From 0fdc494aaffe42fa3d6bf46f55921b70e1eee27a Mon Sep 17 00:00:00 2001 From: David Pinaud Date: Fri, 18 Aug 2023 15:58:37 +0200 Subject: [PATCH] modif exo 2 D Pinaud --- module2/exo1/toy_document_fr.Rmd | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/module2/exo1/toy_document_fr.Rmd b/module2/exo1/toy_document_fr.Rmd index fa98688..fc4996a 100644 --- a/module2/exo1/toy_document_fr.Rmd +++ b/module2/exo1/toy_document_fr.Rmd @@ -12,7 +12,7 @@ knitr::opts_chunk$set(echo = TRUE) ## En demandant à la lib maths -Mon ordinateur m’indique que $\pi$ vaut *approximativement* +Mon ordinateur m'indique que $\pi$ vaut *approximativement* ```{r pir} pi @@ -20,7 +20,7 @@ pi ## En utilisant la méthode des aiguilles de Buffon -Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** : +Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ : ```{r buffon} @@ -33,7 +33,7 @@ theta = pi/2*runif(N) ## Avec un argument “fréquentiel” de surface -Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X∼U(0,1)$ et $Y∼U(0,1)$ alors $P[X^2+Y^2≤1]=\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/Méthode_de_Monte-Carlo#Détermination_de_la_valeur_de_π)). Le code suivant illustre ce fait: +Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2\leq 1]=\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/Méthode_de_Monte-Carlo#Détermination_de_la_valeur_de_π)). Le code suivant illustre ce fait: ```{r frequentiel} set.seed(42) @@ -44,7 +44,7 @@ library(ggplot2) ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() ``` -Il est alors aisé d’obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X^2+Y^2$ est inférieur à 1: +Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X^2+Y^2$ est inférieur à 1 : ```{r approx} 4*mean(df$Accept) ``` -- 2.18.1