diff --git a/module2/exo3/exercice.ipynb b/module2/exo3/exercice.ipynb index 0bbbe371b01e359e381e43239412d77bf53fb1fb..380ff5b1c1018922ccec84c8c826334b1f65f01f 100644 --- a/module2/exo3/exercice.ipynb +++ b/module2/exo3/exercice.ipynb @@ -1,5 +1,63 @@ { - "cells": [], + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "tab = np.array([14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0])\n", + "plt.plot(tab)\n", + "plt.grid(linestyle='--')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAH6FJREFUeJzt3X9MXeed5/H3l0tMnGAajGvAxjY4wijgiATdDkNL7TSjut3WUpJRs9pGO020WaWRWmsmSpW2q6qttFl1UrljKdZqkhk5qqdad7XR7CSVVW1SpcEOWoSCaWnAXszY+AeOwfGPFJO4OFye/ePeS7PZmvM8QDicy+clIbg3cO43n/ucr+997jnPMeccIiKSfEVxFyAiIgtDDV1EpECooYuIFAg1dBGRAqGGLiJSINTQRUQKhBq6iEiBUEMXESkQaugiIgWieDEfbM2aNa62tnYxH3JBXb9+nRUrVsRdxpKnnKIpIz/KKevIkSMXnXOfjPq9RW3otbW19PT0LOZDLqiOjg7uueeeuMtY8pRTNGXkRzllmdlpn9/TlEuA5ubmuEtIBOUUTRn5UU5h1NADXL16Ne4SEkE5RVNGfpRTGDX0ACdPnoy7hERQTtGUkR/lFEYNXUSkQKihB0jyETqLSTlFU0Z+lFMYNfQAq1evjruERFBO0ZSRH+UURg09QG9vb9wlJIJyiqaM/CinMGroIiIFQg09QHl5edwlJIJyiqaM/CinMLaYF4lOp9MuyWeKinwcqms2Mnru7KI/btX6DZwfObPojyvhzOyIcy4d9XuLeup/0h06dIjt27fHXcaSp5yifTij0XNn2fTtg4tew+lndi76Y4bSWAqjKZcAi/luJsmUUzRl5Ec5hVFDD2BmcZeQCMopmjLyo5zCqKEH0Fs/P8opmjLyo5zCqKEH6Ovri7uERFBO0ZSRH+UURg09wJUrV+IuIRGUUzRl5Ec5hVFDFxEpEGroAVpaWuIuIRGUUzRl5Ec5hVFDD3D58uW4S0gE5RRNGflRTmHU0AOcOnUq7hISQTlFU0Z+lFMYNXQRkQKhhh5g8+bNcZeQCMopmjLyo5zCqKEHWLVqVdwlJIJyiqaM/CinMGroAXSSgx/lFE0Z+VFOYSIbupltMLPXzeyYmQ2Y2V/n7l9tZr8ys6Hcdy1cLCISI59X6FPAk865O4A/B75hZo3Ad4DXnHP1wGu52wWtoqIi7hISQTlFU0Z+lFOYyIbunDvvnOvN/XwVOAasB+4D9ud+bT9w/8dV5FLR1NQUdwmJoJyiKSM/yilM0By6mdUCdwPdQKVz7jxkmz6wdqGLW2oOHz4cdwmJoJyiKSM/yimM9xWLzKwU+Gfgb5xz477rFJvZY8BjAOvWraOjowPIHo60atWqmQ89KioqaGpqmnkCi4uLaW9vp7e3l/HxcQDS6TRjY2OcPZu9XFd9fT0lJSX09/cDsHbtWrZs2UJnZycAJSUltLW10dPTw8TEBACtra2MjIxw7tw5ABoaGkilUhw9ehSAqqoq6urq6OrqAmDlypW0trbS3d3NxMQEHR0dtLW1MTw8zOjoKACNjY1kMhkGBwcBWL9+PTU1NXR3dwNQWlpKOp2mq6uLyclJANrb2zl+/DgXLlwAYOvWrUxOTjI0NATAhg0bqKysJH/JvrKyMlpaWujs7GRqagqAbdu2MTAwwKVLlwBobm7m6tWrnDx5EoDa2lpWr149c+X08vJympubOXToEM45zIzt27fT19c3swhSS0sLly9fnjmhYy7PUyaT4cSJE7E9T9euXQMIep5+97u3OHPmND/5yU/4/ve/T1lZGQDf+973+MpXvsJdd90FwAsvvEB5eTkPPPAAAK+//jq9vb08+eSTAJw5c4Znn32Wp59+mptvvhmAp556ikceeYTGxkYAnn/+eb71rW9x5MgRAHbs2MH4LY6Hbs9ktzFhvDic4omtUxQZTDvY01/Mg3UZNpZmL/hw4ESK2lLHpyunATg8WsTYNePBuuw2To4bL58u4ok7s7evT8PegWIeuj1D9S3ZbfyounrJP08TExMMDQ0t6/0pnY688twMr2uKmtlNwEHgFefc3+XuGwTucc6dN7NqoMM51zDbdpJ+TdHOzk7a29vjLmPJS2JOZraol4Hb1TTF3oHs66nTz+yM7RJ0S/2KQEkcSx8H32uK+hzlYsA+4Fi+mef8Ang49/PDwMtzKTRJNLD8KKdo+WYus9NYCuMzh/4Z4K+Ae83st7mvLwF/C3zezIaAz+duF7T8Wy2ZnXKKlp9ekdlpLIWJfJngnOsEbjRh/hcLW87Slp/Tktkpp2j5eWyZncZSGJ0pKiJSINTQA4R82rycKado/zSUiruERNBYCqOGHmBsbCzuEhJBOUW74zZNufjQWAqjhh4gf7yuzE45RfvUJ6fjLiERNJbCqKGLiBQINfQA9fX1cZeQCMop2q/f1q7nQ2MpjEZVgJKSkrhLSATlFG38ut/SGcudxlIYNfQA+TUuZHbKKdr9tTqxyIfGUhg1dBGRAqGGHmDt2oJfIXhBKKdog7/XlIsPjaUwaugBtmzZEncJiaCcor06ol3Ph8ZSGI2qAPl1oWV2yinaribNofvQWAqjhi4iUiDU0APoECo/yinae1OaQ/ehsRRGDT1AW1tb3CUkgnKK9twxLc7lQ2MpjBp6gCRfPm8xKadoD9drDt2HxlIYNfQA+QvjyuyUU7Q1N2u1RR8aS2HU0EVECoQaeoDW1ta4S0gE5RRt36Dm0H1oLIVRQw8wMjISdwmJoJyitazRlIsPjaUwaugBzp07F3cJiaCcot1doQtc+NBYCqOGLiJSINTQAzQ0NMRdQiIop2ivaC0XLxpLYTSqAqRS+iDLh3KK9oFmXLxoLIVRQw9w9OjRuEtIBOUUbedGdXQfGkth1NBFRAqEGnqAqqqquEtIBOUUbeCKdj0fGkthNKoC1NXVxV1CIiinaG+MarVFHxpLYdTQA3R1dcVdQiIop2iP36HFuXxoLIVRQxcRKRBq6AFWrlwZdwmJoJyivXtdUy4+NJbCqKEH0EJBfpRTNC3O5UdjKYwaeoDu7u64S0iE+eRUXbMRM1v0r8X2aIPm0H1onwtTHHcBSXLt2rW4S0iE+eQ0eu4sm759cAGr8XP6mZ2L+ni3rdBqiz60z4XRK3QRkQKhhh5AF6z1o5yi6SLRfjSWwqihBxgeHo67hERQTtE+W6UpFx8aS2HU0AOMjo7GXUIiKKdoTeVanMuHxlKYyIZuZi+Y2QUz6//QfT80s3Nm9tvc15c+3jJFRCSKzyv0nwJf/BP373HO3ZX7+uXClrU0NTY2xl1CIiinaAfP6M2xD42lMJGjyjl3GLi8CLUseZmMjh32oZyi3aR+7kVjKcx8htU3zex3uSmZ8gWraAkbHByMu4REUE7RvlCjOXQfGkth5npi0d8D/xlwue8/Af7Dn/pFM3sMeAxg3bp1dHR0ALB582ZWrVpFX18fABUVFTQ1NXH48OFsYcXFtLe309vby/j4OADpdJqxsTHOnj0LQH19PSUlJfT3Z6f3165dy5YtW+js7ASgpKSEtrY2enp6mJiYALKnEo+MjMxcTbyhoYFUKjVzZZSqqirq6upmVnlbuXIlra2tdHd3MzExQUdHB21tbQwPD898YNPY2Egmk5kZfOvXr6empmbmLLfS0lLS6TRdXV1MTk4C0N7ezvHjx7lw4QIAW7duZXJykqGhIQA2bNhAZWUlPT09AJSVldHS0kJnZydTU1MAbNu2jYGBAS5dugRAc3MzV69e5eTJkwDU1tayevVqent7ASgvL6e5uZlDhw7hnMPM2L59O319fVy5cgWAlpYWLl++zKlTp+b8PGUyGU6cODGn52n37t2sqJpi32CKljWOuyuyje+VkSI+mP7jlX4GrhTxxqjNrFr47nVj32CKRxsyMyftPHcsxWer3MwHkAfPFHFT0R+b6W8uFdF70Xi0IcP13bsZvy3D/qEUj9+R4dbi7Db2DqTYUTNNwyeyt186laJshePeddltvPlOEcfeNb5Wn63j/PvGgRMpdjVNsSL3cmnPWynu2zTN5rLsNl4cTnFrMTx5Z/Z5PLhjB+O3OB66PbuNMxPGi8Mpntg6RZHBtIM9/cU8WJdhY2l2GwdOpKgtdXy6MlvH4dEixq4ZD9Zlt3Fy3Hj5dBFP3Jm9fX0a9g4U89DtGapvyW7jR9XVc36eFmJ/yp80NNv+NDExwdDQ0LLen9LpNL7MuejDp8ysFjjonNsa8t8+Kp1Ou3ygSTQ0NER9fX3cZSx588nJzGI7U3QxH/feddP8+u2iWB477/QzO/HZ/+OkfS7LzI445yI7+5ymXMys+kM3HwD6b/S7haSmpibuEhJBOUXrvajVFn1oLIXxOWzx50AX0GBmI2b2KPBjM3vLzH4HfA544mOuc0nQQkF+lFM0Lc7lR2MpTOQcunPuq3/i7n0fQy0iIjIPOngqQGlpadwlJIJyinbxD5py8aGxFEYNPUDIp83LmXKKtn9Ii3P50FgKo4YeQBes9aOcouki0X40lsKooQfIH/Mqs1NO0fLHucvsNJbCqKGLiBQINfQA7e3tcZeQCMop2t4BzaH70FgKo4Ye4Pjx43GXkAjKKdoOreXiRWMpjBp6gPw6ETI75RQtvzaMzE5jKYwauohIgVBDD7B1a+T6Y4Jy8vHSKc2h+9BYCqOGHkCHUPlRTtHKVmjKxYfGUhg19AD5tZVldsopWn49dZmdxlIYNXQRkQKhhh5gw4YNcZeQCMop2pvvaNfzobEURqMqQGVlZdwlJIJyinbsXa226ENjKYwaeoAkXz5vMSmnaPlrkMrsNJbCqKGLiBQINfQAZWVlcZeQCMop2vn3NeXiQ2MpjBp6gJaWlrhLSATlFO3ACZ1Y5ENjKYwaeoDOzs64S0gE5RRtV9NU3CUkgsZSGDX0AFNT2gl9KKdoK7TnedFYCqNhJSJSINTQA2zbti3uEhJBOUXb85bm0H1oLIVRQw8wMDAQdwmJoJyi3bdJa7n40FgKo4Ye4NKlS3GXkAjKKdrmMq226ENjKYwauohIgVBDD9Dc3Bx3CYmgnKK9OKw5dB8aS2HU0ANcvXo17hISQTlFq1ypKRcfGkth1NADnDx5Mu4SEkE5RdtWpQ9FfWgshVFDFxEpEGroAWpra+MuIRGUU7T/PaZdz4fGUhiNqgCrV6+Ou4REUE7RTk1otUUfGkth1NAD9Pb2xl1CIiinaA/drgtc+NBYCqOGLiJSINTQA5SXl8ddQiIop2hnNOXiRWMpjBp6AJ3k4Ec5RdOJRX40lsKooQc4dOhQ3CUkgnKK9sRWrfPtQ2MpjBp6AOd0dp8P5RStSDMuXjSWwkQ2dDN7wcwumFn/h+5bbWa/MrOh3PdlMdFlpr3Qh3KKNq0+5UVjKYzPK/SfAl/8yH3fAV5zztUDr+VuF7zt27fHXUIiKKdoe/qL4y4hETSWwkQ2dOfcYeDyR+6+D9if+3k/cP8C17Uk9fX1xV1CIiinaA/W6Th0HxpLYeY6h17pnDsPkPu+duFKWrquXLkSdwmJoJyibSzVnIsPjaUwH/v7PjN7DHgMYN26dXR0dACwefNmVq1aNfMvcEVFBU1NTRw+fDhbWHEx7e3t9Pb2Mj4+DkA6nWZsbIyzZ88CUF9fT0lJCf392en9tWvXsmXLFjo7OwEoKSmhra2Nnp4eJiYmAGhtbWVkZIRz584B0NDQQCqV4ujRowBUVVVRV1dHV1cXACtXrqS1tZXu7m4mJibo6Oigra2N4eFhRkdHAWhsbCSTyTA4OAjA+vXrqampobu7G4DS0lLS6TRdXV1MTk4C0N7ezvHjx7lw4QIAW7duZXJykqGhIQA2bNhAZWUlPT09AJSVldHS0kJnZ+fMldC3bdvGwMDAzFVdmpubuXr16swKdbW1taxevXrmbLvy8nKam5s5dOgQzjnMjO3bt9PX1zez47S0tHD58mVOnTo15+cpk8lw4sSJOT1Pu3fvZkXVFPsGU7SscdxdkV2V8JWRIj6Yhp0bs7cHrhTxxqjx+B3ZV7rvXjf2DaZ4tCHDbSuyzfK5Yyk+W+VoKs/+zcEzRdxUBF+oyd7+zaUiei8ajzZkuL57N+O3Zdg/lOLxOzLcWpzdxt6BFDtqpmn4RPb2S6dSlK1w3Lsuu4033yni2LvG1+qzdZx/3zhwIsWupilW5F4u7XkrxX2bpmeuUvTicIpbi+HJO7PP48EdOxi/xc2cPXpmwnhxOMUTW6cosux8+57+Yh6sy8z8Q3DgRIraUsenK7N1HB4tYuyazbzyPzluvHy6iCfuzN6+Pg17B4p56PYM1bdkt/Gj6uo5P08LsT9du3YNYNb9aWJigqGhoWW9P6XTaXyZz6fIZlYLHHTObc3dHgTucc6dN7NqoMM51xC1nXQ67fKBJtH4+DhlZWVxl7HkzScnM2PTtw8ucEXRTj+zc1Eft/oWx/n3LZbHzjv9zM4lfxSJ9rksMzvinIvs7HOdcvkF8HDu54eBl+e4nUS5fPmjHyXIn6KcotVqysWLxlIYn8MWfw50AQ1mNmJmjwJ/C3zezIaAz+duF7z82yaZnXKKlp8qkdlpLIWJnEN3zn31Bv/pLxa4FhERmQedKRpg8+bNcZeQCMop2uFR7Xo+NJbCaFQFWLVqVdwlJIJyijZ2TWdA+tBYCqOGHkAnOfhRTtF0YpEfjaUwaugiIgVCDT1ARUVF3CUsiuqajZjZnL9+9rOfzflvl4uT40vg/zV107ye5/l8Vdds9CpxuexzC0UrBAVoamqKu4RFMXru7LxOdHkdx6Zv/+Wc/vb0Mzvn/LhJ8vLpJfBaKvNBLCc0gf/zvFz2uYWyBEZVcuRPz5XZ5U83lxtTRn60z4VRQxcRKRBq6AGKizVD5eO6ToKMpIz8aJ8Lo4YeoL29Pe4SEmHvgHbCKMrIj/a5MGroAfLLZsrs8svAyo0pIz/a58KooQfIr08ss8uvty03poz8aJ8Lo4YuIlIgNJEXIOTKIcvZPw2l4i5hyVv2GeVOaopSXV3N+fPnF+xhq9Zv4PzImQXb3lKjhh5gbGyM0tLSuMtY8u64zfHO6BI4E3IJW/YZeZ7UtK1qekFXpiz0E9c05RIgf+1Fmd2nPqlj8qIoIz/KKYwauohIgVBDD1BfXx93CYnw67c1rKIoIz/KKYzSClBSUhJ3CYkwfn0Zzw17UkZ+lFMYNfQA/f39cZeQCPfX6qSZKMrIj3IKo4YuIlIg1NADrF27Nu4SEmHw93qbHEUZ+VFOYdTQA2zZsiXuEhLh1RENqyjKyI9yCqO0AnR2dsZdQiLsatK8ZxRl5Ec5hVFDFxEpEGroAXTYop/3pjTvGUUZ+VFOYdTQA7S1tcVdQiI8d2yZLzzlQRn5UU5h1NAD9PT0xF1CIjxcr3nPKMrIj3IKo4YeYGJiIu4SEmHNzbp4QxRl5Ec5hVFDFxEpEGroAVpbW+MuIRH2DWreM4oy8qOcwqihBxgZGYm7hERoWaO3yVGUkR/lFEYNPcC5c+fiLiER7q7QRQmiKCM/yimMGrqISIFQQw/Q0NAQdwmJ8IrW34ikjPwopzBKK0AqpQ9ofHygd8mRlJEf5RRGDT3A0aNH4y4hEXZu1F4YRRn5UU5h1NBFRApE8Xz+2MxOAVeBDDDlnEsvRFFLVVVVVdwlJMLAFb1OiKKM/CinMPNq6Dmfc85dXIDtLHl1dXVxl5AIb4xqhbwoysiPcgqjf/4CdHV1xV1CIjx+hxZUiqKM/CinMPNt6A541cyOmNljC1GQiIjMzXynXD7jnHvbzNYCvzKz/+OcO/zhX8g1+scA1q1bR0dHBwCbN29m1apV9PX1AVBRUUFTUxOHD2f/vLi4mPb2dnp7exkfHwcgnU4zNjbG2bNnAaivr6ekpIT+/n4gexHnLVu2zFwqrqSkhLa2Nnp6emZWSmxtbWVkZGTmrM+GhgZSqdTMESxVVVXU1dXNvBpfuXIlra2tdHd3895779HR0UFbWxvDw8OMjo4C0NjYSCaTYXBwEID169dTU1NDd3c3AKWlpaTTabq6upicnASgvb2d48ePc+HCBQC2bt3K5OQkQ0NDAGzYsIG//Mq/5Wv//iEAzpw5w7PPPsvTTz/NzTffDMBTTz3FI488QmNjIwDPP/88NTU1fPnLXwbg1VdfZXBwkF27dgEwNDTE888/z49//GOKioqYnp7mqaee4utf/zr19fUA7N27lx07drDzzikADo8WMXbNeLAu+0rp5Ljx8ukinrgze/v6NOwdKOah2zNU35I9Tfv9KdhWNc2nPpk9QuHXbxcxft24vzb7N4O/N14dKZq5vNh7U8Zzx1I8XJ+hbPduVlRNsW8wRcsaN3Om4CsjRXww/cejHgauFPHGqM28gnv3urFvMMWjDRluW5Gt47ljKT5b5Wgqz/7NwTNF3FQEX6jJ3v7NpSJ6LxqPNmS4vns347dl2D+U4vE7MtxanN3G3oEUO2qmafhE9vZLp1KUrXDcuy67jTffKeLYu8bXcsu8nn/fOHAixa6mKVbkXi7teSvFfZum2VyW3caLwykMeDKX8cEdOxi/xfHQ7dltnJkwXhxO8cTWKYoMph3s6S/mwboMG0uz2zhwIkVtqePTldNzfp5+VF095+cpvwriXJ+n7373u1Q3TUU+T2tuhnvXTc88TwAX/2Bzfp527d5NR0cHZWVltLS00NnZydRUto5t27YxMDDApUuXAGhububq1aucPHkSgNraWlavXk1vby8A5eXlNDc3c+jQIZxzmBnbt2+nr6+PK1euANDS0sLly5c5deoUMPe+58ucW5i1Eszsh8CEc273jX4nnU47rSnuz8zY9O2Di/64p5/ZGcvjxvnY+n9eHo99+pmdLFTPW0xmdsTnoJM5T7mY2a1mtir/M7AD6J/r9pIg/4pbZpd/JSU3poz8KKcw85lyqQT+xczy2zngnPtfC1LVEnXt2rW4S0iE/JSH3Jgy8qOcwsy5oTvnTgLNC1iLiIjMgw5bDKCLRPvRhX2jKSM/yimMGnqA4eHhuEtIhM9W6W1yFGXkRzmFUUMPkD9MUWaXP/xMbkwZ+VFOYdTQRUQKRGIaenXNRswslq/qmo0AMyfwyOwOnknMsIqNMvKz4Dmlboq9j3ycFmJxrkUxeu5srCdBAGQyOibWx03qVZGUkZ8FzynzQex95OOkYRUgf2q/zC5/ar3cmDLyo5zCqKGLiBQINfQA69evj7uERPjNJQ2rKMrIj3IKo7QC1NTUxF1CIvRe1EUJoigjP8opjBp6AC3O5UcLKkVTRn6UUxg1dBGRAqGGHqC0tDTuEhLh4h/0NjmKMvKjnMKooQcIuXLIcrZ/SAsqRVFGfpRTGDV0H7mzy37wgx8s6pllSaUL+0ZTRn6UU5jEnCkaq9zZZWu2TC3qWWaLcWbZxyF/nUe5MWXkRzmF0St0EZECoYYeYO+A5vN8KKdoysiPcgqjhh5gh9aV8KKcoikjP8opjBp6gIZPaD7Ph3KKpoz8KKcwaugiIgVCDT3AS6c0n+dDOUVTRn6UUxg19ABlK/T2z4dyiqaM/CinMGroAe5dpw9ofCinaMrIj3IKo4YuIlIg1NADvPmO4vKhnKIpIz/KKYzSCnDs3eSur7KYlFM0ZeRHOYVRQw/wtXotFORDOUVTRn6UUxg1dBGRAqGGHuD8+3r750M5RVNGfpRTGDX0AAdO6CQHH8opmjLyo5zCqKEH2NU0FXcJiaCcoikjP8opjBp6gBVKy4tyiqaM/CinMIpLRKRAqKEH2POW5vN8KKdoysiPcgqjhh7gvk1aV8KHcoqmjPwopzBq6AE2l2nlNx/KKZoy8qOcwqihi4gUiHk1dDP7opkNmtm/mtl3FqqoperFYc3n+VBO0ZSRH+UUZs4N3cxSwH8F/g3QCHzVzBoXqrClqHKl3v75UE7RlJEf5RRmPq/Q/wz4V+fcSefcdeC/A/ctTFlL07YqfUDjQzlFU0Z+lFOY+TT09cDZD90eyd0nIiIxMOfm9pbGzB4EvuCc+4+5238F/JlzbtdHfu8x4LHczQZgcO7lxm4NcDHuIhJAOUVTRn6UU9Ym59wno36peB4PMAJs+NDtGuDtj/6Sc+4fgH+Yx+MsGWbW45xLx13HUqecoikjP8opzHymXN4E6s2szsxWAP8O+MXClCUiIqHm/ArdOTdlZt8EXgFSwAvOuYEFq0xERILMZ8oF59wvgV8uUC1JUBBTR4tAOUVTRn6UU4A5fygqIiJLi079FxEpEGroHszslJm9ZWa/NbOeuOtZKszsBTO7YGb9H7pvtZn9ysyGct/L46xxKbhBTj80s3O5MfVbM/tSnDUuBWa2wcxeN7NjZjZgZn+du19jypMaur/POefu0iFU/4+fAl/8yH3fAV5zztUDr+VuL3c/5f/PCWBPbkzdlfs8armbAp50zt0B/DnwjdxyIhpTntTQZc6cc4eByx+5+z5gf+7n/cD9i1rUEnSDnOQjnHPnnXO9uZ+vAsfInn2uMeVJDd2PA141syO5M1/lxiqdc+chu4MCa2OuZyn7ppn9Ljclo2mEDzGzWuBuoBuNKW9q6H4+45xrIbuy5DfMbFvcBUni/T1wO3AXcB74SbzlLB1mVgr8M/A3zrnxuOtJEjV0D865t3PfLwD/QnalSfnTxsysGiD3/ULM9SxJzrkx51zGOTcN/CMaUwCY2U1km/l/c879z9zdGlOe1NAjmNmtZrYq/zOwA+if/a+WtV8AD+d+fhh4OcZalqx8g8p5AI0pzMyAfcAx59zffeg/aUx50olFEcxsM9lX5ZA9s/aAc+6/xFjSkmFmPwfuIbsi3hjwA+Al4H8AG4EzwIPOuWX9geANcrqH7HSLA04BX8/PEy9XZtYOvAG8BeQXQv9PZOfRNaY8qKGLiBQITbmIiBQINXQRkQKhhi4iUiDU0EVECoQauohIgVBDFxEpEGroIiIFQg1dRKRA/F9oZL3F8XzVRQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "ax.hist(tab, lw=1, edgecolor=\"black\")\n", + "plt.grid(linestyle='--')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], "metadata": { "kernelspec": { "display_name": "Python 3", @@ -16,10 +74,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 } -