Delete module2_exo1_toy_notebook_fr.ipynb

parent 10fd4ad9
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"toy_notebook_fr\n",
"\n",
"March 28,2019"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 1 A propos du calcul de $\\pi$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1.1 En demandant à la lib maths"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Mon ordinateur m'indique que $\\pi$ vaut _approximativement_"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.141592653589793\n"
]
}
],
"source": [
"from math import *\n",
"print(pi)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1.2 En utilisant la méthode des aiguilles de Buffon"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme approximation :"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3.144654088050314"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
"np.random.seed(seed=42)\n",
"N = 1000\n",
"x = np.random.uniform(size=N, low=0, high=1)\n",
"theta = np.random.uniform(size=N, low=0, high=pi/2)\n",
"2/(sum((x+np.sin(theta))>1)/N)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1.3 Avec un argument \"fréquentiel\" de surface"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si X et Y alors $\\X^2$ + $\\Y^2$ <=1} = pi/4$ ([voir méthode Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)\n",
"). Le code suivant illustre ce fait :"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAD4CAYAAAADxDimAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAaFElEQVR4nO2df4xU13XHP4c12JiY3WDWjovZgq11YxfFVby2k6ht3EapwZFCIkWq7ahJrUQIKUT901alJpHyT/JHpTSKE4Qsy8k/QZESpaQisZpWqS1RbEByHMAyi3EMCzQGE7AFxhg4/ePNmGGYH29m3o9z7z0fabX73tzdOfP23XPP+d5z7xNVxXGcNJlXtwGO49SHOwDHSRh3AI6TMO4AHCdh3AE4TsJcVdcbL126VFesWFHX2ztOEuzateu4qk52e702B7BixQp27txZ19s7ThKIyGu9XvcUwHESxh2A4yRMXwcgIk+KyOsisrvL6yIi3xWR/SLyooh8uHgzHccpgzwRwFPA6h6vrwGmG1/rgB+MbpbjOFXQ1wGo6jPAiR5N1gI/0oztwISI3FSUgY7jlEcRswDLgEMtx3ONc0fbG4rIOrIogampqQLe2gmWEydgdhZOnoSJCZiehiVL6rYqOYoQAaXDuY5LDFV1k6rOqOrM5GTXqUkndk6cgOeeg3fegeuvz74/91x23qmUIhzAHLC85fhm4EgBf9eJldlZWLQo+xK59PPsbN2WJUcRKcAWYIOIbAbuBU6p6hXhv2OMOkPwkyezkb+Va6+FN96o5v2d9+jrAETkx8B9wFIRmQO+DswHUNWNwFbgAWA/cAZ4pCxjnYJohuCLFmUd8cyZ7Pjee6txAhMT2XsuWnTp3Jkz2XmnUvo6AFV9qM/rCnylMIsqImkNqjUEh0vfZ2czJ1A209OZw4Fs5D9zBk6fhlWryn9v5zKSrARMXoM6eTLreK1ce212vgqWLMkczdVXZ2H/1VdXF304l1HbYqA6qXsArB0LIXjTCTi1kmQEUPcAWDvT01nIffo0qF76eXq6bsucikkyArAwANZKc/Sdnc1C8ImJLP/2ENweJYtVSTqA4DWoIm4KD8HtU8FsTZIpQNAaVPIKZkJUUDCVZAQAAQ+AySuYBqhqDrmCgqkkI4CQaA74Tz+dfX/z4MnEFcyaqTICa4pVrRQsVrkDMEyne2333ASn/q/cm8LpQZXrGCqYrXEHYJhO9xrT0xyd9Sm82qhyDrkCscodQAfaw+669LVO99qCDyzhyPJQFcwIqCAsv4wlSzLnPjGR3RCzs4XekMmKgN2oe51MK93qFRYtD1XBNMYwYl7Vc8gl35DuALj8Pjh8GG64wYbIXvS9lswCqDwfdNiOVXURVcmzPsmnAO1C24kT8MorcOrUpTZ1iexFpoDNz3nsGBw9Cs8+Cz/8YfZZoyKvSj+KmNf8x9x/f/mhYcmaQzARQFmjV7uDnZyEN9+EQ4dgfDw7V6fIXlS9wuwsXLgABw7AwoVw443ZtdyyBb74xYgigbwjZiibkpRctx5EBFDm1Gu7g12+HC5ezEbKmET2kyfh+PGs8y9cmA16ExOZU4hqJ668I2bVYt6wlDwVGIQDyBOtDavct98H4+Nw663ZiBiTyD4xkTmAa665dO7sWVi6NLIaorwdO5QVkSVPBQaRAvSL1kYRSjsJbWNj8JnPXP67oQto09Owbdsl+8+ehbffhptusjfojURe5TSkFZEl1q0HEQH0c+pF6Dm9HGwM62+WLIFPfxrOn4c//AHmz4dbbsmcnbVBbyQGGTGrFPOMEkQE0M+pj6rn9HOwsay/ufXWTPAbOZKxHg4Fu9KreoJwAP2itbI3+AhFMM7DyH3DUqWUMzJBOADofeOWXZyV/A5CrcQSDjlAIBpAP8peMxGKYFwJyW+oGBfBRAD9KDPtC0kwLh0Ph6IiGgdQNq4rNQh+Q0WnFXcAzmD0CIesTw44V+IOwBmcDuGQTw6ESRQioFM//sTvMPEIYAg81L0Ss7US/s/qiUcAAxJDWXAZmFxc5/+svngEMCDtdTDnz8Nrr8G+ffCRj6Q7wIw0OVDVZg9etHQFHgEMSGsdzKlTsHs3zJuXfY0ywFjZiHRYhi7GqnKzB/CipTZyOQARWS0iL4vIfhF5rMPr4yLyCxH5rYjsEZFHijfVBq2h7qFDlzbXWLx4eOErlkh1qMV1ZaqHJvMSW/R1ACIyBjwOrAHuAB4SkTvamn0F2KuqdwL3Af8qIgsKttUErWXBb76ZlQa//Xa2kxAMN8AkraCXOUp7DXdf8kQA9wD7VfWAqp4DNgNr29oocJ2ICPA+4ARwvlBLjdAa6l68mH2tWjXa/oFJR6pljtJBPwW2GvKIgMuAQy3Hc0C7gvI9YAtwBLgO+HtVvdj+h0RkHbAOYGpqahh7TdC8r5rC11VXZQPMsFWxSZfXl11a7DXcPckTAUiHc9p2fD/wAvAnwF8A3xORxVf8kuomVZ1R1ZnJyckBTR2dooW2ogaYpCNVH6VrJU8EMAcsbzm+mWykb+UR4FuqqsB+EXkV+CDwfCFWFkBZpapFDDDJrzb0Ubo28jiAHcC0iKwEDgMPAg+3tTkIfAJ4VkRuBP4MOFCkoaNifUrY+4BTB30dgKqeF5ENwNPAGPCkqu4RkfWN1zcC3wSeEpHfkaUMj6rq8RLtHpgiS1W9utSJhVyVgKq6Fdjadm5jy89HgL8r1rRiKUpo81VvTkwkUwlYlNCW9Jy905/ASjqTcQBFic1Jz9k7vQmwpDOpxUBFCG1Jz9k7vbGuNHcgmQigKJKes3d6E2B46A5gQLxuxelKgIuPkkoBiqKqOXufbgyMAHdM9gjAKCHoSYEJ3uUTYHjoEYBRrOtJXg/RhcBKOj0CMIp1PcnrIeLAHYBRrOtJ1h2Uk48kUoAQxTTrepLXQ8RB9BFACGJaJ6zrSV4PEQfRRwDWxbReWNaTkt/DIBKidwBmn1gTAZYd1ECEmCMWRPQpgHUxzamZUHPEgojeAXiu6vRkdhYuXIBXX4Xt27PvFy4kM58ZvQOwLqY5NXPwILzyCpw7l+3tfu5cdnzwYN2WVULUGkB7anf33d7xnTbeeit7rtvChdnxwoVw9mx2PgGijQAST+2cvCxenD3d5e23Lz3m6eLF7HwCRBsBhDz91yRhcbo6li+Ha67J8sNTp+C66+Cmm6CG51bUQbQRQOilqh7BVMT0NIyNwcqV2fPdV67MjhNRiaN1AKFP//lim4pIXCWONgWwXkvfDy9gGo6h0qZoKpoGJ9oIIHTHHnoEUweeNg1OtBEAFOvYqxbkQo9g6hAwKxF+q/hgFV68aCOAIilyZMm7jVbIEUxdI3Hpwm8VH6zii+cOIAdFCXKD/m+bTuD++8Pp/FCfgFl62lTFB6v44rkDyEFRI0sqyn5dU7Clr/uo4oNVfPHcAeSgqJEl9NqEvNQlYJaeNlXxwSq+eFGLgEVRlCCXZxutGKr/6hQwS53Rq+KDVXzxPALIQVEjS78QNZZprJAFzJ5U8cEqvniiqv0biawG/g0YA55Q1W91aHMf8B1gPnBcVT/e62/OzMzozp07B7c4cHqN8M3O3xohnD596R5wnEERkV2qOtPt9b4pgIiMAY8DnwTmgB0iskVV97a0mQC+D6xW1YMicsPIlkdKrxDVq/+cqsmjAdwD7FfVAwAishlYC+xtafMw8DNVPQigqq8XbWgK+FbbTl8KFonyaADLgEMtx3ONc63cBrxfRH4jIrtE5Aud/pCIrBORnSKy89ixY8NZHDG+fZnTkxJEojwOQDqcaxcOrgLuAj4F3A/8i4jcdsUvqW5S1RlVnZlMZL31IEQrnjnFUEIhSZ4UYA5Y3nJ8M3CkQ5vjqnoaOC0izwB3AvuGtixREl6Y5vSjBJEoTwSwA5gWkZUisgB4ENjS1ubfgb8SkatE5FrgXuCloa1yHOdKSigS6usAVPU8sAF4mqxT/0RV94jIehFZ32jzEvAr4EXgebKpwt1DW+U4zpWUIBLlqgMog1TrABxnJAacBRi5DsBx6iCGkuhSKFgk8lJgxxyxlESHgDsAxxypLJu2gKcANeOh7pV4SXR1uAOokWaou2hRdsOfOZMd9yv+id1peEl0dXgKUCPDhLop5MdRlUTn3QSyJtwB1MgwOwSlkB9HUxIdgLf2FKBGhgl1U8mPoyiJDuABlR4B1Eh7qHv0KOzalT2avttA4Q8MCYgANoE0GwH0E7piEMKao9zsLPz+93DoUPY5PvCB7oJg6A8MSYoA1EyTEUC/1CmA1Co3TSewfDncdVf2ZOpeuX0s+bFxbawYAlAzTUYA/VKnAFKrgRkkt7eQH48SgQ07/RkcrSHeG29kF2rVKlMf0qQD6NUZTpyA7dth3jxYvDgbOcfHwxfCAogW32PUDhyjA++KBW/dA5MpQDeha9687Ea7+urs69w52L0bTp2y21nyEkC0+B6jTkUGoI0Vj9Gcx6QD6NYZVLMb7bbb4OzZrO0118C+fXY7S15Cyu1H7cDJzWQYFq1MOoBunUE1u9HGx7NUasGC7Fq+847dzjIIoTwMdNQOHFK0UwiGq7dMagDQOXVqzZPHx7Ov5oMzrHaWGBl1KjIAbaxYDFdvmXUAnfA5cBsU0YGNa2PFYljhDcoBJDdyGCapDjwqhkeuoBwA+I3nBIjhkSs4B+A4QWJ05DI5C+A4TjW4A3CchHEH4DgJ4w7AcRLGHYDjJIzPAjhOCzFsNDMIHgE4TgPDa3ZKwyMAp1YsjbhJ7VPQIAoHYOkmcvJjbWcgw2t2SiP4FCDFsC0WrK2STW6fAnI6ABFZLSIvi8h+EXmsR7u7ReSCiHyuOBN7Y+0mcvJjbWeg5PYpIIcDEJEx4HFgDXAH8JCI3NGl3beBp4s2shfWbiInP9ZG3JB2ZSqKPBrAPcB+VT0AICKbgbXA3rZ2XwV+CtxdqIV9MLzU2umDxVWyRtfslEaeFGAZcKjleK5x7j1EZBnwWWBjcablY5in6zg2SHHEtUaeCEA6nNO24+8Aj6rqBZFOzRt/SGQdsA5gamoqp4m9GebpOo4dUhtxrZHHAcwBy1uObwaOtLWZATY3Ov9S4AEROa+qP29tpKqbgE0AMzMz7U5kaFpvohtuSGse13FGIY8D2AFMi8hK4DDwIPBwawNVXdn8WUSeAv6jvfNXQYrzuI4zCn0dgKqeF5ENZOr+GPCkqu4RkfWN1yvP+7uRuiDoBVHOoOSqBFTVrcDWtnMdO76q/uPoZg2HRVW5KqxV1VWBO7zRCb4SsJWUVeXUCqK8ArQYolgL0EqqqnJq+keKC3fKIDoHkCpl6h8WQ+3UHF5ZRJUCpExZdexWQ21rZcRg9gHAPXEHEAll6R9WtYUiHV4RHbdQR1mhJ3EHEBFlPF3Y6mKrohxeUR23MEdZccjlGoDTE8u1FUUIvkWJiYVpEhWrmx4BOD2JfY18vwgnbzRemCZRccjlDoB6xRvrwlHstRW9Ou4g0XhhjrJidTN5B1Cnym1VYW+nDG2hSno52V4dd5C8vjBHWXHIlbwDqFPltqqwx0Q/J9ur4w4ajRfiKCsOuZIXAessKPFilvLJo6l1ExNrE0ArLGdNPgKos6DEYjFLbIyiqZVdXGVB90neAdSpcseusFtgFCdbRjRuTfcJIgUosxa9dUuxN97I/v6qVdUIXXW+dyqMukS86Gjc2iIm8w6ginXuZadcvRxYqqsXq8Kak7Wm+5h3AFY85rBRSIobdVjDkpO1VllpXgOwUIs+St7mU31OK9Z0H/MOwIJSPkontuDAHDtYq6w0nwJY2OdvlLzNWsjn1I+llMR8BGDBY44ShQwa8lmaI3bix3wEAPV7zFGikEFUaKuCocUtwZxiCMIBVE2nG36UqaS8DszKjEcrVp2SUwzuANrodcOX3QktzBG3O79Tp+w5pViwEFmZ1wC6UVauXOe0Xd0zHt2mO9999/J2Mc5iVK29WCkJDtIBlHnx6py2q3uOuJPzm5y80vnFNotRR2e0Uh8SpAMo8+LVOQrXNePR7AC//jUcOJCF/U2mp+H48bhXxNXRGa3UhwSpAZSZK7cq/u++m90Ex49nHfHEifI7Y9UzHq2ax7Jl8NZbsHt3JnKOj8P8+Zc7pSJq6a0Ji3nup6LzdSv1IUFGAGWO0s0OePYsbNuWnfvoR7MOUPdIVQato9/UVDbKi8DBg5dG+7vuKnZLMCvhb5N+91MZKULd6V6TIB1A2RdvyZJs9Pv4x+Huu7Mboe6btCxaQ9Hx8Wx0v+46OHy4vBTESvjbpN/9VIbDslDgBoGmAFUs8bQwJVcF7aHo+Djccgvcfnt5qYiV8LdJv/uprHuh7gI3CNQBQPkXz9pNWhZ1rLWwsL6jnV73U8z3Qq4UQERWi8jLIrJfRB7r8PrnReTFxtc2EbmzeFOrxUqOVjZ1hKJWwt+8xHwviKr2biAyBuwDPgnMATuAh1R1b0ubjwEvqeofRWQN8A1V7Tk+z8zM6M6dO0e1v1QsVGo5Ngj1XhCRXao60+31PCnAPcB+VT3Q+IObgbXAew5AVbe1tN8O3DycubawkKM5Noj1XsjjAJYBh1qO54Bel+JLwC87vSAi64B1AFNTUzlNdKwS6qiYl9g/H+TTAKTDuY55g4j8DZkDeLTT66q6SVVnVHVmcnIyv5WOOazUspdF7J+vSR4HMAcsbzm+GTjS3khEPgQ8AaxV1cgmy5x2rBXzdGPYkuNQPt+o5HEAO4BpEVkpIguAB4EtrQ1EZAr4GfAPqrqveDMda1gr5unEKKN4CJ+vCPo6AFU9D2wAngZeAn6iqntEZL2IrG80+xpwPfB9EXlBRGzL+87I1L10OQ+jjOIhfL4iyFUIpKpbga1t5za2/Pxl4MvFmuZYxmIxTzujVPBZ+nxlipFBrgVw6ieEYh5rzwUchrLFyGBLgZ36sT43bu25gMNQ9j6R7gCcaLH2XMB+dAr1y16U5g7AiRoLo3geum2SMjZW7kKk5BxACtVdTnh0C/XfeSdLW6AcMTIpETCV6i4nPLrVHVy8WK4YmVQEYPHBG44DvfccKDONicYB5AntU9nlxwmPuuoOokgB8ob2qVR3hYqlrcKrpq66gygigLyhvaXqriKISdC0tlV4HdQxYxFFBJB34YaV6q4iiE3QTGX1nTWiiAAG2bQxlHnhfsQmaLo+Uw9RRAAxb9rYjdiWq7o+Uw9RRACDlnxayJ1HtSG2rapj02dCIYoIAC45gX6Pr7KQOxdhQ2xRT0z6TEhEEQEMgoXcuQgbQlvokodY9JmQSM4BWBCbirLBO8yVWEjvQiKaFCAvFsQmCzbEiIX0LjSScwAWcmcLNsSI1xIMTnIOwILYZMGGGIltarQKktMAwEbubMGG2IhtarQKknQATjnULcB5LcHgJJcCOOVgQYDz1GpwoosA6h6FUsVCfQV4ajUoUTkAX1JaH1XUV7hzL56oUoBUp4EsbKRRdm2DhRQjRqJyAClOA1npGGXXNqTq3MsmKgeQYoWdlY5RtgCXonOvgqg0gKqmgSzlohbWNjQpU4DzOf5yiCoCqGIayErI3SSVqMfLp8shqggAyp8GsjLd1STE4pdhIqgYlz9bIFcEICKrReRlEdkvIo91eF1E5LuN118UkQ8Xb6oNrOWioRW/jBJB5d30xclP3whARMaAx4FPAnPADhHZoqp7W5qtAaYbX/cCP2h8jw6LuWhIxS/WIqjUyRMB3APsV9UDqnoO2AysbWuzFviRZmwHJkTkpoJtNYHnoqNhLYJKnTwOYBlwqOV4rnFu0DaIyDoR2SkiO48dOzaorSYILeS2RiqiZSjkEQGlwzkdog2qugnYBDAzM3PF66EQUshtjRBFy5jJEwHMActbjm8GjgzRxnE8gjJGnghgBzAtIiuBw8CDwMNtbbYAG0RkM5n4d0pVjxZqqRMNHkHZoa8DUNXzIrIBeBoYA55U1T0isr7x+kZgK/AAsB84AzxSnsmO4xRFrkIgVd1K1slbz21s+VmBrxRrmuM4ZRNVKbDjOIPhDsBxEsYdgOMkjGTpew1vLHIMeK1Ps6XA8QrMGRbr9oF9G63bB/Zt7GXfn6rqZLdfrM0B5EFEdqrqTN12dMO6fWDfRuv2gX0bR7HPUwDHSRh3AI6TMNYdwKa6DeiDdfvAvo3W7QP7Ng5tn2kNwHGccrEeATiOUyLuABwnYUw4AOt7Duaw7/MNu14UkW0icqcl+1ra3S0iF0Tkc1Xa13jvvjaKyH0i8oKI7BGR/7Fkn4iMi8gvROS3DfsqXfAmIk+KyOsisrvL68P1EVWt9YtsheErwC3AAuC3wB1tbR4Afkm28chHgOeM2fcx4P2Nn9dYs6+l3X+TLer6nMH/8QSwF5hqHN9gzL5/Br7d+HkSOAEsqNDGvwY+DOzu8vpQfcRCBGB9z8G+9qnqNlX9Y+NwO9mGKFWR5/oBfBX4KfB6hbY1yWPjw8DPVPUggKpWaWce+xS4TkQEeB+ZAzhflYGq+kzjPbsxVB+x4AAK23OwJAZ97y+ReeKq6GufiCwDPgtspB7yXMPbgPeLyG9EZJeIfKEy6/LZ9z3gdrKdrn4H/JOqXqzGvFwM1UcsPBiksD0HSyL3e4vI35A5gL8s1aK2t+1wrt2+7wCPquqFbACrnDw2XgXcBXwCWAj8r4hsV9V9ZRtHPvvuB14A/ha4FfhPEXlWVd8s2ba8DNVHLDgA63sO5npvEfkQ8ASwRlWrfDJfHvtmgM2Nzr8UeEBEzqvqzyuxMP//+LiqngZOi8gzwJ1AFQ4gj32PAN/SLOHeLyKvAh8Enq/AvjwM10eqEjF6iBtXAQeAlVwSYP68rc2nuFzgeN6YfVNk26F9zOL1a2v/FNWLgHmu4e3AfzXaXgvsBlYZsu8HwDcaP99Itj/m0oqv4wq6i4BD9ZHaIwA1vudgTvu+BlwPfL8xyp7XilaP5bSvVvLYqKovicivgBeBi8ATqtpxyqsO+4BvAk+JyO/IOtmjqlrZEmER+TFwH7BUROaArwPzW+wbqo94KbDjJIyFWQDHcWrCHYDjJIw7AMdJGHcAjpMw7gAcJ2HcAThOwrgDcJyE+X/wRhWjvff14AAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"\n",
"np.random.seed(seed=42)\n",
"N = 100\n",
"x = np.random.uniform(size=N, low=0, high=1)\n",
"y = np.random.uniform(size=N, low=0, high=1)\n",
"accept = (x*x+y*y) <= 1\n",
"reject = np.logical_not(accept)\n",
"\n",
"fig, ax = plt.subplots(1)\n",
"ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n",
"ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n",
"ax.set_aspect('equal')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Il est alors aisé d'obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois, en moyenne, $X^2$ + $Y^2$ est inférieur à 1:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3.2"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"4*np.mean(accept)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.13"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment