6Z9SOOEl1uAx3Ud8NfBv4HZDjiTEjylDqUHo7RLGX\n64FPRzPE+lUiLbFqpKB6lNoeo6EtRkM7NGJUiYaqPqGqc1X1SNyzqPzTbU4HblLV7ZFb5HfAEdE+\nz0efm4BrGGiejzhJdVDVflU9R1UPV9X3ANOBJ3CDcHy2vke0rTSGUIfS20FExuEu8KtU1T9ebpWI\nzIp+3w2IHpafeM5Lb4uC6lFqe+SsQxKltkVBdSj9umhEq4uGRH/uH5GZ0ecY4J+A6GWbPAscE/22\nI/Am4PHITbJztH088FfAwyNW+qjYpNfh36P/J4rIpOj7cUCvqj4embndInKUiAhwBlD3TM1q16Ei\n7XAZ8Kiqfje2bSEukA8wj9p5XQicJiIdkZvtNcBdFWmLYdejAu2Rpw5xXumDFWiLYdehAu3QmLIj\n8UP9w6nuSlzw6FngI8CncCsVHge+Hku7I3At7oQ/DJyjtVUL9wD3Aw8B3yFaPVLBOuwdbXsEd0Pj\nnrHf3hiVfxnw3Qq3Q8M6VKAd3oxzk92PW010L3A8MAMXyF8alXen2D7n4VYbPQa8syJtUUg9ymyP\nIdbhKWANbnHLs8CBZbZFUXUo+7pI+rOb+wzDMIxgWt09ZRiGYYwgJhqGYRhGMCYahmEYRjAmGoZh\nGEYwJhqGYRhGMCYahmEYRjAmGoZRIiLyt3keDSEie4vIQ80sk2Gk0bJv7jOMVkdExqrqfwxhV7u5\nyigNEw3DGAYisjdwE/AH4HDcEwfOwD0G/tu4pxGsAT6sqqtE5FbcHb5vBn4sIlOBDar6bRE5DPfo\nm4m453V9VFW7ReSNwKU4sbh5RCtoGHWYe8owhs8BwL+p6sG4x0B8AvhX4P+oe2jjD4Gvx9KPV9Wj\nVPU7dflcAZyrqofhxGd+tP0y4GxVfUMzK2EYIZilYRjD51lVvTP6fjXwBeC1wM3Rw/LG4J7P5flJ\nfQaRxTFNay+vugK4Nnol6DRV/V20/Srcc4wMoxRMNAyjeDYAj6jqmxN+35SwXXJuN4wRx9xThjF8\n9hKRo6PvHwDuAGaKyJvAvVtBRA5Oy0BVXwbWiogXmg8Bt6lqN7BORP482v7B4otvGOGYpWEYw2cp\n7k2FP8Q99v1fgcXAv0bupbHAxcCjpK98+jDw7yIyEXgS95h5cG9CvExEtuMeqW0YpWGPRjeMYRCt\nnvqluldyGsaox9xThjF8bOZltA1maRiGYRjBmKVhGIZhBGOiYRiGYQRjomEYhmEEY6JhGIZhBGOi\nYRiGYQRjomEYhmEE8/8B7bUFBeO7tZIAAAAASUVORK5CYII=\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm4HUWZP/55zzn33qw3hGyEBAgkYQtIgBBRBFlEMm7ACAqOgDP8xEGccUQdwWXUwSCujPAVFAQEN0AWQTZlX2NCCJAQQjYSsm9kX+52Tv3+6K7uquq3qqvPPXdJTn+e5zznnOrqqurqqnrrXYuEEMiRI0eOHDlUFHq6ATly5MiRo/chJw45cuTIkSOBnDjkyJEjR44EcuKQI0eOHDkSyIlDjhw5cuRIICcOOXLkyJEjgZw45MiRI0eOBHLikCNHjhw5EsiJQ44cOXLkSKDU0w2oFkOHDhVjxozp6WbkyJEjx26FV155ZYMQYlhavt2WOIwZMwYzZ87s6WbkyJEjx24FInrHJ18uVsqRI0eOHAnkxCFHjhw5ciSQE4ccOXLkyJFAThxy5MiRI0cCOXHIkSNHjhwJ5MQhR44cOXIkkBOHHDly5MiRQE4cctQNZi7diPlrtvV0M3Lk2C2w2zrB5ciRFef8ahoAYOk1H+3hluTI0fuRcw45cuTIkSOBnDjkyJEjR44EcuKQI0eOHDkSSCUORNSHiGYQ0etENJeIvh+mf4+IVhLRa+HnI8o9VxLRIiKaT0RnKOnHEtGc8Np1RERhehMR3RWmTyeiMbV/1Bw5cuTI4QsfzqEVwKlCiKMATAQwhYiOD69dK4SYGH4eAQAiOhzAeQAmAJgC4AYiKob5bwRwCYDx4WdKmH4xgE1CiHEArgXwo84/Wo4cOXLkqBapxEEE2B7+bQg/wnHLmQDuFEK0CiGWAFgEYDIRjQTQLISYJoQQAO4AcJZyz+3h73sAnCa5ihw5cuTI0f3w0jkQUZGIXgOwDsDjQojp4aUvEdFsIrqViAaHaaMALFduXxGmjQp/m+naPUKIDgBbAAxh2nEJEc0kopnr16/3esAcOXLkyJEdXsRBCFEWQkwEMBoBF3AEAhHRWASiptUAfhZm53b8wpHuusdsx01CiElCiEnDhqUeZJQjR03QXq7g4dmrETC8OXLUBzJZKwkhNgN4BsAUIcTakGhUANwMYHKYbQWA/ZTbRgNYFaaPZtK1e4ioBGAQgI2ZniRHji7C9U8uxGV/nIUn5q3r6abkyNFt8LFWGkZEe4W/+wL4EIC3Qh2CxNkA3gh/PwjgvNAC6UAEiucZQojVALYR0fGhPuFCAA8o91wU/j4HwFMi36bl6CVYtaUFALBpZ1sPtyRHju6DT/iMkQBuDy2OCgDuFkI8RES/I6KJCMQ/SwF8AQCEEHOJ6G4AbwLoAHCZEKIclnUpgN8C6Avg0fADALcA+B0RLULAMZxXg2fLkaO2yLcrOeoIqcRBCDEbwNFM+gWOe6YCmMqkzwRwBJPeAuDctLbkyNETkAoxkVOHHHWE3EM6R13i1heW4Gt/ft0rrzSqzgWdOeoJOXHIUZf434fexD2vrEjPCIBYY7ocOfZs5MQhR44cOXIkkBOHHDk8kUuVctQTcuKQI0cKujuQywOvrcTNz73dvZXmyGEgPwkuRw5PdJdC+st3vgYA+PxJB3VPhTlyMMg5hxw5UpCHgMxRj8iJQ44cOXLkSCAnDjlypCJgHXInuBz1hJw45MiRgtwJLkc9IicOOXLkyJEjgZw47GZ4Y+UWbNyRRwftCeSMQ456Qk4cdjN87PoX8PHrX+jpZtQVcmOlHPWInDjshli5eVdPN6E+kSsdctQRcuKQI0cKcj+HHPWInDjkyJEjB4CFa7fh4dmre7oZvQY5cciRwxO5UGnPxuV3v47L/jgLO1o7eropvQI5cciRIwXyPIdc5bBnY87KLQCAjkr+ogEP4kBEfYhoBhG9TkRziej7YfreRPQ4ES0Mvwcr91xJRIuIaD4RnaGkH0tEc8Jr1xEF0lwiaiKiu8L06UQ0pvaPmiNHdYid4PbsRWNnWwfGXPEwbnlhSU83pWexZ79mb/hwDq0AThVCHAVgIoApRHQ8gCsAPCmEGA/gyfA/iOhwAOcBmABgCoAbiKgYlnUjgEsAjA8/U8L0iwFsEkKMA3AtgB/V4NlqjsfeWIOlG3b0dDNydDPqRR/97vbAf+bWOicOlT18E+CLVOIgAmwP/zaEHwHgTAC3h+m3Azgr/H0mgDuFEK1CiCUAFgGYTEQjATQLIaaJYAt2h3GPLOseAKdJrqI34d9//wpO+/mzPd2MHDlydCFy4hDAS+dAREUieg3AOgCPCyGmAxghhFgNAOH38DD7KADLldtXhGmjwt9munaPEKIDwBYAQ6p5oK5GOZdH1i3yN18fyKd4AC/iIIQoCyEmAhiNgAs4wpGd2/ELR7rrHr1gokuIaCYRzVy/fn1as3PkqAl6IRPbJZAb5jp5XCv2dN2SLzJZKwkhNgN4BoGuYG0oKkL4vS7MtgLAfsptowGsCtNHM+naPURUAjAIwEam/puEEJOEEJOGDRuWpek5diNs2N6KnW25OWGtsbWlHY+9sSY1X90Th55uQC+Bj7XSMCLaK/zdF8CHALwF4EEAF4XZLgLwQPj7QQDnhRZIByJQPM8IRU/biOj4UJ9woXGPLOscAE+JXky+v/fgXKzb1tLt9fbiLqkpJv3gCXzsOv/4Udta2nH2DS9i0brt6Zk7gd29+7929+v499+/giUWo4r8vIoAuc4hgA/nMBLA00Q0G8DLCHQODwG4BsDpRLQQwOnhfwgh5gK4G8CbAB4DcJkQohyWdSmA3yBQUi8G8GiYfguAIUS0CMDlCC2feit++9JSfPeBuTUrb8mGHV6RVutpzL6dwSrsuQUb8Oqyzfj54/O7sEW7L15fvhlbdrVHMbm2t/BcWSRWqhv7LB65ziFAKS2DEGI2gKOZ9HcBnGa5ZyqAqUz6TAAJfYUQogXAuR7t7TVoL9duBJ3y02cwoKmEN75/hjNfPmZrg0qVs3937f8zf/kijhw1CKVisBfsqFTYfJECsL5pQ9XjY09D7iFdNWo7gLZ7uOzXi1ipWvh2z4pN2aLa7glOcHNWbkGpEDxI7gGcwwc5cagSPTG/8ildG/RpyDbs9xQxS0QcLFyvJH57xtNWj1znECAnDlWiJ3aR+ZitDerFNBXQx2mpKDmHNLFSkK9SEfjW/XO6XNHf25AzVgFy4lAlemL85DsaHlnX+qxWOXsKLSkVpM4h+fxbdrVj3dZWADHnsGDdNvxh+jJ88Q+vdFcTewXyeRYgVSGdg0c+fnZfVPvudsd3rrZZipXKjFjppB8/jS272rU0yWAU9hTq6IndWbdUS+ScQ5UoFrp/wizbuLPb69xToE74rHN/d14a1UctFuxiJY0whA8sd9D1Rxx6ugW9AzlxqBKlHiAOVz30ZrfXuTvBNanVa/Xq7NUQmrKmmWHLkS2JQ09shHoSuc4hQE4cqkRDqfu7Lt/RVA+166oWK+2GREXlmArhIu8rU5eLZJ3RhlznECInDlWioQdmzO64OHUnXNIPdZHMOvl3Z6mK+qSFyF/DfY+0VpIRiAt1Rh1y4hAgJw6eMJVU0tu0e9vQ7VXuVnCKlZTfFkvOTpUPAI+/uRZjrngY725vjdK2t3bg73PTg911B0xxkW++4u5MHatAPs8C5MShSjTkxGG3gtp3H/9//kH9gHgnndb9t70YnKA2b/W2KO0b98zGJb97pct8BSoVgWsfX2CNzTX+W49Gv6Vi2VemLsNI5Arp+kROHDxhDpiGYi5W2p2g7pZNk800+L5pbg19Z2MQQHBXWzl5sQZ4ftEG/OLJhfjOX95Izbs+5GhSOYfwOcrSY7q+aEMuVgqREwdPmMOlJ+ZLPVtRPLdgvVU84/Mu2sv+sqRyReDpt9ZFosRH3lgNoHM7yq4i7G0dwXO1tKcTn/XbWmVjnJDhQuTz1p+1Uh1PNAU5cfCEqXPokeFTx2P2wltn4JLfVe+pa4snxOH2l5biX3/7Mh6ZswZvrNyC5RuzBepT0Zm4TJWKwHf+8ob1/AVAiYfkUU0UFiNl8euoVNDaUY4V0nXGOtTzJkxFThw8YY6Xnthc7EliJSEEfvHEQizNcG5DZ5AlEunqLQExWLFpJ1Ztzk4YavWe5q3Zit/94x188Q+zHHUF8IkXFSua3fkWr9+BQ779WCRWqjdrpbrehSnIiYMnTGLQEwv1nsTtrtvWimufWIALb51RszJd78QWbI6DNDZo66hgs6KfSHvntY7e6vO+XZFUTW43DK3kLTb519teBgD0gHqtR7GzrYyfP74ArR1doyfaXZDHVqoSPcM57DmQ/dddEzCLWKmxJD2JK2jt8CcqPblh4BgHc4xGuoSMddSbWOnm55fguQXrMaCpiEtOGtvTzekx5JyDJ8yJn0dl7Ry6eyHNopCWnENruaKdCtbd3S+PSnVJdWSTuAXcbG7sBJfVCbA+iIN8TKnc39lFFma7C1KJAxHtR0RPE9E8IppLRF8O079HRCuJ6LXw8xHlniuJaBERzSeiM5T0Y4loTnjtOgpHHRE1EdFdYfp0IhpT+0ftHBJipZ7gHPYc2hChFqIYn7Uri86hSXIOHSJSynq1o8Zipf/806tBuY5iJdHzWr9Jt0LyRS1dehau3YadbemnHvYEyPiu9+NCfV57B4CvCiEOA3A8gMuI6PDw2rVCiInh5xEACK+dB2ACgCkAbiCiYpj/RgCXABgffqaE6RcD2CSEGAfgWgA/6vyjdTV6QITQ7TXuHvBZ7LKIleIAdZVez619+c7XAPCEKaFzMKKt+qJWYqVKReD0a5/D5++YWZPyag3JIVHUTz3YmF6AVOIghFgthJgV/t4GYB6AUY5bzgRwpxCiVQixBMAiAJOJaCSAZiHENBGM2jsAnKXcc3v4+x4Ap1Ev42V7A+ewJ7EO3f0oWRTSUufQ1qETB19xDJetM8/rw5GwOgfjf1YP6ei+GlkryWpfXPSuNc/yjTtx8k+expotLTWpMwvMpyzvQfOtGmRiGENxz9EApodJXyKi2UR0KxENDtNGAViu3LYiTBsV/jbTtXuEEB0AtgAYkqVtXY2EzqG+x03NUIstQC3FSs/MXxeZ17aXK8igqmDb0V3Pl8WUNavOoVaxlXzq/f30d7D03Z2479UVqXlrDfmYkhj3dq6xq+FNHIhoAIB7AfyXEGIrAhHRWAATAawG8DOZlbldONJd95htuISIZhLRzPXr1/s2vSboFaas3V5jOl5YuAEvLd7Q081Ihe+C+LnbXsavn3sbQKiQ7gULhJc6gUlLWCuFma59fAHmr9mWvMGCWrk5+NDn9o4gU2MPxC6TRCESK9W5XMnrDRBRAwLC8AchxH0AIIRYK4QoCyEqAG4GMDnMvgLAfsrtowGsCtNHM+naPURUAjAIwEazHUKIm4QQk4QQk4YNG+b3hF2EnlgzesNCZeKzt0zHZ26enp7RQHc/STVd9/Ds1ZqVU+fCZ3QCHjt3bmyYGxi5+O1oK+PcX73kXX2tdA4+Gyop/ntz9VY8M39dTerNCvm4WYwY9kT4WCsRgFsAzBNC/FxJH6lkOxuAjPz1IIDzQgukAxEonmcIIVYD2EZEx4dlXgjgAeWei8Lf5wB4SvSyg1wTHtI90IZqQ03XAks37MCnfz0NC9b67zi7G74hu7Pgvlkrs7ejyrps8FmafWaLusannQanomY6Bx/OIWzXfbNW4nOhE15XY+XmXZj0gyfQJi2/jNhS9QofzuEEABcAONUwW/1xaJY6G8ApAL4CAEKIuQDuBvAmgMcAXCaEkAbDlwL4DQIl9WIAMp7wLQCGENEiAJcDuKImT5cBHeUKHp2z2ip+SMRWqjMnuMfmrsH0JRvxl1ezL5YcutvaoNr3pZpddqb/u/p5OZNb85mr5QC68zyHLP4otcJfXl2JDcoZHFFU2jrnHFI9pIUQL4Af24847pkKYCqTPhPAEUx6C4Bz09rSlbjtxaWY+sg8/OK8iThzYtIYK8k51NfAkQOgVpO3+8VK1dbY80ZzPmuzj8hRLSfLel+okfjfp40dGcfXum0tEAIY0dyn2mYliGZ0El6dsw55+IwQMsb/0g072euJcdIjTnA9N1izLCavL9+MPg1FHLLPwPRyO9GmLKVUTRqqaCD3nrqa6/BZeF9aHJuQZhlKNdM5ZBAr+WLy1CcBAEuv+Wg1TQKQfMfVWnXtaciJQ4hBfRsAOA6CSVgr1R5CiF4bqiCLHPbMX74IoHMTttaoxTz3PXtZS+t8tV5jgpOA1Gptq51COh09YXRhU6nUu1gpj60UQjo+qc5Sf5u7BmOueJiNp98Vu4o064jDRjbXvE5fyPWhVk/d3buyWogBe7Mo0cdaqVrU6rCf3roTtzkZ1jltyImDhJxc6i7podnBCWCzV2zulsB7bSkRQIf0bwQATB6zdxfU7odazO81W1rwx+nLAHRjULcq211SFsaeWtt8eijrLjdLt9fqFfm0sCcYZ7NO2c5eSsu6DblYKYScW7bB2RXhM95evx3bWmJrmNaOCvo32fPLNnb3Dnb62+/iBw/Pq1ndF9/+Muau2trpcrKg2lZXI1Lh6urMrrlahXStFjcfa6WdbR14ZM4afPKYUVaCLzx0zbUOXugDa3t7MafYHciJQ4j40JR4oMhfre0VrN2mx3qpxbA59WfPav/TOAe5AHT3juYP4S4/re61W1si3Y0LG3e01aJZmVBtn2Wx1GGXmBpshX0WTDaeU6drDuAjVrrqoTfxpxnLse9effD+sUPZPL11sbU9Xc455ADgPjTlv++dzeSv/cjxJg41r7k2eO/VT+LkQ3rOc93VL9UuTOr50VWVUItx4libDxjSD++8uxMnHdx1/e4j+lu3NfAT2NlqPwPBqysy0FLf4Hzf/+tc9Gss4utnHMpeN2nfjtaAm++tOpLuQq5zCCEXD1/dW2eHzdf+/Hoira3sPlxEEofutujIUtsz87PFvFpZxRnNJtLWLiEE/vLqKnemWqLGr8f1eEMHBHLIEjNwa7W4ZdFHuwk0j45yBeu2Bgt9Fj7r+B8+6ZXvtheX4pdPL7ZeN4nfK+9sApArpHPiEEIOBG8ZcycHzj2vJKNOph1JGekcenDQ+nqQu2D2cFeLma64dw7unZUtyucx+++VuR526HShhnVXWzlayLpSrMQRnmpg29Rc9dCbmHz1k9iy02JGHmLTjjaMueJh3D1zuTNfVtheUW+MZdadyIlDCDkQfK1nukJ+miZWEj0kVvJZ+Dszj1Tz4a5g5e+qYjFh5ew9tFjYhuSMpXFsSm48upqbaeGzKWyFwNqtumjHNXtsVT4xLwiwt7Wl3Tn/lm0MHFR//493HLXYceT3/obtrclT6Kw6h6pq2XOQE4cQLp2DK381kGfUmkhjY6M1tAfFSraasyw2rgWgU5FPa9gtPmcydxeqVUi7kOVkPBv+MH0Z3nv1k3jT0/KMW5hNdKWt0raWDjZUudVaKecccgBx7HZ1mLgIRWfGjU18lDYYe4NC2tbEWslne8t05DgH33fO7uI70Ra7eXVcKlu+o9JM4agtDz4tDMfx9obtPlXi8rtfS62qq/0c2ACFlrw9GQW5NyAnDiHkAPHVOTw2d031ddnk9in3yUBgPapzsLSyU/LZ3kIRFFTjFcyqHDrfFC+0d1QSoV9qJfqs1et5510+bll3toMdp9b5yKcvWLsNv3n+7Rq0pncjJw4h5Pio1alXPnWZSDt5St7X7fbiluq0nWutOIdewsrXKp5QLWBriqrI/9njC3DU9//eTS3Scd2TC2OdnSNfrd5tZ94MN8dsrbI19xP/7wX84OF5NR2r7eUK3nk3GaanJ1H3xGH+mm0Y981HsHxTsKtR5Y9dtTzYdtmpOgdpytrN7K5KjNSmq787wzn46DS6G6xpqGfrtD6qQVtsOofL706aQ9va0RmklbNg7XY8HZowq1mfnr9O80WwFaOFEq+uid7IEobbNh9b2oMJWMvAfN99cC4++JNn8K5yrkRPo+6Jw59mLENHReCxNwIxUXfsGK07lZSlJA6f0XOwLeR8+IbsLe0ljEPNTj+rBaodkrXqSuu4TGnXv972Ms785QvRf1/OuCvBLej2drkbdMsLS/Dy0sRpxlXhxUXBOexqOJ2eRt0Th+gw8ciUtevrtE2CtMkRh8/ovhV08frteGROrF/ROYf4Dze/am2PbkNXvLLOWLJ2ZifsewzrLS8syVhyz2Dt1ngnbFuD9UOIqnubvnOC28TYDLfSGIMfPvoWzv3VNK96d0fkxCGcvj4y01rBNpDTRDO+E6CjXMEvnliIMVc8jJ/9fb4z76rNu5zORx+77gXt/yvvqLb17ra9tnyzV3vV5+4t8XdKnTj+rDO0+7O/mZ5IMxfMLbvacdVDb3q0o0YK6SwuEY5rXqfVOdthv9+3jdxBc7Vw7NwTkRMHyTl0oxw/qwJMQrLEafkeeG0Vrn1iAQDgxmfsYQMA4P3XPIWTfvK09fouwydjwdrYbFE9MjSL+NXcHFY0bsS/nK5ENWKlzvpvvLRoQxTXx4Ubnl7k1Z7aiZV4cE8r87Kn4SlJ3Fnk3huDTvigrNmSDNdi0x30RPiMXjL8AXgQByLaj4ieJqJ5RDSXiL4cpu9NRI8T0cLwe7Byz5VEtIiI5hPRGUr6sUQ0J7x2HYWziYiaiOiuMH06EY2p/aNani/87k4fAruvgK/OwZ2vTVm0fbh06+l3FnznL28AAK5+ZJ7SNq5NfgtsmizaH7V7ew2sQtpRsxB46q11ifS4/91t29Hagc/8Zjp2tCUdJM2WNDUUnWX1BnDDQR0jkqvcuKNN35h5O6HqFfgaRHzngbmJNJuSujvDZ/QeDVcMH86hA8BXhRCHATgewGVEdDiAKwA8KYQYD+DJ8D/Ca+cBmABgCoAbiEiO5hsBXAJgfPiZEqZfDGCTEGIcgGsB/KgGz5YJnA9BmvyzWrbTNujSipP1pa2lRc3iqvbD7ndh+IIFa2IugnsmW/clDlfp4jnYUMzeB/JkQBWuds4MYxzZkPaM7Zy8I4TZX/0a/YhDd1krsfeklEMEtHaUccxVj0fBF4XwH68Jn45OPGvtNiedR28SZaUSByHEaiHErPD3NgDzAIwCcCaA28NstwM4K/x9JoA7hRCtQoglABYBmExEIwE0CyGmiaAH7jDukWXdA+A0SluZa4To+EvPXbmKat9jp62VUirWHLi6sBdtJq6p9xl5qy3HF5MPzH5yXhNHHBzvp7EY5+eeQRXHcXA9t/kKpWULX07t9Te2clxTlNssqGkEYiMF+M76qQ/P0/7b2uhjbmrL0q2cQy/yq5HIpHMIxT1HA5gOYIQQYjUQEBAAw8NsowCoZiorwrRR4W8zXbtHCNEBYAuAIUz9lxDRTCKauX59ttDQjmfS/mcZD9UOHttOJU3v4Sv6UolDVw459TFYzqGKcqpZ0NImVjXcE8c5uJrG5kc8nr55/xxnfa6nNp/v+YV24tBbNsH8mdYxWGswphxuI/T68s144PVVRj6+HUs9HMtsBMRWZleu473k9QHIQByIaACAewH8lxDCFWnLpqdy6a9c1+IEIW4SQkwSQkwaNqw2h5uYFQttd+NGrSdiGrEpezo6qMrUrhzIanu5vvAVK2nWStWIMFJuqqYPsgbeq1aPFN9vz5el+Vo5XazKyWo9pHEOlHyuihDMfOTLNyMY2/JxQS47DBFetWLeWqL38Q2exIGIGhAQhj8IIe4Lk9eGoiKE31IbtwLAfsrtowGsCtNHM+naPURUAjAIQG28S9Jgyr8z3Oqa+OWKwJgrHsYvnliYuGb1c0ipT/jRBs27tyvP5NU4B4Y6+Nbd1XLWqhwbWT8Hezt1c9wYvl60teqBSg1pwwXHH4A+DfYlwjX+uUtqGkt8UwiKC1kW+DaDONitlSziNK8WVYdepHLwslYiALcAmCeE+Lly6UEAF4W/LwLwgJJ+XmiBdCACxfOMUPS0jYiOD8u80LhHlnUOgKdEF64Yn/71NFz3ZLBomwtYZ2TnKuSO5cZnk2aH9oGcpnMQXvlq4eXtd4ZDnIebYFbOwejzzi5oqWKlGs3makakN3Fw6RwytL+zXJgKKeKzFeMK+526qFuI7wuGPsWXO7fq8Tji0GFyDvHvz71/jPPersbyTTt7TQgNH87hBAAXADiViF4LPx8BcA2A04loIYDTw/8QQswFcDeANwE8BuAyIYTk7S4F8BsESurFAB4N028BMISIFgG4HKHlU1dACIHpSzbi548v4K9nWJ5cE0Ban3C7Z9tdaRNBhlnOMmZtC8vyjTvxxJtr2WsbtrfiwCsfST1URX38m5golb5rms3rOivkoTEmqiGWWd4b4OAGlfQ7pi3FmCseZk2H3ePOv/21XNCk9ZDtnbgIX1ozbGK71ca50JqxgqM8e7yyZHqSOMR5VMs2K+egtL25T8nRqgwIi/zX217G5Kv9jj/taqQ+mRDiBdhH52mWe6YCmMqkzwRwBJPeAuDctLbUAuaBI1nNKi89eWzkWGYbPG0dFcxesQUAr3irVsYpJ2O6P0S63uTEHz9tvX/RusCy5sHX3Ocuq/U8m/HsaFs56aI1kdmyQ839H6eOw/VPpTuRcVW4ut1ncbohPMd41eZdGNS3wSg8W1t82tFZayWRUrcriF3aGOWK5eNzOYtJzceVaZ5loRK5kmJ15tPv1YR256CWUsuAfp1B3XlImxZBSaWY+/7DRzazeTvKleilfu+vc3HhrTOC8j1lq0F57sojzsGTw7DVn4btYfCvASm7IrUdqxnPU1vdLoV0GtKyjrniYfzACC2htuOso0fhA+OGptbDW0j47ZQ1cZvye014pCbn0+DbA2kLRxax0tYWP+dHWzlOziGlbo5z4Kz1OqvQ51LNdqv/Gzz0db4zatayTXj/D5/07mcVvqFnuhJ1RxzMCZ7gHFKmabFA+O7HDw/yKgNywnf/htN//iwAYJbiEMWvj9kUYBLlcPakzRdVOVzNvmZHW0Ac+je5iUOatZKv85kuVkrJ61Heb4ygdCXDtNeHXvpwDlsHUyMnAAAgAElEQVR2tuPI7/0NM5dutHMOTMewxMHxYOo1M5xJor4Mm85L7pjpvF4qBMujXQzqIg4pnAMly+XmnrfOwSrW48oU1jwq5+DDebnad+3jC7BqSwteW5Z9oXf5snQX6o84GC8zsTsQ2sUEChTvetQdR2tHBW9v2JGog90hVck1+p77q+2MqqAOUpnex2K7L5G2kPfxDPOglaP8fmHhBtzzygrdsasKobo6yTvjbGTW/cqyjdjW0oFfPr1IJ3BKHu5dtzPv0b0Qxdd2trljL6UeHapgTij6tKFUKDj7y62QdtdNRInxw5Xne6BUFlFtgnPQiIOqc+DrUjlzpwly2HcrNiW56jQMSNmYdQfqjzh08nqBKNIj+HhWZpFd+4uV3Pm+99c4fkxnJKJp62hae30VwaqjkrpIfvaW6fjan1/H35QjWVl/ipTy1Wb69kdWhbR69U8zlkW/WZl3WeBb98/Bzc/FSnz3whf/bm13e0rqQQw7J7uWnF814zWVcwASHcpxRZ21VuLuT4qV4t+qp7uP7N+VQ64TaQ6QQHLT4hsipStRf8TBGLRJhXS6WEm+SJ/Jxx9LaBNB6P+3t3bg+KufxPS3g4Pco6isjvq27GzvtgNDahVi/D/+9Krz+lbleapRsmrMIPlxDz5EXf2vvuZnFOU89/5bO8r4w/RlmKoELnQ9VRY9Qi0twIuRWIkvc69+jdZ71cc+4ZqncM8rK7Tr3MaBIw6dOafBdr+pSNfESooI0s+c236t2AkutTccU1t/xMH471JIc7vHgHOgRF5bHdzgsYXJMLO+uWor1mxtwU/DMxk6PHQOU37xnPa/K2O2VMuFuQ6a555NnSjVrH3CeKc+PZKmkH59+Wb8Otz5cyISCc6ip4XZ/ft6G5sL9XtGD9L+1zL8ealYcLJah+4z0HpNfZ6Vm3fha3/WjzQNdA56A//1tpcT5XiLYK3cTTLNpZBWdQ4+R4r6iJWqQXfGdbKh/ohDgjrYneC4F1QoEOT48bKtZmPI8Pc9Mmc1my6LkzJZ18Ax7cQ7QxvSd6nu69UMcO4O1VqQKzJLLWZ/zF5hURYS4b1GwD418OGZv3wRM5YoBx9Zx0IyjQvp4CtPN/Nd/IEDjXL4gv7v0xOTddqrBBBb7rjESjZLznTxrB/x8ucc/O83N2cqEVCNKByBcuPyHdeyzD3fsCHdifojDubrNFlM5bppDw0Eg5oizsFPB5BogyW7eR6AObiqcYLrykHme/5EFnB9qXEOVdnu20WJj1scAQHg+2dO0P6XQ+JshucmAAvX8VFXObFSmsWRCZuyGwAaivoUdh3F+YOzdBcjWe66bS3MHUCx6OayKiJ5Yl4cVj5F50Dk9Sb9dQ4WsRKTZnIEu5QzNNTn8Qnl7XpMfVOTbdzmnENPwOhzkwCo78QM0AUEcsQC6TuqxBhyMw6ZF2yZ3fckOBVykP362cVYElpTcTtXDp1VSPu2c5/mPt71cPM1beJpjBzp78T2iFx6e7jl3G7odASAb4cHIAHA+ZP3j37zYqVsnMOmnW3RQmU+a5I42LmMzx5/APoqFmQyr3ouh8T44QNw4fvGWEUjs5ZtwrTF71o7MN1ayX1dorOcA3tmtME6qH4IqrWSl1jJQeJUB7m0/pCWjr75uwN1RxzMPndZJHAmh4VCbK1k81jWrZU4qxe/N2/eGdvH+48cIYBtLe344aNv4dO/noZ5q7cm5L/VIi3EuO/E/sx748WUu+N1xSGoOlPWGL5yYGLEHlKsl2bFoi3ArEKac4Kzlzl31Vb8Mjwa1CyuZPiSpHlIFzWFa/IeiWs/PTEyp+T6/J9veAmvLd+sWfcA8DbWKJeF17vUOTJ7fvs50EzdRver4UxUYttZzkEdax2OyXLur15ymtf2FOqOOJgTwXwpejC55AstEEVKK/nC1TKuuHe24aHMtSFbm3e2lbGjtaMqzqFYoKi+XW1l/MefXsVDs3ndRq1RlQCIualYUB2TstdjhmH3slZitsSy/82Ju3lnm/Y/zbpoF3MUaNo7fXyeFH/pGc3FOa0c9dEl8eBCQMh8nLOaCpM4+bZjV3vZa3xcfHuspHaVmcXc1pzzqoGAFsaik9ZKqjiU8+FoL1ews60DLy9NniLYG06EqzviYPa5OQBun/ZO9JvTORQLsXOYHFTqALzz5eWa0wsvVvLkHMKb563eignf/VtVOodSQZndBOxlxvRh25de7uotu7CKCZmh1ut7/KLLGgcA1PVPeCgJXeDOEbDlU9t16D4DI87NfK5ZhgesLXyGBCtWMv5/8eSx2n9TlCnhK1aSBFFdsFyvR+ZL66tSoaC1VT67bQxJC6cxQ/t7jbO0iL3/G+qFbGWx1oIOU9Z2pUI/Pwd7HpXmbmAirV5wy3Qc/j9/Y+/tDfGV6o84KL9P+ekzuO3Fpda8fBhqig54b+0IJrnrPXK71Grfu2/gPRUFY1doi5e0cUcbm27D+374lHNyl4p+CkcAeG15vHNKNWVlSk21qlJ+E0jn5hxchFpXqUgRcU7bUapXuTHU0pFuz//fUw7V/svXaJaWFCvx7ZC51OFQcSzkvubDDUVKtFUt28QBQ/pF7fESr6rPw2SXoi+rnwNTR0JaoPxWfRM6r5COy/rgT55JxB/7x9v2I2t8oyF0JeqPOChvc8kG9xGCE/fbK5FWJEpwDi4qb2G62dSxw/o7765KrOQpYz/mqscTaZ05KKihUPAmYk/PXx9NRO4eTk7ui0pFaE5pvopQM1upUIg4hyzB7z72nn0T13e1ZQ+8J/vA7J8WQ0SVFmqEW/S5BVR2eWBVZG+dTaxkN/OWdWaH63ls5XGi/gRxF8DH3jMSt1w0Cf90xD72fAw6KgKL1m1jr5mObGf98sXU8iRya6UeQJY+N1l2IJikMmaQFA+4dhhZwmf4Nm3Lrnas3cqbH5ooFuLJTY66aw1OoetCi4MLuyEMkR5cz6Z1MCe4n7Ak2f6GInn5mQD6fQMZTo3nHNztMcVKh4XRgQf20cWELlPW4NtXIe/XUw0FfglJffXCJ5NOuLjs8nHsnEMSZWVX/sbKLXh7ww60tJdx2mEjUCgQnvzqB3HoPgO9OfzH3ljDpptdvXar/yE+PU8a6pA4ZIFtMMbEIalzYO5IpFgHnZHumsfz1yR3KwvWJtOKhdh719e2vBYoFOyHxHCIuSJ/kU218IvKqmcqFshbDpwW36idsVZKe7Ki4ZD2n6eOw4NfOgFHGh7SaYH3OKc1Xqzkvi7BbaDMdrDXPW32NH0UcwMZRNMENzc1zu76FwDoB0WNHTYAxx4w2FtnxukmAb6vVbiC6+WcQw/Ap8+jgW0Rccj5IHelWc3OamGJ0JcJzPXha59LpB00rH/mgVaTBRjZdCuS/U/VHzDXubSZSwN5rvnsHRXh5eegljugqYSGYiHyc0iPe5OdwHlzDpILJMJ7Rgdiz2v++cgon+rF/cCrK6N0KSK0ncBmq69aayUrByPrFJ5zUf3N3ECOa7IeV5k2FAvkPa9t0YfTbk8c+JTh3u5A/REHj6ERy2KTu8wCJQPvuez9WbGStW06rnnkLWu5fUp+URv7lIrRRA1EJf6j7q6Zy73zmihYZNW2+n/3j6UAqgvmx93xh+nLwvx6unmWgqu2vo3B9Hjf2CHZOAelCp4Q+D2DioLBOai70rHDB8R1hxmemb8e1ykn3slxyO1m31q9NVlfNHDdhLBk5Ryct4VSJZ+56CtWSr9/wr7NiTQbCmR/32Yf2kLb/9kINmjCdYqcL9fSlUglDkR0KxGtI6I3lLTvEdFK40xpee1KIlpERPOJ6Awl/VgimhNeu47CFZaImojorjB9OhGNqe0j6nCNi9GD+wZ5wv9B7Bj9BTYWC9ruR+azgXv9vhEkZyy1WzNYRL1sXXISbt7ZjucXds8hIkT8hLWN+V8+vdh5XSLrlDG7ul9jyfuwn3HDB+L684/Gzz51VEDsPCvX5OTGPYePbMa81UnxX1rZcoOuigglOAukba18ZF5TXPbonNX44aPJTYjmD+FoW5OFONTKe17nHJLXZRRVcyFfv60V725vjcbT/V98P35yzlFh29LrLTpMsc2QIUWmD15dlvRdMOEahz1PGvw4h98CmMKkXyuEmBh+HgEAIjocwHkAJoT33EBEcot7I4BLAIwPP7LMiwFsEkKMA3AtgB9V+Sxe8JNzCrywcAN++fTixKA7YEi/BIu/bptd0cRd4/QFvm2ToSZ8J1fFk333xZGjBuGDBw9LzWeLVGrbjcm+TNvV+Z4zHNnbK7367NdPxrCBTZoVlm1+yjwfP2pfNPdpQIHcpp96G5V2GG+1IgRWbk76h/icQKjm061xkxZIJWNXGpmyGjP+LctYlJxKULS9bf2aeA7WRhxkUwWEp4hX+c20Qy7UpgfycVOfwLE/eCK6JxAN8hZfHFxiJbMd3/nLGwnflbNveCm1DtceZbfQOQghngNg38LqOBPAnUKIViHEEgCLAEwmopEAmoUQ00Qwa+8AcJZyz+3h73sAnEbm9qaGcIfYDfMAuHcWzxISxXbycjymmagtM0JUv2o5NtBnPBy1X6CA9BVxCCEyDzRX5wfWT35l+BzRKBFzYe5ys+441fIOGBKYCutewjzMEUgUe5qnLeRqG01z6Swnlt10wbFa/Wo+tX1qU2X5CeIQ/jVNm23zITJlZa/GsB1KY3tPkugKwfe9GQk3rcyGUKTDhboBoIlU00RQKgpEVnExd79qLl0L9AKpUqd0Dl8iotmh2GlwmDYKgCqoXhGmjQp/m+naPUKIDgBbAAzpRLuc8OMc9Ekx7391xinNtjpZp56zo1LBuOEDcP35RzvzcZA7Je+D1xF4WGeBq2RfvUWBiD8Fzco5hN9VWCu5HOOqVf6bi2JBee50pXmQobWjjBcXvWuUY/F8Ycr88IR9okW+aIw5tRjO69lmRWTuu2yLkK8TXL9G3uLGS+fAZFLjbHH3mJBhxblzuaHUQYyu0IViwW5owt3fbHEudcG5B94dOAcLbgQwFsBEAKsB/CxM555WONJd9yRARJcQ0Uwimrl+fXWU2s9CQqcOnGUQ4L9AmwtCpRJMdvOgFp/iJLvvW3dFCPzbb90HyZtwFe0re7fF67eKlaRyP01k48sxyfxM9mr4UpXYpYuVggzLNybFR7YFwbYxkGNHioMqymJn5lGvm1ZEi9fvCO/Ty7ctgGpsJRf6Wix1UsentV57hdyiLDkHm0dxxGkh6SviIhJFi0J6/bZWdkzZIg8cMarZWodbrOS42E2oijgIIdYKIcpCiAqAmwFMDi+tALCfknU0gFVh+mgmXbuHiEoABsEixhJC3CSEmCSEmDRsWLrc29J66xWV5XV5B0chKTxfIBe1lShJNHwW3VJEHHzr9suntcPZR36ESRXDaO2xNMhXZMPBpXPgivPx/Oas1Hy9e+X1nW3+x7WmdankBNTFToJTHpuWMOtD3VfyACM3UUprmzXwniW/KrrlynWaFnP1S87BIgO6PzTn1c9+D0pyiWajTZiR5zM3/4PPbyFq+w3up/3XCJLjYXcLnQOHUIcgcTYAacn0IIDzQgukAxEonmcIIVYD2EZEx4f6hAsBPKDcc1H4+xwAT4kuDEnoKll9v1ygrChf+O37Ak1RSkVUf0ZsdERpBp1DVqT1kU+RgX18BrGSh1lwWtu0fOF3tZPMJCCkKaTdZca+BlVVrUH2YSwmSnIOOnEIOQdD8yzjgH3/E0dgyoQ4RIRtHMWB93STZCEEfvVs7LFu6jaictMU0h7irASYe2S/cEeMAsCzC9ZH5cp3Kh/ZNhbVdpic1eL1/KFO1iYbVbjqVNEbOIdUQRkR/QnAyQCGEtEKAN8FcDIRTUTwupYC+AIACCHmEtHdAN4E0AHgMiGEVONfisDyqS+AR8MPANwC4HdEtAgBx3BeLR7MBp8+//PM5dGgkmP10S+fGA148wzpNBt4Lix4oZAMiuezkEeme746h6o4BzvSYu3E+fi608IcvJmiH2GtlRwF8vJJZxVBFoZzcDAjetWRiMy/82XW7338cBw/dkgi3ck5KP/UMamiNfTmbywVcMg+A/HY3DVafhPydlM8+OryzbhGMX01x7DZblc6l8flVcyNO5tuxYT6PjnxoFmvLZYVhQP7c+8fg3874UCc9JOnE2W52txerkRtdnNJPU8dUomDEOJ8JvkWR/6pAKYy6TMBHMGktwA4N60dtYJzVxx+T3s7ViJKmaqMZQOoETKDwg4f2Yw5K7dYyzWVZRUhwhPlMjRc1p1yrq+Jqs5xdll0wd/agyvHrnMIvtMOIvJ9GvluuOevhmdTTVnTGuFLRLR7wtyjB/fDofsk5dTSDFOWyekZ9N967f98TCzVVRfKmRZfGklwTPHgzlbdZNPGOaSfzscH0Miiox3QVLKKtTiY4mB1g2U688n+buuooIlxOG0oEvYZFJ9g6GuFplpVufUr1kvdhtxDOgWsws0wiUtbgJOnPIXWE8Yy5dMym9OPDdURB/u1Qlo8hRA2IpLVcsoE613saDAr165CpKcppNNMWSOfjeQ1Lv6VmtdsmiwislKriEQ+1cbepjSfrOga1HH3+gr7pkbWoz6vudGxRf1NCwBo60HfBfOzx++PJy7/oBb4z3X8bVNDIaFzUOdGg0HkmsOAhltbeL1RuWJEC7bWrEPtP6dCuhfIleqPOKQtfEYeLm5KwRCcpr1H0wZbCIECJVlZtd71Fsc6G7trgyvbPx89ik1P8wWx1T1eCeNQsAT5u/j2bJZTJszFta2j4uyLVFGdp9UMKXbvqdZKUb4MnFNUj9m84EpDyTBlVfKoJ5nJKhPHiVbDpiIpHmwziYOh24j4Flu/qn4OrFjJ3k5VXj9xv8HYZ1AfzanvHcOfSEXfhmJCHKweHGWK4fbqFxCHLTvbtXRV36gHJ3S/VwmNODgV0sm0to4K7np5WbcRjpw4qGBeFmfGGg8QWWY2zkGG5TAXIHWHtmgdr/gyo3OmwZXPNKWNDrF3lMcxDh89cmTiPo6IcMdjZsX3HnxT+3/wtx/FV+5KiqKqEe2oMIeC5ufguG9I/8aYc8hQX2SPb9QsRRpyhxx1qZJNDeBmU5rbdANpMMWDCc7BsoLY1q+TDh4atA98/7ha2aqEOpdtUhd1Fzfdp6GYMCRRxUrmXBzQFPTpdksYknJF6J7plnrNhby9Q6nTeNovnHSQUl6yxBufWYxv3DsHf3ltZeJaV6D+iEMNxEoxh2GXa6voMHUOFRnAL04799jR2kJuO5C8lmKlUw4drv0vRwuLvTxOl/Cx94xM5CMmn83cMAtsPicm4h108mFaVfGDZfvmNGV19M+wgU2xuDHDDi/KadR73xffH9SfCJ8RZzxy9CBc8U/BaWw+5rY+UrWmhlhpqj5GkjjoS4gsmtswffQ9IzHliJHRdTbKKsNRS7Qxoc5VsZZtTpQKhIZiIXaCC9OdMdEi4YBg002DEFtRpoFFWwrn0GgYHqiQFpTbLKKuWqP+iEPGreT/nTcxkaa64QshsGCt27ytneEciPSJZh6raXPqySpWyqJzSDvMRu5QzTnI7Uo5J7gse9cTxw9l023hkU245P7aAmd51oUG51YoKLtyx9KbxapJa6/UORjph41s1rzSZT6zy6VOwddRz4aj998L0795WtTPpqe7uUCbnIMwvlUMbNKDHnJ51mxtsUYrbVXqlveqY08u2K+8owe96xs9S3ivx6YuInKW60nCz+c89oDB2n+bJ7cs4aUrT7W2LQ7Xbi2ipqg74uAC1+cHDTWP7oS2A3nOI8rpDoM1FSKYdM3aKV6657FtEGXWOXjlCuBS6AFAU6mAAhGWbdRlu9xh9IRk+AxXW045xM+pkTtZjYPLWMAWh0fF/bN01p08OQd1Ic9mDCAnfnIUklJnrLjW88V6MPmVvvDZMKI5tsIxxYhtRt+tM043c3FsRCpnwdft8gFK5xyC62u26KckNimEDogXdicjq6sVlWSec+cOeDp/8v746blHafnSzoYeOqAJe/dv9CJcXY26Iw4+81XNw05WZQeyaUdbanlPzFur/a+IwM+hf1MJh4wYqJQZV2xjkUcO6huWkVptaj5T5imPr7T1UakQiMI2Gs/MyZ05PwcX8ZFB8SRsbfiIcsavC+ZiqsK1e5M41RC5+eocNEV8Btpg4xziMnWuJSn2Cr59OAfXztMcd6Z40DzFbuY7fGhqPmyJEt8IfFTWSiUZJl+ilSEOGucgDQGMjpfBAU2FtHsB1sV4JlxiJVn+Ps19EpyuLlbin9MWeqa7zVuzR4vazeGWM/rRZNWqyeeW+2atxM8/FYun1HMiHvnyiRBC4LsPztVevjr4nrj8g9h/736Ys3JzxG1wjnUcsnhIS0cpa5yfQjBlTKc/LhAhFz7jG/fMZssd0FTybqe/Gap9kfTZ0X9eUQ4ChnjFcb8W2tuzpQCwtSWwiuEeL1Du61UnFeaGJY6TONj70OSqzIXqpcUbEtd1yH5nOAeYnAPH1VX8dA7hraoISurpzHEXRY41CKiPzsH2Ek2xknYoUfibew65MalURMKsW1r72ULPREndJFeqP87Bcc23y1WrB9dEa7KcEKWyzsUCoVQsJNh3ddyOGz4AjaUCjj1g76i+ZLwmvQ4ZJTLLbkNyDq5InQWihG07t9MrGJwQEIcyMNFYKiTqtBGo7EeeJvP7OfGZ/z1jK4X5Zq/YjLte9j9J79LfzwIAbN2VVDaSInJ8NDzMPmlqG3xzepEff/I93u0oG7IWUzyonrXMtcNFP1ds2pUaW6mtXGFijgnMWLJRs1aSUMeizYS4ydA5mPm5e6y0IVJI68nqXzVMuImIODAPf86xo6N28v48etu6GvVHHDwWlzTCrO6U1ayqnT8AHDi0Pz548LBEzHvp56DVabxy2yJoM2U1OYnLTz8YHzpseKbFVNrLPzJndZSmhlAuhmIlk6WWbVKfoMDsflyhGhL6CYdMOs5jfzZ5iZNT+5zEZy5QqmmuzHbUfnslypAT+xP/70U8+PqqxHUVQwc0Rr+lyGQXJ3qjeLH/04xlUXv0euW4SHJM40bo49IFM/YPJx40mqZBRN8cURaanwOHplIxUejtLy3Fp349DY+FhFEtXzWWijkHvXB5jGfB2Fj5SBES4TPksyQ4B+W3Q38UEwc9fURzU5Sf09fJkoNyrc2uKeqPONSgDHWXpi4ij1/+wUTefZr7GIpnu9JNXZzSzq/lfCdUdIR22LYFedjApsQgkzqB2YrXrDoJAuKQjCPFPYvLWS6ZN9lO2606+24vc3ioVP3Bw/MS16pxItKskBxiA1V5nAbO8so0e47qMcpMFSsp17I4wJkKU9cYAoAL3ncAm84pe5tKRYVz4HnDC5XyGosFFAsUhRt/Wzk4aWA4pzTOQS76Rt0JhbTQ83OILZv46wmxLpLjklvE2zp4wqT+TdM5+EQVrgXqjzgwnS7NzY4YNSh5kQEpA8dFxds6KolFckdrB+as3BKJcNQy1abZojeaux8J8+jJLbvao9PYjlSe6/LTD45+Sy9QCU5hrNZTJH5YcqaHtmNCORTIf8Hm4wjF+MiRgcJ61F4BcZi+5N1EHltV+gQ1RWdJXQIvTvMLTGjWJ2GaPQP8TjJprRR8c7viLItJkvADri3VmRN1L3uXtZKZj8uiBtKbMKpZ464AYO/+jfjRJ4/EP4WGCZrOwWKKLcW7pujNy8/Bku5SSLsWcduBUepfq87BQXS6AnVHHLiBfubEffHKtz8UEYm0RS1mjZPiIRW72suJRf/WF5YAQOKEMHPHaeUcLKas/3Xna9r/PmG4ACH0stQTqwb2MYlDcrunTv5CgRID8wPjhsZHSirXiGkjh79/5SQUKbn4jRvOi0LUbnluYVKHYe4OuQVcrUut9YZnFkW/ObGNKVb60injEmUT2U0kp56tx53kxGIc58CJdsynksSizLAOJrGyLS59G4qJNnLiQYmzJu6bSOO8w2PORRh+Du7x0VBM6qIGNJXw6eP2j0UwDOdglmoSh5iAqW0xoYvpTMjNzHc/frhWZlCWXfxTthAmbWNSsOgcIgfI7kHdEQfuXRcLhCEDkmIWG3SW035TQBz8/BdMk0Eb51A0Fj+1LhWfP/GgyHFLJQ5Fw+60UVGacwq/E8YNxc9CW+0gHhSzW7Y4wUkIIfDioqQ/yLCBTTh4xEB2p3TCON4JTk6qWcs2sSfcmbJirr02wvvTvy9QykmWa667x+yvOzjJfLZFb6Kho+BycXbwjFQp8Vym5zwn5ojL48fso18+EScfopvwZhEPqnWpY1nfNMSL7uzlfNA/mb2pVEgqly1GHkA8Z5L36GIlLyc4C+cgIe+V0ga1v6UTHrdxlO8nSRx0To91gss5h64F97LlguvLfpOyQLs4h5GD+kaiHeVmr7aVQyJy2+eO0/KY4oNF67ZjW0t7IhZTY6kQDTItNLHR4BnfPA33XhqEaGhlOAcAGBvu4ksM50CknG+sPWY8wL969+v4l99MTz6v3N2HO6UfPBTHTUoL7b1xO+9fIpv3f08sRGtHme1uXeTCgxMrxSKBSG7A1m8bF8MH9tH8J9R2DBvYBAAYoYSBVtuSWOCN8mXoaklc1PxJkVSybbZ0dXNz/6srEtdsqIhkPlUMKwTw3/fyps0yf0OxkHjuRgdxiBde/h6Tq3SFoImezJKlbAyBiBupCFxwywxruXE+PV19RwXiq5Vpuc6hi8BtFuTO1zynwQY1n22C3HzhJNz+b8exgeo4kLE9lLugY8cMNvKFAzy8/qGfP8suvLJMARg+CXqevfo14oAhwVGGph5EQpo3FgrJYIGAYkGlpKlKtftedQcKkyKb34QiNwBYt62FzZtFmfzGyq2sPsQtTgjAKXzNqrlXL0Oac/00bGATjhsTh85Wy/vUpMCM8eNMnCp47N6lrL6dsfX37TFu0VHFg1yAQw1EgSoAACAASURBVBOyLm2joFw3F2gXGosFq/6AQ8Q1GWXLsxmyOQrKMW0QVujzz+QwblROydvRmpxPVs5B+V0qFlgru+iWbuIc6s4JjpPlRZyDZ6f7cA6nHz4CQDI2ja2K4DjGGHIQmTv9OHxGnDbbEpNf7jjVIH5moDS1DttOSkrCbArpnWG0VTW0BZHNHI9vZ2LhteRNW1TUy2QRg/m0K6lzSC4qXBulGKZAAEdqNZm7trsPFjFb+Iy09sl3KDmHaYtjnVb/Rn2aW8cgS+wsmS3lcCIbtVxzgXahgfF/cXEONmV4FN4lg7WSyRGYKEfEQRdjvr58c5Rny672xH02Zbj6t7lPqduC67lQf5yD41qaDbaWN5AX4WeKnBoA+hs+DWSUJwe36j8gy+N0DubO12bKykEuaCoLy4e6cO/mZF02zqG5b7D4yNDdQCxe8QEn1/6X4w/A9ecfjZsvnKSlpy0qpx4ax2ja2VpOhPoA/LgP7jyHwMImNsLk+kKGz/Dx5Fbft2kWnayb38FKyMOAOioC0xa/i1tfDLiw//rQeByyz0CjvNSmaXXb+tz1LmzWUkEIDf7evfvrlklFSm7muFPZzp+8n1ZnIlw5qfUjmpDczl7Lh+RaIEW0EXGQF8J8qrWV3JRN1rhFXvSl9sfAPg3Y1pIkLL1OIU1EtxLROiJ6Q0nbm4geJ6KF4fdg5dqVRLSIiOYT0RlK+rFENCe8dh2Fs4eImojorjB9OhGNqe0j6uDGc/RiskwaBC/YDMn7/DdOxROXnxTnMxXN4c7uqjN1qxBDqqRwDvorslkrSYwfPgCP/deJUd0VITTOwe7NHC58SrlSF3HsAYMxZcI+uPrsI5POe0Q4dJ9mPPf1U3DxBw7EJ48ZjTv+bXIkXvEBJ1NvKBbw8aP2xai9+mrpaU6MZx8dH4f54OuxOOv8yTEx9iFanFgpqN/OOQwd0KhxDhw0Rb2SLoQ94Bwngz7QCAgZ6xwqmkhOcrA+sHEOti7nzG5tAfcA3QRYzbevoWeZFFoNNpWKXjqHy0KrsUgZblxXN0SSS31t+Wacf/M/4gsJzjUpKgXijYUkEqb4ST22VHbPp4/bL5GWGMfK34E2zkGOu27SSPtwDr8FMMVIuwLAk0KI8QCeDP+DiA4HcB6ACeE9NxCRJPU3ArgEwPjwI8u8GMAmIcQ4ANcC+FG1D+MDm+cmEE92n7632bPv3b8R44bHOzXTDHFXezly7lFh5pOcAxfGQW2ziaP33ys6g1iWqXIZfCDBuMw7lZAP0rS3sVTAry44FuOGD7DSz/2H9AMR4WefOgonHTzM08olfkYbJ9S/Sd8pukITmNCOcVTawnk2m+AU0kH98Vs32/Dglz4QcRhWLgDq4qFwDhU7QZFEXj7Dl08bnzjXIiIOFaE9N9cOeZANVw/XXtt75MxuZZJLlFokgnrrOZOCxVMSvOs/czQe+o8PYECfkpfOoWAs0CZnqPaB5KZnWQIGRm1WNkwq5Lw0OQeZzTbmJGxKc/U5G0sFNshgNO6cLa8dUomDEOI5AOYp5GcCuD38fTuAs5T0O4UQrUKIJQAWAZhMRCMBNAshpomgx+4w7pFl3QPgNOpK0siMczlQs1QbLH4e+QxdwrptLdFBKi6UK5XQOsi2SKXvohev244Vm3ZpwdS4M3/VMmev2Jy4ruf16yPbMaG2vLYFaPhAfVeZ5bwCta2jB8cciE+soYTOQdH1xJwD4f1jh0R5hg5oiqyazF4aEyr9zz5mFCbs24zTDx+R0DnYCYrOsXD55ElxP/nbfE2ZyRWp7mTNehJpDs6BM7uVxguqKHOfkDOIPMsNO/6BTSXc9rnjcMtFgQixX2MJR4waxHJMHOeQ9Hw2risLtjRJ9p3qtmHWRx6GZIif1DOtOX8Xm85BfadNpQJr8i4Jy4uL048JqAWq1TmMEEKsBoDwW9rnjQKgRhtbEaaNCn+b6do9QogOAFsADEEXgXvZEYuYoRxfD2DVBPKFhRtw36yVLMto2sebO8C4vHiXz9WvpsnD41XFGKdzUEUmqboMU6xky+bFOcT126o1d8gy31rGmunFK07V/qv9d/EH4iirfRuLqYuDKdOniICqOgfgj58/XqtPihtVov7ol0/Ek189GUBAQB7+zxMxaq++OucghLVNm3e1Y+3WFsV3I5lHXQDV88c5E4JigXDQMO6cEqZcxzjnxEpyTfvqnwPLpq+fcQi++uFDorLktzrOKkLglEOHY69+us6B2zQ0MgNYfTcA5xOi5EX6pkotU826cUdbFD/t/z59tPZMMltRESuxUgqLtdKfL31f9LuhyBMHKR6+b9bueUwoN7yFI911T7JwokuIaCYRzVy/no/wmQZW52CYpfnADBb3f59Onhgny5Tz4OWlJgOm5DPaVi4LNiaOemAJt/iq8/V/Pna49X6zjcG9IpUbyuIL4pqDkw/cO55gxk7yNOMsBRUy37fufyNxzdRPaOIEY6SnPUXSWilI2NlWjoLfmZBOgsLwBC4ViDEs0LfFQgjrOc/lisAT89ZF7ybtPGi1btuY9h3qLiKvnu1wb7i4mWElvnjy2Ggcy7YUjc2AeU9cd3LTwO2a1YW8o1xJiLtUTsrG0V5ihGiPx3mQ++HZq3HMVY9j4brt+MRR+0bckARHuDkRqGS2zEeWomBAEgc9w03PLcYTb+oRcbsa1ZqyriWikUKI1aHISLZ6BQCVZx0NYFWYPppJV+9ZQUQlAIOQFGMBAIQQNwG4CQAmTZrkK7XQy2CGRtkgDj6ik1KhoO1+xjAnxgVlBovFr55djL/OdkTpNFhoG+egmrJyHXDUfnEcJe68ZXl/AyOXFkKkWvIkFdL2fK4d2t1feJ+SV98hfvOjh1nvy+KtW2Ke0YStuCRxCL5/8rf5WL5xF5tH6gYWrNmu9T3Xpeai6xIrFQukbUZsfT50QCM2bG/TrYP4rFb9ggm5mHLv8kunxuFDxoSHNVUqulEDKYtxHPIiqW/h25isd8WmXYl86vidfPWTCQu1HW1lJW9Qn/qkf/7392n+J7LuoMzg+wXFw18VbZn5bDolCR/v7IZiQTsUCACufuQta/6uQrWcw4MALgp/XwTgASX9vNAC6UAEiucZoehpGxEdH+oTLjTukWWdA+ApkeWEmozgSj5831CBG77YtJ0ZkDzwxiVeEQK45tG38Pb6HZZcYd3qbqoiUGJYaNWUlRtgFxx/QNxGZgEY0dwHXzplHO64+L1KmTHBse3i1OfxgRSveOU1doic6ECiIvxOcgMMWbNfU+J7E7qe4P9WxcSQW8yfnr8ebeWKJsrjNiSmPN1l4fThw0fgwKH9ld0pn/G7H5+QqC8L58DllQs5J25UQ5zITUe5kswrpzMpeU3CyIGzlGLbrZTDmS4PaIr3wFKEqRJHFzctq1e5EVUpbnIYWlHhzWoMM5tCWkVjkdBerniJv7oSPqasfwIwDcAhRLSCiC4GcA2A04loIYDTw/8QQswFcDeANwE8BuAyIYQk25cC+A0CJfViAI+G6bcAGEJEiwBcjtDyqaugdvfAphJmfOs0HH9QoOJQ2d40lAqUaiIKhAppj3ccSBmCjHdMW4ppb79rjXYqd1Rcueqg55pULBC+dsYhWmA71RJHKhnHMjLpIK8hi7c8T5bopKaIznbAPBBMrheYOE1DDBt5wBSvWN6PbfFkuALAXBj8wCkmTW7JXLC0vAVCRyUW+dnNZIMLqkjCtgixhIDNFwZvNAabeTayera5GRcs2lWHFWxv7dDOIbftomUf6cTOLmq1LaZf+VAciZjzNudDr8sygQdeW6kdh6oSmyTnEEPW86HDhuP7nwgI9w8ffUu7xkGGDbHFV+supIqVhBDnWy6dZsk/FcBUJn0mgCOY9BYA56a1o1bQDnQpUMIaBvCLf18oJM81YPMRv3M0oeoc/ueBuQCAkUycnaBM0qxmJMzAbi6xlFa3wjnIXXmDZffuzTkQvyhyMJWeLuJgWwCk0lOFKq6wFWk719oUscj7VScsX+s2diEgI8SFg3MoFUjTMbn8IQCds7KfC+JHHShsm3oAFBCfWiYh31lHhSEORp3tZYFn5sc6QysBC6+p11llvGGtZEIV8cXe0sn7tbojzkHgy0bE4+cXbsCViXzyf1yWmnb+5P3x3QfnxtdcxCHcgLSXK9Z52B2oaw9pzqEL8BMrlQrEmvKZIPITrxj6ybB99kWgbOyoAOALzLnH3L3W+hXxgerMo+fzWxBVWbOJQw2PXZNzsFXRULRbNXFzSF2kOI9nALj5+SVseYmxEX43Kv0if/3lshPwbYeehC9ff+EuD+kiBZyDqCj3MqBo8U0nDpwdPd/OoJnPzncbgMg2lSsioRBO05XYdQ5hmWX7ewwS9Xrc7UzmYzdM4TdX5OadsehKtfQz4SJqrjUhipPV0cs5hz0O2gvjRSQ+y1+xQBqrbeMOArGSD+eQzGdboCW7bQ6whEUMSwnsZQoRmydyMZi4u63iGvC7o39ceVrC0oNI58JsYr1SIRmITW2/CZduIvWdGMXJvuTEdhP32yvBtalgvYaN9DSFtM458PXEnIMyLi2PuWSDXf+ltTMca2mbgkispHAO35hyaJAWiZX4Mmx6rojT0MS3XD5n0xJlVgw/FJuuBeCNPr6vRDeQt8p3o1qy2USl5YrA9U/FZ4eYkApvUyktMfnAvdn0WqMOOQddrKRCDgifnX7JECvZJiHnyMOB4xxs4pUCUcIqhMvPylIdC0ugeAwGpG2++YqVbPbxJmGQdfuIlUoh58Bd5RZWWwhyHyT9HOziuDRw/WCaVFYqdj+HYqRzCImDY1wAuulmmoFBGgqheDDtSSVBLyvc56C+gSI2PlaVL8VO8INvldjZTt9zlaNCGj9sb1UtmOybKG4ToYYkMYmIypGZVlsSD81ehb86zheX3Knc3LhCbXQl6o84OFi9LINMTtioXFtGyyKZyMak2XQfgbVH8jQ5c9HgduD2RZ9CnUPQWFuTfRXSprmiC6b1im3xCxR1fJkcQdnRZo9smbawJ8eGM7sTLisgCadYqaBzinbFdfCtij189GIuRA5rKc9fUDgHuajJ8cspa1VwhyYBcb+1d7gNP7Js6qT49EePxaahvB4uvawwJ4B4AZchZwC7zk0l3qccMgzP//cp2vVIrBT2o/kO232VeZ1E3YmV1H42F0+TRXShVChoslDbopVlTTGLWLB2O5uPKBgw//77V7T0xPP4j/DILyE+ZrJzzxNZmnjJgUmzBrGJlQKdg00+nUxzRt1MaVMybEl11OHC9x2gneGtlq8+SkU4OKZwI/LsgvVhWyxtDp9q/fbYQzqLXwi3I2hqKKKtXPFyfiyFotZyJJoMF07OzDPEpSePxRkT9mHLk+9A0x0x+Wxy/30H9cGNnz3WyJvMx1srgS0z2Ub9v+n5reLE8UOxraUDTQ2xgnz/vfthv737aflM4mAq+DtL8H1Rh5yDS0kZfPv0vS/n4L2oZFrIeT2Gn1jJrceQykTb89j6LJkvKMPHHM+XiAU6Bz6/Gb0WAHa02jmH2/9tsrOuWnAOE/Ztxv+eeYTF4SyA6hRlq6JQIJTLAl8LQ1LYFdLB99Zd8XOPt5zFzYF7U31KBbS0l7VwGzbluzS5le9c6swqDkX6sAFN1vbI/KpZtUs/YBo1vHTlaYkgi1xIDpfIMM2nxiQiatmcmLhcEZofz2Ejm2FCEoe2UCGtzqHmPiX2IKCuQP0RB+X3KUrs/wD+YqVSkSL5vAvetEG2T6mb23ECsVjJhDn5XCah3L2aWMnSBf60LtgZr9nCn+im151siwrZDy5RVR8mmOF2B3EYP8K9aProHNLgusXc7ZYtHvFAvCOP73WX2V6uYOiAJiy95qOJeEVZ0dQQRAjtq+x2m/vyUV2LoS5MWvFJgi1bzu/67XVziz4ncpTvSn3fdku/5NxxBaO0KYXNeiR3pO7qzZAcxVBEp/rKcEEQG0s6YVKtv4YMaEqcF99VqDuxkhxnN184CScfohOHaDB67HYTnINDIe2DSLGllKNG/DTL5BSNbPweTxB0T1ib9dVzC3STRucZBEJoZwucdLBJjPkyzLAfv///3ovlG3fii3+YZe1n7hAYp84hTUySQrB84KpDdTwsgNBe5j3igXhHLmGzJFOJQ63M4/uUimhpL2sOnzYEO+M4QJzqGAfwBNZlNh5HA1DT7Av5YuUcdde8c0VElZDvztyl72+IgOI1Q7ZV4PTDRyQOqQJi3ZEefiNZd8Q5hA++aWfsbd/ctwErmRAiXYG6Iw5yHzNqr74JB5MsOocikWErbpOF+y0q3OEiNgcYu1jJyMfMkAar/wJCU1ZpIcG3c7ESAuT9Y4fgB2cl/BqD8hCI59Q++vmnjmLzqs3kgu4N6tuAQWEIZ5v4hVVIe5z0ZYNNrJRFhu+qwxRhtpcrmg+FCukEJ2F7h6p1DydmSwP3aJJzMAPB2epXNxiynbG1UvIe1/yIfSeUEORMPllGSfNBsfRRgQnJ4RBVmWIlNSaYWo8ssiKEVWdmhtyxQb679nIFW3a245SfPhNda+5TwkLHpqeWqD+xUmTxkbwWOd14iPSKBTLM1jrXLtkedfC4/By4QWY7oAYAvvWRwzD17CMwenA/cCgUAoIzOBRDnDie3+WruOqsIzC8mffiJiIs27hT80BWww6YebnfiTYyIgEJjli6xEoqnl2QdPAy2yH72xUfK1GG65ohjuioVKycg3SCi/5btsWRArdcSUShrRZNpSLKFaGN9b0toiq5+ElCItt58iHD0aehgIvePwaAvknw2Tq5nBkBRQTUoebjy+I2Vi7xq0oUTzlkWMIUW87R1o5gnLvEg4VQPJi2wZC3CwFs3qXHimru24CdbWUv6UZnUX/EIfzmBk98mlY6dSgVCa3KwtdZhbQcUOpOZdVmnn206RzMQanuYPYZ1Af/8t4DrPXLhXfv/o0Y3K8BXz8jGY4CAD6oiIZcYUYenh2EW/jdtHeiNO4Ur6Du+HfabrtimVycmM2luFOruejWGYkwGuajzVoWHILExXVyNtiCRaEIZE545ka7JUQ7kOQArfnkbrdi3726MKBPknjLMSUXPwA47TA+pHqxUNCslSTnO6K5D9666p9wRKg7SjupzrymboRc3Ic6b13EwZw7LvNYlSj2aUiKLkc090FjsRDFiqoIu6hM6mTSuAdVHJcQuYZt6Kz/ig/qjzhENteMyKWgm5C5UCwUtMUniwKXS5O7mafnxzHbX1r8bjIj7IrZhA+C8j8tXpQUCbSXK9h/737W3c+lJ4+11qdCyks3K9FJbVyBvli42hjs+r7259mJa2qMrBv/5Rh7IZa2HPqdx/TrxvjgjsRMg+tZnpi3FgDwUEhEOxxxdMx+tomMCsoGI4sxggTH2cm6VYdC+3sMQl2YOgcT6nO633fw3aERB7tYVJ23rnxegfcYayWOOBQLhP5NRexsLePNVVuxZMMOWBj+KKpCunlsTBTNPpQbrO4wZ607nYPL5lpyDj6mYiVDrKSeo6CCGyfcwJVKpy/98dUozRU0jWMrE5yDuuimLBZEQayoTTvbreINQJ/YPguQTZSkolkJaexW4hIqFWCDYscPAH//ykk4eEQcr2mIwzwyricbTJNcUzGZtQ7T4bKjIqy6hMR7TdE5dJTtoo2skK87zWoHCK1xhMCvn30bgNuJU8LJORSSnIOLI0jzpAaCd/Ludl1Uwz2bvFtdC/Yb3DeRD4gX/Y9c97zWbq6NlUr8zh/80gmWfMG3EMnnkIYXOXHoAri8NeXkbPNQvgU6h4DVnnr2Eay1DMAPUk4+zrXH5iPgK1ZS//pwDnfNDE54PW4M77EK6KIhnwXIRyGvynFdsnIbx6QSBqBz3sw2mO/iL5fxE1uFW38SfMvnaeuw6xzMYhpsca9Ijt+K1aIpKzjOwZo3VJxLHY7tedSx6BQjht9q39sMIMoVgXeVTYPN+XLx+h2aUQUQHN2aqFuK6BTCMXIvB3HwWjP08y5cHvGAfiSthDx/PhcrdQGcOodwQrV62BGXChRNGNfCy9Xjq4c41wiLrJbJDY6EQlppV9pC7nv8py4SSL9HyvLNiLEqVHY9lXPwmBM+3ZtqrWTMjAMMTmGQxdZfq8NVfsQ5BP9dnIOv/0q0mHqYsn719IPdGYy6VJ2DK686LjvLOcTilXiBnjTGHnTOXPR9wYmL5DhUiYOt3yXHJGGz7JL9E5/L4X7f5YqIdFNRWyXn4EGMOov6Iw7RS0y+GClWWrZxJwb2KeG1/zndWk6xQGgJJ4zLbJDbPY5i2FPuVX/2eF6BXLSaspqcgz9x0JXC9ryqjbaLKP7ivOBMbUlo1SMlTailuBZt86xpa3ke1MFFhPo2FBOc4GWnBO2X3q0+3ImrGWOHDdDK6yhX7LoEk3NIISIVkX5g1UHD/DynY+LgKVbysKpSn9P5viPrq3QHQBM+S+e44QPwu4t5T3lOIe0yGFDFvO2WvjIDZtqWDVn3xh1tuOCWGdq1nHPoBnCDUu6Kd7aVcdCwAU7v0lIhlnHaTE4Bfvd4BxO6gXvXWU1ZTRQzEAdffwyVOLj0GBP2DXQwLSF3ZRO7AToRS7Ne8Yq8mZrDjQOGJPUJZhhlW3/d9rnj4nY4nuX6zxwNABjeHIg0WjsqDmsuP86h2s2AO58/cWivVCIFO1ALziH4LnsopKvBOceOtppsy1pULsBqalwwOQe+r2Q+mTdNrMSZYsvNRHfoHOqOOLh0DupgTpXRe4pszEuD+zXggCH8EZzJ9thl0Gu2xvJVGTrCXFzUsZe2k1SrcuVUd62u55bXpKu/bbdrttNtyuonVvJaQDKuMcUCRW1zPfcphw6PPNtdVezVT4azDv63tJdZ8QaQfB71fGoV2vtO3Qy4/5vlmJ7xHJZv1E2vd7Txoih1LLg5h+Dbx1rJhM/Guo+FGAcNC77aFHGaldiFm7VYZ2nnHIKz3+V/vmrXAUIyekBOHLoAsbVS8s1kscTxJSTmbsMWl4YLV2GVcRYI67bGYSm+evoheP6/T8G+hsJMvd/F3QD+k66pGC9gLoIjq25pL6OxVHDuotMOe1fL9IvZn5rFCVsd8j2nFS/73UdkIkUMbs5B/3+0JcR1Fs7BfB9Wr95OdKbNoiu7ziHdWqkaNFmIMRCLHXe1p+scCoWAoy2lmMLLQ5vSzreQ1Ziio7eumhKNwV5PHIhoKRHNIaLXiGhmmLY3ET1ORAvD78FK/iuJaBERzSeiM5T0Y8NyFhHRdVRNlDNPODkHZQFN4xxUaxCXzkHdJR03ZjArUlLbZbtXRYEoEXzLDPsr83HttZUp4er9hpIysR1FyvJ2tZfRlKIdJctvrkyznzgRkA+hc+kubJfk4uC78Lr0GvJKRQRtcXEOan3fmHKoVRmuvo90sZJ+3Wp+WaXp17c/ehj27s+LZdX54uME11FJ918w4XNuOxesUUJWo0b2ta0J8shguX7Y3nuskE4jDkG6qbvo01CM6uj1xCHEKUKIiUIIGWnqCgBPCiHGA3gy/A8iOhzAeQAmAJgC4AYikrPhRgCXABgffqbUoF0sXOEzssjo1YFiszsP8sVd/JUPHewtUnK1oVAg7GpTvbNt/hBKWSmTSr3c6NAPqOGG3Yr44Lu1vaLpKdLa2e4Y9CbncMaEEXjmaycn8g0fGJsmfuGkg/DXL30gkcc1t2yXpGI0bYGSw8GHc6gIgftfXen0rNU5K1e96ubGv8/Ne7X0KlcIH5Ej4GfK+o+3N0ZptmK/9mHd+spHrOTSg8lqNOLgcFKsKM5ttq6Xfg6SsUgjDqp46sfnvEe75hMKv7PoCrHSmQBuD3/fDuAsJf1OIUSrEGIJgEUAJhPRSADNQohpItjO3aHcU3PEtkrJF0MZiIMmsnGKldSddrZdmM2efe7KLZqC0DZOspmyxnDJYrN4MwPBALeJ0rh2uo5PlOcZS5xz7H6suEqN9zRqcF8cOTrpoOjmHPhrckKmhUz2ESvJa0IA37x/TlCuJaCar8JetUBy6Xi4tvkoubPAe064xhAzDO2n4OnpPkunm3MIytvZ5qFzKAS6BOkwZ1c0Q+ccLNXLd6E64PVvLIVtCG7KdIhTlegscRAA/k5ErxDRJWHaCCHEagAIv2UgllEAliv3rgjTRoW/zfQEiOgSIppJRDPXr09XkLENjsIHJ69lcRoreS68jZ56DG5BshETc9dwksXiIosMWrURt4k3AH1y+kTUBIADh7q5Jd/lJ+Ac4v99He3k2qHCNbX6e3h1uyD7xUeeLkQcqM7GYelmxvZ6iwXCPiFhtIXiMOvn6jDLrAaujZDuBOc3hgDgR5880ulrkBVqyBUTsjSVOLg4+daOSrTTT1Ncp+kcZHKbFg5EtiH47tgN/BxOEEIcA+CfAFxGRCc58nI9IRzpyUQhbhJCTBJCTBo2LD1qKFuG45rvDg3QRUmuvCVPp7FPTNTp4dJrPuqsX+KR/zwRh++bPE0KyCYmU3HIPgPTM6VArc61Q8tWZuDfUSoQBvYp4YRx/HkXKmwTdUj/RnYxHjd8AH5lHC2ZFb4LVYGC8Rgdq+mxK057j/1CaxZXCJSgbr2cWi66QArn4KlzMPHp4/a3Xku032PtVMWPJmSzVH2HfdHX46Bd/c9Hsvnke5Sbu1SxksI5SCJa3F04ByHEqvB7HYD7AUwGsDYUFSH8lpHkVgBQjz0aDWBVmD6aSe8aOHQO6stKs+5J4yy4clwT+9gDBkeHD501cV9nmaqibyATSVNCfUbf9gLAv39wbHqmFOhB//yHmUs/IU0BiwXCZybv7+Wb4QpvzR13+f1PTEhYfWVFLFZKE+0Yfhspi4X5m8OK8CAYl3guKEf//8WTeSdFlTAdMaoZM751mrNcCZcBRNFXrJSBcJh97aOQdhFQ+dzqAm3jxszxPXKQJcyGoWjOIlZKcA69WedARP2JaKD85p9fOAAAE8NJREFUDeDDAN4A8CCAi8JsFwF4IPz9IIDziKiJiA5EoHieEYqethHR8aGV0oXKPTWHy5SVlN54RTnwnoM6+F1EvEHbJbnbtjb0XbDZh0uontNDBtgd9YoZdpy2+6pFFjNaFUcx+gGJwGQwmBi+Zbp9UJLXXMTWF7LYtBYWKHYSdOVXHyHt1fgEyAvqigt69Tun4/OW8CYq5zBsQJNTFKPd51hZ1I2Kj7WSV30m4+Cxdrq4IikOVvVL/Rotfiieq6gkOFJfaI+RFXyrJrEm59DbA++NAHB/2OgSgD8KIR4jopcB3E1EFwNYBuBcABBCzCWiuwG8CaADwGVCCNnzlwL4LYC+AB4NP10ClymrOhjXbm1lcsTwZbdLnuInAJi3eisA4PE317rLDAdZU6mAfo32V5hF51BrqNXZJgGH68+3h9uW1krliv9JZ75WMxIuCxZfyHLTlcKETTvblP/u8uQ9tYCvHqNBC7To/x5dY13rd0fdWR7VfJeuoJVR4DvH40jioBIZ8/haW91pbZQbgoYUj/hH5qyJ0kzRY68mDkKItwEkzn0UQrwLgOU9hRBTAUxl0mcC4MMt1hiyS11n0fpg5juxeZ2Lhc0a4hpInxSynMEph8dnsXuvNTSxUsoiqfbe4P52y6YCUcRqpy28Ud0u8QbT0bXQjxSiXV4KcYC++Iwfzut6fJ0Es8DXsEANue7b54D9YCfA5KZdnEP827Zrj/J6ju/GYgG7KsGe1MlVFggNRT0MuM0AIk35LyHHW2sUk82t51G5QPOMjN3Fz2G3QsVpreQ/+NUdnwu+4SZUpDvgBddlCAYbssiqa40sll8SJ4wbkhqDSbLkaQpXCWefM5dqwTnIvk73NdCP//zoe0Za8sW/0xSRjZ79opbpWsiPHBWL+Xz7HHB7H6s6BxfBUR912hVuXYfv+G7IwMmbY8FmxffMfD/LSUkUbnhmcdgWN+egEqOIc8iJQ9fBJVbKxsb6dV01lhlp+eRi6zI5BfSdcVONLIZ8kcU7W76Tg4a6I4UWKFbS+RIcF3HgrrgWSl/IOZ/GMRHpsXts8PVeV/G58Lxme91xQS6C0lgq4DPvDayEGjJwn30cRFZ9d67+Vk8RTOtLXzGv6uCZtllTjSMuO2VsKveShnlrtmn/rcYSYbWqvqPDOJc7j8raBYi6tJOcgzrAZQRSDg2elhm2sjn4ii3U56nFopcFat2L12935MxWZqTM89zFus/aSF6zyZWzoMPY5dmgisnS8kn4nrtx1tGsq1AEtfvSRDLychbDApd4Tn0njUV7f6s+Bmnv23yGkw7mTd21w6pS5rskmkMHNOLrZxzaaX1PS4qhiUS/hmJirUhyDtmPrc2KuiMOcpvKTTJ1EqY5WKkT33XwS6kKnUNq6I5wkqYVp27YfcUNPvj6GYekHhajzqN0hyy/etXT92phrWRe2W/vvk5u7Oqzeft1E/fNWgkAWLlplzMfwS8U9uotcTlpfSX1X+lOnP7jQS6iLuMHE65+VOeEGqvLhDwoatRefVNDsJhDzFZqQ4aIBf2agmeolUh2GxOCm0OpWEicTic3HHHgvZo0yYm6Iw5R+AyWc4h/cwHdVPgq57LIOON70iaCJA7+nEMtYxledso4/Mdp473rTusrXw6ZFLGSrwVUllP6fvzJhH2FBile8UValxPZI3iqOGPCPvE9KXllX6aNoSxcgBRvjGh2m7Gq+glfTtW1aZHxw847bj9rHolEIEHL46URGRWjQn+XrS18iHSJNN2fhO/pe0AyerN5BkTOOXQB3DqHOPW68492llPNQu/LOaTtaOROLgtx6G6oj5A2IeMolWllUhyiwHNxyxLP6n1j0z2uz5+8Hz5+lNtJ8VsfCZzr0kRAhYKfWEl1ykvnHAKk9Y+vWA4AdrQGi3TaInjjZ2Mz5AGe/iKusfH/t3fmQXoUVQD/vewmi7ll2ZAQTDbhDiEEEgnkAFE5VoKhRKviQSKHgCf6hwrI8QdagqWUCFYBpaEARSjLK+BVaBkpz5BoosQYTjFgStQACaSCBp5/TM/u5Dume3Znvm8m+35VX+1sb3+98+bN9Jt+/fp1nBNr3vTme5r3/7+alCfN7v3lKausa4lHdbs9+2d/54MLg9pbMLObcYGpWWqN66s1972NHApgILdS+sPTLN1wzOJDDwDg3OMb7/McE5qDKUmjDc+ThKeODvp3ezEnZRFaFrIswIsDL3w66RgxkLI7NHImbeQwmFWmn3/HHG72vDjE6dN9kUVJt9KKk6an1h34Tvo1in3TPjdiltDmV18Lc1UlO/rx+4W9TacZhzOOnszaK9/CQvespVG79W6ze+n8Rb1B5wXhQQ++EVWS+GXl1CPS0//UGofalBt7WjByGPpy0IoxkJU1Hd9k1cUnz+Sc46Z6b4xkJxbiZlCFr74nvfPpzxvvaS++uadmSAexukF668GwV4Zbz4nGBtvXYe1ORG+ERs6ktRni7x8Mo5wf3Wd6kiOhs45pHMZayxmzJ/sr4X/Lz7IwMTZy/pQyA22GupV8RmRSYMc7pmY+5OxjG1/PIraKybL+I77Xjzl4Ymq9OIx2evdonv7PLub37g8MPNOtyK00/IxDSm6lJD53hIgEvTHs9Qbty7VD1KFMnpDebveYaGThy8zY2TGCjdeczpiuoUfgDAX/yCHMrZRMaZLHOocQl85g6O8kPc/vXnMogZ1pWvBDklo3Sy1Z5hziAZZvEjvLSu6bls9l7VPbveHYoSTdZI9/ri/TmoxmhPa/yVHare9rvsIfYMfuaFJ6pidTcRx6fsrhPVyzdFa/PPE1bkVW1uFnHNxP3/A8S6K6NMaMCo+rDq03d9pEertH86756S4tgAmBk2VF4jO0vs1PYpJeoDyilV4JWGMwGPrvHe9IUTJPsPu46qyjuO/hrd7OOZtxCI2ACm9z2dypLJubHm6bhb12ccwxMg8GNtppRvJaJ4MH0pjieQGMR14dI6RhxKONHApA02akE+SVbiJ54/hCAcd2dbJj9x7vCGP8fiNZ88lTczm/VnCm54F5LXAeKPlAhEcrNa/Xm2FXviy84qyd7604mXgvS2edxkVLZnLRksZJ9JIMzq2U3zxG3uRlXJPEYcEHpCS3rCXUbTXRk/omdivVBg70jxzKnFup6njdSgX4Jn1RO9/90CLWbHku9zefdtNsQVKMBrqVkikDQjvTNDX2BfrvsxIvdnqdZ1W6kMwV1VqdZzFGoRPS7TQOeRnXRqQt1EtyxtEHBrc5/nXpXW9y5JBk9KgO3rNgGof2pGcTyINhZxwCBw653uiX9x3J2qe2e+sdOmksh04qXullI+7zfdc8aRxCJwHTctCICD3juvjXzvQMvFmJI91mp6ycB5cO5NVsiQTzIn5RWXKYPxJIA/Uz2I2B8iCLcZ37hols2PqCt17/nuEBTT/62b5MfYYvh1c851AbeDFuv5HBizGHyvAzDin7OSTJ8yXo0lMOyWUDnX2VuAP36WSvkUOgG8GXoKwI1+2Cmd3cd/GJ/REmzRAZSB/t69wuWjyD7S+HJXsMoauzgwc+upiZPX7XWmy4fAv2su6RnidZjOt9l5wYFIywcmEv655+niMnN95pMUmWxXUh9eP7O0ua9LwZfsYhcORQRMib0Zj+UFafcdDsbiVf5983ezJ3/+7poLaysGCmf0HdaxnkuWrprCGfUy2zp4ataYnnynybULWTLM9rV2dHUPbds489iKVzphTSF/jWoWzdvguAZ1/Ylfv/DmXfcm4HkJY+Yzhz23nz+Ow5LdlSo4745T7LnENoam3fm/G1Z+ff6Yay7cXd/cdZch21mjgbaWjiuPMSOxVWnaJeEn0jnZ//Ndpd+fsbitsx2cewGzn0zZ7M4QeOzSVv/75EaAheFr596UlBaY771zlkmHPwhQL+7fqzAs4w/7DHweJL9NhOPnXmkfz31dea7jeRJPS6F8HJh/cUFmSQNz6jc9SU8WzetiN4cWQRDDvjML17DNM9IYwhk3SGnzd6fO4x49wq2fEZ9m8eE5ijJoR1V721P8lbOzjrmCm5pAovip5xXdy0PH3Vfhm464IT2n0KuXH3hSdw/8Z/7LVffKspjXEQkTOBm4AO4Guqen07ziNr1IExdC5cPMOF6KU/CFcvncV1D/wl9//vy2VVNL69F4zhxwFjuzh/0Yy2nkMpxtQi0gF8FegDZgHvFpG2OINHdY4w49BiRnWOYOXCXu91v3Bx9LB0e5IiVo3TZoXHxxvV5qFPnso9Fy1o92kEUZaRwwnA46r6JICI3AssA/J/TTQqzeqPLGLKhPBEgoZRJqZ1j2aaZ6+YslAW4zAV2Jr4/RmgGubVaClzPNksq8Q9H1jAM57d4gyjXZTFODTyJ9RFqIvIxcDFANOmZduVyzDKxsJDLPDBKC+lmHMgGikk9wI8GKgL8FXV21V1vqrO7+lJz9djGIZhDJ6yGIeHgcNEZIaIjAKWA6vbfE6GYRjDllK4lVR1j4h8BPgpUSjrKlXd1ObTMgzDGLaUwjgAqOqPgB+1+zwMwzCM8riVDMMwjBJhxsEwDMOow4yDYRiGUYcZB8MwDKMO0SK2wmoBIrIT2NLgT9OAvwc0MQF4Mcd6RbQZKksR/7uINk2e1tfLUjfvZydLXZPHT17yHKGq47ytqGolP8C6JuX/Cvz+7XnWK6LNUFlMnuEnT0Fy5/rsmDzllKdZ31n72RfdSv6dwyPuz7leEW2GylLE/y6iTZOn9fWy1M372clS1+TxU4Q8TamyW2mdqs4PLa8i+5IsYPKUHZOn3OQlT2g7VR453J6xvIrsS7KAyVN2TJ5yk5c8Qe1UduRgGIZhFEeVRw6GYRhGQZTeOIjIKhF5TkQeSZQdKyK/FZE/i8j9IjLelY8SkTtc+UYReVPiO/Nc+eMi8hURacteoDnKs0ZEtojIBveZ1AZZ3iAivxCRzSKySUQuc+X7i8iDIvKY+/n6xHeucDrYIiJnJMrbrp+c5amcfkSk29V/SURuqWmrcvrxyFNF/ZwmIuudHtaLyJsTbeWvn9Bwq3Z9gJOB44FHEmUPA6e44wuA69zxh4E73PEkYD0wwv2+FjiJaGOhHwN9FZdnDTC/zbqZAhzvjscBjxLtAf4F4HJXfjlwgzueBWwEuoAZwBNAR1n0k7M8VdTPGGAxcClwS01bVdRPmjxV1M9xwEHueDbwbJH6Kf3IQVUfArbXFB8BPOSOHwTOdcezgJ+77z1HFPo1X0SmAONV9bcaXcm7gHOKPvdG5CFPC04zCFXdpqp/cMc7gc1EW74uA+501e5k4FovA+5V1VdU9SngceCEsugnL3lae9bNySqPqr6sqr8Cdifbqap+mslTFgYhzx9VNd4EbROwn4h0FaWf0huHJjwCvN0dv4uBXeQ2AstEpFNEZgDz3N+mEu02F/OMKysLWeWJucMNia9uxzA/iYj0Er3Z/B44UFW3QfQAEI16oPFe4VMpoX6GKE9M1fTTjKrqx0eV9XMu8EdVfYWC9FNV43AB8GERWU80HPuvK19FdGHWAV8GfgPsIXCP6jaSVR6A96rqMcAS9zmvpWecQETGAt8BPq6qO9KqNijTlPK2kIM8UE39NG2iQVkV9JNGZfUjIkcDNwCXxEUNqg1ZP5U0Dqr6V1U9XVXnAd8i8vWiqntU9ROqOldVlwETgceIOtiDE0003KO6XQxCHlT1WfdzJ3APbXJniMhIohv7m6r6XVf8TzfUjV0Sz7nyZnuFl0Y/OclTVf00o6r6aUpV9SMiBwPfA1ao6hOuuBD9VNI4xJEFIjICuAq41f0+WkTGuOPTgD2q+hc3NNspIie64eMK4AftOft6ssrj3EwHuPKRwFIi11Srz1uArwObVfXGxJ9WAyvd8UoGrvVqYLnzk84ADgPWlkU/eclTYf00pML6adZOJfUjIhOBHwJXqOqv48qF6WeoM9pFf4jepLcB/yOykBcClxHN7D8KXM/AYr5eokytm4GfAdMT7cwnugGeAG6Jv1NFeYiiMNYDfyKamLoJFyXTYlkWEw1f/wRscJ+3Ad1EE+mPuZ/7J77zGaeDLSQiKsqgn7zkqbh+/kYUMPGSuz9nVVw/dfJUVT9EL44vJ+puACYVpR9bIW0YhmHUUUm3kmEYhlEsZhwMwzCMOsw4GIZhGHWYcTAMwzDqMONgGIZh1GHGwTAKQEQuFZEVGer3SiJTr2G0m852n4Bh7GuISKeq3tru8zCMoWDGwTAa4BKh/YQoEdpxRAsUVwBHATcCY4F/A+9X1W0isoYo99UiYLWIjANeUtUvishcolXvo4kWKV2gqs+LyDyi/Fm7gF+1TjrD8GNuJcNozhHA7ao6B9hBtL/GzcA7NcqDtQr4XKL+RFU9RVW/VNPOXcCnXTt/Bq515XcAH1PVk4oUwjAGg40cDKM5W3Ugh803gCuJNll50GV47iBKhRJzX20DIjKByGj80hXdCXy7QfndQF/+IhjG4DDjYBjNqc0tsxPYlPKm/3KGtqVB+4ZRGsytZBjNmSYisSF4N/A7oCcuE5GRLrd+U1T1ReB5EVniis4DfqmqLwAvishiV/7e/E/fMAaPjRwMozmbgZUichtRhsybgZ8CX3FuoU6iTZg2edpZCdwqIqOBJ4HzXfn5wCoR2eXaNYzSYFlZDaMBLlrpAVWd3eZTMYy2YG4lwzAMow4bORiGYRh12MjBMAzDqMOMg2EYhlGHGQfDMAyjDjMOhmEYRh1mHAzDMIw6zDgYhmEYdfwfgye0CmRLBBsAAAAASUVORK5CYII=\n",
"text/plain": [
- ""
+ ""
]
},
- "metadata": {},
+ "metadata": {
+ "needs_background": "light"
+ },
"output_type": "display_data"
}
],
@@ -2275,32 +423,34 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "Un zoom sur les dernières années montre mieux la situation des pics en hiver. Le creux des incidences se trouve en été."
+ "Un zoom sur les dernières années montre mieux la situation des pics en hiver. Le creux des incidences se trouve en fin d'été."
]
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
- ""
+ ""
]
},
- "execution_count": 10,
+ "execution_count": 11,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEbCAYAAAAxukhGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYXFWd//H3NytJSGLCEsjGmiDIomEIyDIWa0BHYJ4Z\nEIVJkDjjCI7jjDMj0ZEk8hsQfBQUBVFRAoYlMirIliamWwfZErYAwWwkkHQWQpLuLGTv7++Pc4tU\nurq6blXXXp/X8+RJ9alzb5+6XVXf+z3n3HPN3REREUnVrdwNEBGRyqPgICIiaRQcREQkjYKDiIik\nUXAQEZE0Cg4iIpImVnAws4Fm9msze9PM3jCzk81skJk1mNkCM5tpZgNT6k8ys0VR/fNSyseY2Twz\nW2hmt6aU9zKzB6JtnjWzkSnPTYjqLzCz8YV64SIiklnczOEHwOPufjRwAvAX4FpglrsfBcwGJgGY\n2THApcDRwAXA7WZm0X7uACa6+2hgtJmNi8onAuvdfRRwK3BztK9BwHXAScDJwOTUICQiIsWRNTiY\n2QDgDHf/JYC773L3VuAiYFpUbRpwcfT4QuCBqN4yYBEw1swOAvq7+5yo3j0p26Tu6yHgrOjxOKDB\n3VvdvQVoAM7P65WKiEhscTKHw4D3zOyXZvaSmf3UzPoCQ9x9DYC7rwYOjOoPA5anbN8clQ0DVqSU\nr4jK9trG3XcDrWY2uJN9iYhIEcUJDj2AMcCP3X0MsIXQpdR+3Y1CrsNh2auIiEix9IhRZwWw3N3n\nRj//LyE4rDGzIe6+Juoyejd6vhkYkbL98KgsU3nqNivNrDswwN3Xm1kzkGi3TWP7BpqZFogSEcmD\nu3d4Mp41c4i6jpab2eio6GzgDeAR4MqobALwcPT4EeCyaAbSYcCRwAtR11OrmY2NBqjHt9tmQvT4\nEsIAN8BM4NxottQg4NyorKN2MnnyZNy9w3/5PleubYux32z7rLQ2daW9xXqtxWpTufZbSe/PYu63\nGG2qtvdYR3U6EydzAPgKMN3MegJvAZ8HugMzzOwq4G3CDCXcfb6ZzQDmAzuBq31PK64B7gb2Icx+\nejIqvwu418wWAeuAy6J9bTCz64G5hG6rqR4GpnOWSCTyeq5c2xZjv9n2GbdOPtvm06autLerr7UY\n++3Ksc13v9X0/izmfrMpx+epXO+x2McpW5Sphn/hZbhPnjzZpXh0fItHx7b4dIzTRd+dHX6v1tQV\n0l09M5PO6fgWj45t8ekY58Y8S79TNTAzr4XXISJSSmaG5zsgLSIi9UfBQURE0ig4iIhIGgUHERFJ\no+AgIiJpFBxERCSNgoOIiKRRcBARkTQKDiIikkbBQURE0ig4iIhIGgUHERFJo+AgIiJpFBxERCSN\ngoOIiKRRcBARkTQKDiIikkbBQURE0tRVcJg0CbZvL3crREQqX93cQ7qtDXr0gIYGOOecEjVMRKSC\n6R7SwKZN4A6PP17uloiIVL66CQ4tLdCtGzz2WLlbIiJS+eomOLS2wtFHw8aNsHhxuVsjIlLZ6io4\nfOhD8MlPwhNPlLs1IiKVrW6CQ0tLCA7jxsGsWeVujYhIZaub4NDaCgMHwsEHw7p15W6NiEhlixUc\nzGyZmb1qZi+b2QtR2SAzazCzBWY208wGptSfZGaLzOxNMzsvpXyMmc0zs4VmdmtKeS8zeyDa5lkz\nG5ny3ISo/gIzG5/vC012K/XrB1u25LsXEZH6EDdzaAMS7v4xdx8blV0LzHL3o4DZwCQAMzsGuBQ4\nGrgAuN3MkvNo7wAmuvtoYLSZjYvKJwLr3X0UcCtwc7SvQcB1wEnAycDk1CCUi5aWkDn07Qvvv5/P\nHkRE6kfc4GAd1L0ImBY9ngZcHD2+EHjA3Xe5+zJgETDWzA4C+rv7nKjePSnbpO7rIeCs6PE4oMHd\nW929BWgAzo/Z5r0ku5WUOYiIZBc3ODjwlJnNMbMvRGVD3H0NgLuvBg6MyocBy1O2bY7KhgErUspX\nRGV7bePuu4FWMxvcyb5ylhyQVnAQEcmuR8x6p7n7KjM7AGgwswWEgJGqkOtwdHg5d1cocxARiS9W\ncHD3VdH/a83sd8BYYI2ZDXH3NVGX0btR9WZgRMrmw6OyTOWp26w0s+7AAHdfb2bNQKLdNo0dtXHK\nlCkfPE4kEiQSib2eTwaHXr1g927YuRN69ozz6kVEakNTUxNNTU2x6mZdeM/M+gLd3H2zmfUj9PtP\nBc4mDCLfZGZfBwa5+7XRgPR0wgDyMOApYJS7u5k9B3wFmAM8BvzQ3Z80s6uBY939ajO7DLjY3S+L\nBqTnAmMIXWBzgROj8YfUNmZdeO+UU+CWW+DjH4cBA2D58hAsRETqVWcL78XJHIYAvzUzj+pPd/cG\nM5sLzDCzq4C3CTOUcPf5ZjYDmA/sBK5O+ea+Brgb2Ad43N2fjMrvAu41s0XAOuCyaF8bzOx6QlBw\nYGr7wBBXMnOAPV1LCg4iIh2rmyW7hw6FOXNg2DA48siwhMaoUSVqoIhIBdKS3eyZrQS61kFEJJu6\nCA47d4Z/ffuGnzVjSUSkc3URHFpbwyB08jptBQcRkc7VRXBI7VICBQcRkWzqIjikzlQCjTmIiGRT\nl8FBmYOISOfqIjioW0lEJDd1ERyUOYiI5KYugkPyXg5JGnMQEelcXQSH5F3gkpQ5iIh0rm6Cg7qV\nRETiq4vg0L5bScFBRKRzdREc3n9/z9IZoDEHEZFs6iI4bN8OvXvv+VmZg4hI5xQcREQkjYKDiIik\nqcvgoDEHEZHO1WVwUOYgItI5BQcREUlTl8Ghb98QHGrg9tkiIkVRl8GhV69wV7idO8vXJhGRSlaX\nwQHUtSQi0hkFBxERSVO3wSE57iAiIunqNjj066drHUREMqn54LB7d5iV1KPH3uXqVhIRyazmg0My\nazDbu1zBQUQks7oJDu1pzEFEJLO6DQ4acxARySx2cDCzbmb2kpk9Ev08yMwazGyBmc00s4EpdSeZ\n2SIze9PMzkspH2Nm88xsoZndmlLey8weiLZ51sxGpjw3Iaq/wMzG5/oCOwsOyhxERDqWS+bwr8D8\nlJ+vBWa5+1HAbGASgJkdA1wKHA1cANxu9kGP/x3ARHcfDYw2s3FR+URgvbuPAm4Fbo72NQi4DjgJ\nOBmYnBqE4sgUHHr3Ds+JiEi6WMHBzIYDnwR+nlJ8ETAtejwNuDh6fCHwgLvvcvdlwCJgrJkdBPR3\n9zlRvXtStknd10PAWdHjcUCDu7e6ewvQAJwf/+UpOIiI5CNu5nAL8J9A6lJ1Q9x9DYC7rwYOjMqH\nActT6jVHZcOAFSnlK6KyvbZx991Aq5kN7mRfsSk4iIjkrke2Cmb2KWCNu79iZolOqhZyjVPLXmVv\nU6ZM+eBxIpEgkUgACg4iIklNTU00NTXFqps1OACnARea2SeBPkB/M7sXWG1mQ9x9TdRl9G5UvxkY\nkbL98KgsU3nqNivNrDswwN3Xm1kzkGi3TWNHjUwNDqk6Cw6bN2d4xSIiNSj1xBlg6tSpGetm7VZy\n92+4+0h3Pxy4DJjt7v8A/B64Mqo2AXg4evwIcFk0A+kw4EjghajrqdXMxkYD1OPbbTMhenwJYYAb\nYCZwrpkNjAanz43KYssUHHr1gh07ctmTiEj9iJM5ZPIdYIaZXQW8TZihhLvPN7MZhJlNO4Gr3T+4\nrc41wN3APsDj7v5kVH4XcK+ZLQLWEYIQ7r7BzK4H5hK6raZGA9OxqVtJRCR3OQUHd/8j8Mfo8Xrg\nnAz1bgRu7KD8ReC4Dsq3EwWXDp67mxBQ8qLgICKSu7q9QlrBQUQks7oNDhpzEBHJrG6DgzIHEZHM\nFBxERCSNgoOIiKSp6+CgMQcRkY7VbXDo1UuZg4hIJnUbHNStJCKSmYKDiIikqevgoDEHEZGO1W1w\n0JiDiEhmdRsc1K0kIpKZgoOIiKSp6+CgMQcRkY7VbXDo0QPcYffu0rdJRKTS1W1wAA1Ki4hkUtfB\nQeMOIiIdq/vgoHEHEZF0dR8clDmIiKSr6+CgMQcRkY7VdXBQ5iAi0rG6Dw4acxARSVf3wUGZg4hI\nupoODu4hM9CYg4hIbmo6OOzcCd27Q7cMr1KZg4hIx2o6OHTWpQQKDiIimdR9cNCAtIhIuroPDsoc\nRETSZQ0OZtbbzJ43s5fN7DUzmxyVDzKzBjNbYGYzzWxgyjaTzGyRmb1pZuellI8xs3lmttDMbk0p\n72VmD0TbPGtmI1OemxDVX2Bm43N5cdmCgwakRUQ6ljU4uPt24Ex3/xjwUeACMxsLXAvMcvejgNnA\nJAAzOwa4FDgauAC43cws2t0dwER3Hw2MNrNxUflEYL27jwJuBW6O9jUIuA44CTgZmJwahLJR5iAi\nkp9Y3Uru/n70sDfQA3DgImBaVD4NuDh6fCHwgLvvcvdlwCJgrJkdBPR39zlRvXtStknd10PAWdHj\ncUCDu7e6ewvQAJwf98VpzKHyLFwITzxR7laISDaxgoOZdTOzl4HVwFPRF/wQd18D4O6rgQOj6sOA\n5SmbN0dlw4AVKeUrorK9tnH33UCrmQ3uZF+xKHOoPI89BrfdVu5WiEg2cTOHtqhbaTghC/gIIXvY\nq1oB22XZq2SnMYfKs2IFLF5c7lZIPfn5z2HXrnK3ovr0yKWyu280syZC184aMxvi7muiLqN3o2rN\nwIiUzYZHZZnKU7dZaWbdgQHuvt7MmoFEu20aO2rblClTPnicSCRIJBLKHCpQczMsXRo+rD1yeveJ\n5OerX4Wzz4bDDit3S8qvqamJpqamWHWzfjzNbH9gp7u3mlkf4FzgO8AjwJXATcAE4OFok0eA6WZ2\nC6EL6EjgBXd3M2uNBrPnAOOBH6ZsMwF4HriEMMANMBP4n2gQulv0u6/tqJ2pwSEpTnDYtCnbEZBC\nam4OgWH5cn1Ypfh27oQtW2D9er3fYM+Jc9LUqVMz1o1z7nYwMM3MuhG+oB9098fN7DlghpldBbxN\nmKGEu883sxnAfGAncLW7J7ucrgHuBvYBHnf3J6Pyu4B7zWwRsA64LNrXBjO7HphL6LaaGg1Mx6LM\nofI0N8OIEaFrSR9WKbaW6Nti/frytqMaZQ0O7v4aMKaD8vXAORm2uRG4sYPyF4HjOijfThRcOnju\nbkJAydm2bbDPPpmfV3AoLXdYuRIuuSQEh3PPLXeLpNZt2BD+V3DIXU1fIb1tG/Tpk/l5DUiX1rp1\n0LcvHHccLFlS7tZIPUhmDuvWlbcd1aimg8PWrdkzB13nUDrNzTB8OBxxhGYsSWkoc8hfTQeHbJmD\nupVKq7kZhg2DI49UcJDSUHDIX00HhziZg4JD6axYEYLDEUfAW29BW1u5WyS1rqUlfM4VHHJX08Eh\n24C0xhxKK5k57LsvDBwIq1aVu0VS6zZsCLPiFBxyV/PBIVu3ksYcSicZHEBdS1IaLS0hU9WAdO5q\nOjioW6mypAaHIUNg7drytkdq34YNITgoc8hdTQcHXedQWVKDQ79+sHlzedtTyf70J7jjjnK3ovop\nOOSvple32bpVs5UqSWpw2HffsKyBpGtpgcsvD8Hziiugf/9yt6h6tbTA4YeH4OAOVpAlPetDXWcO\nvXppzKFUtm4NwWD//cPPyhwy++pX4dOfDovF/epX5W5NdduwIXRh9u6t91uuaj44KHOoDEuXwiGH\n7DlzU+bQsR/9CJ57Dm6+Ga6+Gn7843DGK/nZsAEGDYL99tOgdK5qOjhoQLpyLF4Mo0bt+blfPwWH\n9n77W7jxxnCnvH33hTPPDNeCPPNMuVtWvVpa4EMfgsGDNe6Qq5oODhqQrhyLFoXpq0nqVkr33e/C\nz362Z7VaMzj5ZFiwoLztqlZtbdDaquCQr5oPDtkW3tOYQ2ksXrx3cFC3UrqFC+HEE/cuGzxY3SH5\n2rQpfP579FBwyEdNBwd1K1WOjrqVlDnssX59OFE58MC9y/fbT19q+WppCeMNoDGHfNR0cMjWrdS9\ne0jddX/Z4uuoW0mZwx6LFoXg2X6qpTKH/CUHo0GZQz5qOjhku84BlD2UwvbtsHp1mK2UpG6lvSWD\nQ3vKHPKXHIwGBYd81HRwyJY5gBbfK4WlS2HkyND3m6Rupb0tWgSjR6eX60stf8ocuqbmg0O2zKFP\nn1BPiqf9YDQoc2ivs8xB3Ur52bBhT+agDCx3NRscdu8OYwk9e3ZeT19Sxdd+vAGUObSXKTjojDd/\nqQPSgwfDe++Vtz3VpmaDQ7JLKdtaKvvuG6a8SfG0n6kEGpBO5R6msWbqVlLmkJ/UzGH4cFi+vLzt\nqTY1GxziDEZDCA46gy2uxYvDypip+vaF99/X3eAgLF2enIvfXr9+IQveurX07ap2qZnD8OFhUsTO\nneVtUzWp2eAQZzAaFBxK4a230oND9+7h76MvvcxdShAyX3Ut5WfjRhgwIDzu2TMswNfcXN42VZOa\nDg7KHMpv9+6QzqdOY03SeE/QWXAADabma8uWkHklHXIIvP12+dpTbWo2OGS7OjpJwaG4Vq4MX24d\n/S00KB0sWxbuOZCJxh3ys3lz+HwnKTjkpmaDQ9xupf79NSBdTG+9tWchufY0KB0sW9ZxZpWkzCE/\nyhy6pqaDg7qVym/p0szBQcc+ePttOPTQzM8rc8iPMoeuqdngoG6lytBZcFDmEChzKI4tWxQcuiJr\ncDCz4WY228zeMLPXzOwrUfkgM2swswVmNtPMBqZsM8nMFpnZm2Z2Xkr5GDObZ2YLzezWlPJeZvZA\ntM2zZjYy5bkJUf0FZjY+7gvTbKXKsHRp5v50DUiHCzVXroQRIzLXUeaQn82b1a3UFXEyh13Av7v7\nR4CPA9eY2YeBa4FZ7n4UMBuYBGBmxwCXAkcDFwC3m31wKdodwER3Hw2MNrNxUflEYL27jwJuBW6O\n9jUIuA44CTgZmJwahDqj6xzKZ9cuaGwMj7ONOdT7sV+5Eg44IKzxlYmmsuanfbfSyJFh5pxuuxpP\n1uDg7qvd/ZXo8WbgTWA4cBEwLao2Dbg4enwh8IC773L3ZcAiYKyZHQT0d/c5Ub17UrZJ3ddDwFnR\n43FAg7u3unsL0ACcH+eF5ZI5aEC6sB5+GM45J3zxqVupc9m6lEDdSvlwTx+Q7tcvfN7ffbd87aom\nOY05mNmhwEeB54Ah7r4GQgABkrcpGQakXqjeHJUNA1aklK+Iyvbaxt13A61mNriTfWUVd0C6f3+d\nvRbanXfC0KHwi1+E9WyGZfiLKWvLPhgN6lbKx7Zt4cK31JWAQV1LuYgdHMxsX8JZ/b9GGUT75KyQ\nyVqWFZGy04B0eSxeDC+/DHfdBbfcEvrSu3fvuK4yB2UOxdJ+MDpJwSG+HtmrgJn1IASGe9394ah4\njZkNcfc1UZdRMllrBlKH14ZHZZnKU7dZaWbdgQHuvt7MmoFEu20aO2rjlClTPnicSCTYti2h4FAG\nP/sZTJgQupUGDMjcpQTh2Le0lK5tlejtt2Hs2M7rKHPIXfvB6KTDDgsnMPWqqamJpqamWHVjBQfg\nF8B8d/9BStkjwJXATcAE4OGU8ulmdguhC+hI4AV3dzNrNbOxwBxgPPDDlG0mAM8DlxAGuAFmAv8T\nDUJ3A84lDISnSQ0OEAZENSBdWu7w4IPw6KPQrRtceWVYVC6Tfv1gxYrMz9eDZcvgkks6r5PMHNyz\nrzIsQabM4aST4L77St+eSpFIJEgkEh/8PHXq1Ix1swYHMzsNuBx4zcxeJnQffYMQFGaY2VXA24QZ\nSrj7fDObAcwHdgJXu38wP+Aa4G5gH+Bxd38yKr8LuNfMFgHrgMuifW0ws+uBudHvnRoNTGe1bdue\nFRk7owHpwlmyJKx6+ZGPhJ+/+c3O78+tbqV4Yw59+oTAEHccTTJnDqedBl/+sgJtHFmDg7v/GcjQ\na8w5Gba5Ebixg/IXgeM6KN9OFFw6eO5uQkDJia5zKL0//AHOPnvPh65Hj/QBwVT1fuzb2sLUypEj\ns9dNXhOi4BBP+2msScOHh+XiM92WVfao6Suk43yQ+vYNdXfvLn6bat0f/hDGGuKq98xh7dowWy7O\n+7Tej1WuMnUrAZx6Kvz5z6VtTzWq2eAQN3Po1i188N5/v/htqmVtbTB7dsgc4qr3i+Deew/23z9e\n3XrPsnKVqVsJQteSgkN2NR0c4qbg+uB13auvhit9M13T0JF6Xz5j3bow2ByHMofcdJY5nHYaPPNM\nadtTjWo2OMS9zgE0KF0IjY1w1lnZ66Wq9y+8XIKDTmBy01nmcNxxYZbc88+Xtk3VpmaDQ9xuJdAH\nrxDmz4fjj89tm3o/7sociqezzKFHD/j5z+HCC+H660vbrmpSs8Eh7oA06EuqEPKZ/VHvX3jKHIqn\ns8wB4NJLw5X83/0u7NhRunZVk5oNDsocSmvhwtyDQ/K41+sqmQoOxZNpKmuqoUPDe/aFF0rTpmqj\n4IAW3+uqjRvDmM3Qoblt16tXmC22bVtx2lXp1K1UPJ11K6U666wwy07S1WxwyLVbSQPS+Vu0CEaN\nyu+K04EDobW18G2qBsociidbt1LSmWcqOGRSs8FB3Uqlk0+XUpKCQ7y6yhxyEzdzOP10mDs3nEzK\n3mo2OGhAunS6Ghw2bixse6qFMofiiZs59O8PJ5yg6x46UrPBQZlD6ShzyI8yh+KJmzlA6Fpq7PBG\nAPWtJoNDcgVLBYfSUHDInXtYhnvw4Hj19R7NTZzZSklnnAH/93/FbU81qsng0NoazrQy3YGsvf79\nNSCdL/cQHEaNym/7AQPqMzhs3Ai9e4d/cdT7UiO5itutBPDxj8OLL8L27cVtU7WpyeCwZg0cdFD8\n+jory9+774YpqXHPgNur18whly4l0CKFucqlW2nAADjqqDAwLXvUbHAYMiR+fQWH/K1alfv1Danq\nNTisX59bcNB7ND733DIHUNdSRxQcCB+8ep0x01UtLfHuuJdJvQaHfDIHdSvFs2NH6FLu2TP+NgoO\n6WoyOKxenVtwGDIkdI9I7lpa4EMfyn/7ep3KmmtwUOYQXy6D0Umnnx7u8XDbbXD55eH+JPWuJoND\nrmMOBx8MK1fW7xo/XdHaGr7g86XMIR4NSMe3ZUtuXUoQThBHjoSZM2HePHjkkeK0rZrUbHDIJXPo\n3z8s41uPX1Jd1dXMoV5nK2lAunjyyRwAXnkFHn00LON9/fU6WVRwiAwdGrIHyU0hupUUHLLr1Sus\nXaXlpbPLdTA6qVv0bXjhhbBzJzzxRGHbVW1qMjjkOuYACg75UnDIT67BAZQ9xJXLNNaOdOsGX/oS\nPPhg4dpUjWoyOChzKB0Fh/zkExw07hBPa2voruyKsWPDzYDqWc0FB3cFh1LSgHR+1q6F/ffPbRtl\nDvFs2JD/RZlJxx4LixfX771GoAaDw8aNYX5zrn2OCg756Wrm0Ldv6N+tt770fE5gNJ01nlzWrMqk\nd++wXthrrxWmTdWo5oJDPh86UHDIV1eDg1noAqinax3a2kLmcOCBuW2nbqV41q/v2oWZSR/7WH13\nLdVccMhnMBoUHPLV1eAA9de1tGFDyJjirhqcpG6leArRrQQwZgy89FLX91Otai445HoBXJKCQ35a\nWro25gD1FxzyzW6VOcSjzKEwsgYHM7vLzNaY2byUskFm1mBmC8xsppkNTHlukpktMrM3zey8lPIx\nZjbPzBaa2a0p5b3M7IFom2fNbGTKcxOi+gvMbHycF5TvB+/gg8MicvV+4Usu3EN3kIJDbvJ9jypz\niKcQYw4Q7hD3+uthTKwexckcfgmMa1d2LTDL3Y8CZgOTAMzsGOBS4GjgAuB2sw9uO38HMNHdRwOj\nzSy5z4nAencfBdwK3BztaxBwHXAScDIwOTUIZZLvB69Pn/DhW7cu923r1ebN4bj16NG1/Sg4xKPM\nIZ5CdSv17w8jRsCbb3Z9X9Uoa3Bw96eBDe2KLwKmRY+nARdHjy8EHnD3Xe6+DFgEjDWzg4D+7j4n\nqndPyjap+3oIOCt6PA5ocPdWd28BGoDzs7U33zEHUNdSrgox3gAKDnEpc4inUN1KAIkENDQUZl/V\nJt8xhwPdfQ2Au68GkvMuhgHLU+o1R2XDgBUp5Suisr22cffdQKuZDe5kX51atSq/MQcIwWHVqvy2\nrUeFCg71Nlsp33ExTWWNp1DdSgCf/jT8/veF2Ve1KdSAdCF76i17lczeegsOPzy/bZU55KYQg9Gg\nzCEudStlt3t3uOVvId6XAGedFRbkq8fu5nx7i9eY2RB3XxN1GSXvhtAMjEipNzwqy1Seus1KM+sO\nDHD39WbWDCTabdOYqUFTpkz54H7Gzc0Jjj8+kalqRiNGwNtv57xZ3Spkt9J773V9P9VC3UrF09oa\nxgri3j8+mz594MwzwyJ8V1xRmH2WU1NTE01NTbHqxg0Oxt5n9I8AVwI3AROAh1PKp5vZLYQuoCOB\nF9zdzazVzMYCc4DxwA9TtpkAPA9cQhjgBpgJ/E80CN0NOJcwEN6hKVOmsGIF3HknXHBBzFfVzlFH\nwWOP5bdtPSpkcFiypOv7qRbKHIqnkF1KScmupVoIDolEgkQi8cHPU6dOzVg3zlTW+4BnCDOM3jGz\nzwPfAc41swXA2dHPuPt8YAYwH3gcuNr9g8mh1wB3AQuBRe7+ZFR+F7C/mS0CvkoUANx9A3A9MJcQ\nOKZGA9MZLVkCRxyR7RVldtRR8Je/5L99vWltLVxwaOn0L1tb8g0OAweGmTiS2YYNhRuMTrrgApg1\nq/6muWfNHNz9cxmeOidD/RuBGzsofxE4roPy7YTprx3t627g7mxtTCpEcFi4MCxv0K3mLg8svEJl\nDvV0m1b38FrzCQ6HHgpLlxa8STWlGJnD0KFhmZd8/27Vqqa+ArsaHAYMCF92K1ZkryuFG5Cup4kA\nra3hxj19+uS+7WGHwTvvhEFX6VihrnFo7+ij6+96h5oKDl2ZqZR01FGwYEFh2lPrCpU5DB0Kzc31\nkbZ35TqcffYJy3w3N2evW68KeY1Dqg9/WMGhqnU1c4DwJtC4QzyFvM6hW7f6uNYh3/GGpMMPDydB\n0rFidCuBMoeqV4jgoMwhvkIFB6ifriUFh+JSt1Lh1ExwaGmB7dtzXyO/PWUO8RVqthIoOMSl4NC5\nYnUrKTiBNze3AAATbElEQVRUsWTWYF26vlqZQy5Wr4YDDijMvuolOCxfDiNHZq+XiYJD54rVrTRy\nZMhK6qHrM6lmgsP8+V3vUoLwJli3TleiZrNlS7iqecSI7HXjqJfgsHRpmJKaLwWHzhXjOgcIY2Kj\nR9fXiWPNBIcbb4QJE7q+n27d4JhjYN687HXr2eLF4YuqUMsUDBtWH7Nwli1TcCimYmUOUH9dSzUT\nHIYPhwsvLMy+TjkFnnuuMPuqVYsWhTOpQqmXzGHZsnC9Qr6GDAlZ26ZNBWtSTSl2cJg/vzj7rkQ1\nExxuvbXr4w1JH/84PPtsYfZVqxYuVHDI1ebN4Yu9K5MmzEJw0ZXS6XbvLm5wOOMMmDmzOPuuRDUT\nHI45pnD7UnDITsEhd8uWwSGHdP0k5vDD62uhwriWLAm3+83n6vM4zjgjzDarl9mMNRMcCumww2DH\nDi2j0ZliBIdav4d3V8cbko48UsGhI6+/DsceW7z9d+8Ol14KDz5YvN9RSRQcOmCm7CGbQgeHffYJ\nS1LX8k1VujrekFRvs2biev11OC5tac/C+uxn4f77a/skJknBIYNTTlFwyGT9+pBZdfWCw/aSayzV\nqkJlDqNHh+Aseyt25gAwdmx479fDbEYFhwyUOWSWnKlUqAkASbU+7lCo4KALNTtWiuBgBuefD3/4\nQ3F/TyVQcMhg7Fh47TV4//1yt6TyFLpLKemww8L1E7WqqxfAJQ0dGmY+1dN9t7PZvj0c36OOKv7v\nOv10ePrp4v+eclNwyKBvXzj+eF3v0N6LL8KPf1ycvt0xY8L+a1WhxhzM1LXU3oIF4dj27l3833X6\n6fDnP9f+uIOCQyc+8Qn405/K3YrK8eKLMG4c/MM/wNe+Vvj9n3hi7QaHjRth27ZwP4ZCUHDYWym6\nlJJGjgxBqJazXFBw6NRf/7WCQ6onnghLlFxzTbibWaEde2yYolmLXXnz5oUrbAs1TqNxh72VYqZS\nqnroWlJw6MSpp8KcOWF2gsDs2XD22cXbf+/e4Qv01VeL9zvK5Y9/DJlooShz2FtTE5x0Uul+32mn\nKTjUtYEDw4dw7txyt6T8tm4NgfKMM4r7e048EV56qbi/oxyamiCRKNz+lDnssWRJ+FfME5f2Tj8d\n/u//Svf7ykHBIYu//uv6mLbWnnvoI0965pkwQN+/f3F/by2OO+zYAc8/X9jAOnp0mFJc64OicUyf\nDp/5DPTsWbrfeeyxsHNnbU9YUXDI4jOfgXvuqa8P4c6dMHEifPSjYTEzCF1KZ51V/N9dizOW5s4N\nS14U6q55EO67fcAB9bPOTybu8KtfwRVXlPb3du8OX/0qfO97pf29paTgkMXJJ4elHZqayt2S0mhp\ngYsuCguMDRwIv/lN+AA++WRpgsPxx4dZILV0x61CdyklnXsuNDQUfr/VZM6c8H8pxxuSrroKGhtr\n9/4aCg5ZmME//iP87GflbknxvfFG+JAdcQQ8/DB885vhJkpTp0KPHmEQrth69w5fev/7v8X/XcXW\n1hbmw8+YUdjB6KTzzquvJaQ78otfwPjxhb9aP47+/cN3w3e+U/rfXQrmNdBfYmZezNexfn1YJnnR\nosLdM7kUtm0LbR86NHvdJUtCn3jqHfXa2sKZ/KZN8MIL4UYzpfCb38APf1jd2drOnfB3fxeyoMsu\ng2uvLfz03w0bwhLga9eW5uKvSrNlS7hN7WuvhTsJlsOGDXDCCfDTn4ZlNaqNmeHuHYZWZQ4xDB4c\nvjC/8Y1ytyS+bdvCm3XUKPj7v888cOYevvjPPx8mT977VqvdusF994XxhlIFBoBPfSrMW1+2rHS/\ns1Dcw9LjV14ZHr/6Klx3XXGuCxk0CD7ykdqfUpnJr38dstlyBQYIf4N77gljdGvXlq8dxaDgENO3\nvw2PPx5m7VSyNWvC7KrPfS58oa9aFbo0Pve5MH7yzW/Co4+G8p/+NGRE48fDv/87fPGL6fs7/vjQ\nzVRKvXuHiQD33lva3xvXsmUhaH7/++E90dISytetC7NYjjsuDOTPmFH8GTTnnRcuTqx2S5fCJz8J\nX/86rF7ded1HHoEf/CBkl1/4Qmna15lEItyi+Ec/KndLCszdK/4fcD7wF2Ah8PUOnvdSuP9+92OP\ndd+ypSS/LmcvvOB+wAHun/iE+5e/7L51657ndu50f/JJ9299y/3cc90HDnQ/+2z3Z55xb2srW5Mz\nmjcvvJZXXil3S/bYvt19yhT3/fZzv/TScIzPPju08+GH3c87z/1rXyvt8Xz9dfcDD3Q/+mj3++4r\n3e8tlNZW95/8JLyGG25wv+Ya97593Xv3Du/jOXP2rv/44+4HHeR+9dXuV1zhvmNHWZqdZt489+HD\n3XftKndLchN9d3b8vZvpiUr5R8huFgOHAD2BV4APt6vj7u6NjY2FPG5p2trCG/KKKyrjC/WOO9z/\n+7/dv/c9929/O3zAHnmkeL+v2Me3vQceCB+4ZctK+ms7tH27+4UXhgDwzjt7P/fnP7sffLB7IhGC\ncD66cmx373b/05/cR44Mwf/228P/DQ2h3ZXqhRfcBw1y/9u/dX/uuT3lbW3hBOznPw/Hdfx49/nz\n3R98MATip5/O7/cV+/178snujz5a1F/RJcnj+pe/uM+c6T57dufBoRq6lcYCi9z9bXffCTwAXNRR\nxaYij2CawZ13hv7wa68N/fpz54b5zg0NsHx5SHnnzy/+dRFPPAE33RRmEb3zTliP6MEH4dOfLt7v\nLPbxbe8znwndDKecAk89Fcra2sJSFD/7WegWe+qpMOi7cGG4rev27aHe9u1hxlMhLmBcuBAuuST8\nTX//+zAImurUU8Pf/NFHw98jH105tt26hckEzz4bBmfnzg0D4l//Olx+eXHfi2vXhvXHXn45LCMe\n1/bt8PnPh66Y3/wmdHkmmYVVkSdODFeBDxsWukbvvjvMTsp31lyx379f+EJlzWrcuTN8L119dejq\n7NkT9tsvjOnddFOYhdipTFGjUv4Bfwf8NOXnK4Aftqvj7u6TJ0/OGDU7O2vIdkbR/vnm5nC2c9BB\n7oMGNfqkSe5jxoQz9/POcx8xwn30aPf/+i/3KVMaffr0cNbz6KPujY3uzz8fugPuv7/RV61yX7LE\n/aWX3Juawpn/gw+6T5+euU2tre4HHNDos2bl9nrinDl1Vqez45tt23zalHxu9uyQQQwZEv4/7jj3\niRPDvxNOaPTDDnM/8kj3YcPce/YMXWb9+jV6IuF+yCHuX/pSyD527AjdP//xH+6XX+7+z//c6MuW\nhTOqtjb3Vavcf/1r90mT3L/xjUb/1a9CNnDgge7XXuu+bVvXjmFXjm0++9261f3QQxt92rT057Zs\ncV+71n3atEb//vfDa54+PZR1tt9du0L31d/8TaOPHRuO9amnuh9/vPu++4auoIkT3a+4otFvv939\nt791f/bZ0H05e3boFvr2txv9n/7J/dOfTs/Ac/0s5rJtob8f2pdv2hTen5de6n7vve7/+Z/u3/pW\no7e1ua9Z4/7YY+6zZoWM+HvfC8d+x47w88UXu/fv737EEe6nntroX/6y+y9/GT7rSbt2hb9bS4v7\nzJlhvzt27N2VNWtWozc2un/xi+777+9+yinuN90UsrRkFpnabjrJHPI8z6k+TU1NJDJcidTZcx09\nP3RoONt58UX49a+buOGGBDfcsKe+e1gf6Le/hfvvb+JjH0uwa1eYerdlSzjL37IFmpub6N07Qb9+\n4YKzAQPCv169oKGhiX/7twT77BOi/ahR4V/37uGK0EMOaeLss3N7PdleZ9w6+WybT5uSz515ZsiO\nVqwIZ6cf/vCeee1TpjQxZcqe7d3DAPENNzTx3e8maG2FSZPC9Rtbt4Zph5/6FBxzDNx2WxMnnZRg\n8+Zwxt+rVziD/au/Cn/XV15JcPXV4aLA5GyjrhzDrhzbfPa7zz4wblwTX/tagqefDjNr3nwzZBer\nV0O/frBrVxOXXJJg+HB46KFwlnnSSbBrF7zxRhM9eiRoa4M+fcJV3suXh+nc/fuH43vyyXum0W7a\nFCZsvPMOTJ/exKuvJnjiiTBJolu30J7evWHZsibGjk3wk5+kX5+Q62cxl207U4j37r77huN7++3w\nu9+FyRx33NHEffcleO+9cAOxXbvC3+GAA+Bb32riP/4jwdFHhyzpJz8JU2MnT27iyCMT/O538C//\nEo7R1q1hkkPv3iED2LKliba2BN26hffuyJHhPbp0aROjRyf47GdDBnnIIfkfp4q/zsHMTgGmuPv5\n0c/XEqLdTSl1KvtFiIhUKM9wnUM1BIfuwALgbGAV8ALwWXd/s6wNExGpYRXfreTuu83sy0ADYebS\nXQoMIiLFVfGZg4iIlF41TGVNY2abyt2GXGVrs5k1mtmYUrWnk3ZU3bEFHd9iqpZjm1Rtx7hSj29V\nBgegGtOdamlztbSzvWppd7W0M1W1tVntLYBqDQ6YWV8zm2Vmc83sVTO7MCo/xMzmm9lPzex1M3vS\nzCphzUozs0+Y2e9TCm4zs/HlbFRHqvDYgo5vMVXNsU2qsmNckce3aoMDsA242N3/CjgLSL0n05HA\nbe5+LNBKuJCuEjgVepbQTjUeW9DxLaZqObZJ1XaMK+74VvxspU4Y8B0zOwNoA4aa2YHRc0vd/bXo\n8YvAoWVoXzXTsS0uHd/i0zHuomoNDkZYRmM/4GPu3mZmS4F9oue3p9TdnVJebruA7ik/V0q7UlXr\nsQUd32KqhmObVI3HuOKObzV3Kw0A3o3+8GcSVm1NKsNNA7Ny4G3gGDPraWYfIlzYV4mq7diCjm8x\nVdOxTaqmY1yRx7fqMofoiultwHTgUTN7FZgLpF4YV1F9d1Gbt7t7s5nNAF4HlgIvpVQre5ur8diC\njm8xVcuxTaq2Y1zJx7fqLoIzsxOAO939lHK3Ja5qaXO1tLO9aml3tbQzVbW1We0tnKrqVjKzLxLO\nCL5Z7rbEVS1trpZ2tlct7a6WdqaqtjarvYVVdZmDiIgUX1VlDiIiUhoVHRzMbLiZzTazN8zsNTP7\nSlQ+yMwazGyBmc00s4FR+eCo/iYz+2G7fTWa2V/M7GUze8nM9i/Ha6okBT6+Pc3szmib+Wb2t+V4\nTZWiUMfWzPZNec++bGZrzez75XpdlaTA79/Pmtk8M3vFzB43s8HleE2VpKK7lczsIOAgd3/FzPYl\nXLByEfB5YJ2732xmXwcGufu1ZtYX+ChwLHCsu38lZV+NwL+7+8ulfyWVqcDHdwrQzd2vi34e7O7r\nS/ySKkYhj227/c4F/tXd/1yaV1K5CnWMoxlDK4EPu/sGM7sJ2OLu3y7H66oUFZ05uPtqd38leryZ\nMB1tOOENMC2qNg24OKrzvrs/w94XuaSq6NdbagU+vlcBN6bsu24DAxTlvYuZjQYOUGAICniMk9c9\n9DczI1wjsbLIza94VfNlaWaHEqL+c8AQd18D4Q0CHJh5y73cHaXn/12URlaxrhzfZNoO/D8ze9HM\nHjSzA4rY3KpSoPcuwGeABwvdvlrQlWPs7ruAq4HXgBXA0cBdRWxuVaiK4BCljA8R0unNpF8UEqdv\n7HPufhxwBnCGmV1R4GZWrQIc3x6EM7an3f1Ewgf0e51vUh8K9N5Nugy4v1BtqxVdPcZm1gP4EnCC\nuw8jBIlvFKOt1aTig0P0h3sIuNfdH46K15jZkOj5g4B3s+3H3VdF/28B7gPGFqfF1aUQx9fd1xH6\naH8bFf0a+FiRmlw1CvXejeoeD3TXmNneCnSMPwq4uy+Lfp4BfLwIza0qFR8cgF8A8939BylljwBX\nRo8nAA+334iU9VPMrLuZ7Rc97gn8DeEydSnA8Y383sIaNgDnAPML2cgqVahjC/BZlDV0pBDHuJmw\nrtF+0c/nsvdyG3Wp0mcrnQb8iZDmJdc7/wbwAiG6jyAsWHWpu7dE2ywF+gO9gBbgPOCdaD89CCsf\nziLMXKrcF18ChTq+7v4XMxsJ3AsMBNYCn3f3FaV9RZWjkMc2em4x8El3X1jil1KxCvz+/Sfgq8CO\naJsr3X1DaV9RZano4CAiIuVRDd1KIiJSYgoOIiKSRsFBRETSKDiIiEgaBQcREUmj4CAiImkUHERK\nwMy+mMuSLWZ2iJm9Vsw2iXSmR7kbIFLrzKy7u9+Zx6a6CEnKRsFBJAYzOwR4knDPgDGE5VfGA8cA\n3wf6Ae8RrqxdE90/5BXgNOB+MxsAbHL375vZR4E7gD7AEuAqd281sxMJq4E68FRJX6BIO+pWEonv\nKOBH7n4MsBH4MnAb8HfufhLwS+CGlPo93X2su9/Sbj/TgP90948SgszkqPwXwDXuXveLFkr5KXMQ\nie8dd38uejydsI7PR4CnopvEdGPvm8Sk3XshyiAGuvvTUdE0YEZ0T4yBKTfyuRc4vwivQSQWBQeR\n/G0C3nD30zI8vyVDeUerrnZWLlJy6lYSiW+kmZ0cPf4c8CxwgJmdAuHeAmZ2TGc7cPeNwPpoRVGA\nfwD+6O6twAYzOzUqv7zwzReJT5mDSHwLgGvM7JfAG4TxhpnAbVG3UHfgVsK9LDqbaXQl8BMz6wO8\nBXw+Kr8K+IWZtQENRXkFIjFpyW6RGKLZSo9Gt5oVqXnqVhKJT2dSUjeUOYiISBplDiIikkbBQURE\n0ig4iIhIGgUHERFJo+AgIiJpFBxERCTN/wc5WnA5n1htNAAAAABJRU5ErkJggg==\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmYHFd97/09XVvvMz37SDPa5U1esbyA2Q3YLAGS13AN3MAbnPi9BN5ASJ4EktwE3lzfG7hJeAMJEAIJhrAZB2K2GBwbs1m2LC+SZcm2dmk0o9mn9+7azv2j6lRX7z0zvdR0n8/zzDOt012t6p7u+p7fTiil4HA4HA7Hja/TJ8DhcDgc78HFgcPhcDhlcHHgcDgcThlcHDgcDodTBhcHDofD4ZTBxYHD4XA4ZXBx4HA4HE4ZXBw4HA6HUwYXBw6Hw+GUIXb6BNbK0NAQ3bZtW6dPg8PhcDYUTzzxxAKldLje4zasOGzbtg0HDhzo9GlwOBzOhoIQcqaRx3G3EofD4XDK4OLA4XA4nDK4OHA4HA6nDC4OHA6HwymDiwOHw+FwyuDiwOFwOJwyuDhwOBwOp4yeFod4VsN9T5/v9GlwOByO5+hpcfjRMzP44DefxvmVbKdPhcPhcDxFT4tDRjUAAPPJfIfPhMPhcLxFT4tDXrfEYTHFxYHD4XDc9LQ4qLoJAFhMqR0+Ew6Hw/EWXBwALKS55cDhcDhu6ooDIWSSEPJTQshRQsizhJAP2usfI4ScJ4Q8bf+8wXXMRwkhxwkhzxNCbnGtX0sIeca+79OEEGKvK4SQb9nrjxFCtjX/pZaT55YDh8PhVKQRy0EH8AeU0ksB3Ajg/YSQy+z7PkUpvdr++REA2PfdDmAPgFsBfJYQItiP/xyAOwHstn9utdfvALBMKd0F4FMAPrH+l1afgluJWw4cDofjpq44UEpnKKVP2reTAI4C2FzjkLcA+CalNE8pPQXgOIDrCSHjAKKU0n2UUgrgKwDe6jrmbvv2vQBuZlZFK3EC0mluOXA4HI6bVcUcbHfPNQAes5c+QAg5RAj5Z0JIzF7bDOCc67Ape22zfbt0vegYSqkOIA5gcDXnthacmAN3K3E4HE4RDYsDISQM4N8AfIhSmoDlItoJ4GoAMwD+hj20wuG0xnqtY0rP4U5CyAFCyIH5+flGT70qqsHdShwOh1OJhsSBECLBEoavUUq/AwCU0llKqUEpNQH8E4Dr7YdPAZh0HT4BYNpen6iwXnQMIUQE0AdgqfQ8KKVfoJTupZTuHR6uOwK1LnnNEoeltArTLNMiDofD6VkayVYiAL4E4Cil9G9d6+Ouh/06gMP27e8BuN3OQNoOK/C8n1I6AyBJCLnRfs53A7jPdcx77Nu3AXjIjku0FGY56CZFIqe1+r/jcDicDYPYwGNuAvCbAJ4hhDxtr/0JgHcQQq6G5f45DeD/AQBK6bOEkHsAHIGV6fR+SqlhH/c+AF8GEADwH/YPYInPVwkhx2FZDLev72U1BrMcACvu0B+U2/HfcjgcjuepKw6U0l+ickzgRzWOuQvAXRXWDwC4vMJ6DsDb6p1Ls8kbJmTBB9UwsZjKY9dIuN2nwOFwOJ6k5yukx/r8AHg6K4fD4bjpaXHI6wbGmTjwjCUOh8Nx6GlxUHUTo1E/CAHmea0Dh8PhOPS0OOR1E0FZQCwoY4FbDhwOh+PQ0+Kg6iYU0Yf+gIRElqeycjgcDqPnxUEWfQgpItJ5vdOnw+FwOJ6hp8UhrxtQRAEhRUCKiwOHw+E49Kw46IYJkwKy6ENYkZDKG/UP4nA4nB6hZ8WBtc6wxEHgbiUOh8Nx0bPiwFpnKDzmwOFwOGX0rDgUWw4iklwcOBwOx6FnxaFgOQgIKyJU3YRmmHWO4nA4nN6gZ8VBNawANEtlBcBdSxwOh2PTs+KQt0eEyoLlVgLA01k5HA7HppF5Dl0JEwdF8iFkcnHgcDgcNz0rDioTB8EHolhr3K3E4XA4Fj0rDm7LQZEs7xovhONwOByLnhUH1Yk5CJBEa9Adtxw4HA7HoufFQZF8CEgCAB5z4HA4HEYPZyvZqazubKVcd4vDIycW8MiJhU6fBofD2QD0vOXQS3UOf/uTF2BSiu/87lCnT4XD4XicHrYcCr2VZPsnpXa3OMSzGlb4UCNOh3n63Aq+d3C606fBqQO3HERLH8M90HwvkdOgG7TTp8Hpcb78q1N49OQS3nzVpk6fCqcGPWs5sMZ7imgFo0OK0PUxh0RWx0pWA6WNCUQ8q+HQ1EqLz4rTa2Q1A+kut9K7gZ4Vh7xmBaQlwUpjDcliV9c5qLqJrGbAMGnDWVlf/MVJvO3z+6DzhoScJpLVTGRUo+FNCqcz9K44GCYU0QdCLHGI+LvbrZTMFWINK5nG4g5nFjPI6yaW0mqrTovTg+TsTYrKNx2epmfFQdVNJ94AwBr408WmbsLlMos3GJSeiWcBAHPJfEvOidOb5GyrPdPFlno30LPikNcty4ERUsSujjkkso1ZDl977Aze8YVHAQDTKzkAwDwXB04TYeLQzZuxbqBnxUHVTScYDQBhWezqCumE262Ure4mOnw+gX0nF5HIaZhNWOIwl8y1/Pw4vUOWWQ4qtxy8TM+KQ76SW6mbxSFbeG21LAdWOf74qSXophUwnEtwy4HTPHL2FEYuDt6mrjgQQiYJIT8lhBwlhDxLCPmgvT5ACHmAEHLM/h1zHfNRQshxQsjzhJBbXOvXEkKese/7NLGjwYQQhRDyLXv9MULItua/1GJU3ShyK4X9ItKqAdPszgwKt+VQK+bAigN/ebzQZmM+xcWB0zxyKos5dO9mrBtoxHLQAfwBpfRSADcCeD8h5DIAHwHwIKV0N4AH7X/Dvu92AHsA3Args4QQ5r/5HIA7Aey2f2611+8AsEwp3QXgUwA+0YTXVpPSgHRYsU6xW/2gLObgI8BKprpbic3W/pUtDoKPcMuB01RyOos5cMvBy9QVB0rpDKX0Sft2EsBRAJsBvAXA3fbD7gbwVvv2WwB8k1Kap5SeAnAcwPWEkHEAUUrpPmolOH+l5Bj2XPcCuJlZFa0ir5uQhWK3EgCkuzSDIpHTIPgIRiL+htxKL8ymAAAXjUa45cBpGrphQrOr9DNduhHrFlYVc7DdPdcAeAzAKKV0BrAEBMCI/bDNAM65Dpuy1zbbt0vXi46hlOoA4gAGK/z/dxJCDhBCDszPz6/m1MtQddMZ8gOg6+dIJ7I6on4R/UGpZn8lZjkAgF/y4aLRMA9Ic5pGTi98vnjMwds0LA6EkDCAfwPwIUppotZDK6zRGuu1jileoPQLlNK9lNK9w8PD9U65JmWWg2yJQ7fuZhI5DdGAhP6ghHgDlgMAbOoLYCSiYD6Z59WsnKaQdQlCNyeAdAMNiQMhRIIlDF+jlH7HXp61XUWwf8/Z61MAJl2HTwCYttcnKqwXHUMIEQH0AVha7YtZDaWprEEWc+hWt1JWQ9QvoT8g10xlzbt2duP9fgxHFOQ0E0n+ReY0AVbjABQLBcd7NJKtRAB8CcBRSunfuu76HoD32LffA+A+1/rtdgbSdliB5/226ylJCLnRfs53lxzDnus2AA/RFm9VVaMklbXrLQcd0YDtVqppOZgYCMkAgPG+AEYifgA8nZXTHNziwAPS3qYRy+EmAL8J4NWEkKftnzcA+CsAryWEHAPwWvvfoJQ+C+AeAEcA3A/g/ZRS9il4H4AvwgpSnwDwH/b6lwAMEkKOA/gw7MynVpLXjJIKaZat1J0fWGY59Nkxh2ram9cMXDoeAQBs6vNjJKIA4FXSnOaQ09wxh+7ciHULdec5UEp/icoxAQC4ucoxdwG4q8L6AQCXV1jPAXhbvXNpJqWWQ5BZDl3qPknkCm4lVTeR00wEZKHscXndxPahEF68YxBvuGIcBiuE40FpThPIuiyHRgPS51eyuPuR0/jIrZfA52tpEiPHRc9WSGdUAwGpcHFkbqXutRwKbiWgeguNvG7CLwr4wKt3Y8dw2HErccuB0wxyReLQ2Ebsx4cv4As/P4nzK9lWnRanAj0pDnndQEY1ELN96wCcXXQ3Wg5sloNlOdjiUCXukNOMohTfaECEJBAs8rbdnCbALAfRRxpO/mAt493JEpzW05PiwFI5++wLJWCNC5UFX1daDmyWQzRgxRwAYLlClbRumNBNWpTFRQhBxC8VzYPoNeIZrWb6L6dxmOUwEJIbthzYxsRtdew/tYRnp+PNP0GOQ0+KAysCYy4WRlARujJIxmY5RAMiYkHLWqp0sSuMTi3+WIS7vJ15Pf7g2wfx4Xue7vRpdAXsAj8YVhqOOSylLZcmq8FRdRN3fvUAPnn/8605SQ6ABgLS3QhzqfQH5KL1kCx2ZZ0D66sU9UtOmmolNxGrji4Vh4hfRLKHxeH8ShYan1rWFFi20mBIbjiG4LiV7GMffn4OKxmNx8FaTG9aDrZLpcxykLvTcnjoOas+sT8oO695uZI42D5dRSrOYgorYk8XwSVzWsX3i7N6si63UqMV0o5bybYcvvvUeQDAAu/51VJ6UxyqupXEros5fObBY/i7B4/h9ZeP4erJfiiigIgiYqlCzIGZ7dxyKCaZ07GcUcvauT8zFcdPnr3QobPamLhjDo1WSC85MQcT8YyGB4/OQfQRLKXL/yac5tGb4uBYDqVuJaHrspV+cGgG122L4R/e+SIIdo54LCTXthzEYssh4peQyvdmQJZSilReh0lR1LBQN0z8v994En/274c7eHYbj6xmQBZ9CNsz2+s1QtAN03ED53UD+04uQDVM3HL5GHSTNjwPnbN6elQcNIg+glBJEVhQ7j7LQTNMjEb9RcVDsZBcMebAdnWVAtK9ajlkVMMpBFxyvWf3PT2N04sZLPLd66rIayb8og9BRYBJ66enLrsSJ3Ka6SRXXDYeBQAsprlrqVX0pjhkNfQHJZSOjAh1YbaSahR3nwWAgaBUMZWVfVH9UqnlYGUr9WJnVrcoMnHQDROfeegYAMAwacX3klOZrGogIAuuXma1N2NuQc5rhrOBmRwIAgDmk/y9bxU9KQ7xjFZU48Cw5kh3n+Ugl1gCAyEFy+lyc9zJVpJKLAe/CN2kRX1xegV3fQdLqTw+n8LpxQxeebHVNn4hxS9QjZLTDfglAUGZdUGuvRlzWwY53XTiFBOxQNn9nObSk+KwklXL4g2AHXPoMstBMyikUsshJFX8UlUPSFtCmuzBuEOiyHKwXj/zgV850Q+AZ82shqzdtia4BsshpxlOthMThwWeztoyerbOYbzPX7YelEVkVAOmSbumwZeqm2XiEAvJyGmmY+LPxLNYTmvVA9JsSl5Ox0ikPeftFRIVLAcmDjuHQwC4OKyGnG5CkYTC/JQqm7Gp5QweODLrJFEAltvTNCkU0YfBkAIfqVyvw2kOvWk5ZDT0BSpYDvYH1t05cqOjGiYksVjoBu1COJbO+tc/fgG/+7UnaqayAujJoLT7NbMLESsq3DUSBsCbEq6GnGogIPmcmEO1dNZ7Hj+Hj3//CPadWARg1SAxyyEgCxB8BAMhhQtzC+lRcVDLahyAQtvuaruZjQal1Io5lFoOtkuNpbPOJXNYSKnVYw5dPl+7Fizm4Jd8zvvF0icnYkHIgg/z/AJVl6xqIJHTGo45nF7MAAAePDqH/qCEoCwib8ccWDflobDM4z0tpOfEQdVNpFXD6U7qhlkOmS4JShsmBaUoz1YqaaGxnFGRyutOGm+lOgcAPdl8j1kOWwdCzvu1klUh+AiiftG6QPGMGSRyGj778PGqab3//b7D+K1/edwVc7C/a1UshzOLaQCW5TsQkqGIvoLl4IgDtxxaSc+JQ7xKdTTQfZaDZlhfVEksjzkABcuBZS4x9wh3KxVI5jQIPoLNsYATHI1nNUT9IgghGIrwCxQA/Oz5eXzy/udx9EKi4v3nljI4NLWCVF5HQBIca7TShoNSilMLaeffgyEZfsmHvGYiZ7uVAGAwLGORWw4towfFwfow9VXMVmosg2KjoNoB5tKAtBNzcFkOQHVxKHyRe1EcdIQVEQOuqvKVjOZku3Xj7nUt9Sys/qDaZySR06EZFDPxHBRJwFBYgV/yOe4jNysZDYmcjldcZKUKD4Rk+CXBmcPithwWu+y99xI9Jw6FjqwVLAfbrdQtvnXWglsWigPSUb8EH7HEIacZjhjOJXMQfQSiUF7nAHTP+7IakjkdEb+IQbuqnFKrZUPU/vxYfu/uuUCl8zpe9JcP4P7DM6s6jn3WqoqDq81FQBLg8xHsGArjxHyq7LGnbZfS2/dOIiAJGI36bbeS6QSkActySKtGwz2aOKujd8WhglvJsRy6JObA2kyXWg4+H0EsKGMpoxZNhJtP5susBna8X/L1aMxBc1qd53UTGdVAIlsoorR2r1YLjaxq4PV/9wv855HZDp/12llMqVjOaPj2galVHces1Go9uNwpwX474WHnSLE4LKbyePTkIs7Y1sTFYxF8484b8f5X7XIsh6xqOBX8Q2EFAE8lbhU9Jw7MhRKr4FZyMii6JuZgWw4VLvjMTeIuMppP5svadTOs5nt6z/URStiWQ8zlilvJao7lORRWnAZwP3thDkdnEjh0vvKEsqnlDP7HD454+j1kbbF/cXxhVZYiq5GpZDmYJi16LuYW2jkcwtRy1nFJ3b3vDN7xT4/iZy/MgxBgciCAqyf7iyyHnGY439OhcPXZJJz103PiwALSfZUsB4VZDt0hDtViDoAVlF5Kq0V9gRbTakXLAbAK4RI5HW/6zC/x/q8/Cb1Hht8kshoifqkoThN3Ww4Ra/c6n8rjh89Y7burWVgPPz+PL/7yVMNDbjoBc9GouomfPT/f8HFqDXFI5nW4wxh+RxzCoBRO8HkxlQel1ryGTX2Boqw5vySUZSsVLP3u+L56jZ4Th2u2xPCh1+xGWC4vDi9YDt3hVlKruJUAYDiiYC6ZL2saV1Uc/CKOTCdwZCaBHx6awR/926Hmn7AHSeZ0O2XVEoHZRK5IHIbt9anlDB48OuscUwm2u2bFhl7EPaf5x6uYVVFLHFi8YYvdLM8vF8QBgONacrdE3zYULHoORfQ5bj0mLux3NxWteomeE4drt8bwoddcVLE9hiL6IPhI1/RXYqmsslj+WrcMBDG1nCnrTVNa48AI+0Vnh/fqS0bwnSfP40I81+Qz9h7JnIaIX8TWQetidfh8HJQWYlbDEcui+IefnkBGNeAjxcFXN+wCmlW9a3WxC+1Fo2E8cGTWqTeoRyEgXf7ambV+3bYBAIDf3oBsHwqBEOD4nCUO8YzmtGrZNhgqeg5mObhTWdnvXmwI2Q56ThxqQQhBUBa6pjNrtYA0AGwdCEIzKI7MWHnpUTsjqbQ6mhFRJPu3iDdftQlA9eBjt8AG/UT8EvqDMmJBCU+dWwEAJ1tpIhbEJWMRPHFmGaNRBVdN9hftng2TOimwTBxynrYcrHP8o1sugSgQfPiegw25EAsB6QqWgy0YL79oCFG/iB22xRCQBWzuD+DEvCVAK1kVe7fF8MGbd+PteyeLnsMvCUjnrXTYILMcRCYO3n0/NzJcHEoIyWL3WA46S2Ut/zNvsXfCT51dQUQpuE2quZVYOuvVW/qduoduEdFqpFUDJgWiAev1bh8K4aAtDiwg7ZcE3P+hl+Pwx2/BAx9+BWJBuah77XeenMLLP/lT5HUDqmG9X15OvWQX2h3DIfzlWy7HE2eWnZnNtWCusspuJWtt10gYB//idbh2a8y5b+dwGCdsy2EloyEWlPH7r70IV032Fz2HIvocdy+zGFjWE3crtQYuDiUEFaFrYg55ZjlUuOAzs/34fAr9IcnZCVdzK7Eq6b1bB5x6kG4pFqzEvhOL+OUxKyDL2odsGwo5LbxL54GEFRFRv4SoX3QuhgAwE88hmdeRyRsFy8HDFzN2bn5JcCzEqeX6AfRCtlK5Ncksh75A+YCt7UMhp64hntEqJooAKMqic2IOMrccWklPtuyuRX9AwlKXlOTXshzGon7Iog+qbmIgKLvEoXq2EmDFbAqV5N1hYVXi499/FsfsHS0Txh1DBT94tYtYxC8VXSDZrjavm4WYg4cvZuzcWKGa5Wat/3duJCAdrVB4Ohr1I6MaiGc1JPN6xSFcQPHnMsDdSm2BWw4lbI4FPZ1quBqc3koVxMHnI5i0B6bEQrLzpSwdEcrYPhxCf1DC1Vv6uyqr62cvzOPcUnkLh4WU6syOZpbD9qGwc39/hZbv1mOtedusBQVzIeV1w9lde/lixmIO7HMQUsSG6n5qikNOByGomCE4bKcCs4ylSp0L3OcDFLIKJYFA8BEekG4RdcWBEPLPhJA5Qshh19rHCCHnCSFP2z9vcN33UULIcULI84SQW1zr1xJCnrHv+zSx7UtCiEII+Za9/hghZFtzX+LqmIgFMBPPerpQqVEKAenKg4u22q6lWFAuBKSrWA5vvXozHv3ozQgrIoIK68VffiHYSC02zi5m8N4vP47P/exE0Tql1lzoi0bDEFwiut1tOVS5iEUDEnSTOjvwXAXLgV3MvCgS7LzZ5yAkC0g1EFvK1wpIZ60spEoZgiO2OBybTQJAxQmNQCG+ABTcSYQQ+EWfpy2xjUwjlsOXAdxaYf1TlNKr7Z8fAQAh5DIAtwPYYx/zWUIIk/zPAbgTwG77hz3nHQCWKaW7AHwKwCfW+Fqawub+ADSDYq4LBrioNSqkATjpmbFgwXKolq1ECCnsJp1e/MVfykeOL+DKj/24qKOml/n8z0/AMClmS1JyEzkdhknx9r2TOPyxW5zsGpZ7L9vtRCpR2sHWcStpphMDymoG9p9awpUf/wmmPWal5jQDiuhzLuTWXPXGLYdUXi9r3Jdw9aIqZdgRB8tyqBpzcMXCAi4rImAPAeI0n7riQCn9OYClBp/vLQC+SSnNU0pPATgO4HpCyDiAKKV0H7U+OV8B8FbXMXfbt+8FcDMpjVq1kc32LnFqudzVsNFQa8QcACudFbBmStcLSLsJOL34iy8a33z8HExqFYp5ndlEDvfa/YNKNwIs9TQWlJ3XClgt3ceifvQFywOrjNLZF07FsWG46hwMnF5MQ9VNPDtducV1p3DXEQCWODRiDbKNiOGymhgJuz9VJRzLYa6eW6k85gBYn1duObSG9cQcPkAIOWS7nVhu2mYA51yPmbLXNtu3S9eLjqGU6gDiAAbXcV7rYqLfEoduiDvUqnMACm6lfrflUMXKcCMLPog+UpStlM7reMBuOKdtgNYaX913Brpp4obtA5hLFosZqxpnQ5HcbB8KVb2AAYV6kXi23HJw1zmw3fiphfKupJ0kqxpOoBewsrAaSTxgrw0ojzsksrqTDlxKLChD9BGnEK56QLo85gDAmfPAaT5rFYfPAdgJ4GoAMwD+xl6vtJ2iNdZrHVMGIeROQsgBQsiB+fnG+76shoLl0EXiUOWCf+l4FIrow0WjEWdn14g4sGJBtzg8cGTWuRB6XRwMk+LeJ6bwiouGsXdbDAt2V1WG05yxgjh85PWX4GNv3lP1uUstB3fMgdUC5NRCm/RTC96yUHO6WWY5NFLP4m4JUprOmshpVS/6Ph/BUFhxNmMNxRxK3ErccmgNaxIHSukspdSglJoA/gnA9fZdUwDcpY0TAKbt9YkK60XHEEJEAH2o4sailH6BUrqXUrp3eHh4Ladel6BsDXbZiJZDPKvhu08VDLRCtlJlF8hYnx+HP34Lrt8+4Io51HcrAdb75N5Rfv/gNETbT+3eRXqRnx+bx4VEDm/fO4nhsALDpFhy9ZhasifjDVS4UF012Y+bdg1Vfe5otZiDbhQFpFMethzcGwQrIN2Y5VBtYmAiW92tBBTiDkDh/SulVBCcdZHHHFrFmsTBjiEwfh0Ay2T6HoDb7Qyk7bACz/sppTMAkoSQG+14wrsB3Oc65j327dsAPETXMoqqiWzuD+D8BrQcfnBoGr//rYOOsNWLOQAFlxMz+xuxHIDyYsGTC2lcNBqx/l/D25le3z5wDgMhGTdfOoqRqB8AMJcoxB2cmEOo+gWtGix2kyiJOeR10/HLZzXD6STqteB9Xi+POTQakGZV9mXikNOrBqSBQtwh4hfLBk0xKtU5ADwg3UoaSWX9BoB9AC4mhEwRQu4A8Ek7LfUQgFcB+H0AoJQ+C+AeAEcA3A/g/ZRS9pd7H4AvwgpSnwDwH/b6lwAMEkKOA/gwgI8068Wtlc39gQ0ZkGaVuayZnmqYkARSNXjqZjUxB8BuM+K6aCxnVIxErS+55nHL4cGjc3jDFWOQRZ9zYXLHHZYyKiSBOG1CVkPp7pmlrbpjDlnNcNJDZxP5hi6+7aI05hBSRGRUo25qt2qYTltzt6WhG5aV1IjlUM31BJRYDmUBaW9/3jYqdT/9lNJ3VFj+Uo3H3wXgrgrrBwBcXmE9B+Bt9c6jnUzEAnj4hTlQShu6sHoF1giPuUg03awajC5lIhbEb920Da+4aKShxwdcMQfTHnbD2lerHo456IaJvG5iJGJZDOy3O2NpOa0iFpTX9LcPSAIEHylkK1V0KxmOCw6wxmLu2dS3thfUZHK6UbTLDyuFAViRGhf4vG5i0B6+4445MJGsFpAGCpZDpemMDLZpcafZAtbnMM8th5bAK6QrsDkWQE4zi6akbQRY4JC1/9CMxsVB8BH8xa/tcRry1SPkEgerIhgFy8HD4sCEi11s2K513iUOS2m1YqZSIxBCivorFbmVXOKQyuvODvi0h4LSWdUo2pk7A7DqVMNb4lDuVmLutUYsh2pV50DBcnC7vADwIrgWwsWhAhMx6wLJWglvFNiXkmXbqAZtWBxWS1AutFVg/x/bhXs5IM3SHllhYEAWEFHEInFYzqgVx8g2CuuvRCkt6q2Ud7mVMqqBS8etGI2XgtI5zSwqhGSutVpBaUqp06MLsN6/B47MOhYlULmvEmPY/txUK4ADCn2UAiUJEzzm0Dq4OFTg+u0DUEQffnBouv6DPYTjVnLND2g0hrBagrLg7IrZBC+2A/SyW4ldoN1588NRpTjmsA7LASj0V8q7RLK0fUY6r2M4omAs6sdJDwWlc1qx5RCUWXv26uLAsuL8kg9hRcRXHjmD3/nKATx+egnTK9b7Ot7nr3p8wXKo4VaSCmJBjDoXAAAgAElEQVTuxi/xVNZWwcWhAn0BCa/bM4b7np729EjHUhy3UtrtVmpNzMSdxbLiWA4sIO3dbCX293SL5khEKc5WymhrylRiRP0SEjmtaG5DXjcK7TNUA2lVR0gW7Yl83smMy2lGUfA3ZMccalkOBVedgLAiImk/9uRCGmeXLOGbHKjurhxpICDN/l6lloNf9CGnmWUtOzjrh4tDFW67dgLxrIaHjs51+lQahn0pi8WhNX9id/ERcx0MhGQIPuLtmAOzHCS3OPidgLRhUqxk1Io1Do3CLAf3jtadrZTXDaTzBkKKiNE+v2fajTA3mPsC3MhgJxYQlkUfIn4RiuiDJBCcXkzj7FIG/UGp5oV/JKpgKCzj4rFI1ccQQiCLvnJxsC2JvIddmRsVLg5VeOmuIYxGFXzv4MZxLaXbKA4hWYBmWL5mVhfQH5QhC74N4VZy136MRBTMJ/OglCKR1WDSytXRjWLFHIrFwb3zzqpW+4ygImAsquBCPOeJna9mUJi0uBo5pNR2K5kmLWrw+Nsv245P3nYltgwEcWYhg7NLWWypYTUAlsWx/09e4wwXqoZf9FUISHfPTIdjs0ns+fP7K7aQ7wRcHKog+Ah2jYSLApVeJ2UHpJfcAemWxRwKA39YzCHqFyEJxNsBaeZWcu1AhyMKspqBbx+Yclw864k5RAMiEtlitxJL71REHzKaNdshLIsYjfqR103H+uokTMz8lSyHCv2VfvzsBVz18Z9g0c6OkwUf/st1W/CWqzdj26A14e3cUqamS4nh89Wvx1EkoWJA2n3uG5njcymkVQNnFr0hDnwSXA1Enw8pwzsFSvVgu7vCQHsDSsuylQqjQlcymlPdKosbw3Jwxxxu2jWE8T4//ujfDjntG9aTrRT1S0jm9SJrIekaL8pcWEFFxKid/nshkavaV6hd5CuIgzPYqYLl8P2D00jmdWen63bVbR0M4ZETi9BNE7dePtaU84sFpbK/C7NyumHgD0v79cqERW451EASfE4mhtehlCKl6vARK3vIMCk0g0ISWxOQDiouy8GV+ikLPk9XSDtuJZc4XL65D4985NW4+73XO7vX9YgDszrcsYRCMVhxgdmY3b7jQrzzcQf3iFAGGwlbOvDHMCl+cWwBALCQssTO7arbNhREVjOgGbSuW6lRPv9fr8Uf3nJx0Ro7125wKyVKOvl2Gm451EAWvR1cdZNRDVAKbOoP4PxKFisZFZpRaIbWbNwDf1aymlPdKok+T79nrM6hNMWXEIJXXDSM7/zuS/DtA1O4ZLx6cLQeLF7BXFSSUKiYdgdmg7ZbCfCGOJSOCAVQdY70oakVxxW2wNxKYrHlwGiWOLChS26Ye9ArF9T1ULAcvPFauOVQA9Hng75BxoUyFwb7Ii6lVairaJ+xWgIlbiV20ZM8HpB2p11WYudwGB95/SXret9YphOb8tYXkIvcSoyw4hIHD2QsOZaDXPzaKzXf+9kLhZb5juXgEodtrkr7ZolDJbopIM0+I1wcNgCS4PN0cNUN+2C5xUEzzJodWddDyBWQjme1IreS6uU6B628zqHZsBqJaWdGgVRRHIKyAFn0YSgseyKdlV1g/SXCGa4wDe5nL8xjk13YxsTBLbib+wMQfQSij9QsgFsvbJPSDeKQyLJOvjzm4HkkYeO4ldjOjvVGWkqrUA2z6vzo9cKKozKqgeWMunHcShUC0s1mMGQFmVl1cH9AciwW97wCliY6GvV33K309LkVJxDqL0kXDSnFg51ymoFDU3G8bo8VaGbZSu73VBR8mIgFsDkWqNqGuxl0Z0DaG0LHxaEGkrDx3EosbXApo0LTacsqpANyoedOPKs5rQ9kj6eyqhXaZzQbJpTnXZYDw205MHEYi/pxIdG5lOlzSxm89R9+hXufsAZFlVoOQbnYcnh2OgHDpHjxzkEIPlLRrQQAr7pkBK+8qDVDuRgsIJ31yAV1PbCAtFfEgQekayB5PPPGjSMO9pjTZdut1MoiOAB2AVdhvKMsenumb6VspWbjl4SiCWrujqTRInGw3sPRPj+eOrfSsvOpByua3H/KGsBYWmgWVsQit9ehKetcr5roR8QvFtU5uPmLX6s+TrVZsOB5bgO1ualG6YCoTsMthxpIAvF0cNUNK4AbCMmIKCIWbbdSqwPS0yW7Yyv917vvGSuCa6U4AIWMpYAkFOX/F1kOcsFyWEqrHfObs50qyzpyV0gD5QHpQ1NxjEQUjPX5nZoOoLjOoV34u8hycALSHomfcHGowUZyK7EK1rAiYiAsYzFlB6RbdBGUBR9EH8F0vFwcvNznJq9bzQgFX2uHOLFah4AsFLmwmDgQUnCJjFUYVdpOSouuSquQw4pQVOdwcGoFV070A0BRqnSrkh9qwYTMy5+5RuEB6Q2EJPhgmBTGBhAItusIKSKGw1avIFVvXbYSIVb+Oyv1d7uVvGw5tPI9ccOytwKSUBSoZW6loCQ4E83YkKT5VGeC0qU+bn+JOITkguWQzGk4OZ/GVRPW5LoicWixNVYJWfDBRza+5WCY1LHAvBJz4OJQA9EO5nr5YsdI53VIAoEi+jASVXAhkYNJ0TK3EmAFKqeWs5BFHzb3W7EO7zfeM4r6KrUKNk/ZL/mKxIFZDiHXfGomGIlcZ3aMpRfW0kyukCIiqxkwTIpnzscBAFfY4uCOp3RCHAgh8Esbf+CPO+DvFXHgAekasB3mRnAtpfI6QooIQghGIn78p91qvFXtMwDgzpfvwGI6j3fdsNUp5rLaZ3j3/cprrRuA5CbmditJ5W4ltzhE2LS1DomD263kl3xlDfCYdZDK6Tg6kwRgtRyx7nOJQwfcSoBl6Wz0gHTC1XjRK1YQF4casDRQTTcBpcMnU4dUXnc6aA5HFCdls5Vf2Pe+dHvZmuTxliOtrP1wM+AKSLv/BmG/CEIKmUpsDag9UKeVsADoUFiBYZb/7Zh1kMhpWE6r8JFCFTgTDlksF5V2EZAEZFXvfuYagWUqBSQBGY3HHDwPK97x8sWOkcoVxIFN1gJa61aqhNeqypfTKo7OJJx/t81yCDK3UnG2kiL64BcFp+U54JrT3EG3EiHANVv6i86LwQQgmdORzGmI+CUnXsKK+lrV/bcRFMnXBZaD9bcf6/Nzy2EjwHZ82gZxKzniEC20K2i3H9hLLbsppfjAN57Ek2dW8Oif3Iy+gGTFHFpYAMcYsFtolAakZcEaWBN2uZVYSmuyU5aDaiAoCfjjWy/GhXh5xhRzHaXyOhI5vSgIzeIlnYg3MAKSgJxHLqhrhTVmHI0qmPNAKxWAWw41Ed1uJY+TtmMOQGctB7lDdQ4X4jmcWUwXrT303Bx+dXwRWc3Avz91HkD73EpOtpIrlVUWLNdLQBKcOQmA1fk0rIgdjTkEZBG7RiJ46e6hsvsLloOGZE4rCkKz+9phjVXDLwkbvisrS0YYjfqR0QxPTAbk4lADaQO5lZJ53fFdF4tDe/3AkuCDSQG9ze/Zx7//LO78yhPOvw2T4q4fHcWO4RAu3xzFN/afBaW0bW6lwXB5KisTpY+8/pKyeI3V3K4z0+AyqlEkVqWEXW6lRFZHNOAKpvs7bzlMxAJ4/kKy7Z+5ZsIC0mNRPyj1Rt0GF4caFMSh8ypej3ReR1guTDETbZ9wuzNI2EWi3e/ZTDyHY3NJJ6VxeiWLk/NpvPem7XjXDVvx3IUknjy7grzeuZgDe29+7apNeNGWWNHjw/7yzqftop44uC2HhB1zYEQ9IA637hnDYlrFY3b7j40IC0gP2xs7L6SzcnGogbRB6hx0w8RSWsWAvVv1+QiGwtaHrBMBaQBtjzssZ1SY1JrDC8AZRDMcUfCmK8cBAI+eXLSK4NpwIesPyhB8BCFFgCwU3ErVCCuiU8jYbrJ1xKGQraQjmdOruJVaH8epxisvHkFAEvDDZ2Y6dg7rJZHVEZIF5/30wqhQLg41kJw6B2+Lw/mVLDSDYrtr+harum17QNoW1HZnLLHmcc9dsPLwmZneF5AQ8UtQRB/iWa1tAWnBR/CP//VavOuGrY7lUKv3UKSjloNeMUuJoYg+e5qdjkRWK3ErFVJZO0VAFnDzpSP48eELG9a1lMxpiAYkp9uxFzKWuDjUwNkFe7ioCwBOLViB2G1DLnGIdMZyKLiV2vcl1QzT2XU/f8FKW2VmOtvl9gUkxDNa29xKAPCay0axqT9QiDnUsRw6F5A2yjqxuiGEIOKXEM9qSOb1YreS06q9s5eSN14xjsW0iifPdq677XpI2IH+oFSYk9JpuDjUYKO4lU474lAYxzgcsSuWW1ghXYlOBPGXM6pzm1kOzK3UFyyIQyKnQdXNtncPdbKVaohSpWlr7SKr1XYrAZaFMGM3WXQPLPKC5QAAezZZFdunSzLWNgqJrJUiHJQ3kDgQQv6ZEDJHCDnsWhsghDxACDlm/4657vsoIeQ4IeR5QsgtrvVrCSHP2Pd9mtjllIQQhRDyLXv9MULItua+xLWzUdxKpxczCMkChsOFLKVOWw7tdCstpy0hCCuiy63EZilYF6++gGS7lUwnBtAuSrOVKhHxSx21HBoRB9ae3T2TQhGtUaedTGUFgNE+6/Pe6Yl6a2U5o6IvIDkWXNYDVdKN/EW/DODWkrWPAHiQUrobwIP2v0EIuQzA7QD22Md8lhDCPnWfA3AngN32D3vOOwAsU0p3AfgUgE+s9cU0m43kVto2FCpqX8BiDr0QkGbxhuu2xTCfzGMprSKe1eAjherjgjgY7bccpAbcSn4RKVWH2YGCy0xeR0CqXQ8bUSScXy63HKx/Sx23HBRRwFBYxswGFAdKKc4vZzERCzixn3TewHeenOqo16LuX5RS+nMApTlibwFwt337bgBvda1/k1Kap5SeAnAcwPWEkHEAUUrpPmpVd3yl5Bj2XPcCuJl0qklLCRvGrbSYLoo3AMBLdg7hZbuHsGUgWOWo1iALHbAcbLfSi3cOAgCeu5CwfLgByRHMvoCElYwGzaBt3+Wy96Sm5aCIoLT9g14opcg06FZK264Od7YSALzy4mFcuzVW6bC2Mtbnd1xfG4nljBXLmRwIOn+Hnz43hw/fcxAPPz/fsfNa67dklFI6AwD27xF7fTOAc67HTdlrm+3bpetFx1BKdQBxAINrPK+m0km30nMXEg3tIjXDxNRytihTCQC2D4Xw1TtuKOr+2Q46UefALAd2gTq3lEEiqxVNXYsGJMxXmXXcalhX1lpZUmFX59N2ktdNUAoElXriUHnUKQD89duuwm/dVN6Esd2M9wU2pFvp7JI1E2XrYMhxKz1tj42d7WArjWZ/Syrt+GmN9VrHlD85IXcSQg4QQg7Mz7deUQvtM9pr6r8wm8St//8v8OBzc3Ufe24pA8OkZZZDp+hIQNoWh4tGIwCsiWrxrFY2u5lZM+3OyWeWSi2LxWm+1+YqaRb4DNaZcVHUT6nEcvAK431+T7mVjs4k8LmHT9R9HGv7ssVlOZy0k0zmkp2ZDgisXRxmbVcR7N/sKjYFYNL1uAkA0/b6RIX1omMIISKAPpS7sQAAlNIvUEr3Ukr3Dg8Pr/HUG0fuUEHXU2eXAVgX/nqw7IztQ+11H1VD6kCdw3JGQ1gREfFL6AtImEvmkcgVt3noKwqittdyEH0EPlInW8nVoqKdsGKrWnUOQOUMJa8x1udHPKt5ooAMAO59YgqfuP+5uhsl9j3fMhCEv2TjMr8BxeF7AN5j334PgPtc67fbGUjbYQWe99uupyQh5EY7nvDukmPYc90G4CHqha5TcLmV2iwOh89bufqL6fofDFYRvG3QG5aDk63U5lTWmN0FdSSiYC6ZQ7zEreS+3W63EiHEyuqpEZB2Bv60OZ2VFVvVqnMAit1KXhWHTX3WNEKvWA8XbJdQPcE/s5jBcERBQLZGx7pneM8nPexWIoR8A8A+ABcTQqYIIXcA+CsAryWEHAPwWvvfoJQ+C+AeAEcA3A/g/ZRSFmF7H4AvwgpSnwDwH/b6lwAMEkKOA/gw7MwnL1AYE9perWKjGBeSap1HAo+dXMK2wSAGw96YRiR3wK20lFad4TMjUcWyHErcSp20HAAgFpTQH6zujulUzMFxKzUQkAaAkCw4c068xlifVdvjlbjDrH0e7ilvlTi7lMFWV+KI+2/RScuh7haAUvqOKnfdXOXxdwG4q8L6AQCXV1jPAXhbvfPoBM1KyzRMiumVLCYbyBzSDdMZTlPPctAME4+eXMSvv2hzzce1E6lD2Ups8tpwWMGBM8s1LYdO9AH619++AYOh6gLOYg5nljJ475cfx//89Suci10ryazScoh4NN4AFCwHVo/RaWaTtS2HuUQOQUXE2aWMk2kH2H+LNLCpz78h3Uo9QcGttD7L4QeHpvHqv3kYK5n6lsCJ+bTTrnc+Vfnx39h/Fm/89C/wyIlFpFUDL91V3oO/U3SifUax5eDHhXgOed0syqrptOWwYzjsVGtXIqJY99339DQeem7OiTu1GuafD9WJOTDLxh3H8RqstscLlgOlFLMJ68LOBvmU3n/b5/fhXV98DBcSuaKUc2Y5vGTXEOZT+Y7NduDiUAPBDiSu90J3Yj4NzaBOymUtmEvpis19WEwVdg3nljJ46LlZqLqJv/vPY3h2OoE//PZBEAK8eId3xKFgbbXvA72cVhGzLYeRiALdTgGOFqWyFi5qna7mrQSbKc2sxuVMe7KWVutW8mqmEmC1Rx8MyZjxwCS15YzmWM+JCuJwaiGNs0sZHDy3AkqBrYMFcQjIIvoCEi4dj0IzKFba9FkoxXvfEo8hCT5o66xzYGP/GumXcvh8HAFJwHXbBrDg2jV85qFjeO+XD+APv30QFxI57B4JYz6Zx5Wb+2ruSNtNu9tn5DQDadUouJVcg47cGTZFlkObK6QbQRR8RYHI5QaszGbQaECavZdeDUYzxvv9mPGAW8ltvSQquJUeObEIANizKQoARZbDpj4/rtnS77TAmU91xrXkvW+Jx5AF37rrHGZXIQ7PTsdx2aYoRqIKcprpHPPCrJWV9L2D07h4NIK733s9woqIV18yuq5zazbtDEin87qTrcWG64xECn56tyAEJMFJs213b6VGCbsuvPE6Qcxm0WgqK4s1lBbAeY3xvgDOe0AcZl1ZRpViDo+cWMB4nx//8n9fhw/evBtXTvQ79/31267C37/zRY44zCW4OHgSUSDrvtAx32O9/GvDpHh2OoErNvc5w3qY9XBiLoVb94zh+m0D+OPXX4xN/QH84o9ehd991c51nVuzaWedw4e+9TTe9JlfAgAG7FTWIsvBdSEjhDhi4UXLASikswKFwr718sJsEm/++1+WuTRzmoH/9aOjTtpnN7iVAGDHUAinF63C0E4y67YcSoTeNCn2nVjES3YOYSTqx++/9qKiHmghRURYEZ3P8nyqM24yb9uIHkASfOtun8GqHOtZDqcW0sioBvZsijoziBdSKvySgGRex4t3DuI9L9nmPJ752b2EKPiaEqdphKnlLLYOBnH1ZD+u325le7CgJFBsOQCWWCykVE/GHADLcghIAiZiAaw0yXI4NBXHoak49p9axK2Xjzvr+08t4R9/fhIRRQQh9eMwAUlAX0DCeH/rM6jWw87hMFTdxPnlLLYMdq4wlNU4+CVfmeVw9EICyxkNL9lZu0uQIw4dylji4lAHSfCtqyurZphOSmo9cTjMgtETfU6G1EIq78xF3j0SXvN5tBNJ8LWlCC6R1XDjjkH8zduvctYiigi/5ENOM8t2uUwsOt1BtBqXjEWwdTCEhWS+ocy2RmDW6sGpeJE4MNdLMm+Np6zX65IQgh998GUY9OCGxM3OEasY9MR8qqPiMJvIYygsQxJ8ZdlK/3nEaihxU50sw7BibRa4W8mjSOt0K1luIet2PbfS4fNxKKIPu4bDjuWwmFIdv/quDSIOsuBri1spXjKyErAuYizuUHqf41bq4LzjWnzytqvw6duvRn9QalqGSjpvbSwOTRVPSGPttwEg2GBzxs39Afjr9GDqNDuGrO/IiflUR89jNpHDSMSPiF8sylYyTYpvP3EON+0arFvHQgjBcEThAWmvsl63klv161oO03FcOh6FKPic7JuFVB7H51KI+MUif7qXkUVfy91KumEildfLXEeAlc7ql3xlIsAsCa+6lQDrgtAflJuWypq223EcmooXdfk9v5JFxG+5lOrFGzYSsZCMwZDccXG4EM9hrM+PqF8qcis9enIRU8tZvH3vZI2jCwxHlI65lbz7LfEI4jrdSu6Wu5kafXNMk+LZ8wlcvtlKbVNEAVG/iMVUHsfmktg1Eq5r+nsFqQkZXvVgX7hKAdKRqFJRNLzuVmL0ByXEs2pTip/StrWazOlFIzTPL2dx6VgUN24fdDYi3cLO4TBOzHV2XOhsIofRqGU5uMXhWwfOIeoXccuesYaeZ3N/AKcW0h0phPP2t8QDyOt0K80mG7Mczi5lkMzruNyehQsAQ2EFCykVx+fS2DW8MVxKACCJpOUxB2dGdAUR+J2X7cCfvfGysvWJWAD9QQmiz9siGwtK0AzqDNdZD2nXhuTQVNy5fX4li82xAD7zzmvwmXdcs+7/x0vsGA511HJQdROLaRWjUQURv1QUc3j4+XncevlYw+6567bFMBPP4dxS+9NzuTjUYf1upRx8BBgIyTW/7IenrS/u5ZuLxeHJs8tYSOU3TLwBsGMOLRYH5setJA7XbInh167aVLb+npdsw/0ffLnnLbD+gLWTb0ZQOq0a2DoYhF/y4aAdd9ANExcSOWzuD2AorGAi5o12781i53AYi2m1aenAq4UloIxG/YgGRKcILqcZiGc1bF1FB+Ubd1gZTftOLjT/ROvAxaEOokDW5SKZS+QxFFYQ8Ys1A9LPnI9DFnzOwBoAGLRn4l42HvVUc716WG6l9lgOqynK8ktCW5rZrRfWvbUZQem0HZd58Y5B3HtgCueWMriQyMEwKTbHAut+fi/CMpZOLnTGemAxAut7b1kOlFIn/ria2OGukTCGwjL22RXV7YSLQx3Wm5Y5m7R8jwFJqOlWevZ8AhePRYr84b/9sh34szdeiu++/yVFlb9eRxZbbznUcittdPrtau9mtNDI5K350P/fWy4HCPCBbzyFM4vWcJnN/d0pDlsGLHFopSvmq/tO43//+LmK9zFxGI5Ym0LNoMjrJubsqumRVYgDIQQ37BjEoyeX2h534OJQB3mdbqXZRB4jEQUhpbrlQCnF4em4E4xmXLs1ht9+2Q7Ppl5WQxZ8yGstditlrfeyG8Uh1kzLQdURVkRMDgTxP3/9Chw8t4J/+OlxAOhay4FVc7dycNKDz83h35+arnhfsThYf8tEVnOKYVe70XvxjkFcSORwerH+ZMhmwsWhDut1K80mchiJKgjK1S2HqeUsVjJaUbxhI7NrJIz9p5fwyPHW+UkLbqXuq+Psc8ShCTGHvO70TXrTleO4ZCziNH3rVsshZNdttHJcaEY1MJfMVdzNF9xKstOwMJHTnQac7ir+Rti7LQagvFal1XBxqIMkrD1nP5XXsZRWMRGzBodn8pXF4VkWjN7UHeLwp2+8FDuGQnjf154sSuVtJvGsBkkoHqnYLRQC0s2wHAynHTghBHe8dDsA68Ll9YK2tRK0X1eqyvetGeQ0A5pBK9ajzKfy6AtIdjq6JfTJnGU5iD7izB5pFJZqXG+iXLPh4lCH9bTsPmubgVsHgwjKIjJa5Z3MM+fjEH0EF49FKt6/0Yj4Jfyv37gC8ayGp862ZreTyFmT3ryeebQWZNGHkCw0pRAundeLBvm8+epNGI50X4aSG5+PICgLRWm8zYa1Op+rMON5Ppl3gs4Rt+WQtJJTfKtMpWaDoJJtni/efTZ5k5HW4VY6u2SJw5aBypbDhXgOv/fNp/DMVBy7RyNdtZMbjVp+1Wbsdv7ivsO4dDyK26/f4qzFS2ZEdxv9QRkr2fW5lUyTIqMaRe0xFFHAF9+9F12oqUXUivE1A+Yink3kcUlJPdtCKo/hMBOHYsthtS4lwGreJ/pI1XGjrYJbDnVYT53D2SWrSnPrQKhizOGJM8vYf2oJr9szij9/U3nR1kaGpWM2Yy7BfQencd/TxcG/RFbz/GyB9RALrb+/UsZu2BhWijcdV032F80P6EbCithytxJQGOTlZj6Zx5BtObCYWNKOOawmU4lBCEHELyLFxcFbSOtoIndmMYO+gIS+oISgLCKrGUX9bRbshlr//U2XFQ0Y7wbCigjBR9YtDrphYiWj4XhJxWsiq3VlphKjPyCvOyDN2rXUG+TTjYSUFruVmDgk8/j+wWn86XefQV631uaT5ZYDy1YaXmNKetgvVpxF3Up671OzSqyurGt3K7HZsKy5WVYznGyKhVQePlKYYtZNEEIQ9Yvrdo0wv/t8Mo+4SxDiWQ1bVlFputHoC0iYia8vT59V5Icb7LraTQRlsWWprJTSgjgkcnjkxAJ+dXwRF+I5/M3br0JaNZyYQ0gWIPoIpleyWEqra7IcACvuwN1KHmM9bqUzixlnNizz+6ZdftCFVB4DIQWCx3v9rJW+gIR4dn0faPcEM3e/nEROR18XprEyShu2rYW0Yzl0TyyrUcJNiDkw11Eped102vDPJfM4Mp3AloEgHnxuDp964AUAhSpoQghevHMQ333qPIDVp7Eywn6x7QFpLg51EAUfNIOuujpRM0ycX8kWLAc72Jx1xR3mkyqGwt1nNTAscVifKcz61ADACXuuBaW0yIroRpopDqEetBxCiujMslgLj51cxJUf+0nFedTu7/ChqTiWMxrueOl27NkUxb1PTAEobpHx5qs2Of2V1trpINqEz8Nq4eJQB9meibxa19LMitW/hlkOLNfc/YFdSOU3zIyGtdAXlNctDm7LgcUd0qoBw6Rdna0U8UvIasa6OgIzK7UnxUEW1uVWen42CdUw8dxMouy+jMuiYOJxyVgEb7hi3HHlsZgDANxy+ZjTFut6atIAABkvSURBVGfNbiW/hFSe1zl4Cjb4e7WupTN2phLr88KCgllXrcO8nffcrfQFpHWnsjJxGAzJTo/+RBf3VWI4LSDWsVtkG5FQD7qVQopYc35KPViV85kKLSuY5TDuauJ4yXgUr7+8kNM6FCl4BKJ+Ca+6eBjAOtxKSvsth97bUqwS0RYHTafAKjxAZ1wFcEDB78u+sJRSLKTyXe5WEtedcbOYso6/dmsMx2y3Ujc33WMU8uN1xNY4jKfn3UqqlR242qIzoJBJyGqV3LBYxNbBIGbiVuvzvoCEvoCES8YieGE2icFQsQj87it3IeqXMLpGtxJzM1JK21b4yS2HOjC30mq7jB6aWkFfQMKYXQzGLAdW65DK68jrZvdbDvYHeq0spVX0B60v3dmlDPK6saZ23RsNlmGUWEf6InNxhHoxldXejGWqBJXrUbAc0phazuDt/7jPWWPf4W12ttyl44XOBr/zsh14wxXjZUkmV03243+/7ao1CRVgbRYMkyLX4oaWbrg41GGtbqXHTy/jum0x58PALAeWQbFg74i7XRwMk67L97uUVjEQkrFrNALDpDg2m8Kx2SQAYLKLW0Cwhm3rcSU4dQ5Kb7qVAKy51mHe/n6eWcrggSOz2H9qCY+dshoWsjTWLbZX4NLxQjfl/+vaCfz9O1+05vOuRtj5PLQv7sDFoQ5FbqUGmUvmcGohjeu3Dzhr7AvKdnPMbB3q4oA0ayC3nqD0YjqPwZCM67dZ7+WjJxfx6KkljPf5MTnQnV1FgeK2C2slpeqQRZ+zweklwusUhwXbSphayuLAmWUAwHHbrcliDpdv6kNYEXHTrqH1nm5dnM1CG9NZ1/WpIYScJoQ8Qwh5mhBywF4bIIQ8QAg5Zv+OuR7/UULIcULI84SQW1zr19rPc5wQ8mnioW5q0hrcSo+fsj5M121ziQMLSDPLwdXWt1uJBtbfQoNZDmN9fuwaCeMXxxbw2MklXL99oCub7jEiTbEcjJ4MRgPlMb7VQCnFfCqPqF+Eaph4+Lk5AAVxYDGHiVgAz3zsdc4oz1bCxK6dQelmbCleRSm9mlK61/73RwA8SCndDeBB+98ghFwG4HYAewDcCuCzhBD2yf0cgDsB7LZ/bm3CeTWFtbiVHj+9hIAkFM1nYK2l2YeVWQ7DXe5WApohDtZ7dNPOQfzy+AIWUnncsL272o2UEmmCGyGd13syGA0ULqZrcWkm8zpU3cS1W619LbP2mTiwmENQFtu2QWmGJblaWmFvvgXA3fbtuwG81bX+TUppnlJ6CsBxANcTQsYBRCml+6gVufyK65iOI63BrbT/1BKu2dJfZM4LPgK/5HP8lfMpFYQUerV3I444rLGBnGla/fIH7ffopl1DMOzeVDfsGKh16IbHna20VtKq3pPBaGB9A39Y4JmJA7t9ciENwyy0zmjnLJFmpDavlvWKAwXwE0LIE4SQO+21UUrpDADYv0fs9c0AzrmOnbLXNtu3S9c9AXMrNTrTwTApnruQwNWT5V0vQ7Lo+EAXUnnEgrIT0+hG+tbQmXUlo+LBo7POcYZJHQG9cecgfMQK4u8Y6t6+SoA100ERfevyMafzhUE/vQZ73WuxHJjL94qJfkgCgSQQvPXqTVB1E1PLGcet5Jfb993thFtpvduKmyil04SQEQAPEEIqT9y2qGR/0Rrr5U9gCdCdALBly5ZKD2k6BcuhMXGIZzWYtHIlZMQvOm2YF5LdXeMAAP1rcCt9ff9ZfPL+53HwL16HRVYAZ79PUb+E11w6ik39ga6ONzAifml9biV7fnQvUshWWn3MYd52+Y5F/ZiMBRHxi7hsk5WRdHwuhYyqQ/ARyG3c2DkT5doYkF7XJ4dSOm3/niOEfBfA9QBmCSHjlNIZ22U0Zz98CsCk6/AJANP2+kSF9Ur/3xcAfAEA9u7du/bk+VXgiEOD7TNYRW+lwqVdIxE8b6dhWgVw3RtvAKygoLjKtt0zK1Z//MVU3nkv3a63L7x7b8XjupGoX3R68qyFTN5Yc7uGjc56UlmZ5TAcUfCxN+9BSBGwa9iqZTg+l0JWNRGQhLZuUJgltCFiDoSQECEkwm4DeB2AwwC+B+A99sPeA+A++/b3ANxOCFEIIdthBZ73266nJCHkRjtL6d2uYzpOzHaNuBvA1YJVBFdqw33ZeAQn562dx7HZFLZ1uWuEELLq5nts7OJSWsWS/Z53c1ymFuttvreSVbu6/1QtWKwlvZaYQyoPwUfQH5Dw8ouGce3WAfQFJQyFFUscNKPtUxtFwYegLGwYt9IogO/a6ikC+Dql9H5CyOMA7iGE3AHgLIC3AQCl9FlCyD0AjgDQAbyfUspsvvcB+DKAAID/sH88wZbBIHwEODGfbujxjuVQQRwuHY/CpMAPD80gmddx7ZZY2WO6jb6AhJVViYMlCAsp1SkULG1F0Cusx62kGSbmknmM93dvLUgtWALI2iwHq1tyaTXzzuEQTi2kMRELdKQNerunwa1ZHCilJwFcVWF9EcDNVY65C8BdFdYPALh8refSShRRwEQsiJMlk8iqwWIKsVD5jo1VUv7rY2cBFGdDdCvRVTbfm0tY4rCUVjGXzIOQ7q4FqUXEL+JChTGUjXAhngOlwOb+tfXy6QZWOyqUUoq8bmK+ist3U38A+08tYTAstzVTiRFWRCTb2Jm1N6NVq2THcAgnG7UcariVtgwEEZIFHDy3gsGQ7DTl62b6g5JT01EPSqmTRriUzmM+mcNgSOnqjK5aWJ0413YxmLZbSW/u7/7PWDVCqxz485Mjs/hv//oEJMGHl1QY2zsa9WMumUNGDcHfEcuhvdPgevNbt0p2DIVxaiFdNP+5GstpFbLoq2h2+nwEl9jWwzVbYj2RcbNt0BLWRt67lYzmVKIvplXMJvIYXWOL424g4pfW7EaYtkeMbuphyyHoSh1vhEdPLkLy+TAcVrC3glU/FlWgGRTnV7IISO2/dDZjANRq4OLQADuGQ8hqRkMm/nJGRSwoVb3wsw6OveBSAoDLxqPIqAbOLGXwxJklfPepqaqPZfEGwGrVPZfMYTTauxe3iF90Bhs1yuHzcSyk8ji/zMShN2MOABBWVjfw5+hMApdtiuJXH3k1PvDq3WX3j/VZ7+XZxYzTDqedWOLA3UqeYsewlVV0cj5d98u2lNYqupQYl41bLTV6Rhzs/PAj0wl8Zd9pPHFmGS/eMYSxvvKLPstU8hEr5jCbyOPyTX1lj+sVWFXsJ3/8HB54dhav2zOG971yZ9U5FpRSvOuLj+GWPaMQfD4MhuS2Z9V4iZAiOvNA6kEpxZHpBN545aaqj2GfWd2kHYk59AdlJ6bZDrjl0AA7h8MAgJML9YPSKxm1pji89ZpN+KvfuKKi2dqN7BoJQ/QRPHl2GU+dXYFuUnx9/9mKj521g9E7hsOYT+axkMpjpIctB5aG+i+/Oo3ljIrP/+wEvnewYgkQAOv9i2c1HDizjOmVbE9bDUBxR4J6TMdzSOR0XOaazVDKmOuz2AnRHY34sZhWkdfXPht7NXBxaICRiIKQLDQUlF7KqDXz8oOyiNuv37LmoR8bDb8kYOdwGN8+cA6qYQ03+vpjZ6FWqDhnlsMlYxGcXEiBVqk07xWY5aDqJj725j0ArJhWNU7YGXUn59N47kKip+MNALBzJIxTi2kcPh+v+9ij09asaPdshlKGI4ozxKcTqaxjfdZ3gWX0tRouDg1ACMH24ZDTlbEWKxkN/cHeLDyqxmWbokjkdEgCwf946x4spPJO/yQ3c4k8IoqIiVjQqUjv7ZiD9TkKygJed9kYgrJQs6DwhCvdejaR73nL4Y6XbkcsKOMvf3Ck7jTCozOWOFxSQxwEH3G6KAc6IA7suzC7xvTm1cLFoUFesnMIvzqxgMdOLlZ9jGlSrNSxHHoRFoS/ZksMr7pkBIQAz11Ilj1uPpnHcFRxurAC3HIAgNdcOoqALKA/INX0OZ+cTyMgCWBG6eYeF4e+gITff+1FeOzUEh5+Yb7mY49eSGDLQLBuL6pRO+7QEbeSLQ5rrX1ZLVwcGuSDN+/GloEgPnzPwaoZA4mc1XSvv0bMoRdhQfibdg5BEQWMRf04V2Fw+2wih5GIUiSuvWw5bBkIYiSi4J03WE0m+4JyXcth92gYF41aYtzrlgMAvH3vBAQfwZP2NLdS0nkdX/rlKew7sVg0C7oaY3ZqdUfcSo7lwN1KniKkiPir37gS51eyeOBIwSXy1UfP4O2f3wfTpK5Gcdyt5Gbvthj+y95J3LbX6q84ORDEueVycZhL5jES8TtdWHu5Ohqwmjfu/9PXOJPG+gIi4tkaMYe5FHYOh3GN3ZaFi4PV4WAyFqgaL/zG/rP4yx8cwVBYwbtu2Fr3+cbtdNbOZCtJkEVf29xKPJV1Fbxoaz8IAc66dr2/eGEe+08v4WfH5p3sklrZSr2IXxLwiduudP49GQviV8cXih5jmBRzSctyYL2Uerk6uhL9AbkoruAmndcxHc9h53AIF41G8P2D09g+2N2NHRtl53C46vs2E88hJAt44MOvaOi5mCXbCXEghGAs6seFOHcreQ5FFDAa8ePcUtZZO7NoCcXXHj3jZJJwcajN5EAAFxI5Z2gKYAUEc5qJKyb6MGBbC71cHV2J/mD1DrenFqyd8c7hMF63ZwxP//lrnWFLvc4Ou2FepWLC+WQew6uIa7GMoU60zwAs1xKPOXiUyYGA4xIxTYozS2n4JR8eem4Oh6etlDkekK7NlgGr38/5lYLIPnLCsiRevGPQCUj3cjC6EqzDbaXMm2NzVoB/54hVk8MtrgI7h8PI66bTb8rNqsUharmVQh0Sh9E+P89W8iqTsSCmbLfSXDKPnGbit27aDh8h+MxDxwGAp7LWYdIWB3dQ+lfHF7FrJIyRqB9+SUBEEStWUfcyfUEJqm4ipxXXiDw7HcddPzyK4YjSE80cV8sOu4i1kmtpPrU6cbhuWwx/9sZLcdOuoaad32oYiyp2x93Wzzrj4rBKJgaCmEnkoOomTi9apvxLdg7i679zIy4ejWBTn79nRzM2ymTMuoCdnE/jj+89hAeOzOLx00tFnTA//c5r8N9esbNTp+hJ+gOWReV2LWVVA7/5pf2QBR++eeeNUMTebZdRjZ12+5tKM1nmk3mndqERRMGH337Zjo61JRmN+pHXzVUN0For/Cq2SiZjAVBqtUQ+Y4vDtsEQJgeC+OHvvRS6SXui2+p6GIkokEUf7t53GmcWM7jniXOgFEXi8KqLRzp3gh6F9VRayaqOVfWjZ2awlFbxzTtvdNq8cIoZCMnoC0hllkNeNxDPaquyHDoN+7tfSORanjLPLYdV4rhEljM4s5iB6CMYt/9ghBBn5jSnOj4fwUQsgDOLGUwOBLB1wJq2x1I2OZVh7kp3Idy3DpzD9qEQbtg+0KnT8jyEEOwcDpUN7GKTBjeUOLBCuDZkLHHLYZUU/OVZ++IW5MG/NTAZC+LkfBrvvWk73njlOM4sZnjxYB2Y5cBcCqcW0th/agl/dOvF3Fqtw47hMB5+vrhKmg2W2kji0M4WGvyqtkrGon6IPoJzyxmcXkzzAOAauXgsgqhfxG3XTmAk4sd12/jOtx6OONiWww8OToMQ4LYXTXTytDYEF49GsJDKY9E1ldARh/DGSXwYiSr4vZt3O10HWgm3HFaJ4CPY1B/AuSXLrcQvamvjQ6/Zjd+6aZvTXI5TH8etZFdJvzCXwmQs2NNtzRuFdVs9OpPES3dblgITh6HIxrFYFVHAh197UVv+L245rIHJgQD+T3t3GyNXVcdx/PvbXVrpc2m7UNrahwRsS4M8VKWIVSQo9Q0aTKQB22KCohL1jRGMib7xBUQJgWpqYzGAitWgsVWEAFEQwYfWNpTSUPpApNjQrZS2u01bSv6+uGdg2tltd3bv7L3T+X2Sm5m5M3vyP//e7n/O2XvPfWLL63QfOcYMjxwGZMSwjneWIrD+GTW8g/Y2VU0rdTNzoq+C7o/KukmV1Vfh3eJQuSLfjueRwwB87PxOdr95mE9ccA6f8ZDehoik7EK4Q9mFcDu7epg/3SPX/pgwajido4cfXxy6DzM+rVdktVwcBuDmhbO4eeGsosOwFjTuzGwJja6DR+g5+vY7t7C1U5szeQwv7j7AgcNvsW1Pd91XR7caFwezJjI2ra+0I62l5Gml/pszeQzPbt/Lrb/cwNNbuzhr5LB+LdPdqjyeMmsilWmlnS4OdZszeTRvvR08vbWLjjbxRs/Ruq6ObjUuDmZNpDKttHNvD8M62jjXf9Tvt7npjKUp487kxzdcArT2zaROxdNKZk2kM63n/9z2/zFzwkja2nzxW3/NmjSKq2Z3cuNl07lydicrbryUC6c2/nqBZuWRg1kTWbJgOh3tYtNr+z2lVKf2NrFq2Qe4cna2btc1887x3fJOwsXBrIlMHT/inYugZrg4WAN5WsmsySy7fAb7Dh3l2oumFB2KncZKM3KQdI2klyRtk3Rb0fGYlVVHexvf/ORszj/bp2Fa45SiOEhqB34ELALmAoslzS02KjOz1lWK4gB8ENgWETsi4ijwK+DagmMyM2tZZSkOU4BXq17vSvuOI+mLktZJWtfV1XXi22ZmlpOyFIfeTtauuYN2RKyMiPkRMX/SpElDEJaZWWsqS3HYBUyrej0V+G9BsZiZtbyyFId/AedJmilpGHA9sKbgmMzMWlYprnOIiGOSbgUeA9qB+yJic8FhmZm1rFIUB4CIeAR4pOg4zMwMFFHzd9+mIOkg8FIOTY0F9ufQTqPamwjszbG9svc37/Yg3xzmGV8j+tqIdst8DJb9+CtT7iqxTI+IU5/RExFNuQHrcmpnZc5x5d1eLv1sov7m2l7eOcwzvkb0tUH/JqU9Bst+/JUpd/XGUpY/SBdpbcnby1vZ+9tK+WtUX53D8rSXtyGLr5mnldZFxPyi42i0VulnIzmHg+P8DVyZcldvLM08clhZdABDpFX62UjO4eA4fwNXptzVFUvTjhzMzKxxmnnkYGZmDeLiMMQkTZP0Z0lbJG2W9PW0/yxJj0t6OT2OT/snpM93S1pe1c5oSRurtr2S7i6qX0Mprxym9xZL2iTpeUmPSppYRJ+GUs75+1zK3WZJdxbRn6E0gNxdLWl9OsbWS/p4VVuXpv3bJN0jqVw3BM/zNCtv/TqdbDJwSXo+GthKdg+LO4Hb0v7bgDvS85HAFcAtwPKTtLseWFh0/5oph2QXge4BJqbXdwLfK7p/TZS/CcB/gEnp9f3AVUX3r2S5uxg4Nz2fB7xW1dY/gQVkC4/+CVhUdP+qN48chlhE7I6If6fnB4EtZMuTX0v2n4v0+On0mZ6IeAY43Febks4DOoG/NjD00sgxh0rbyPStbQwtsOBjjvmbBWyNiMr6+U8A1zU4/EINIHcbIqJyTG0G3iNpuKTJwJiIeC6ySvFA5WfKwsWhQJJmkH2z+AdwdkTshuwAJPtl31+LgdXpIGspg8lhRLwFfBnYRFYU5gKrGhhu6QzyGNwGzJY0Q1IH2S+3aaf4mdPGAHJ3HbAhIo6QFZRdVe/1eg+bIrk4FETSKOBh4BsRcWCQzV0PPDT4qJrLYHMo6Qyy4nAxcC7wPHB7rkGW2GDzFxH7yPK3mmzU+gpwLM8Yy6re3Em6ALgD+FJlVy8fK9WXOxeHAqRfSg8Dv4iI36bdr6ehJulxTz/bej/QERHrGxJsSeWUw4sAImJ7GnX9Gri8QSGXSl7HYESsjYgPRcQCsrXOXm5UzGVRb+4kTQV+ByyJiO1p9y6y+9ZUlO4eNi4OQyzNba8CtkTEXVVvrQGWpudLgd/3s8nFtNioIcccvgbMlVRZhOxqsjnk01qex6CkzvQ4HvgK8NN8oy2XenMnaRzwR+D2iPhb5cNp6umgpMtSm0vo///5oVH0X8RbbSM76yPIpjA2pu1TZGd+PEn2zetJ4Kyqn3kFeAPoJvvGMbfqvR3A7KL71aw5JDsDZ0tqay0woej+NVn+HgJeTNv1RfetbLkDvgP0VH12I9CZ3psPvABsB5aTLkouy+YrpM3MrIanlczMrIaLg5mZ1XBxMDOzGi4OZmZWw8XBzMxquDiYNYCkWyQtqePzMyS90MiYzOrRUXQAZqcbSR0RsaLoOMwGw8XBrBdpUbVHyRZVu5hsaeYlwBzgLmAUsBdYFhG7Jf0FeBb4MLBG0migOyJ+IOkiYAUwguyCpy9ExD5JlwL3AYeAZ4aud2an5mkls769D1gZERcCB4CvAvcCn42Iyi/271d9flxEfDQifnhCOw8A30rtbAK+m/b/DPhaZOsSmZWKRw5mfXs13l0P5+fAt8lu2PJ4umlXO7C76vOrT2xA0liyovFU2nU/8Jte9j8ILMq/C2YD4+Jg1rcT15Y5CGw+yTf9njraVi/tm5WGp5XM+vZeSZVCsBj4OzCpsk/SGWmd/j5FxH5gn6SPpF2fB56KiDeB/ZKuSPtvyD98s4HzyMGsb1uApZJ+Qrba5r3AY8A9aVqoA7ib7PaPJ7MUWCFpBNkqujel/TcB90k6lNo1Kw2vymrWi3S20h8iYl7BoZgVwtNKZmZWwyMHMzOr4ZGDmZnVcHEwM7MaLg5mZlbDxcHMzGq4OJiZWQ0XBzMzq/F/b47I7QTYlioAAAAASUVORK5CYII=\n",
"text/plain": [
- ""
+ ""
]
},
- "metadata": {},
+ "metadata": {
+ "needs_background": "light"
+ },
"output_type": "display_data"
}
],
@@ -2321,53 +471,53 @@
"source": [
"Etant donné que le pic de l'épidémie se situe en hiver, à cheval\n",
"entre deux années civiles, nous définissons la période de référence\n",
- "entre deux minima de l'incidence, du 1er août de l'année $N$ au\n",
- "1er août de l'année $N+1$.\n",
+ "entre deux minima de l'incidence, du 1er septembre de l'année $N$ au\n",
+ "1er septembre de l'année $N+1$.\n",
"\n",
"Notre tâche est un peu compliquée par le fait que l'année ne comporte\n",
"pas un nombre entier de semaines. Nous modifions donc un peu nos périodes\n",
- "de référence: à la place du 1er août de chaque année, nous utilisons le\n",
- "premier jour de la semaine qui contient le 1er août.\n",
+ "de référence: à la place du 1er septembre de chaque année, nous utilisons le\n",
+ "premier jour de la semaine qui contient le 1er septembre.\n",
"\n",
- "Comme l'incidence de syndrome grippal est très faible en été, cette\n",
+ "Comme l'incidence de la varicelle est très faible en été, cette\n",
"modification ne risque pas de fausser nos conclusions.\n",
"\n",
- "Encore un petit détail: les données commencent an octobre 1984, ce qui\n",
- "rend la première année incomplète. Nous commençons donc l'analyse en 1985."
+ "Encore un petit détail: les données commencent en décembre 1991, ce qui\n",
+ "rend la première année incomplète. Nous commençons donc l'analyse en 1992."
]
},
{
"cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": true
- },
+ "execution_count": 12,
+ "metadata": {},
"outputs": [],
"source": [
- "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n",
- " for y in range(1985,\n",
+ "first_september_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n",
+ " for y in range(1992,\n",
" sorted_data.index[-1].year)]"
]
},
{
"cell_type": "markdown",
- "metadata": {},
+ "metadata": {
+ "hideCode": true
+ },
"source": [
- "En partant de cette liste des semaines qui contiennent un 1er août, nous obtenons nos intervalles d'environ un an comme les périodes entre deux semaines adjacentes dans cette liste. Nous calculons les sommes des incidences hebdomadaires pour toutes ces périodes.\n",
+ "En partant de cette liste des semaines qui contiennent un 1er septembre, nous obtenons nos intervalles d'environ un an comme les périodes entre deux semaines adjacentes dans cette liste. Nous calculons les sommes des incidences hebdomadaires pour toutes ces périodes.\n",
"\n",
"Nous vérifions également que ces périodes contiennent entre 51 et 52 semaines, pour nous protéger contre des éventuelles erreurs dans notre code."
]
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"year = []\n",
"yearly_incidence = []\n",
- "for week1, week2 in zip(first_august_week[:-1],\n",
- " first_august_week[1:]):\n",
+ "for week1, week2 in zip(first_september_week[:-1],\n",
+ " first_september_week[1:]):\n",
" one_year = sorted_data['inc'][week1:week2-1]\n",
" assert abs(len(one_year)-52) < 2\n",
" yearly_incidence.append(one_year.sum())\n",
@@ -2384,27 +534,29 @@
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
- ""
+ ""
]
},
- "execution_count": 13,
+ "execution_count": 14,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEACAYAAABPiSrXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X+UldV97/H3B+OPpEEKpEoFDOYGGqBpFC/YXnNXTumS\nH4nLXyzNrGrAqwk0yMVWVm5mTG4YEqvBLgxhrYuyEoOA1sEAuZpbApMsmWV7K4oRf0WK096SAgq2\nwEzNTekF53v/OHvgAWaYZ4YznDlnPq+1zmKzn733PJuHOd+zn/3sfRQRmJmZ5TGg3CdgZmaVw0HD\nzMxyc9AwM7PcHDTMzCw3Bw0zM8vNQcPMzHLLFTQk7ZL0qqTtkl5MeQsl7ZH0cnpNy5Svk9QsaYek\nKZn8CZJek/SWpKWZ/PMkNaQ6z0u6NHNsViq/U9LMTP4oSVvTsSclfeBM/zHMzOz08o402oBCRFwR\nEZMy+Q9FxIT02gQgaSxwCzAWmA4sl6RU/mHgzogYA4yRNDXl3wkcjIjRwFLgwdTWYOAbwETgKmCh\npEGpzmJgSWqrJbVhZma9KG/QUCdl1UHe9UBDRByNiF1AMzBJ0jBgYERsS+VWAzdk6qxK6XXA5JSe\nCjRGRGtEtACNQPuIZjKwPqVXATfm7IuZmfVQ3qARwE8lbZP0pUz+PEmvSPp+ZgQwHNidKbM35Q0H\n9mTy96S8E+pExPtAq6QhnbUlaShwKCLaMm1dkrMvZmbWQ3mDxtURMQH4LHCXpE8Dy4GPRcTlwD5g\nSQnPq6MRTE/KmJlZCeWaPI6Id9Kf/yzpR8CkiPibTJHvAT9O6b3AyMyxESmvs/xsnbclnQNcGBEH\nJe0FCifV2RIRByQNkjQgjTaybZ1AkjfXMjPrgYg45cN5lyMNSR+S9OGU/g1gCvBGmqNodxPwRko/\nA9SkJ6IuAz4OvBgR+yjedpqUJsZnAk9n6sxK6ZuBZ1N6M3BNChCDgWtSHsCWVJZUt72tjjp+Vl9t\nbW089dRGRo6sBYKRI2v54Q9/Qltb22nrLVy48Kyf69l4uV+V9XK/KuvVW/3qTJ6RxsXAj9In9g8A\nT0REo6TVki6n+GTVLmBOeoN+U9JTwJvAEWBuHD+Du4DHgAuAjZGeuAIeBdZIagYOADWprUOSvgW8\nRHFeZVEUJ8QBaoGGdHx7aqNPkIQkWloOM27cPeze3XYsz8ysknUZNCLiH4HLO8if2UHx9mMPAA90\nkP9z4JMd5P87xcd0O2rrMYqBpqPzuqrzMy+v5ubdrFw5jZtumsKGDY00N+/uupKZWR/nBXG9pK7u\n+ENmM2ZMPU3J4wqFQi+dTXm5X5XF/aosZ7tfOt29q2ogKaq9j2ZmpSaJ6MlEuJmZWTsHDTMzy81B\nw8zMcnPQMDOz3Bw0zMwsNweNPiIiqK198LQrMc3Mys1Bo49Yv34zy5e/w4YNjeU+FTOzTjlolNmK\nFY8zfvy13HvvX/Peew9RV/cc48dfy4oVj5f71MzMTuEV4WU2e/atDBkylAULngPE4cNt3H//vNyr\nyM3MziaPNMrs5M0NW1r+zZsbmlmf5ZFGH+DNDc2sUnjvKTMzO0W/3nvKQcPMrDT6RdDwY6xmZqXR\nL4KGH2M1MyuNfjER7sdYzcxKo1+MNPwYq5lZaeQKGpJ2SXpV0nZJL6a8wZIaJe2UtFnSoEz5OknN\nknZImpLJnyDpNUlvSVqayT9PUkOq87ykSzPHZqXyOyXNzOSPkrQ1HXtSUqejppUrp/sxVjOzEsj1\nyK2k/wNcGRGHMnmLgQMR8aCkrwKDI6JW0jjgCWAiMAL4GTA6IkLSC8C8iNgmaSPw3YjYLOnLwCcj\nYq6kzwM3RkSNpMHAS8AEQMDPgQkR0SppLbAuIn4o6WHglYhY0cG5+5FbM7NuOtNHbtVB2euBVSm9\nCrghpa8DGiLiaETsApqBSZKGAQMjYlsqtzpTJ9vWOmBySk8FGiOiNSJagEZgWjo2GVif+fk35uyL\nmZn1UN6gEcBPJW2T9MWUd3FE7AeIiH3ARSl/OJC9F7Q35Q0H9mTy96S8E+pExPtAq6QhnbUlaShw\nKCLaMm1dkrMvZmbWQ3mfnro6It6R9FtAo6SdFANJVinvAeWZsfastpnZWZYraETEO+nPf5b0P4FJ\nwH5JF0fE/nTr6d1UfC8wMlN9RMrrLD9b521J5wAXRsRBSXuBwkl1tkTEAUmDJA1Io41sW6eor68/\nli4UChQKhc6Kmpn1S01NTTQ1NXVZrsuJcEkfAgZExK8k/QbFeYVFwB8BByNicScT4VdRvL30U45P\nhG8F5gPbgL8ClkXEJklzgd9NE+E1wA0dTIQPSOkrI6IlTYRviIi1aSL81Yh4pIPz90S4mVk3dTYR\nnidoXAb8iOLtpw8AT0TEt9Ocw1MURwi/BG5Jk9VIqgPuBI4Ad0dEY8q/EngMuADYGBF3p/zzgTXA\nFcABoCZNoiPpduBr6effFxGrM+fVAAwGtgO3RcSRDs7fQcPMrJt6HDQqnYOGmVn39etdbs3MrDQc\nNMzMLDcHDTMzy81Bw8zMcnPQMDOz3Bw0zMwsNwcNMzPLzUHDzMxyc9AwM7PcHDTMzCw3Bw0zM8vN\nQcPMzHJz0DAzs9wcNMzMLDcHDTMzy81Bw8zMcnPQMDOz3Bw0zMwsNwcNMzPLLXfQkDRA0nZJz6S/\nL5S0R9LL6TUtU7ZOUrOkHZKmZPInSHpN0luSlmbyz5PUkOo8L+nSzLFZqfxOSTMz+aMkbU3HnpT0\ngTP5hzAzs651Z6RxN/CLk/IeiogJ6bUJQNJY4BZgLDAdWC6p/cvJHwbujIgxwBhJU1P+ncDBiBgN\nLAUeTG0NBr4BTASuAhZKGpTqLAaWpLZaUhtmZtaLcgUNSSOAzwLfP/lQB8WvBxoi4mhE7AKagUmS\nhgEDI2JbKrcauCFTZ1VKrwMmp/RUoDEiWiOiBWgE2kc0k4H1Kb0KuDFPX8zMrOfyjjS+A3wFiJPy\n50l6RdL3MyOA4cDuTJm9KW84sCeTvyflnVAnIt4HWiUN6awtSUOBQxHRlmnrkpx9MTOzHupyHkDS\n54D9EfGKpELm0HLgmxERku4DlgBfLNF5dTSC6UkZAOrr64+lC4UChUKh+2dkZlbFmpqaaGpq6rJc\nnsnjq4HrJH0W+CAwUNLqiJiZKfM94McpvRcYmTk2IuV1lp+t87akc4ALI+KgpL1A4aQ6WyLigKRB\nkgak0Ua2rVNkg4aZmZ3q5A/UixYt6rBcl7enIuLeiLg0Ij4G1ADPRsTMNEfR7ibgjZR+BqhJT0Rd\nBnwceDEi9lG87TQpTYzPBJ7O1JmV0jcDz6b0ZuCaFCAGA9ekPIAtqSypbntbZmbWS87kMdUHJV0O\ntAG7gDkAEfGmpKeAN4EjwNyIaJ8LuQt4DLgA2Nj+xBXwKLBGUjNwgGJwIiIOSfoW8BLF+ZRFaUIc\noBZoSMe3pzbMzKwX6fj7eXWSFNXeRzOzUpNERJwyd+wV4WZmlpuDhpmZ5eagYWZmuTlomJlZbg4a\nZmaWm4OGmZnl5qBhZma5OWiYmVluDhpmZpabg4aZmeXmoGFm1ssigtraB6mGLY0cNMzMetn69ZtZ\nvvwdNmxoLPepnDEHDTOzXrJixeOMH38t997717z33kPU1T3H+PHXsmLF4+U+tR47k63RzczsNGbP\nvpUhQ4ayYMFzgDh8uI3775/HjBlTy31qPeaRhplVvXLNKUhCEi0thxk37h5aWv7tWF6lctAws6pX\nzjmF5ubdrFw5jTfeWMLKldNpbt591s+hlPwlTGZWtVaseJxlyxo4cuRTNDffx+jRX+fcc19l/vwa\n5sy5rdyn16d19iVMntMws6pVjXMK5ebbU2ZWtapxTqHccgcNSQMkvSzpmfT3wZIaJe2UtFnSoEzZ\nOknNknZImpLJnyDpNUlvSVqayT9PUkOq87ykSzPHZqXyOyXNzOSPkrQ1HXtSkkdNZnaKaptTKLfc\ncxqS/gy4ErgwIq6TtBg4EBEPSvoqMDgiaiWNA54AJgIjgJ8BoyMiJL0AzIuIbZI2At+NiM2Svgx8\nMiLmSvo8cGNE1EgaDLwETAAE/ByYEBGtktYC6yLih5IeBl6JiBUdnLfnNMzMuqmzOY1cIw1JI4DP\nAt/PZF8PrErpVcANKX0d0BARRyNiF9AMTJI0DBgYEdtSudWZOtm21gGTU3oq0BgRrRHRAjQC09Kx\nycD6zM+/MU9fzMys5/LenvoO8BUg+5H94ojYDxAR+4CLUv5wIDv+25vyhgN7Mvl7Ut4JdSLifaBV\n0pDO2pI0FDgUEW2Zti7J2RczM+uhLucBJH0O2B8Rr0gqnKZoKe8B5Zmlyj2TVV9ffyxdKBQoFArd\nPyMzsyrW1NREU1NTl+XyTB5fDVwn6bPAB4GBktYA+yRdHBH7062nd1P5vcDITP0RKa+z/GydtyWd\nQ3He5KCkvUDhpDpbIuKApEGSBqTRRratU2SDhpmZnerkD9SLFi3qsFyXt6ci4t6IuDQiPgbUAM9G\nxBeAHwO3p2KzgKdT+hmgJj0RdRnwceDFdAurVdIkFZ93m3lSnVkpfTPwbEpvBq5JAWIwcE3KA9iS\nyp788816pJq2rzbrLWeyTuPbFN/QdwJ/lP5ORLwJPAW8CWwE5mYeX7oLeBR4C2iOiE0p/1HgI5Ka\ngT8FalNbh4BvUXyC6gVgUZoQJ5W5R9JbwJDUhlmPVdP21Wa9xduIWL/nrSbMTuVtRMw64a0mzPLz\nNiLW73mrCbP8HDTM6P5WE9U6aV6t/bLS8ZyGWQ+sW7eJO+7YzMqV06rqNla19su674y2ETGzomr8\nzmeo3n5Z6Xki3KwbqnXSvFr7ZaXnkYZZN1TrpHm19stKzyMNs25qnzS/6aYpbNjQWDXfz1Ct/bLS\n8kS4mZmdwhPhZmZ2xhw0zMwsNwcNMzPLzUHDzKxClWMFv4OGmVmFKsd2/g4aVpG8R5L1Z+Vcwe+g\nYRXJX5hk/dns2bdSX38Xhw+30b6Cf9GiecyefWuv/2wHDaso3iOp+zwqqz7lXMHvoGEVpZyfsCqV\nR2XVqbvb+ZeKg4b1GXk+EXuPpPw8KqtudXVfYsaMqUhixoyp1NZ+8az83C6DhqTzJb0gabuk1yUt\nTPkLJe2R9HJ6TcvUqZPULGmHpCmZ/AmSXpP0lqSlmfzzJDWkOs9LujRzbFYqv1PSzEz+KElb07En\nJXkfrbOkt2535P1EXK5PWJXGozLrFRHR5Qv4UPrzHGArMAlYCNzTQdmxwHaKmyGOAv6e43tcvQBM\nTOmNwNSU/jKwPKU/DzSk9GDgH4BBwG+2p9OxtcDNKf0wMKeTcw8rrR/+8CcxcOCfxrp1m0rS3iOP\nrIlx4z4Xo0ffG9AWo0ffG+PGfS4eeWRNSdrvz9qv1bhxfxYDB95dsmtm1S+9d57ynprr9lRE/Dol\nz0/BoP0jZkf3BK5Pb/pHI2IX0AxMkjQMGBgR21K51cANmTqrUnodMDmlpwKNEdEaES1AI9A+opkM\nrE/pVcCNefpiPddbtzv8ibj3eFRmpZbrlo6kAcDPgf8A/I+I2Cbps8A8SV8AXgIWREQrMBx4PlN9\nb8o7CuzJ5O9J+aQ/dwNExPuSWiUNyeZn25I0FDgUEW2Zti7J2Wfrod76op6T5yl2727zPEWJ1NV9\n6VjaX6hkpZAraKQ35yskXQj8SNI4YDnwzYgISfcBS4BSzcTkebfI/Y5SX19/LF0oFCgUCt0/I+vV\nN3d/l4N1V0RQV/cXPPDAV/wBowSamppoamrqsly3Jo8j4l8lNQHTIuKhzKHvAT9O6b3AyMyxESmv\ns/xsnbclnQNcGBEHJe0FCifV2RIRByQNkjQgBbRsW6fIBg07M7315u5PxNZd7Q9OTJzY6P8zJXDy\nB+pFixZ1WK7LL2GS9BHgSES0SvogsBn4NvByROxLZf6M4gT3H6dRyBPAVRRvL/0UGJ1GJFuB+cA2\n4K+AZRGxSdJc4HcjYq6kGuCGiKiRNJjira8JFJ/0egm4MiJaJK0FNkTEWkkPA69GxCMdnH901Ucz\nqxwrVjzOsmUNHDnyKZqb72P06K9z7rmvMn9+DXPm3Fbu06sanX0JU56Rxm8Dq9K8xgBgbURslLRa\n0uVAG7ALmAMQEW9Kegp4EzgCzM28a98FPAZcAGyMiE0p/1FgjaRm4ABQk9o6JOlbFINFAIvShDhA\nLdCQjm9PbZhZleutuTXLx1/3amYVZ926Tdxxx2ZGjhS7d7excuV0B40SO5ORhplZn+IHJ8rHIw0z\nMztFZyMN7z1lZma5OWiYmVluDhpmZpabg4aZmeXmoGFmZrk5aJiZWW4OGmZmlpuDhpmZ5eagYWZm\nuTlomJlZbg4aZmaWm4OGWR8SEdTWPoj3S7O+ykHDrA9p/za6DRsay30qZh1y0DDrA1aseJzx46/l\n3nv/mvfee4i6uucYP/5aVqx4vNynZnYCf5+GWR/gb6OzSuGRhlkfIAlJtLQcZty4e2hp+bdjeWZ9\niYOGVbVKmlhu/za6N95YwsqV0/1tdNYndfnNfZLOB54DzqN4O2tdRCySNBhYC3wU2AXcEhGtqU4d\ncAdwFLg7IhpT/gTgMeACYGNE/GnKPw9YDVwJ/Avw+Yj4p3RsFvA1IIA/j4jVKX8U0AAMAX4OfCEi\njnZw/v7mvn6s/bukV66c5ls9Zt3Q42/ui4h/B/4wIq4ALgemS5oE1AI/i4jfAZ4F6tIPGgfcAowF\npgPLdXyM/TBwZ0SMAcZIav8tvhM4GBGjgaXAg6mtwcA3gInAVcBCSYNSncXAktRWS2rDDPDEsllv\nyXV7KiJ+nZLnUxxtBHA9sCrlrwJuSOnrgIaIOBoRu4BmYJKkYcDAiNiWyq3O1Mm2tQ6YnNJTgcaI\naI2IFqARmJaOTQbWZ37+jXn6Yv3D7Nm3Ul9/F4cPt9E+sbxo0Txmz7613KdmVtFyBQ1JAyRtB/YB\nP01v/BdHxH6AiNgHXJSKDweyN2P3przhwJ5M/p6Ud0KdiHgfaJU0pLO2JA0FDkVEW6atS/L0xfoH\nTyxXpkqag+qvcj1ym96cr5B0IfAjSeMpjjZOKFbC88rzm537t7++vv5YulAoUCgUun9GVnHaJ5Zv\numkKGzY0emK5ArQvbpw4sdFzUGdZU1MTTU1NXZbrciL8lArSfwd+DXwRKETE/nTraUtEjJVUC0RE\nLE7lNwELgV+2l0n5NcBnIuLL7WUi4gVJ5wDvRMRFqUwhIv4k1XkktbFW0rvAsIhok/T7qf70Ds7X\nE+FmfdyKFY+zbFkDR458iubm+xg9+uuce+6rzJ9fw5w5t5X79PqlHk+ES/pI++SzpA8C1wA7gGeA\n21OxWcDTKf0MUCPpPEmXAR8HXky3sFolTUoT4zNPqjMrpW+mOLEOsBm4RtKgNCl+TcoD2JLKnvzz\nzazCeA6qcuS5PfXbwCpJAygGmbURsVHSVuApSXdQHEXcAhARb0p6CngTOALMzXzUv4sTH7ndlPIf\nBdZIagYOADWprUOSvgW8RPH216I0IQ7Fp7ca0vHtqQ0zq0Anz0Ht3t3mOag+qtu3pyqNb0+ZVYYH\nHvgeY8ZcesIcVG3tF8t9Wv1WZ7enHDSSiKCu7i944IGv+NONWT9Wre8F3e1Xj+c0+gtvSW1mUL3v\nBaXqV78PGl45bGZQve8Fpe5Xv98a3VtSmxlU73tBqfvV70caXjls1vsqYaV3tb4XlLpf/T5oQPe2\npK6E//xmfU2lzBNU6/b0peyXn57qJm+1bZafV3pXLj89dYaqdZLMrDd5pXf16fcT4XlV6ySZWW/y\nSu/q45FGTtU6SdbOczXWW6p1nqC/8pxGN1TzNgeeqzGzLG8jYh3yRKWZdaSzoOE5jX7OczVm1h2e\n0+jnqn2uxsxKyyMN89eimlluntMwM7NTeHFfP+VHac2slBw0qlyl7PljZpXBQaNKeduTvsOjPasm\nXQYNSSMkPSvpF5Jel/RfU/5CSXskvZxe0zJ16iQ1S9ohaUomf4Kk1yS9JWlpJv88SQ2pzvOSLs0c\nm5XK75Q0M5M/StLWdOxJSZ7Uz/CeP32HR3tWTfKMNI4C90TEeOAPgHmSPpGOPRQRE9JrE4CkscAt\nwFhgOrBcx5/ffBi4MyLGAGMktS8GuBM4GBGjgaXAg6mtwcA3gInAVcBCSYNSncXAktRWS2rDEj9K\nW34e7Vk16jJoRMS+iHglpX8F7ACGp8MdvQNdDzRExNGI2AU0A5MkDQMGRsS2VG41cEOmzqqUXgdM\nTumpQGNEtEZEC9AItI9oJgPrU3oVcGNXfelvvOdPeXm0Z9WoW7d0JI0CLgdeAD5NcdTxBeAlYEFE\ntFIMKM9nqu1NeUeBPZn8PRwPPsOB3QAR8b6kVklDsvnZtiQNBQ5FRFumrUu605f+oK7uS8fSXuF9\n9nmHV6tGuYOGpA9THAXcHRG/krQc+GZEhKT7gCVAqXbvy/Nblfs3r76+/li6UChQKBS6f0ZmPeCF\nk1YpmpqaaGpq6rJcrsV9aZL5fwE/iYjvdnD8o8CPI+L3JNUCERGL07FNwELgl8CWiBib8muAz0TE\nl9vLRMQLks4B3omIi1KZQkT8SarzSGpjraR3gWER0Sbp91P96R2cmxf3mZl105ku7vsB8GY2YKQ5\ninY3AW+k9DNATXoi6jLg48CLEbEPaJU0KU2MzwSeztSZldI3A8+m9GbgGkmD0qT4NSkPYEsqS6rb\n3paZmfWSLkcakq4GngNeByK97gX+mOL8RhuwC5gTEftTnTqKTzMdoXg7qzHlXwk8BlwAbIyIu1P+\n+cAa4ArgAFCTJtGRdDvwtfRz74uI1Sn/MqABGAxsB26LiCMdnL9HGmZm3eTv0zAzs9y895SZmZ0x\nBw0zM8vNQcPMzE5wulv6Dhpm1iPeiLF6rV+/udNjDhpm1iPeiLH6ZPdL64yDhpl1izdirF4n7pfW\nMW8nbmbdMnv2rQwZMpQFC56jfSPG+++f5/3NqkB2v7TOeKRhVoHKOZ/gbferW/t+aZ3xSMOsArXP\nJ0yc2FiWT/jeiLF6ZXfH7ohXhJtVkBUrHmfZsgaOHPkUzc33MXr01zn33FeZP7+GOXNuK/fpWRXx\ninCzKuAvdupb+uNjxw4aZhXE8wl9S3987NhBw6zC+Gt8y68/P3bsOQ0zs26KCNat28SCBc+xe/cD\njBxZx0MPfYYZM6ZWzajPcxpmZiXSn28T+pFbM7Me6K+PHfv2lJmZncK3p8zM7Ix1GTQkjZD0rKRf\nSHpd0vyUP1hSo6SdkjZLGpSpUyepWdIOSVMy+RMkvSbpLUlLM/nnSWpIdZ6XdGnm2KxUfqekmZn8\nUZK2pmNPSvKtNjOzXpZnpHEUuCcixgN/ANwl6RNALfCziPgd4FmgDkDSOOAWYCwwHViu47NDDwN3\nRsQYYIyk9v0P7gQORsRoYCnwYGprMPANYCJwFbAwE5wWA0tSWy2pDTMz60VdBo2I2BcRr6T0r4Ad\nwAjgemBVKrYKuCGlrwMaIuJoROwCmoFJkoYBAyNiWyq3OlMn29Y6YHJKTwUaI6I1IlqARqB9J63J\nwPrMz78xb6fNzKxnujWnIWkUcDmwFbg4IvZDMbAAF6Viw4HsYwR7U95wYE8mf0/KO6FORLwPtEoa\n0llbkoYChyKiLdPWJd3pi5mZdV/uoCHpwxRHAXenEcfJjySV8hGlPA87V/8D0WZmfUyuyeM0ybwO\nWBMRT6fs/ZIujoj96dbTuyl/LzAyU31EyussP1vnbUnnABdGxEFJe4HCSXW2RMQBSYMkDUijjWxb\np6ivrz+WLhQKFAqFzoqamfVLTU1NNDU1dVku1zoNSauBf4mIezJ5iylOXi+W9FVgcETUponwJyhO\nXA8HfgqMjoiQtBWYD2wD/gpYFhGbJM0Ffjci5kqqAW6IiJo0Ef4SMIHiqOgl4MqIaJG0FtgQEWsl\nPQy8GhGPdHDuXqdhZtZNna3T6DJoSLoaeA54neItqADuBV4EnqI4QvglcEuarEZSHcWnmY5QvJ3V\nmPKvBB4DLgA2RsTdKf98YA1wBXAAqEmT6Ei6Hfha+rn3RcTqlH8Z0AAMBrYDt0XEkQ7O30HDzKyb\nehw0Kp2DhplZ93lFuJmZnTEHDTMzy81Bw3pVf/w6TLNq5qBhvao/fh2mWTVz0LBe0Z+/DtOsmnln\nWOsVs2ffypAhQ1mw4DlAHD7cxv33z2PGjKld1jWzvssjDesV/fnrMM2qmUca1mv669dhmlUzL+4z\nM7NTeHGfmZmdMQcNMzPLzUHDzMxyc9CoQF5lbWbl4qBRgbzK2szKxUGjgniVtZmVm4NGBZk9+1bq\n6+/i8OE22ldZL1o0j9mzby33qZlZifT1288OGhXEq6zNql9fv/3soFFh2ldZv/HGElaunO5V1mZV\nolJuP3tFuJlZHxARrFu3iQULnmP37gcYObKOhx76DDNmTC3L3YQerwiX9Kik/ZJey+QtlLRH0svp\nNS1zrE5Ss6QdkqZk8idIek3SW5KWZvLPk9SQ6jwv6dLMsVmp/E5JMzP5oyRtTceelOQ9tMysolXK\n7ec8t6dWAh3tZ/1QRExIr00AksYCtwBjgenAch3v8cPAnRExBhgjqb3NO4GDETEaWAo8mNoaDHwD\nmAhcBSyUNCjVWQwsSW21pDYqXlNTU7lPoVe4X5XF/Sqfntx+Ptv96jJoRMTfAIc6ONRR+LseaIiI\noxGxC2gGJkkaBgyMiG2p3GrghkydVSm9Dpic0lOBxohojYgWoBFoH9FMBtan9Crgxq76UQkq4T91\nT7hflcX9Kp+6ui8dux01Y8ZUamu/2GWdPhc0TmOepFckfT8zAhgOZEPj3pQ3HNiTyd+T8k6oExHv\nA62ShnTWlqShwKGIaMu0dckZ9MPMzHLqadBYDnwsIi4H9gFLSndKHY5gelLGzMxKLSK6fAEfBV7r\n6hhQC3w1c2wTxfmIYcCOTH4N8HC2TEqfA7ybKfNIps4jwOdT+l1gQEr/PvCT05x7+OWXX3751f1X\nR++peZ86EplP95KGRcS+9NebgDdS+hngCUnfoXh76ePAixERklolTQK2ATOBZZk6s4AXgJuBZ1P+\nZuDP062aupIdAAAEBUlEQVSvAcA1FIMSwJZUdm2q+3RnJ97RI2NmZtYzXa7TkPSXQAEYCuwHFgJ/\nCFwOtAG7gDkRsT+Vr6P4NNMR4O6IaEz5VwKPARcAGyPi7pR/PrAGuAI4ANSkSXQk3Q58jWLUuy8i\nVqf8y4AGYDCwHbgtIo6c2T+FmZl1peoX95mZWel4G5Fe1MnCyN+T9LeSXpX0tKQPp/xzJf0gLYDc\nLukzmTodLowslxL2a4ukv0v5L0v6SDn6kzmfEZKelfQLSa9Lmp/yB0tqTItMN2eeFuz2YtZyKHG/\n+sw1626/JA1J5d+TtOyktir2enXRr9JfrzwT4X717AV8muJtvNcyeS8Cn07p24FvpvRc4NGU/i3g\npUydF4CJKb0RmFol/doCXFHu65Q5n2HA5Sn9YWAn8AmKi0n/W8r/KvDtlB5H8fboB4BRwN9zfPTe\nZ65ZifvVZ65ZD/r1IeA/AbOBZSe1VcnX63T9Kvn18kijF0XHCyNHp3yAn1F8kACKv6jPpnr/DLRI\n+o9dLIwsi1L0K1Ovz/wfjIh9EfFKSv8K2AGM4MQFqKs4/u9/Hd1fzHrWlapfmSb7xDXrbr8i4tcR\n8bfAv2fbqfTr1Vm/Mkp6vfrExe9nfiHpupS+BRiZ0q8C10k6J030X5mOnW5hZF/S3X61eywNm79+\nFs+1S5JGURxNbQUujvSgRxSfGrwoFevJYtayOsN+tetz1yxnvzpT6derKyW9Xg4aZ98dwF2StgG/\nAfy/lP8Dir+c24CHgP8NvF+WM+yZnvTrjyPik8B/Bv6zpNvO7il3LM3HrKP49N+vKD69l1WRT4+U\nqF997pr5ep1Wya+Xg8ZZFhFvRcTUiJhI8bHhf0j570fEPVHcAPJGio8Tv0XxDTf7yXxEyutTetAv\nIuKd9Of/Bf6SE2+BlIWKOyavA9ZERPv6n/2SLk7Hh1FcXAqdX5s+d81K1K8+d8262a/OVPr16lRv\nXC8Hjd538sLI30p/DgC+TnGlO5I+KOlDKX0NcCQi/i4NQ1slTZIkigsjO13MeBadUb/S7aqhKf9c\n4FqOLxItpx8Ab0bEdzN5z1Cc3IcTF5M+A9SouL3/ZRxfzNoXr9kZ96uPXrPu9Cvr2P/dKrheWdnf\nyd65XmfriYD++KIY2d+mOEH1T8B/AeZTfBri74D7M2U/mvJ+QXFH35GZY1cCr1OckPxuNfSL4hMf\nLwGvpL59h/SEThn7dTXFW2evUHx66GWKOysPoTi5vzP14TczdeooPl20A5jSF69ZqfrV165ZD/v1\nj8C/AP+a/u9+okqu1yn96q3r5cV9ZmaWm29PmZlZbg4aZmaWm4OGmZnl5qBhZma5OWiYmVluDhpm\nZpabg4aZmeXmoGFmZrn9f1gAJxPxoq2fAAAAAElFTkSuQmCC\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAD8CAYAAACyyUlaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHvRJREFUeJzt3X+QldWd5/H3B9uAOmDAgBEQcaLDBM2EhK7GxN2srhPAZEuwRjNER9kJVRijmSS1VQlU2MJSJhtTSdwQSxcSfysow4aSHSWKONa4u6ShiSaAhKETSYugtNWMYGbp2PDdP+5pud023bf7ud331+dV9dR9+nufc/o5PFR/7znnuedRRGBmZpbFsFKfgJmZVT4nEzMzy8zJxMzMMnMyMTOzzJxMzMwsMycTMzPLzMnEzMwyczIxM7PMnEzMzCyzulKfQLF96EMfismTJ5f6NMzMKsq2bdveioixAy1fdclk8uTJNDU1lfo0zMwqiqTfZynvYS4zM8vMycTMzDJzMjEzs8ycTMzMLLOCkomkb0jaKWmHpNWSRki6TdLrkl5O2+fyjl8sqVnSbkmz8uLTJW1P7y2XpBQfLumJFG+UNDmvzHxJe9I2v3hNNzOzYukzmUiaAPwdUB8RFwOnAPPS23dFxLS0PZ2On5revwiYDdwj6ZR0/L3AQuDCtM1O8QXAoYi4ALgLuDPVNQZYCswAGoClkkZna7KZ9dfBw0f5worNHDxytNSnYmWq0GGuOuA0SXXA6cD+Xo6dAzweEe0R8SrQDDRIOgcYFRGbI/d4x4eBuXllHkr7a4ErUq9lFrAxItoi4hCwkRMJyMyGyPJNe9i6t43lz+0p9alYmerzeyYR8bqk7wMtwP8Dno2IZyV9GrhV0o1AE/Bf0h/8CcAv8qrYl2Lvpv3ucdLra+n3dUh6GzgrP95DmfdIWkiux8OkSZP6apKZFWjKkg20dxx/7+dHG1t4tLGF4XXD2L3syhKemZWbQoa5RpPrOZwPjAfOkPQ35IasPgJMAw4AP+gs0kM10Ut8oGVOBCJWRkR9RNSPHTvgL3CaWTcvfvNyrpo2nhGn5v5UjDh1GHOmjefFb11e4jOzclPIMNdfAq9GRGtEvAv8DPh0RLwZEcci4jjwE3JzGpDrPZybV34iuWGxfWm/e7xLmTSUdibQ1ktdZjYExo0awcjhdbR3HGd43TDaO44zcngd40aOKPWpWZkpJJm0AJdIOj3NY1wB7EpzIJ2uBnak/fXAvHSH1vnkJtq3RMQB4IikS1I9NwJP5pXpvFPrGuD5NK/yDDBT0ujUQ5qZYmY2RN56p53rZ5zHuq9cyvUzzqP1nfZSn5KVoULmTBolrQV+CXQALwErgZ9KmkZu2GkvcFM6fqekNcAr6fhbIuJYqu5m4EHgNGBD2gDuAx6R1EyuRzIv1dUm6Q5gazru9ohoy9JgM+ufFTfUv7e/bO7FJTwTK2fKdQCqR319fXihRzOz/pG0LSLq+z6yZ/4GvJmZZeZkYmZmmTmZmJlZZk4mZmaWmZOJmZll5mRiZmaZOZmYmVlmTiZmNchLyluxOZmY1SAvKW/F1udyKmZWPbykvA0W90zMaoiXlLfB4mRiVkO8pLwNFg9zmdWYziXlr2uYxKotLbR6Et6KwKsGm5mZVw02M7PSczIxM7PMnEzMzCwzJxMzM8vMycTMzDIrKJlI+oaknZJ2SFotaYSkMZI2StqTXkfnHb9YUrOk3ZJm5cWnS9qe3lsuSSk+XNITKd4oaXJemfnpd+yRNL94TTczs2LpM5lImgD8HVAfERcDpwDzgEXApoi4ENiUfkbS1PT+RcBs4B5Jp6Tq7gUWAhembXaKLwAORcQFwF3AnamuMcBSYAbQACzNT1pmZlYeCh3mqgNOk1QHnA7sB+YAD6X3HwLmpv05wOMR0R4RrwLNQIOkc4BREbE5cl9uebhbmc661gJXpF7LLGBjRLRFxCFgIycSkJmZlYk+k0lEvA58H2gBDgBvR8SzwNkRcSAdcwAYl4pMAF7Lq2Jfik1I+93jXcpERAfwNnBWL3WZmVkZKWSYazS5nsP5wHjgDEl/01uRHmLRS3ygZfLPcaGkJklNra2tvZyamZkNhkKGuf4SeDUiWiPiXeBnwKeBN9PQFen1YDp+H3BuXvmJ5IbF9qX97vEuZdJQ2plAWy91dRERKyOiPiLqx44dW0CTzMysmApJJi3AJZJOT/MYVwC7gPVA591V84En0/56YF66Q+t8chPtW9JQ2BFJl6R6buxWprOua4Dn07zKM8BMSaNTD2lmipmZWRnpc9XgiGiUtBb4JdABvASsBP4EWCNpAbmEc206fqekNcAr6fhbIuJYqu5m4EHgNGBD2gDuAx6R1EyuRzIv1dUm6Q5gazru9ohoy9RiMzMrOq8abGZmXjXYBt/Bw0f5worNHPRzL8zsJJxMrE/LN+1h6942lj+3p9SnYmZlyk9atJOasmQD7R3H3/v50cYWHm1sYXjdMHYvu7KEZ2Zm5cY9EzupF795OVdNG8+IU3P/TUacOow508bz4rcuL/GZmZUHDwGf4GRiJzVu1AhGDq+jveM4w+uG0d5xnJHD6xg3ckSpT82sLHgI+AQPc1mv3nqnnetnnMd1DZNYtaWFVn8CM/MQcA98a7CZWT8dPHyUZU/v4tmdb3D03eOMOHUYsy76MN/+/EcrtufuW4PNzIaYh4Dfz8NcZmYD4CHgrjzMZVXt4OGj3Lr6Je6+7hM1/anRrC8e5jLrhe+2MRsaHuayquS7bcyGlnsmVpX8hUuzoeVkYlXJd9uYDS0Pc1nV8t02ZkPHd3OZmZnv5jIzs9JzMjEzs8ycTMzMLDMnEzMzy6zPZCJpiqSX87bDkr4u6TZJr+fFP5dXZrGkZkm7Jc3Ki0+XtD29t1ySUny4pCdSvFHS5Lwy8yXtSdv84jbfzMyKoc9kEhG7I2JaREwDpgP/BqxLb9/V+V5EPA0gaSowD7gImA3cI+mUdPy9wELgwrTNTvEFwKGIuAC4C7gz1TUGWArMABqApZJGZ2yzmZkVWX+Hua4AfhsRv+/lmDnA4xHRHhGvAs1Ag6RzgFERsTly9yM/DMzNK/NQ2l8LXJF6LbOAjRHRFhGHgI2cSEBmZlYm+ptM5gGr836+VdKvJd2f12OYALyWd8y+FJuQ9rvHu5SJiA7gbeCsXurqQtJCSU2SmlpbW/vZJLPK52eRW6kVnEwkfQC4CviHFLoX+AgwDTgA/KDz0B6KRy/xgZY5EYhYGRH1EVE/duzYk7bBrFp5dWQrtf4sp3Il8MuIeBOg8xVA0k+Af0w/7gPOzSs3Edif4hN7iOeX2SepDjgTaEvxy7qVeaEf52xW1bw6spWL/gxzfZG8Ia40B9LpamBH2l8PzEt3aJ1PbqJ9S0QcAI5IuiTNh9wIPJlXpvNOrWuA59O8yjPATEmj0zDazBQzM7w6spWPgnomkk4HPgvclBf+nqRp5Iad9na+FxE7Ja0BXgE6gFsi4lgqczPwIHAasCFtAPcBj0hqJtcjmZfqapN0B7A1HXd7RLT1v5lm1cmrI1u58EKPZkmlPuL3pkeaGDtyRJfVkVfcMOD1+qxGZV3o0cnELFmybjuPbWnh+oZJLLv6Y6U+HbMhlTWZ+HkmVvM8iW2WndfmsprnSWyz7JxMrOZ5EtssOw9zmeFH/Jpl5Ql4MzPzY3vNzKz0nEzMzCwzJxMzM8vMycTMzDJzMjEzs8ycTMzMLDMnEzMzy8zJxMzMMnMyMTOzzJxMzKyiHDx8lC+s2MxBL3lTVpxMzKyiLN+0h61721j+3J5Sn4rl8UKPZlYR/NyZ8uaeiZlVBD93prz1mUwkTZH0ct52WNLXJY2RtFHSnvQ6Oq/MYknNknZLmpUXny5pe3pvuSSl+HBJT6R4o6TJeWXmp9+xR9L84jbfrHx5bqArP3emvPWZTCJid0RMi4hpwHTg34B1wCJgU0RcCGxKPyNpKjAPuAiYDdwj6ZRU3b3AQuDCtM1O8QXAoYi4ALgLuDPVNQZYCswAGoCl+UnLrJp5buD9Op87s+4rl3L9jPNofae91KdkSb+eZyJpJrA0Ii6VtBu4LCIOSDoHeCEipkhaDBAR/y2VeQa4DdgL/FNE/HmKfzGVv6nzmIjYLKkOeAMYSy4pXRYRN6UyK9LvWX2yc/TzTKzSdZ8b6OS5ARtMQ/08k3lA5x/ysyPiAEB6HZfiE4DX8srsS7EJab97vEuZiOgA3gbO6qUus6rluQGrRAUnE0kfAK4C/qGvQ3uIRS/xgZbJP7eFkpokNbW2tvZxemblzXMDVon60zO5EvhlRLyZfn4zDW+RXg+m+D7g3LxyE4H9KT6xh3iXMmmY60ygrZe6uoiIlRFRHxH1Y8eO7UeTzMqT5was0vTneyZf5MQQF8B6YD7w3fT6ZF58laQfAuPJTbRviYhjko5IugRoBG4Eftytrs3ANcDzERFpLuU7eZPuM4HF/WyjWcVZccOJoetlcy8u4ZmYFaagZCLpdOCzwE154e8CayQtAFqAawEiYqekNcArQAdwS0QcS2VuBh4ETgM2pA3gPuARSc3keiTzUl1tku4Atqbjbo+ItgG008zMBlG/7uaqBL6by8ys/4b6bi4zM7P3cTIxM7PMnEwGyEtdmJmd4GQyQF7qwszsBC9B30/luAz2wcNHuXX1S9x93Sf8xTYzKwn3TPqpHJe6cC/JzErNPZN+KqelLsqxl2Rmtck9kwEol6UuyrGXZFZufLPM0HDPZADKZamLcuolmZWr/GHgZVd/rNSnU7WcTCpcZy/puoZJrNrSQqs/fZkBHgYeal5Oxcyq0sHDR1n29C6e3fkGR989zohThzHrog/z7c9/1L33Hng5FTOzHngYeGh5mMvMqpaHgYeOh7nMzMzDXGZmVnpOJjXI992bWbE5mdQgL79SGk7iVs08AV9DfN99afnLc1bNPAFfQ3zffXEVulpz9yTeyUncyokn4Iuo2ochfN99cRU6XOg11KwWFJRMJH1Q0lpJv5G0S9KnJN0m6XVJL6ftc3nHL5bULGm3pFl58emStqf3lktSig+X9ESKN0qanFdmvqQ9aZtfvKa/Xy3MJZTLIpWdKjGBT1mygcmLnuLRxhYicsOFkxc9xZQlG3o83kncakFBw1ySHgJejIifSvoAcDrwdeCdiPh+t2OnAquBBmA88BzwZxFxTNIW4GvAL4CngeURsUHSV4C/iIgvS5oHXB0Rfy1pDNAE1AMBbAOmR8Shk53rQIa5hmIYwg+w6tmSddt5bEsL1zdMqph5hIEMF970SBNjR47o8uW5/AVDzUot6zBXnxPwkkYBnwH+M0BE/BH4Y+pU9GQO8HhEtAOvSmoGGiTtBUZFxOZU78PAXGBDKnNbKr8WuDv1WmYBGyOiLZXZCMwml6yK5sVvXn7SPw7F4snXrir5ZoCB9DTKZaVps8FSyDDXnwKtwAOSXpL0U0lnpPdulfRrSfdLGp1iE4DX8srvS7EJab97vEuZiOgA3gbO6qWuohrMYYj+DonUikqfRyi34cJyUolDl5ZdIcmkDvgkcG9EfAL4A7AIuBf4CDANOAD8IB3fU5cleokPtMx7JC2U1CSpqbW1tZemnNxg/XGo9D+ag6XS5xFW3FDPsrkXM3X8KJbNvdhDVnlqYe7R3q+Q75nsA/ZFRGP6eS2wKCLe7DxA0k+Af8w7/ty88hOB/Sk+sYd4fpl9kuqAM4G2FL+sW5kXup9gRKwEVkJuzqSANr3PYA1DVPofzcHkRfiqSyUPXVp2fSaTiHhD0muSpkTEbuAK4BVJ50TEgXTY1cCOtL8eWCXph+Qm4C8EtqQJ+COSLgEagRuBH+eVmQ9sBq4Bno+IkPQM8J28IbSZwOKsjR5q/qPZM88jVJehmHu08lXoN+C/CjyW7uT6HfC3wHJJ08gNO+0FbgKIiJ2S1gCvAB3ALRFxLNVzM/AgcBq5iffOiYP7gEfSZH0bMC/V1SbpDmBrOu72zsn4SuI/mlYL3Auvbf4GvJkVjW+BrlxZbw12MjEzMy+nYmZmpedkYmZmmTmZmJlZZk4mZmaWmZOJmZll5mRiZmaZOZmYmVlmTiZmVlJeZbg6OJmYWUl5leHqUOjaXGZmReVVhquLeyZmVhJ+1k91cTIxs5Iox1WGPX8zcE4mZlYy5fb4Y8/fDJxXDTazmtd9/qZTLc3feNVgM7OMPH+TnZOJmdW8cpy/qTROJlZ0nsS0SlRu8zeVxnMmVnRL1m3nsS0tXN8wiWVXf6zUp2NmBRiSORNJH5S0VtJvJO2S9ClJYyRtlLQnvY7OO36xpGZJuyXNyotPl7Q9vbdcklJ8uKQnUrxR0uS8MvPT79gjaf5AG2qDb8qSDUxe9BSPNrYQkfsS2uRFTzFlyYZSn5qZDbJCh7l+BPw8Iv4c+DiwC1gEbIqIC4FN6WckTQXmARcBs4F7JJ2S6rkXWAhcmLbZKb4AOBQRFwB3AXemusYAS4EZQAOwND9pWXnxJKZZ7eozmUgaBXwGuA8gIv4YEf8KzAEeSoc9BMxN+3OAxyOiPSJeBZqBBknnAKMiYnPkxtYe7lams661wBWp1zIL2BgRbRFxCNjIiQRkZcaTmGa1q5C1uf4UaAUekPRxYBvwNeDsiDgAEBEHJI1Lx08AfpFXfl+KvZv2u8c7y7yW6uqQ9DZwVn68hzJWhjonMa9rmMSqLS20ehLerCYUkkzqgE8CX42IRkk/Ig1pnYR6iEUv8YGWOfELpYXkhs+YNGlSL6dmg23FDSfm75bNvbiEZ2JmQ6mQOZN9wL6IaEw/ryWXXN5MQ1ek14N5x5+bV34isD/FJ/YQ71JGUh1wJtDWS11dRMTKiKiPiPqxY8cW0CQzMyumPpNJRLwBvCZpSgpdAbwCrAc6766aDzyZ9tcD89IdWueTm2jfkobEjki6JM2H3NitTGdd1wDPp3mVZ4CZkkanifeZKWZmZmWk0OeZfBV4TNIHgN8Bf0suEa2RtABoAa4FiIidktaQSzgdwC0RcSzVczPwIHAasCFtkJvcf0RSM7keybxUV5ukO4Ct6bjbI6JtgG01M7NB4i8tmpmZF3o0M7PSczIxM6sCpV4Tz8nEzKwKlPrBXoVOwJuZWRnq/mCvRxtbeLSxZcgf7OWeiZlZBSuXNfGcTMzMKli5rInnYS4zswpXDmvi+XsmZmbm75mYmVnpOZmYmVlmTiZmZpaZk4mZmWXmZGJmZpk5mZiZWWZOJmZmlpmTiZmZZeZkYmY2REq9TPxgcjIxMxsipV4mfjB5ba4ydfDwUW5d/RJ3X/eJIV+wzcyKq1yWiR9M7pmUqWr+BGNWa8plmfjBVFAykbRX0nZJL0tqSrHbJL2eYi9L+lze8YslNUvaLWlWXnx6qqdZ0nJJSvHhkp5I8UZJk/PKzJe0J23zi9XwcjVlyQYmL3qKRxtbiMh9gpm86CmmLNlQ6lMzswEql2XiB1N/eiaXR8S0bqtK3pVi0yLiaQBJU4F5wEXAbOAeSaek4+8FFgIXpm12ii8ADkXEBcBdwJ2prjHAUmAG0AAslTR6AO2sGLXwCcasFnUuE7/uK5dy/YzzaH2nvdSnVFSDMWcyB3g8ItqBVyU1Aw2S9gKjImIzgKSHgbnAhlTmtlR+LXB36rXMAjZGRFsqs5FcAlo9COddFmrhE4xZLVpxw4nP4cvmXlzCMxkchfZMAnhW0jZJC/Pit0r6taT783oME4DX8o7Zl2IT0n73eJcyEdEBvA2c1UtdVa3aP8GYWfUptGdyaUTslzQO2CjpN+SGrO4gl2juAH4AfAlQD+WjlzgDLPOelOAWAkyaNKn3llSAav8EY2Z9q7Q7OgvqmUTE/vR6EFgHNETEmxFxLCKOAz8hN6cBud7DuXnFJwL7U3xiD/EuZSTVAWcCbb3U1f38VkZEfUTUjx07tpAmmZmVtUq7o7PPnomkM4BhEXEk7c8Ebpd0TkQcSIddDexI++uBVZJ+CIwnN9G+JSKOSToi6RKgEbgR+HFemfnAZuAa4PmICEnPAN/JG0KbCSzO2GYzs7JVqd9JKWSY62xgXbqLtw5YFRE/l/SIpGnkhp32AjcBRMROSWuAV4AO4JaIOJbquhl4EDiN3MR75/2u9wGPpMn6NnJ3gxERbZLuALam427vnIw3M6tGL37zcpY9vYtnd77B0XePM+LUYcy66MN8+/MfLfWp9arPZBIRvwM+3kP8hl7K/D3w9z3Em4D3TQJExFHg2pPUdT9wf1/naWZWDSr1jk4vp2JmVmY67+i8rmESq7a00FoBC0Mq4n03R1W0+vr6aGpqKvVpmJlVFEnbun0pvV+8NpeZmWXmZGJmZpk5mZiZWWZOJmZmlpmTiZmZZeZkYmZmmTmZmJlZZk4mZmaWmZOJmZll5mRiZmaZOZmYmVlmTiZmZpaZk4mZmWXmZGJmZpk5mZiZWWZOJmZmlpmTiZmZZeZkYhXl4OGjfGHFZg5WwGNMzWpJQclE0l5J2yW9LKkpxcZI2ihpT3odnXf8YknNknZLmpUXn57qaZa0XJJSfLikJ1K8UdLkvDLz0+/YI2l+sRpulWn5pj1s3dvG8uf2lPpUzCxPQc+Al7QXqI+It/Ji3wPaIuK7khYBoyPiW5KmAquBBmA88BzwZxFxTNIW4GvAL4CngeURsUHSV4C/iIgvS5oHXB0Rfy1pDNAE1AMBbAOmR8Shk52rnwFfnaYs2UB7x/H3xYfXDWP3sitLcEZm1aWUz4CfAzyU9h8C5ubFH4+I9oh4FWgGGiSdA4yKiM2Ry2APdyvTWdda4IrUa5kFbIyItpRANgKzM5yzVagXv3k5V00bz4hTc/9lR5w6jDnTxvPity4v8ZmZGRSeTAJ4VtI2SQtT7OyIOACQXsel+ATgtbyy+1JsQtrvHu9SJiI6gLeBs3qpqwtJCyU1SWpqbW0tsElWScaNGsHI4XW0dxxneN0w2juOM3J4HeNGjij1qZkZUFfgcZdGxH5J44CNkn7Ty7HqIRa9xAda5kQgYiWwEnLDXL2cm1Wwt95p5/oZ53FdwyRWbWmh1ZPwZmWjoGQSEfvT60FJ68jNh7wp6ZyIOJCGsA6mw/cB5+YVnwjsT/GJPcTzy+yTVAecCbSl+GXdyrxQaOOsuqy44cRw7rK5F5fwTMysuz6HuSSdIWlk5z4wE9gBrAc6766aDzyZ9tcD89IdWucDFwJb0lDYEUmXpPmQG7uV6azrGuD5NK/yDDBT0uh0t9jMFDMzszJSSM/kbGBduou3DlgVET+XtBVYI2kB0AJcCxAROyWtAV4BOoBbIuJYqutm4EHgNGBD2gDuAx6R1EyuRzIv1dUm6Q5gazru9ohoy9BeMzMbBAXdGlxJfGuwmVn/lfLWYDMzM8DJxMzMisDJxMzMMqu6ORNJrcDvS30eJ/Eh4K0+j6oOtdLWWmkn1E5ba6Wd0LWt50XE2IFWVHXJpJxJasoywVVJaqWttdJOqJ221ko7obht9TCXmZll5mRiZmaZOZkMrZWlPoEhVCttrZV2Qu20tVbaCUVsq+dMzMwsM/dMzMwsMyeTDCTdL+mgpB15sY9L2pweT/y/JI1K8Q9IeiDFfyXpsrwyL6RHHL+ctnE9/LqSknSupH+StEvSTklfS/GiPb65HBS5nWV9XfvbVklnpePfkXR3t7qq5pr20c5qu6afVe45VdvT63/Mq6t/1zQivA1wAz4DfBLYkRfbCvyHtP8l4I60fwvwQNofR+4RxMPSzy+QeyxyydvUS1vPAT6Z9kcC/wJMBb4HLErxRcCdaX8q8CtgOHA+8FvglPTeFuBT5J5XswG4stTtG6R2lvV1HUBbzwD+HfBl4O5udVXTNe2tndV2TT8BjE/7FwOvD/SaumeSQUT8M7lVjvNNAf457W8E/irtTwU2pXIHgX8l92z7ihARByLil2n/CLCL3FMvi/n45pIrVjuH9qwHpr9tjYg/RMT/Bro8lazarunJ2lkJBtDWlyI9rwrYCYxQ7vEh/b6mTibFtwO4Ku1fy4kHhf0KmCOpTrnnvEyn60PEHkjd5v9aTkMEPZE0mdwnmkaK+/jmspKxnZ0q4roW2NaTqbZr2pdqvaZ/BbwUEe0M4Jo6mRTfl4BbJG0j1838Y4rfT+6CNAH/Hfi/5J73AnB9RHwM+Pdpu2FIz7gfJP0J8D+Br0fE4d4O7SFW8KOYS60I7YQKua79aOtJq+ghVsnXtDdVeU0lXQTcCdzUGerhsF6vqZNJkUXEbyJiZkRMB1aTG0MnIjoi4hsRMS0i5gAfBPak915Pr0eAVZTpMImkU8n9B30sIn6Wwm+mLnHncEeWxzeXhSK1syKuaz/bejLVdk1PqhqvqaSJwDrgxoj4bQr3+5o6mRRZ590dkoYBS4D/kX4+XbnHHiPps0BHRLyShr0+lOKnAv+J3FBZWUnd+fuAXRHxw7y3ivn45pIrVjsr4boOoK09qsJrerJ6qu6aSvog8BSwOCL+T+fBA7qmpbzzoNI3cj2PA8C75DL5AuBr5O6g+Bfgu5z4YuhkYDe5CbHnyK3QCbk7R7YBvyY3AfYj0t1A5bSRu7sl0nm+nLbPAWeRu7FgT3odk1fm2+R6ZrvJuxOE3I0HO9J7d3f+G5XDVqx2VsJ1HWBb95K76eSd9H9+apVe0/e1sxqvKbkPvH/IO/ZlYNxArqm/AW9mZpl5mMvMzDJzMjEzs8ycTMzMLDMnEzMzy8zJxMzMMnMyMTOzzJxMzMwsMycTMzPL7P8DEV7G9eFx9ncAAAAASUVORK5CYII=\n",
"text/plain": [
- ""
+ ""
]
},
- "metadata": {},
+ "metadata": {
+ "needs_background": "light"
+ },
"output_type": "display_data"
}
],
@@ -2416,53 +568,48 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "Une liste triée permet de plus facilement répérer les valeurs les plus élevées (à la fin)."
+ "Une liste triée permet de plus facilement répérer les valeurs les plus élevées."
]
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
- "2014 1600941\n",
- "1991 1659249\n",
- "1995 1840410\n",
- "2012 2175217\n",
- "2003 2234584\n",
- "2006 2307352\n",
- "2017 2321583\n",
- "2001 2529279\n",
- "1992 2574578\n",
- "1993 2703886\n",
- "1988 2765617\n",
- "2007 2780164\n",
- "1987 2855570\n",
- "2016 2856393\n",
- "2011 2857040\n",
- "2008 2973918\n",
- "1998 3034904\n",
- "2002 3125418\n",
- "2009 3444020\n",
- "1994 3514763\n",
- "1996 3539413\n",
- "2004 3567744\n",
- "1997 3620066\n",
- "2015 3654892\n",
- "2000 3826372\n",
- "2005 3835025\n",
- "1999 3908112\n",
- "2010 4111392\n",
- "2013 4182691\n",
- "1986 5115251\n",
- "1990 5235827\n",
- "1989 5466192\n",
+ "2002 502271\n",
+ "2018 543281\n",
+ "1996 553859\n",
+ "2017 557449\n",
+ "2019 584926\n",
+ "2000 605096\n",
+ "2015 613286\n",
+ "2012 620315\n",
+ "2011 645042\n",
+ "1995 648598\n",
+ "2001 650660\n",
+ "1993 653058\n",
+ "2005 654308\n",
+ "2006 657482\n",
+ "1998 660316\n",
+ "2014 673458\n",
+ "1997 679308\n",
+ "1994 682920\n",
+ "2007 701566\n",
+ "2013 708874\n",
+ "2004 736266\n",
+ "2008 745701\n",
+ "2003 770211\n",
+ "2016 780645\n",
+ "1999 784963\n",
+ "2009 822819\n",
+ "2010 848236\n",
"dtype: int64"
]
},
- "execution_count": 14,
+ "execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
@@ -2481,27 +628,29 @@
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
- ""
+ ""
]
},
- "execution_count": 15,
+ "execution_count": 16,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEPCAYAAABcA4N7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH4BJREFUeJzt3X+YZFV95/H3d2aQ30MTQUZhpZVgAiI2KBrFaC1qYiDi\nE8KzIBptjYYYDa5md+VxJYhZE8Ffq7uYLIkyaARcCdkVf0SM5BJBAyg0oIK4CyO/BH8AIrABRr77\nx7k1VDdTVbdn7q3vOV2f1/PMM3Wrqut86lR1nbrf761qc3dERESGWRUdQERE8qaFQkRERtJCISIi\nI2mhEBGRkbRQiIjISFooRERkpE4WCjN7m5l928yuMbNPm9njuhhHRES61/pCYWZPAv4YONjdDwTW\nAMe2PY6IiEzGmo5udzWwo5k9AuwA3N7ROCIi0rHW9yjc/Xbgg8DNwG3APe7+j22PIyIik9FF6WkG\neAWwN/AkYCczO67tcUREZDK6KD29BLjR3e8CMLPzgecDZw9eycz0JVMiIlvA3W2S43Vx1NPNwK+Z\n2XZmZsCLges2d0V3z/7fySefHJ4hKmf9KLX47+Qt+JnJP0+m+TFXzvgc4/5F6KJHcTlwHnAVcDVg\nwBltjzMpGzZsiI7QSBk5N0QHaKSMuVTOtpWSM0InRz25+ynAKV3ctoiITJY+mT3G/Px8dIRGysg5\nHx2gkTLmUjnbVkrOCBZV8zIzjxpbmkktpujHyMLqsiI5MjN8BTSzV5SqqqIjNFJGzio6QCNlzKVy\ntq2UnBG0UIiIyEgqPclQKj2J5EelJxERyY4WijFKqVuWkbOKDtBIGXOpnG0rJWcELRQiIjKSehQy\nlHoUIvlRj0JERLKjhWKMUuqWZeSsogM0UsZcKmfbSskZQQuFiIiMpB6FDKUehUh+1KMQEZHsaKEY\no5S6ZRk5q+gAjZQxl8rZtlJyRtBCISIiI6lHIUOpRyGSH/UoREQkO1ooxiilbllGzio6QCNlzKVy\ntq2UnBFaXyjM7GlmdpWZXVn//zMzO6HtcUREZDI67VGY2SrgVuC57n7LksvUo8icehQi+VmJPYqX\nAP936SIhIiLl6HqhOAY4p+MxOlVK3bKMnFV0gEbKmEvlbFspOSN0tlCY2TbAkcBnuxpDRES6t6bD\n2/4t4Fvu/uNhV5ifn2d2dhaAmZkZ5ubm6PV6wKOru7abbffPa/v2H9Xf7m3l9nJvj2XlbWO71+tt\n2j722HnuvPMHRNljj725444NYx+f6Odf0/nMIc+o7b5c8vTnbv369QCbXi8nrbNmtpmdA/yDu581\n5HI1szOnZnYOc6Bmviy2YprZZrYDqZF9fhe3P0mPfWedpzJyVtEBGiljLpWzbaXkjNBJ6cndHwB2\n7+K2RURksvRdTzJUfNkFoksv8XOg0pMstmJKTyIisnJooRijlLplGTmr6ACNlDGXytm2UnJG0EIh\nIiIjqUchQ8XX5yG6Rh8/B+pRyGLqUYiISHa0UIxRSt2yjJxVdIBGyphL5WxbKTkjaKEQEZGR1KOQ\noeLr8xBdo4+fA/UoZDH1KEREJDtaKMYopW5ZRs4qOkAjZcylcratlJwRtFCIiMhI6lHIUPH1eYiu\n0cfPgXoUsph6FCIikh0tFGOUUrcsI2cVHaCRMuZSOdtWSs4IWihERGQk9ShkqPj6PETX6OPnQD0K\nWUw9ChERyY4WijFKqVuWkbOKDtBIGXOpnG0rJWeEThYKM9vFzD5rZteZ2XfM7LldjCMiIt3rpEdh\nZuuBi939TDNbA+zg7vcuuY56FJmLr89DdI0+fg7Uo5DFInoUrS8UZrYWuMrd9xlzPS0UmYt/kYTo\nF8r4OdBCIYutlGb2U4CfmNmZZnalmZ1hZtt3MM5ElFK3LCNnFR2gkTLmUjnbVkrOCF0sFGuAg4HT\n3f1g4AHgxA7GERGRCVjTwW3eCtzi7t+st88D3rG5K87PzzM7OwvAzMwMc3Nz9Ho94NHVXdvNtvvn\ntX37j+pv97Zye7m3x7LytrHd6/U6vP/L3WZk3nGX57A9OJ855Bm13ZdLnv7crV+/HmDT6+WkddXM\nvhh4o7vfYGYnk5rZ71hyHfUoMhdfn4foGn38HKhHIYutlB4FwAnAp81sAXgm8OcdjdO5x76zzFMZ\nOavoAI2UMZfK2bZSckboovSEu18NHNLFbYuIyGTpu55kqPiyC0SXXuLnQKUnWWwllZ5ERGSF0EIx\nRil1yzJyVtEBGiljLpWzbaXkjKCFQkRERlKPQoaKr89DdI0+fg7Uo5DF1KMQEZHsaKEYo5S6ZRk5\nq+gAjZQxl8rZtlJyRtBCISIiI6lHIUPF1+chukYfPwfqUchi6lGIiEh2tFCMUUrdsoycVXSARsqY\nS+VsWyk5I2ihEBGRkdSjkKHi6/MQXaOPnwP1KGQx9ShERCQ7WijGKKVuWUbOKjpAI2XMpXK2rZSc\nEbRQiIjISOpRyFDx9XmIrtHHz4F6FLKYehQiIpIdLRRjlFK3LCNnFR2gkTLmUjnbVkrOCJ38zWwz\n2wD8DHgEeNjdn9PFOCIi0r1OehRmdiPwLHe/e8R11KPIXHx9HqJr9PFzoB6FLLaSehTW4W2LiMgE\ndfVi7sBXzOwKM3tjR2NMRCl1yzJyVtEBGiljLpWzbaXkjNBJjwI41N1/aGa7kxaM69z9ko7GEhGR\nDnWyULj7D+v/f2xmfw88B3jMQjE/P8/s7CwAMzMzzM3N0ev1gEdXd2032+6f1/btP6q/3dvK7eXe\nHsvK28Z2r9fr8P4vd5uRecddnsP24HzmkGfUdl8uefpzt379eoBNr5eT1noz28x2AFa5+31mtiNw\nIXCKu1+45HpqZmcuvpEL0c3c+DlQM1sWWynN7D2AS8zsKuBfgAuWLhIleew7yzyVkbOKDtBIGXOp\nnG0rJWeE1ktP7n4TMNf27YqISAx915MMFV92gejSS/wcqPQki62U0pOIiKwgWijGKKVuWUbOKjpA\nI2XMpXK2rZScEbRQiIjISOpRyFDx9XmIrtHHz4F6FLKYehQiIpIdLRRjlFK3LCNnFR2gkTLmUjnb\nVkrOCFooRERkJPUoZKj4+jxE1+jj50A9CllMPQoREcmOFooxSqlblpGzig7QSBlzqZxtKyVnBC0U\nIiIyknoUMlR8fR6ia/Txc6AehSymHoWIiGRHC8UYpdQty8hZRQdopIy5VM62lZIzghYKEREZST0K\nGSq+Pg/RNfr4OVCPQhZTj0JERLKjhWKMUuqWZeSsogM0UsZcKmfbSskZobOFwsxWmdmVZva5rsYQ\nEZHuddajMLO3Ac8C1rr7kZu5XD2KzMXX5yG6Rh8/B+pRyGIrpkdhZnsBhwN/08Xti4jI5HRVevow\n8B+Jfzu61UqpW5aRs4oO0EgZc6mcbSslZ4TWFwozOwK4090XAKv/iYhIodZ0cJuHAkea2eHA9sDO\nZvZJd3/N0ivOz88zOzsLwMzMDHNzc/R6PeDR1T1y+6ijjuXuu+9sfMfbtuuue3DXXXdsygPD8/bP\na3s+HtXf7m3l9nJvj2XlbWO71+t1eP+Xu83IvOMuz2F7cD5zyDNquy+XPP25W79+PcCm18tJ6/QD\nd2b2IuBPSm1mT3sjM/7+g+ZAzWxZbMU0s1eWKjpAI2XUV6voAI2UMZfK2bZSckboovS0ibtfDFzc\n5RgiItItfdfTCNNedoi//6A5UOlJFlPpSUREsqOFYqwqOkAjZdRXq+gAjZQxl8rZtlJyRtBCISIi\nI6lHMcK016fj7z9oDtSjkMXUoxARkexooRirig7QSBn11So6QCNlzKVytq2UnBG0UIiIyEjqUYww\n7fXp+PsPmgP1KGQx9ShERCQ7WijGqqIDNFJGfbWKDtBIGXOpnG0rJWcELRQiIjKSehQjTHt9Ov7+\ng+ZAPQpZTD0KERHJjhaKsaroAI2UUV+togM0UsZcKmfbSskZQQuFiIiMpB7FCNNen46//6A5UI9C\nFlOPQkREsqOFYqwqOkAjZdRXq+gAjZQxl8rZtlJyRmj9b2ab2bbAPwOPq2//PHc/pe1xRERkMjrp\nUZjZDu7+gJmtBi4FTnD3y5dcRz2K8QmmvD4PmgP1KGSxFdOjcPcH6pPbkvYq9EwXESlU66UnADNb\nBXwL2Ac43d2vWO5t3H///WzcuLH1bE2tWdOfmgroheVoqqoqer1edIwxKjSX7VHOdpWSM0InC4W7\nPwIcZGZrgf9lZvu7+3eXXm9+fp7Z2VkAZmZmmJubo9frcfPNN7PPPk8DVrNqVYr4yCNp0Zjc9oNL\n0lb1/70Jbm9Tlz5yUNX/97Zie2ELfr7eqhuN/V/kSW0PJGiYt+1thuZbWFiY+Hys5O1h87lu3Sx3\n3vkDIm233Y4cc8zRm14vJ63zz1GY2UnA/e7+oSXnD+1RXHvttbzgBcdx773XdpptlLVrD6zHj61P\nT/f4KYN6FNGPwXSLfw7A4PNgRfQozGw3M9ulPr098FLg+rbHERGRyeiimf1E4J/MbAG4DPiyu3+x\ng3EmpIoO0FAVHaCBKjpAI6UcT6+c7SolZ4TWexTufi1wcNu3KyIiMbL8rif1KPqia6PR46cM6lFE\nPwbTLf45ACuuRyEiIiuLFoqxqugADVXRARqoogM0UkqtWjnbVUrOCFooRERkJPUohlCPIofxUwb1\nKKIfg+kW/xwA9ShERCRrWijGqqIDNFRFB2igig7QSCm1auVsVyk5I2ihEBGRkdSjGEI9ihzGTxnU\no4h+DKZb/HMA1KMQEZGsaaEYq4oO0FAVHaCBKjpAI6XUqpWzXaXkjKCFQkRERlKPYgj1KHIYP2VQ\njyL6MZhu8c8BUI9CRESypoVirCo6QENVdIAGqugAjZRSq1bOdpWSM4IWChERGUk9iiHUo8hh/JRB\nPYrox2C6xT8HQD0KERHJmhaKsaroAA1V0QEaqKIDNFJKrVo521VKzgitLxRmtpeZXWRm3zGza83s\nhLbHEBGRyWm9R2Fm64B17r5gZjsB3wJe4e7XL7meehRjRddGo8dPGdSjiH4Mplv8cwBWXI/C3e9w\n94X69H3AdcCebY8jIiKT0WmPwsxmgTngsi7H6VYVHaChKjpAA1V0gEZKqVUrZ7tKyRlhTVc3XJed\nzgPeWu9ZPMb8/Dyzs7MAzMzMMDc3R6/XA2DjxvtILyy9+tpV/f9kttP4gyY7/mNfVMddfyF4/Cbb\nC1vw89vWu/7Rqvr/3oS34+//HnvszbnnrgfY9PvZf1FdSdsLCwtDL497/HubTg++Xk5aJ5+jMLM1\nwOeBL7n7R4ZcRz2KsaJro9Hj55Bh2sdPGaa5T6IeRXelp08A3x22SIiISDm6ODz2UOBVwGFmdpWZ\nXWlmL2t7nMmpogM0VEUHaKCKDtBQFR2goSo6QCOl1P5LyRmh9R6Fu18KrG77dkVEJIa+62kI9Shy\nGD+HDNM+fsqgHkX0/V+ZPQoREVkhtFCMVUUHaKiKDtBAFR2goSo6QENVdIBGSqn9l5IzghYKEREZ\nST2KIdSjyGH8HDJM+/gpg3oU0fdfPQoREcmYFoqxqugADVXRARqoogM0VEUHaKiKDtBIKbX/UnJG\n0EIhIiIjqUcxhHoUOYyfQ4ZpHz9lUI8i+v6rRyEiIhnTQjFWFR2goSo6QANVdICGqugADVXRARop\npfZfSs4IWihERGQk9SiGUI8ih/FzyDDt46cM6lFE33/1KEREJGNaKMaqogM0VEUHaKCKDtBQFR2g\noSo6QCOl1P5LyRlBC4WIiIykHsUQ6lHkMH4OGaZ9/JRBPYro+68ehYiIZEwLxVhVdICGqugADVTR\nARqqogM0VEUHaKSU2n8pOSN0slCY2cfN7E4zu6aL2xcRkcnppEdhZi8A7gM+6e4HDrmOehRjRddG\no8fPIcO0j58yqEcRff9XYI/C3S8B7u7itkVEZLLUoxirig7QUBUdoIEqOkBDVXSAhqroAI2UUvsv\nJWeENZGDz8/PMzs7C8DMzAxzc3P0ej0ANm68j/SL0KuvXdX/T2Y7jT9osuM/9kVg3PUXgsdvsr0Q\nPP6WbOc8/pbM55Zt919E+7+fK3F7YWFh6OVxj39v0+nB18tJ6+xzFGa2N3CBehRbI7o2Gj1+Dhmm\nffyUQT2K6Pu/AnsUNav/iYhIwbo6PPZs4OvA08zsZjN7XRfjTEYVHaChKjpAA1V0gIaq6AANVdEB\nGiml9l9Kzgid9Cjc/bgubldERCZP3/U0hHoUOYyfQ4ZpHz9lUI8i+v6v3B6FiIisAFooxqqiAzRU\nRQdooIoO0FAVHaChKjpAI6XU/kvJGUELhYiIjKQexRDqUeQwfg4Zpn38lEE9iuj7rx6FiIhkTAvF\nWFV0gIaq6AANVNEBGqqiAzRURQdopJTafyk5I2ihEBGRkdSjGEI9ihzGzyHDtI+fMqhHEX3/1aMQ\nEZGMaaEYq4oO0FAVHaCBKjpAQ1V0gIaq6ACNlFL7LyVnBC0UIiIyknoUQ6hHkcP4OWSY9vFTBvUo\nou+/ehQiIpIxLRRjVdEBGqqiAzRQRQdoqIoO0FAVHaCRUmr/peSMoIVCRERGUo9iCPUochg/hwzT\nPn7KoB5F9P1Xj0JERDLW1d/MfpmZXW9mN5jZO7oYY3Kq6AANVdEBGqiiAzRURQdoqIoO0Egptf9S\nckZofaEws1XAfwd+E3g68Eoz+9W2x5mchegADZWQs4SMoJztWlhQztJ1sUfxHOD77v4Dd38YOBd4\nRQfjTMg90QEaKiFnCRlBOdt1zz3KWbouFoo9gVsGtm+tzxMRkQKtiQ4wzEMP3Q38bdj4Dz98d31q\nQ1iG5dkQHaCBDdEBGtoQHaChDdEBGtmwYUN0hEZKyRmh9cNjzezXgHe7+8vq7RMBd/dTl1wv+ngz\nEZEiTfrw2C4WitXA94AXAz8ELgde6e7XtTqQiIhMROulJ3f/hZm9BbiQ1AP5uBYJEZFyhX0yW0RE\nyqBPZouIyEhFLhRmtqeZZX/IrZk91czebmaHRWcZpoSMoJxtKyFnCRn7Ssm6pTmLWijMbNbMLga+\nDLzfzH49OtMwZvYC4CvAfsAfmtmbgiM9RgkZQTnbVkLOEjL2lZJ1q3K6e9b/gO0GTh8FfKA+/Vrg\ns8Az6m0LznkY8JR+FuBPgVfX288FLgB6kVlLyKic05mzhIylZW0zZ5Z7FGa21sz+ysxuAD5gZnvX\nF/0OcHN9+lzg/wBv6P/YhGOmQc32N7NrgHcDZ5rZYZ5mfn9gHYC7XwZ8HXh9RNYSMirndOYsIWNp\nWbvImeVCAbwM2I50xx4C/tTMtiftNr0cwN0fBM4DXlhvPzKJYGa2l5mtHTjrGODv3P2FpMXrODPb\nFzi7n7X298ABZrZt11lLyKic05mzhIylZZ1EzrCFwpI1Zvb7ZvY1M3urme1TX/zLwEPuvhH4MHA3\n8CrSZzOeaGa/VF/vBuBmM3veBPLuZ2ZfBC4B3mNm/S86/Fdgh/r0/wTuAI4grdaPH9gbugu4Hnjm\nNGdUzunMWULG0rJOMmfYQlHvCr0IeA1wGrAt8Nf1xXcAP6pXultIn/TelzQB3wH+oL7eNsBP6/Nb\nZ2Y7DmzOAbe6+yxwEfCB+vy7gAfNbGd3vwv4PulLEP+V9MC8vb7e44Bf0PIX9JSQUTmnM2cJGUvL\nGpVzYguFmT3PzE41s/l620jd939w9wvc/TRgbzN7PnAbaUXcv/7x64Ad6/NOBw43s5eTFpk9gKtb\nzLmrma03syuA95nZ7nXWZwCXmpm5++eAe8zsCNJezc715dTbuwOPkPaGnmBmfw2cA2x09x9NQ0bl\nnM6cJWQsLWsOOSeyUJjZ04G/BH4O/Dsze3s99p7Az+s7DbCeVGK6GngY6JeUriR18B9w938GTgTm\ngUOBP3P3RwZuY2u9sB77cFKD553AWmA1sK7eEwI4q856eX2/fgvA3b9R38YaT19dcjxpL+jP3f11\nU5RROaczZwkZS8san3PY4VBb+g/YiXQk0lwdDOBDwAn16WcDHwWOBl5K2qPo/+y/Ie1KQVoYrgJ+\nBTgI+N/AEweuu1WHndWTfDxwMamUtVt9/mcHsj4FeF99+SHA14DVA/fzx/Xt7Ena63kLcCbwMWDH\nFuYy+4zKOZ05S8hYWtacc7a6R2Fmc6SG8yuAk4F31RfdRjpuF9JKdinwu8A/AuvM7EAz28ZTP+I2\nM/t1d78IOAM4FTgfOMfdf9gfy+uZ2Qq/DRwJnELaczmtPv9C4Pn16VtID8Th7n4FaTX/t/X49wGX\nAYe4+23A75HKYHcA73L3+7c02MDe0ctzzbhEtnMJms82cxY4l5DxfEIZc7pV3x5rZs8hNZkvdPcf\nk/YWbnD3eTM7GHivmT2btEL+ppnt4O4PmNnVpEO41pHqZG8EPmpm/w+4FripHuKvgLPd/WdbmM/c\n3c3sEOA40gR/wdOhtU8DbnT3i8zsJtInvX8D+BbwO2a2m7v/xMy+D9xnZk8m/S3wV5vZE4C9SI30\nywHc/ZvAN7ckZ5312aQ9sZ8D7wd+BDw1l4wlzWWdV/M5Jc/NOmMx81nnzX5OBy1rj8KSbczsNWZ2\nFakxMgP0X8h/AWyo9w6uJO36PA+4j/S3KY6or/cwaWL2IO01fJvUn7gY+Im73wppr6GFReKFwCdI\nHf+XAH9RX+UR4AYz297db6qzHgjcC9xOWsj692k1aa7+rs77KuBZwBm+lcdJm9kuZnZmfds3AR9x\n9x+Z2SrSu4UcMq6u5/JFpN3YXOfSzGwnM1tP3vO5fT2fPTJ9bprZtma2Y+5zWWddm/t81jl3MrPt\nzOwsMp/Tx2hSnyIdcfT8+vRMHeyjm7neW0kfE9+z3j6a1I/Ym/SVGxfX528HfJW6BlefdxDwuCZ5\nRuTcgVTjO5u0l7IN8O+BN9eX7wpcU491DKnWN1tfdgTp8NzdSLuq1wC7kHolXxzMBqxqIeM5wOtI\ndcVTgeMHrtPv7bwF+C+TzjjwmL+B9ET8E1LzLKu5XJLz/Pr5t3uO81nfxs7AF4BP1Ntvy3A+d65v\n83/U26dlOpc7kF5Tvkr6cFmu89nPeRHwmfq8LJ+fo/6N3aMws3cCNwJfMLM93P0eUh3s9rq3cKQ9\n+oG3b5B2f/ofnLuU1NR+wN3PAu4ys0+RmtTfAzbVzNz9Knd/aFyeETnXAZ8HesCnSM2eo0h7NBvr\nMe4GPkd6QfkK6UVlv/omvkY6MuAhd/886Z3JeaTDcc8i7QX1s27Rir0k4yeBN9UZbwB+xczeV7+D\ne72lDxV+iVSem1jGOueOpF/Aw0hP1N8g9ZQOIb07C5/LzeQ8g3SUx1HAd4H9cpnPAduTPi+0j5nt\nRvo9WV3ffvh8DmR8HOn5+KR67GeY2V/kMpdmtg2p13k08H53/936ooMGxgifzyU5T3P3/h7BtcD+\nOc3pWA1WxB5p9+dvgLfV5x1CesG7rQ5+NvDB+rL3Au8Z+PkrgIPq09uSDvE6pO0Vj/QEf+7A9jzp\n3dBrgcsHzn8ScHt9+s2kj7jvWv/8BcCTB667W8cZX0M6GmFf4DOkT1G+Eviv1EeDTTrjwO3ODJz+\nT8AJ1Ife5TCXQ3L+B9Khg0/NbT7r234tqR59EvD7pOblFZnNZz/ju0gvso+v5/Ezmc3l+cCrlpx3\nDHBZZvO5uZxPrrNk9fwceT8a3NH+oVfHAFV9ehvSu7hd6u29SXsTh5B2Xc8jvcP7Emnl27bzO5Lq\newab/mrfwTxa6vop6Xjj/nW/Qv2CTdrVu7C+zjsmnPEg4JL+k3rgetsAFXBYvf3eSWVcknctqXd0\nJ/CeevunwB7Rczkk5x11hh2py585zOfA4/064A9Jez2frs/7SQ7zOSTjufV5g4el5/Lc/G3SnviH\ngH8ilbz3Jn0q+QnR8zki57tJVZdsnp+N7scy7vDjSR98e3q9vWbJ5euBo/tPLFJZ5XgmsEgsydF/\nwp8FvLU+/Sng1Pr0L5H2jp488CAdwMDXmU8445sHz6tPr6vn88CojANZ/oh07PYZpF7A1+tfSsth\nLjeT83TS4YW/nNt8ko6HX02qM19Metf+beCkjJ6bgxm/Sjry8ODc5rIe+8vAfyZ9/uozpD2gb+T2\n/FyS89Okr9rYN8c5HfZvWX8z28w+Btzr7ifW26tIRy69GXg6cIxvRZ+hLWa2F/Bx4I/d/QZLXzb4\nB6SMewJXufvrR93GBDO+yd1vrM87iFSaOwJYcPc/Coy4iJk9k7Tw/wuphnoA6Z1R+FwOMrMDSOWn\n/wY8QHpHFz6fZrYTqaSzLWn+fpX0ZW7vJL2L35fg+dxMxn1J/Z6XknqNLybNZxbPTasPt69PP5P0\nO34p6asrsnl+Lsl5AOmbJT5C+mbsLJ6f4yz3cxRnAB+pmzT7kZ7gh5IenHfmsEjUDqL+PIaZvQG4\nlfQLeQxwvadDd6P1M95cZ7yJ9ITZSNrLuCoy3GbcRfpW35Pc/ZNm9mrgOxnmvId0lMi3SY/5NuQx\nnxtJR8A8TNqT+AXpd+Za4O31fH43+Lk5LOODZnYkaQHJYS4B6L/41u4hfV7iJHc/O6fn55KcPye9\nub6OtJeRy/NzpOXuURxLalw/SPoGwovc/XsdZdtiZnYpqaG5gXT88Snufk1oqCWWZLwDODG3uTSz\nXUjvIo8jfUHjGcDp7v7wyB+csM3k/Li7fzA21Wj1h6X6fYA7ovNsTp3xaOBMT0cRZcXMtiX97Zrf\nI1UL/hL4mKc/T5CNzeQ8w90/HJtqeRovFGZ2IOn43/NIjbhOvtp7a9V7OyeT3qH/radPZmalhIwA\nZraGVG56kJQz18e8iJyQPrwIPOLLeYc2YSVk7DOz40mHbH8q88e9iJzDLGuPQkREpk+ufwpVREQy\noYVCRERG0kIhIiIjaaEQEZGRtFCIiMhIWihERGQkLRQiIjKSFgoRERnp/wOdoYFI5JlUBgAAAABJ\nRU5ErkJggg==\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEICAYAAABGaK+TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFR9JREFUeJzt3X2QXXddx/H3t2kLabcNlbRXDWBQsUpZHsxFnmZwtyDTmoojg0ItKI7O4iBYnDgYQa0KlfgQtYo6RqytoixY2hEbBYt0URQLm4JsS0SRxtJUUyoQ2BKoka9/nJOyxM3eczb37J4fvF8zO7kP59z7ub9787nnnHvuPZGZSJLKc8p6B5AkrY4FLkmFssAlqVAWuCQVygKXpEJZ4JJUKAtckgplgUtSoSxwSSrUqV3c6ObNm3Pr1q2t5rnvvvs488wzu4jTCfN2y7zdMm+3VpN3375992bmua1mysyx/23bti3buvnmm1vPs57M2y3zdsu83VpNXmA+W3atm1AkqVAWuCQVygKXpEJZ4JJUKAtckgrVqMAj4ici4vaIuC0i3hgRD+46mCRpZSMLPCK2AD8ODDPzMcAG4PldB5MkrazpJpRTgY0RcSpwBnB3d5EkSU1ENjgmZkRcDlwJHAH+JjMvW2aaGWAGYDAYbJudnW0VZHFxkYmJiVbzrCfznpyFg4dXvH6wEQ4dGf/9Tm7ZNP4bpX/jO4p5u7WavNPT0/syc9hmnpEFHhHnAG8Bngd8Cvhz4LrMfMOJ5hkOhzk/P98mB3Nzc0xNTbWaZz2Z9+Rs3bl3xet3TB5l98L4f+nhwK7tY79N6N/4jmLebq0mb0S0LvAmm1CeCdyRmR/PzP8Brgee2iqZJGnsmhT4ncCTI+KMiAjgGcD+bmNJkkYZWeCZeQtwHXArsFDPs6fjXJKkERptZMzMK4ArOs4iSWrBb2JKUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVAWuCQVygKXpEJZ4JJUKAtckgplgUtSoUYWeEScHxEfWPL36Yh4+VqEkySd2MhDqmXmh4HHA0TEBuAgcEPHuSRJI7TdhPIM4N8z8z+6CCNJai4ys/nEEVcDt2bm65a5bgaYARgMBttmZ2dbBVlcXGRiYqLVPOvJvCdn4eDhFa8fbIRDR8Z/v5NbNo3/Runf+I5i3m6tJu/09PS+zBy2madxgUfE6cDdwAWZeWilaYfDYc7Pz7fJwdzcHFNTU63mWU/mPTlbd+5d8fodk0fZvTByC19rB3ZtH/ttQv/GdxTzdms1eSOidYG32YRyMdXS94rlLUlaG20K/FLgjV0FkSS106jAI+IM4DuA67uNI0lqqtFGxsz8LPDQjrNIklrwm5iSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVAWuCQVygKXpEJZ4JJUqKaHVHtIRFwXEf8SEfsj4ildB5MkrazRIdWAq4C3ZeZzI+J04IwOM0mSGhhZ4BFxNvB04EUAmXk/cH+3sSRJo0RmrjxBxOOBPcCHgMcB+4DLM/O+46abAWYABoPBttnZ2VZBFhcXmZiYaDXPejLvyVk4eHjF6wcb4dCR8d/v5JZN479R+je+o5i3W6vJOz09vS8zh23maVLgQ+CfgKdl5i0RcRXw6cz82RPNMxwOc35+vk0O5ubmmJqaajXPejLvydm6c++K1++YPMruhaZb+Jo7sGv72G8T+je+o5i3W6vJGxGtC7zJh5h3AXdl5i31+euAb22VTJI0diMLPDP/C/hYRJxfX/QMqs0pkqR11HQd9WXAn9Z7oHwU+KHuIkmSmmhU4Jn5AaDVthlJUrf8JqYkFcoCl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVAWuCQVqtEReSLiAPAZ4H+Bo22PnCxJGr+mx8QEmM7MeztLIklqxU0oklSoyMzRE0XcAXwSSOD3M3PPMtPMADMAg8Fg2+zsbKsgi4uLTExMtJpnPZn35CwcPLzi9YONcOjI+O93csum8d8o/RvfUczbrdXknZ6e3td283TTAv/azLw7Is4DbgJelpl/d6Lph8Nhzs/Pt8nB3NwcU1NTreZZT+Y9OVt37l3x+h2TR9m90GYLXzMHdm0f+21C/8Z3FPN2azV5I6J1gTfahJKZd9f/3gPcAHxbq2SSpLEbWeARcWZEnHXsNPAs4Laug0mSVtZkHXUA3BARx6b/s8x8W6epJEkjjSzwzPwo8Lg1yCJJasHdCCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVAWuCQVygKXpEJZ4JJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQjQs8IjZExPsj4sYuA0mSmmmzBH45sL+rIJKkdhoVeEQ8DNgOvL7bOJKkpiIzR08UcR3wWuAs4Ccz85JlppkBZgAGg8G22dnZVkEWFxeZmJhoNc96Mu/JWTh4eMXrBxvh0JE1CjMGo/JObtm0dmEa6NvrYZSvhLzT09P7MnPYZp6RR6WPiEuAezJzX0RMnWi6zNwD7AEYDoc5NXXCSZc1NzdH23nWk3lPzot27l3x+h2TR9m9MPLl2Ruj8h64bGrtwjTQt9fDKOZdXpNNKE8Dnh0RB4BZ4MKIeEOnqSRJI40s8Mz86cx8WGZuBZ4PvDMzX9B5MknSitwPXJIK1WojY2bOAXOdJJEkteISuCQVygKXpEJZ4JJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUCMLPCIeHBHvjYh/jojbI+IX1iKYJGllTY7I83ngwsxcjIjTgHdHxF9n5j91nE2StIKRBZ6ZCSzWZ0+r/7LLUJKk0RptA4+IDRHxAeAe4KbMvKXbWJKkUaJawG44ccRDgBuAl2XmbcddNwPMAAwGg22zs7OtgiwuLjIxMdFqnnFaOHi41fSDjXDoyHjue3LLpvHc0ArWe3yPN2q8xzm+a2FU3rV4jtvo2+thlK+EvNPT0/syc9hmnlYFDhARVwD3ZeavnWia4XCY8/PzrW53bm6OqampVvOM09ade1tNv2PyKLsXmnyEMNqBXdvHcjsrWe/xPd6o8R7n+K6FUXnX4jluo2+vh1G+EvJGROsCb7IXyrn1kjcRsRF4JvAvrZJJksauySLO1wDXRsQGqsJ/c2be2G0sSdIoTfZC+SDwhDXIIklqwW9iSlKhLHBJKpQFLkmFssAlqVAWuCQVygKXpEJZ4JJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqGaHBPz4RFxc0Tsj4jbI+LytQgmSVpZk2NiHgV2ZOatEXEWsC8ibsrMD3WcTZK0gpFL4Jn5n5l5a336M8B+YEvXwSRJK2u1DTwitlId4PiWLsJIkpqLzGw2YcQE8C7gysy8fpnrZ4AZgMFgsG12drZVkMXFRSYmJlrNM04LBw+3mn6wEQ4d6ShMB8zbrVF5J7dsWrswx1nutf3lNr59cex5Xk2fTU9P78vMYZt5GhV4RJwG3Ai8PTN/fdT0w+Ew5+fn2+Rgbm6OqampVvOM09ade1tNv2PyKLsXmnyE0A/m7daovAd2bV/DNF9qudf2l9v49sWx53k1fRYRrQu8yV4oAfwhsL9JeUuS1kaTbeBPA14IXBgRH6j/vrPjXJKkEUauk2Tmu4FYgyySpBb8JqYkFcoCl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVAWuCQVqskxMa+OiHsi4ra1CCRJaqbJEvg1wEUd55AktTSywDPz74BPrEEWSVILkZmjJ4rYCtyYmY9ZYZoZYAZgMBhsm52dbRVkcXGRiYkJFg4ebjXfehlshENH1jtFc+btlnm7VUreyS2bgC/2WRvT09P7MnPYZp6RR6VvKjP3AHsAhsNhTk1NtZp/bm6OqakpXrRz77gidWrH5FF2L4xt+Dpn3m6Zt1ul5D1w2RTwxT7rmnuhSFKhLHBJKlST3QjfCLwHOD8i7oqIH+4+liRplJEblTLz0rUIIklqx00oklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVAWuCQVygKXpEJZ4JJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQFrgkFcoCl6RCWeCSVKhGBR4RF0XEhyPiIxGxs+tQkqTRmhwTcwPwO8DFwKOBSyPi0V0HkyStrMkS+LcBH8nMj2bm/cAs8N3dxpIkjRKZufIEEc8FLsrMH6nPvxB4Uma+9LjpZoCZ+uz5wIdbZtkM3NtynvVk3m6Zt1vm7dZq8n5dZp7bZoaRR6UHYpnL/l/rZ+YeYE+bO/+SO4mYz8zhaudfa+btlnm7Zd5urVXeJptQ7gIevuT8w4C7u4kjSWqqSYG/D3hURDwyIk4Hng+8tdtYkqRRRm5CycyjEfFS4O3ABuDqzLy9gyyr3vyyTszbLfN2y7zdWpO8Iz/ElCT1k9/ElKRCWeCSVCgLXJIKVXSBR8SFEfHI9c7RlHm7Zd5ulZS3pKyw+rxFfohZ/xbLLPAp4AvAFZn5rvVNdWLm7ZZ5u1VS3pKywsnnLWIJPCIeFhFnL7noecBbMvPpVA/+0oh4yvqk+//M2y3zdqukvCVlhfHn7XWBR8S3RMRfAe8GfjEijv2I1ueAM+rTb6b6zYEnR8RyX/tfM+btlnm7VVLekrJCd3l7V+ARceaSs48H7srMrcA7gV+rL/8E8PmIOCszPwH8KzAAtq5hVMC8XTNvt0rKW1JWWJu8vSjwiDgnIq6JiPcBuyLi3Pod6LHAP0REZOZbgU9FxHaqB3kWMFnfxL9R/frX/eY1r3m/fPKWlHU98vaiwIGnA0eB76T69cNXAmdT5fvq/OInrdcC3w+8F/gM1UEmyMz3ABcCnzavec37ZZW3pKxrnzcz1+yP6rdUXgy8i+q3wzfXl78Z+PH69COBXfX1T6TaZrShvm4C+Hh9O1uA/cBLgT8Cfhc4w7zmNW95eUvK2qe8a70EfgnwbOAXgKcAv1JffhPw1Pr0x4C/By7OzPdRvYtNA2TmInAL8MTMPAi8kGp70X8BP5OZnx1HyCUfIHxXCXmXcHwd31LH17FdRd4mB3Ropd7GkxHxRKpVhL8H9mbm54FvAj6ame+MiDuAX42IZwH7gO+JiM2ZeW9E/BtwX0Q8Avht4AURcR7Vb5H/N9VqB5k5D8yPKfcQ+BGq1ZlfBe4Bvr7HeR1fx3dp3t6Pr90w/rxjXQKPiLPrJ2gKuJpqF5lnAq+tJ/kC8K8RsTEz76BabXgs1cDcTbVPJMD/Uq1anAK8heqnGS8DtgF7MvMLY8o7EREPjohr6/u5A7gqM++JiFOo3jH7lPeh9b9PBa6h/+N7TlT7ve4Brqf/43teRDy0/g97Lf0f380R8a0R8TrgBno8vhFxet0N3061maDvY3taRGyMiGvoczeMYVvQGcAPAn9LtUM6wE8AP1afPgf4IPCE+kHtArbW111SP6DN9ekFYBPVRvy/Ak5fcj+nnGzW4/K+E3hTfdkvAy9eMs2p9b8vBV6zXnn54jdlv5dq+9kc1fFGX97H8T0u7z8A76B6UfdyfOvbORN4EdWq72Fge1/H97i876BagntOX8cXOA14CfCXwO8B3whc3uOxPZb3Rqql5QvqTL0b2wduawwP+I76CbpoyeV/fOxJqs+/mupd96uolswvri8/m+rgx2fX519e/0faXz+hMa4HOiLvC4CrqJYGrqH60OGr6hfc69crb30fm4A/B5675LI/6eP4rpC3l+Nb3/+t9Xg+CfgQ1e5cV1F/ENWn8V0m7+1US3Lbgdf1cHxfDlwHPIPqg7lXAH8B/GjfxvYEeX+GqtB/narIezO2D2Qew4O+HrjsuMueB9yy5PzXAnfXp3+M6iuj5wAbqcr0EUum3dzFAx2R9xF1pjcBlwK/CbytJ3lfAry6Pn1sCfc5PR7fB/LW5zcCX1NnenOfxpdq1fZBS85fDTwX+O4+ju8yeV9PtTR+Xh9fv/V9/UB9+oeBl9Xd8N6+je0yeX8I+Om6G97Ut7F94D7G8KAvodoZfTfVKv7PAV9H9Q2j85ZMdxPwpPr0a4C/oVoF/KmuH+QKeW8Gfp7qA4UtS6Y5rX4sF9bnr1zHvN9XZ7mMaunr2rpgDi99gfRofJfm3Qe8geoT+6Uv7N6M75JMD6VaEnwm1fbKT1Dtt9ur8V0m77Pq8717/VK9mf8t1RrZx6jecC4APgmc27exPS7vnVRv6N8CPLxvY/tAnjE98LdT7bD+cKp3qsuB91CVeVCtcrz+2H/iehAeAzx4rR/wMnn/lOprrY9acv1XU60uPXa98wKPqsfyt6je6b+fapXu41SrpKf0aXyXyfu9VEveF/dxfI/L/n7gOfXpNwC/XJ/uzfguk/fZ9elTllzem/Gl2nvjaqptwz8PXEG1qeGVfXvtLpP3VcAfAE/u49hmjm8/8O/JzF/KzI8Bv0S1S9BvU61WvJXqXW1DZt4JkJn/k5m3ZebnxnT/J5P3tVRPykMi4nER8SqqzSyfzcwP9iDvnVRfqz01Mz9J9QHLnfW/Z9C/8T0+716qbctPiIhv7uH4Uu9VANUHxd9Yn76yuir+kn6N74nynlLvkfJK+jW+jwbmMvNeqjWGDcAb6W83LM17LXAE+IaIuKCPr92x7AeeX7rT+aeoCvxnM/PPIuIFwO2Z+f5x3Nc4HJf3M1Q70O+nesc9jeoDwl7kzczPR8QuqlVLqJZangLsysz39218l8l7OtVq6Kup9v45nR6NL0BmfiEijv0i3Efqy/YDr4iIy4AP9TjvgfqyoxHxfKrXRy/GNyI2AHdRfb38j4H7qL6R+JLMvKNvr91l8n6Oao3yV6g2rzyInoztMWM5oENEPAi4iOrbRBdQ7TL0u5l59KRvvAPL5N2Tmb+xvqlWFhFXUn154AlU29yuqJdwe+m4vO8AXpHj/2bkWEXEh4Gfy8w3HfvSyXpnWsnSvOud5UQi4huodq+7n+r1cAPwmqy+idg7y+R9K/CqzFyTH8Nqa2xH5ImIF1PtjP8n67j601hpeQEi4nzgP8w7Xku+Ifh4ql3zjva5vAvM+wiqJdl/zMwj651nlJLyFnlINUlSf35OVpLUkgUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCvV/lB5wvNLpa1EAAAAASUVORK5CYII=\n",
"text/plain": [
- ""
+ ""
]
},
- "metadata": {},
+ "metadata": {
+ "needs_background": "light"
+ },
"output_type": "display_data"
}
],
@@ -2512,9 +661,7 @@
{
"cell_type": "code",
"execution_count": null,
- "metadata": {
- "collapsed": true
- },
+ "metadata": {},
"outputs": [],
"source": []
}
--
2.18.1